
 1

Abstract—Significant research has been done on

training Artificial Neural Networks (ANN) with Particle
Swarm Optimization (PSO) rather than the standard
technique of back-propagation [of errors], yet little work
has been done to combine the training method with an
optimal network topology and transfer function. This
paper will discuss the use of PSO to select optimal inputs,
topologies, and transfer functions for ANN. Brief
descriptions of ANN, as well as the PSO algorithm itself,
will be followed by a concrete application of the proposed
marriage of the two. As an example, the Reactive Power
Control problem will be solved with the methods
presented and the results shown graphically.

Index Terms—Particle Swarm Optimization, Neural Network

I. INTRODUCTION

ARTICLE Swarm Optimization (PSO) has been an
increasingly hot topic in the area of computational

intelligence. PSO is yet another optimization algorithm that
falls under the soft computing umbrella that covers genetic
and evolutionary computing algorithms as well. As such, it
lends itself as being applicable to a wide variety of
optimization problems. One application that PSO has had
tremendous success is in the training of Artificial Neural
Networks (ANN), a fellow soft computing technique.

Typically, ANN applications of PSO have only been used to
find optimal weights for a given network. Networks not only
need appropriate weights, but also the appropriate topology
and neuron transfer functions. The PSO algorithm does not
differentiate between the variables it optimizes, meaning that
it is not only capable of optimizing network weights, but also
any network parameters that are allowed to be variables. This
means that PSO can be used to optimize all parameters of a
network: the number of layers, input neurons, hidden neurons,
the type of transfer functions etc. This paper will focus on
optimizing the weights, transfer function, and topology of an
ANN constructed for reactive power control.

A system under optimal power conditions operates with a high

power factor. The power factor of a system is composed of
two elements, active power and apparent power. Active
power is the useful power. Apparent power is the aggregate
of active power and reactive power. The power factor ratio is
given in (1).

 (1)

This ratio is also equal to the cosine of the angle between the
voltage and the current of the system. This equality may be
seen in (2).

 (2)

As previously mentioned, the higher the power factor, the
more the apparent power is being used, whereas a low power
factor adds strain on the system. It is desirable to keep the
power factor of a system higher rather than lower. Low
power factors result in equipment failure and higher
transmission costs[1]. To do this, correction measures must
be implemented.

It is more common than not for a system to have a lagging
power factor. Fortunately this problem is easily remedied by
injecting the appropriate amount of reactive power into the
system’s grid. Without integrating these corrective measures,
the supplier of the power would be required to manage the
extra reactive power demand leading to increased cost for the
customer[2].

Implementation of client-side reactive power control requires
a more robust and pseudo-intelligent control system. The
control system is now responsible for controlling the reactive
power generators to inject the appropriate amount of reactive
power at the right time. Power systems are complex, and load
demands are constantly changing. There are a vast amount of
variables involved in a power system and there is no hard-
computing method to determine how much reactive power
should be added to a system for a given time. The soft-
computing world offers a variety of methods shown to work
remarkably well for the reactive power control problem.
These methods consist of neuro-fuzzy systems, ANN, and

A Hybrid Particle Swarm and Neural Network
Approach for Reactive Power Control

Paulo F. Ribeiro, W. Kyle Schlansker, Member, IEEE

P

PowerFactor
ActivePower

ApparentPower

PowerFactor cos φ()

 2

many combinations of the two such as Adaptive Neuro-Fuzzy
Inference Systems[2].

ANN have been shown to be powerful and robust solutions
for the control of reactive power. However, no one network is
appropriate for all systems. Instead, custom networks are built
and trained for each separate system. These networks differ in
their weights, neuron transfer functions, topology, and other
network parameters. Thus it is appropriate to be able to
construct a robust network fairly quickly and with ease when
given a list of possible network inputs variables. This paper
proposes a method of building an optimal ANN when given
sufficient data characterizing the power system dynamics.
The data used to build and train an ANN with the proposed
method was taken from an automobile industry and represents
the voltage, current, and reactive power patterns taken every
10 minutes over a 24 hour period. This data was graciously
made available for study by Dr. Ajith Abraham, who used it in
a similar paper, “Neuro-Fuzzy Paradigms for Intelligent
Energy Management”[1].

Brief introductions to ANN and PSO are given before the
proposed method of network construction and training so that
when proposed, the reader will have a basic understanding of
how the method works.

II. ARTIFICIAL NEURAL NETWORKS

A. Composition

Artificial Neural Networks, heron referred to as ANN, are an
attempt at modeling the processing power of the human brain.
Humans are able to adapt to new situations and learn quickly
when given the correct context. Computers are relatively slow
at performing simple human tasks such as recognizing a lizard
in a painting of the jungle. ANN work by simulating the
structure of the human brain. At their basic level they consist
of a network of neurons connected by synapses.

Neurons are the basic element of an ANN. Neurons accept
inputs from other connections and produce an output by firing
their synapse. Neurons typically perform a weighted sum on
all of their input connections and then pass it through a
transfer function to produce its output. A simple block
diagram showing the process of a neuron applying the transfer
function to its inputs before emitting its output may be seen in
Fig 1. The traditional ANN is a binary network in which a
synapse either fires or doesn’t fire. This type of transfer
function is a step function in which the neuron compares its
weighted sum to a threshold and then either emits a 1 or a 0
(fires or doesn’t fire its synapse). While binary networks have
their uses, most engineering applications involve the real
number system. ANN have thus been adapted to use real

numbers. The principles are the same, but rather than only
outputting a 1 or 0, a neuron can output a real number on any
range, typically [0, 1].

Figure 1. Neuron block diagram

ANN are organized into layers. There is always an input
layer, and always an output layer. There may be any number
of hidden layers, with the stipulation that there is at least one.
The hidden layers are the root of the network. They perform
the actual calculations of the network. A three layer feed-
forward network, also called the perceptron or the universal
approximator, is shown in Fig 2.

Figure 2. Three-layer neural network

A network is considered operational when it is given a set of
input values and the output layer produces the expected result.
The result is calculated by the topology of the neurons. Each
neuron connection may be weighted differently. Each neuron
may have a different transfer function (though usually they are
the same). A valid network is one that has arranged itself in
such a manner that produces the correct output. To facilitate
the proper arrangement of a network, one must train the
network.

B. Training Neural Networks

There are several methods of training ANN. Back-
propagation is by far the most common. This method is where
the network back-propagates its errors when training. An

 3

ANN trains on a set of data which consists of inputs and an
expected output. The training process is as follows:

1. Read in the inputs and expected outputs
2. Calculate network result by performing weighted sums

and transfer functions
3. Compare network result with expected result
4. Compute and update fitness value based on

comparison.
5. Repeat 2-3 until all training points are finished
6. Adjust weights in the appropriate direction to

maximize fitness.
7. Repeat 1-6 until acceptable fitness value is found

The Back-propagation method is simply a gradient type
adjustment for weight modification. While intuitive and
effective it also may take an extremely long time to train a
network. This paper suggests the use of PSO as the training
algorithm.

C. Topologies

The topology of a network defines the way the neurons are
connected to each other. There is a myriad of ways a network
can be arranged, but various arrangements fall into two
distinct categories, namely recurrent and feed-forward.

Recurrent networks are networks in which internal
connections form loops. That is, when the output of one
neuron also somehow effects its own input. In computer
science terms, a recurrent network occurs when the
dependency graph contains one or more cycles. Fig. 3 shows
a directed graph representing the neurons of a recurrent
network. Recurrent networks inherently contain feedback.
Like any system, this feedback can grow and cause problems
if it is unbounded. This feedback causes instabilities in the
network, and is hard to control when using non standard
training methods.

Figure 3. Network with feedback

Feed-forward networks on the other hand are very stable.
They do not contain the instabilities that recurrent networks
due because they are required to have acyclic dependency

graphs as shown in Fig. 4. The researched discussed here
only evolves the feed-forward network topologies in order to
avoid the instabilities associated with feedback.

Figure 4. Network without feedback

D. Transfer Functions

Each neuron is associated with a transfer function which
operates on its total input. The total input of a neuron is
defined as weighted sum of its input connections less some
bias. Binary ANN either output a 0 or a 1, so their transfer
functions are limited to threshold and step-like transfer
functions. Real number ANN are allowed to output any real
number value. Transfer functions are typically picked to map
their inputs onto a real number range that matches the
expected output of the network. For instance, if valid answers
for a network lay on the range [0,10] and if there are 10
hidden neurons, then those neurons would each have transfer
functions that map to [0,1]. The alternative is to have the
transfer function of the output neuron map the range of its
inputs into the valid range of outputs. In standard practice, it
is good to do both of these. Theoretically one is still left with
an infinite amount of solutions, by choosing the range of the
transfer functions it cuts down on the number of invalid
solutions that a network may attempt during training.

Another danger that needs to be addressed by the transfer
function is giving one input more say than another simply by
its value rather than its weight. If one input is valid on the
domain [0, 50] and another on [0, 2] and the output is on the
range [0, 50] then the first input will dominate the second if it
is not properly handled. One might assume that connection
weights account for the scaling. This is true in part, but is
dependent on the range used for connection weights. The
more appropriate way to deal with this situation is to use a
transfer function which scales all inputs onto an equal range.
This ensures that large inputs do not dominate smaller ones
since each can contain equal information just on different
scales. A good transfer function for this type of scaling is the
sigmoid function.

 4

Sigmoid x()
1

1 e α− x⋅
+

:=

xi
→

t() x i
→

t 1−() v i
→

t()+

v i
→

t() v i
→

t 1−()⋅ ρ 1 p i
→

xi
→

t 1−()⋅−⎡
⎣

⎤
⎦⋅+ ρ 2 p g

→⎯
xi
→

t 1−()⋅−⎡
⎣

⎤
⎦⋅+

The sigmoid function is given in (3), and its graph depicted in
Fig. 5 with alpha set to unity. The sigmoid function maps its
input onto the range [0,1]. This is the initial transfer function
used in this research, with alpha (the slope of the curve) being
a variable.

 (3)

10 0 10

0

1
1.25

0.25−

Sigmoid x()

1010− x
Figure 5. Plot of the sigmoid transfer function

III. PARTICLE SWARM OPTIMIZATION

A. Description

Nature itself is the most complex system known, and it works
gracefully, almost magically. There are millions of groups or
communities of humans and animals that all live in harmony
with nature. They have survived for millions of years. How?
To what do they attribute their sustainability? There is
obviously some valuable knowledge embedded within social
systems. By examining the interaction of members within a
social system, it is possible to apply the findings to other
scientific problems.

James Kennedy and Russell Eberhart did just that when they
developed swarm theory. Swarm theory is based on the
collective intelligence that arises from the cooperation of
(often unintelligent) individual members within a social
system[14].

PSO exploits the cooperation aspect and applies it to computer
science and engineering optimization problems. It does this
by modeling a social system. In this model, the system is
populated with individual particles representing possible
solutions to the problem. The particles themselves are not
intelligent. They do not sit down and think about the best way
to solve the problem. They simply follow a predefined set of
rules. In this aspect, they are much like Finite Cellular
Automata. The PSO algorithm evaluates all particles
according to a common fitness function—a function that maps
the state of a particle to how good of a solution it is. The
particle with the highest fitness is considered the best of the

group. All other particles then learn from this best, just as
members of a social system learn from those around them. No
particle is identical, but they each take on attributes of each
other that will help their fitness improve.

B. PSO Model

A Particle Swarm is a population of individuals each of which
contains the appropriate amount of features or values to place
it in a Swarm problem space. The individuals are arranged in
neighborhoods in which they can share information. The
mathematical definition of a neighborhood is “the set of points
surrounding a specified point each of which is within a certain
specified distance from the specified point”[dictionary.com].
For instance the bit string “01110” is composed of 5 bits.
Letting bit number 3 (the middle bit) be the specified point. A
neighborhood of size 3 would include the entire bit string, two
to the left and two to the right. Like ANN, these
neighborhoods themselves can have different topologies,
though these topologies are drastically different from the
topologies of ANN. Typical topologies for Particle Swarm
neighborhoods are circular or star-shaped.

In a Particle Swarm, each individual is influenced by its
closest neighbors. A single particle is a possible solution to
the problem. The particle’s position in the problem space
defines the solution. Particles fly though the problem space
and adjust the trajectory based on influence from their
neighbors.

Each particle is randomly initialized to a certain position in
the problem space. The number of dimensions in the problem
space is equal to the number of components there are to
optimize. A particle updates its position according to the
Euler integration equation for physical movement given in (4).

 (4)

The velocity component of the Euler integration equation is
what includes the stochastic element of the Particle Swarm.
Each particle’s velocity vector is computed based on its
current velocity (randomly initialized) and the velocity of the
best particle in its neighborhood. Not only that, but two
stochastic variables are incorporated as well. One of these
variables weights the portion of the velocity vector
corresponding to the particle’s previous velocity, while the
other weights the portion corresponding to the velocity of the
best particle in the neighborhood. The sum of the two
particles is generally a constant defined as the random range
of a Particle Swarm[14]. The velocity vector is updated prior
to the position vector and is given by the (5).

 (5)

 5

For a given problem, a certain number of particles (typically
20-50) are initialized and let loose to swarm the problem
space in search of an optimal or near optimal solution. The
particles continue to swarm until the exit criteria has been met.

C. Algorithm

The algorithm for a neighborhood of particles is shown in the
pseudocode below presented by AdaptiveView[13].

///
/// Begin definitions of control variables
///
numberOfParticles = 40
numberOfNeighbors = 4
maxIterations = 1000

/// set limits for location changes
deltaMin = -4.0
deltaMax = 4.0

/// set individuality and sociality
iWeight = 2.0
iMin = 0.0 /// low stochastic weight factor
iMax = 1.0 /// high stochastic weight factor
sWeight = 2.0
sMin = 0.0 /// low stochastic weight factor
sMax = 1.0 /// high stochastic weight factor

///
/// Next 3 variables related to problem solution space.
/// See function "test" for definition of fitness function.
///
initialFitness = -100000
targetFitness = 0
dimensions = 4 /// dim. of solution space

///
/// End of control variable definitions.
///

/// set up particles' next location
 for each particle p do {
 for d = 1 to dimensions do {
 p.next[d] = random(...)
 p.velocity[d] = random(deltaMin,deltaMax)
 }
 p.bestSoFar = initialFitness
}

/// set particles' neighbors
for each particle p do {
 for n = 1 to numberOfNeighbors do {
 p.neighbor[n] = getNeighbor(p,n)
 }

}

/// run Particle Swarm Optimizer
while iterations <= maxIterations do {
 /// Make the "next locations" current and then
 /// test their fitness.
 for each particle p do {
 for d = 1 to dimensions do {
 p.current[d] = p.next[d]
 }
 fitness = test(p)
 if fitness > p.bestSoFar then do {
 p.bestSoFar = fitness
 for d = 1 to dimensions do {
 p.best[d] = p.current[d]
 }
 }

 if fitness = targetFitness then do {
 ... /// e.g., write out solution and quit
 }
 } /// end of: for each particle p

 for each particle p do {
 n = getNeighborWithBestFitness(p)
 for d = 1 to dimensions do {
 iFactor = iWeight * random(iMin,iMax)
 sFactor = sWeight * random(sMin,sMax)
 pDelta[d] = p.best[d] - p.current[d]
 nDelta[d] = n.best[d] - p.current[d]
 delta = (iFactor * pDelta[d]) + (sFactor * nDelta[d])
 delta = p.velocity[d] + delta
 p.velocity[d] = constrict(delta)
 p.next[d] = p.current[d] + p.velocity[d]
 }
 } /// end of: for each particle p
} /// end of: while iterations <= maxIterations
end /// end of main program

///
/// Beginning of function code
///

/// Return neighbor n of particle p
function getNeighbor(p,n) {
 ...
 return neighborParticle
}

/// Return particle in p's neighborhood
/// with the best fitness
function getNeighborWithBestFitness(p) {
 ...
 return neighborParticle
}

/// Limit the change in a particle's
/// dimension value
function constrict(delta) {

 6

 if delta < deltaMin then
 return deltaMin
 else
 if delta > deltaMax then
 return deltaMax
 else
 return delta
}

/// When given a particle, test() applies its coordinates
/// to the problem and returns a fitness value.
function test(particle) {
 x = particle.current[1] /// dimension 1
 y = particle.current[2] /// dimension 2
 z = particle.current[3] /// dimension 3
 w = particle.current[4] /// dimension 4
 f = 5*(x^2) + 2*(y^3) – (z/w)^2 + 4 /// problem
 if (x*y) = 0 then n = 1 else n = 0 /// favor x and y > 0
 return 0 – abs(f) - n /// fitness value; 0 = optimal
}

D. Training Neural Networks with PSO

The PSO algorithm is vastly different then any of the
traditional methods of training. PSO does not just train one
network, but rather trains a network of networks. PSO builds
a set number of ANN and initializes all network weights to
random values and starts training each one. On each pass
through a data set, PSO compares each network’s fitness. The
network with the highest fitness is considered the global best.
The other networks are updated based on the global best
network rather than on their personal error or fitness.

Each neuron contains a position and velocity. The position
corresponds to the weight of a neuron. The velocity is used to
update the weight. The velocity is used to control how much
the position is updated. If a neuron is further away (the
position is further from the global best position) then it will
adjust its weight more than a neuron that is closer to the global
best.

The particles in this context are the individual networks rather
than the neurons. The dimension of the hyperspace in which
the particles reside may be found by the number of neurons in
the network. Thus, the positions of each neuron in a network
effectively place a network at a certain location in the problem
hyperspace.

There are maxima and minima in this hyperspace. Particles
fly around the hyperspace, updating their position according
to the best position found by their fellow particles. Eventually
a particle will come across optima of sorts. When this occurs,
it will continue to climb the hill towards the optima. Fellow
particles will quickly see this and adjust their positions to
swarm towards the optima. What ensues is that a team of
these particles cover the optima area. If the associated fitness
at this optimum is acceptable, then the network stops training.

If it a maximum has been found, but is sub-par, then the
positions of the neurons are randomized and the hunt restarts.
There are an infinite number of solutions for a real-number
ANN. PSO assures that the network will never get stuck
trying to converge to a false maxima. Instead, as alluded to
previously, PSO takes on two major methods of solution
hunting. Namely, exploration and exploitation. Exploration
is the generalized search for maxima and minima. This occurs
with a large number of particles swarming broadly over the
entire hyperspace. Exploitation is the convergence on a
particular maxima or minima. Generally speaking, particles
start by exploration, if a specific optimum looks particularly
appealing, it will decide to examine it a bit closer. This is
when it switches to exploitation mode. In exploitation mode,
the position of a particle does not update as rapidly as in
exploration. This has the effect that the particles take a
smaller step size, and won’t overstep a possible optimal
solution. This part of the algorithm is not inherent to PSO but
is an addition to it. It is controlled by an annealing factor
applied to the positional update equation.

The annealing factor stems from the simulated annealing
method often used in evolutionary programming. Basically,
as implemented here, the annealing factor starts off near 1.
When multiplied against the positional update equation, it has
the effect of exploration (it allows the update of the full
positional change). As a particle nears an optima, it decreases
its annealing factor (either exponentially or linearly) thus
taking smaller steps.

IV. PSO MEETS ANN

A. Constructing a Network Swarm

This research focuses around training ANN with PSO. To do
this, a population of networks must be constructed. In this
situation, each individual network is treated as a particle that
is located in the problem hyperspace according to the weights
of the network elements. Generally, a population of about 20
particles (or 20 networks) has been found to work well.

This population of networks is built and initialized and then
formed into PSO neighborhoods. For the example
application, a global neighborhood was found to work best
(one in which any network is able to teach any other network).
This construction is called the topology of the swarm system.

B. Training the Swarm of Neural Networks

After the networks have been constructed and arranged
topologically, they begin the training algorithm. The training
algorithm is similar to the one given in section II, but not the
same. The training process is listed below.

 7

1. For each network, iterate over the training data set and
keep a running sum of the network error.

2. Compare all of the network errors to find the best
network in the neighborhood.

3. If one of the networks has achieved the minimum error
required, record its weights and exit the program.

4. Otherwise, for each network, execute the PSO
algorithm to update its position and velocity vectors.

5. Loop to 1.

Once a particle has achieved the required fitness, a solution
has been found. This particle then changes from being a
solution searcher into a production neural network as depicted
in Fig. 6.

Figure 6. Particle search of the problem hyperspace

V. REACTIVE POWER CONTROL PROBLEM

A. Description of Problem

The voltage requirement of power systems swings depending
on the load of the system. This causes losses in the system.
An effective method to control this is to inject reactive power
to compensate for the swing. The problem that arises with
this solution is how much reactive power to inject, and when
to inject it.

B. Proposed Solution

Power Systems are complex systems with a large number of
control variables. ANN have proven to be excellent tools for
mapping complex systems to a known output. The proposed
solution is to construct and train a neural network to predict
the reactive power requirements for a given power system.

The training data from the aforementioned automobile plant
consisted of the voltage and current for a given time as well as
the required reactive power. A network was constructed
which used the voltage and current values as inputs to the
network. Network fitness, given in (6) was determined to be
the mean square of errors for the entire training set, where
error is defined to be the recorded reactive power minus the
network predicted reactive power.

Fitness Recorded_Value Network_Predicted_Value−()2∑
 (6)

A network is deemed usable once it has met some minimal
requirements for performance. The requirement used was the
statistical calculation known as the multiple correlation
coefficient and is given in (7). This measurement subtracts,
from unity, the network fitness divided by the square of the
mean subtracted by each output. As the network becomes
more accurate, the resulting value approaches one.

R2 1
Fitness

Recorded_Value Mean_Recorded_Value−()∑
−

 (7)

C. Implementation

A Java program, called Themis, was written to read in the
training data, construct a given number of ANN particles, and
execute the PSO algorithm on the networks. Themis, a Greek
goddess, was chosen as the name because she is said to be
“prophecy incarnate; her oracles derive from her sense of
order and connection to nature…she personified the social
order of law and custom, a reminder that social order is
ultimately dependant on the natural order of the earth”[15].

Themis currently only adjusts the network weights for a given
topology and transfer function. However, future versions will
add the topology and transfer function selection as a PSO
variable which will be optimized and selected by the PSO
algorithm rather than the user.

The class collaboration diagram for the implementation code
is shown in Fig. 7.

Figure 7. Class collaboration diagram

 8

D. Results

Themis was able to construct a three layer fully connected
feed-forward network consisting of two input neurons, three
hidden neurons, and a single output neuron. The resulting
networks performance was more than sufficient. The
correlation coefficient achieved was 0.99873. A plot of
recorded values versus predicted values may be seen in Fig. 8
and Fig. 9.

Recorded Power versus Neural Network Predicted Power

R2 = 0.9987

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Neural Network Predicted Power

No
rm

al
iz

ed
 R

ec
or

de
d

Po
w

er

Recorded Power vs. Predicted Power Linear (Recorded Power vs. Predicted Power)
Figure 8. Correlation of recorded and predicted values

Time Plot of Recorded Power and Neural Network Predicted Power

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 77 153 229 305 381 457 533 609 685 761 837 913 989 1065 1141 1217 1293 1369

Time (minutes)

N
or

m
al

iz
ed

 P
ow

er

Recorded Predicted
Figure 9. Time overlay of recorded and predicted values

VI. CONCLUSION

It is clear that Artificial Neural Networks are a very
powerful and accurate tool for reactive power dispatch. Due
to the very nature of Artificial Neural Networks, and soft-
computing in general, there is no one solution equation. This
requires networks to be customized for each system. Standard
methods require the user to choose a network topology,
inputs, and transfer functions for a network before training.
Particle Swarm Optimization overcomes these limitations
because it is blind to what it is optimizing. Any network
parameter may be thrown into the mix along with the network
weights to be optimized. To date Themis offers a way of
selecting appropriate inputs for the network, and future
versions will support the automatic selection of topology and
transfer function. Themis is capable of constructing and
training a network with a correlation greater than 0.99 in
under a minute, placing PSO as a competitor for other top
training algorithms.

ACKNOWLEDGMENTS
The author thanks the following people for their support and
invaluable insight pertaining to this paper:
Dr. Ajith Abraham, Oklahoma State University
Dr. Wayne S. Hill, Foster-Miller Inc, Waltham, MA,
Mr. Thomas Lovell, Foster-Miller Inc, Waltham, MA,
Dr. Paulo F. Ribeiro, Calvin College. Grand Rapids, MI,
Dr. Steven VanderLeest, Calvin College, Grand Rapids, MI,
Dr. Randall Brouwer, Calvin College. Grand Rapids, MI.

REFERENCES
[1] Ajith Abraham, Muhammad Riaz Kahn, “Neuro-Fuzzy Paradigms for

Intelligent Energy Management, Innovations in Intelligent systems:
Design, Management and Applications” in Studies in Fuzziness and Soft
Computing, pp. 285-314, Springer Verlag Germany, 2003.

[2] Ajith Abraham, An Evolving Fuzzy Neural Network Model Based
Reactive Power Control, In Proceedings of The Second International
Conference on Computers In Industry, ICCI 2000, Majeed A Karim et al
(Eds.), Bahrain, pp. 247-253, 2000.

[3] K.H. Abdul-Rahman, S.M. Shahidehpour, M. Daneshdoost, “AI
approach to optimal VAr control with fuzzy reactive loads” in IEEE
Transactions on Power Systems, volume 10, pp 88-97, Feb. 1995.

[4] V. Ajjarapu, Z. Albanna, “Application of genetic based algorithms to
optimal capacitor placement” in Neural Networks to Power Systems,
pp 251-255, Jul. 1991.

[5] G. Cartina, C. Bonciu, M. Musat, Z. Zisman, “AI approach to optimal
VAr control with fuzzy reactive loads” in Electrotechnical
Conference, volume 2, pp 1103-1106, May. 1998.

[6] T.W.S. Chow, Y.F. Yam, “Measurement and evaluation of instantaneous
reactive power using neural networks” in IEEE Transactions on
Power Delivery, volume 9, pp 1253-1256, Jul. 1994.

[7] Yuan-Yih Hsu, Feng-Chang Lu, “A combined artificial neural network-
fuzzy dynamic programming approach to reactive power/voltage control
in a distribution substation” in IEEE Transactions on Power Systems,
volume 13, pp 1265-1271, Nov. 1998.

[8] A.A. Sallam, A.M. Khafaga, “Artificial neural network application to
alleviate voltage instability problem” in 2002 Large Engineering
Systems Conference on Power Engineering, pp 133-141, June. 2002.

[9] Z.E. Aygen, M. Bagriyanik, S. Seker, F.G. Bagriyanik, “An artificial
neural network based application to reactive power dispatch problem”
 Electrotechnical Conference, volume 2, pp 1080-1083, May 1998.

[10] K. Iba, “Optimal VAr allocation by genetic algorithm” in Neural
Networks to Power Systems, pp 163-168, Apr. 1993.

[11] Paul Pomeroy, “An Introduction to Particle Swarm Optimization”,
http://www.adaptiveview.com/articles/ipsop1.html, March 2003.

[12] Russell Eberhart, James Kennedy, Swarm Intelligence
[13] Susan Boulet, Goddess Knowledge Cards,

http://www.daykeeperjournal.com/aarch02/0201/goddess.shtml

W. Kyle Schlansker (M’02) was born in San
Antonio, TX in 1982. Since then he has attended
school in both Boston MA, and Grand Rapids,
MI. In May 2004 he will graduate from Calvin
College in Grand Rapids, MI with a Bachelor of
Science in Engineering with a concentration in
computer and electrical engineering and minors
in computer science and mathematics. He then
plans to attend the University of Illinois at
Urbana-Champaign as an electrical engineering
graduate student.

 He has worked as a consultant for Foster-Miller, Inc. on projects for both
the Navy and NASA. He has also worked as a Java programmer for the
Christian Classics Ethereal Library (http://www.ccel.org). His current work is
independent research on applications of particle swarm optimization.

