
v2024.12.27a

Is Parallel Programming Hard, And, If So,
What Can You Do About It?

Edited by:

Paul E. McKenney
Meta Platforms, Inc.
paulmck@kernel.org

December 18, 2024
Release v2024.12.27a

mailto:paulmck@kernel.org

v2024.12.27a

ii

Legal Statement
This work represents the views of the editor and the authors and does not necessarily
represent the view of their respective employers.

Trademarks:
• IBM, z Systems, and PowerPC are trademarks or registered trademarks of Inter-

national Business Machines Corporation in the United States, other countries, or
both.

• Linux is a registered trademark of Linus Torvalds.
• Intel, Itanium, Intel Core, and Intel Xeon are trademarks of Intel Corporation or

its subsidiaries in the United States, other countries, or both.
• Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or

elsewhere.
• SPARC is a registered trademark of SPARC International, Inc. Products bearing

SPARC trademarks are based on an architecture developed by Sun Microsystems,
Inc.

• Other company, product, and service names may be trademarks or service marks
of such companies.

The non-source-code text and images in this document are provided under the terms
of the Creative Commons Attribution-Share Alike 3.0 United States license.1 In brief,
you may use the contents of this document for any purpose, personal, commercial, or
otherwise, so long as attribution to the authors is maintained. Likewise, the document
may be modified, and derivative works and translations made available, so long as
such modifications and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

Source code is covered by various versions of the GPL.2 Some of this code is
GPLv2-only, as it derives from the Linux kernel, while other code is GPLv2-or-later. See
the comment headers of the individual source files within the CodeSamples directory in
the git archive3 for the exact licenses. If you are unsure of the license for a given code
fragment, you should assume GPLv2-only.

Combined work © 2005–2024 by Paul E. McKenney. Each individual contribution
is copyright by its contributor at the time of contribution, as recorded in the git archive.

1 https://creativecommons.org/licenses/by-sa/3.0/us/
2 https://www.gnu.org/licenses/gpl-2.0.html
3 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

https://creativecommons.org/licenses/by-sa/3.0/us/
https://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

v2024.12.27a

Contents

1 How To Use This Book 1
1.1 Roadmap . 1
1.2 Quick Quizzes . 2
1.3 Alternatives to This Book . 3
1.4 Sample Source Code . 4
1.5 Video Resources . 4
1.6 Whose Book Is This? . 5

2 Introduction 7
2.1 Historic Parallel Programming Difficulties 7
2.2 Parallel Programming Goals . 8

2.2.1 Performance . 9
2.2.2 Productivity . 10
2.2.3 Generality . 10

2.3 Alternatives to Parallel Programming 12
2.3.1 Multiple Instances of a Sequential Application 12
2.3.2 Use Existing Parallel Software 12
2.3.3 Performance Optimization 13

2.4 What Makes Parallel Programming Hard? 13
2.4.1 Work Partitioning . 14
2.4.2 Parallel Access Control . 14
2.4.3 Resource Partitioning and Replication 15
2.4.4 Interacting With Hardware 15
2.4.5 Composite Capabilities . 15
2.4.6 How Do Languages and Environments Assist With These Tasks? 16

2.5 Discussion . 16

3 Hardware and its Habits 17
3.1 Overview . 17

3.1.1 Pipelined CPUs . 17
3.1.2 Memory References . 19
3.1.3 Atomic Operations . 19
3.1.4 Memory Barriers . 20
3.1.5 Functional Unit Failings . 20
3.1.6 Thermal Throttling . 21
3.1.7 Cache Misses . 21
3.1.8 I/O Operations . 22

3.2 Overheads . 22

iii

v2024.12.27a

iv CONTENTS

3.2.1 Hardware System Architecture 23
3.2.2 Costs of Operations . 24
3.2.3 Hardware Optimizations . 26

3.3 Hardware Free Lunch? . 27
3.3.1 Novel Materials and Processes 27
3.3.2 Light, Not Electrons . 28
3.3.3 3D Integration . 28
3.3.4 Special-Purpose Accelerators 29
3.3.5 Existing Parallel Software 29

3.4 Software Design Implications . 29

4 Tools of the Trade 31
4.1 Scripting Languages . 31
4.2 POSIX Multiprocessing . 32

4.2.1 POSIX Process Creation and Destruction 32
4.2.2 POSIX Thread Creation and Destruction 33
4.2.3 POSIX Locking . 34
4.2.4 POSIX Reader-Writer Locking 36
4.2.5 Atomic Operations (GCC Classic) 38
4.2.6 Atomic Operations (C11) 38
4.2.7 Atomic Operations (Modern GCC) 39
4.2.8 Per-Thread Variables . 39

4.3 Alternatives to POSIX Operations 39
4.3.1 Organization and Initialization 39
4.3.2 Thread Creation, Destruction, and Control 40
4.3.3 Locking . 41
4.3.4 Accessing Shared Variables 42
4.3.5 Atomic Operations . 48
4.3.6 Per-CPU Variables . 48

4.4 The Right Tool for the Job: How to Choose? 49

5 Counting 51
5.1 Why Isn’t Concurrent Counting Trivial? 51
5.2 Statistical Counters . 53

5.2.1 Design . 53
5.2.2 Array-Based Implementation 53
5.2.3 Per-Thread-Variable-Based Implementation 54
5.2.4 Eventually Consistent Implementation 56
5.2.5 Discussion . 57

5.3 Approximate Limit Counters . 57
5.3.1 Design . 57
5.3.2 Simple Limit Counter Implementation 58
5.3.3 Simple Limit Counter Discussion 61
5.3.4 Approximate Limit Counter Implementation 62
5.3.5 Approximate Limit Counter Discussion 63

5.4 Exact Limit Counters . 63
5.4.1 Atomic Limit Counter Implementation 63
5.4.2 Atomic Limit Counter Discussion 66
5.4.3 Signal-Theft Limit Counter Design 66
5.4.4 Signal-Theft Limit Counter Implementation 67

v2024.12.27a

CONTENTS v

5.4.5 Signal-Theft Limit Counter Discussion 69
5.4.6 Applying Exact Limit Counters 70

5.5 Parallel Counting Discussion . 71
5.5.1 Parallel Counting Validation 71
5.5.2 Parallel Counting Performance 71
5.5.3 Parallel Counting Specializations 72
5.5.4 Parallel Counting Lessons 72

6 Partitioning and Synchronization Design 75
6.1 Partitioning Exercises . 75

6.1.1 Dining Philosophers Problem 75
6.1.2 Double-Ended Queue . 76
6.1.3 Partitioning Example Discussion 82

6.2 Design Criteria . 83
6.3 Synchronization Granularity . 85

6.3.1 Sequential Program . 85
6.3.2 Code Locking . 85
6.3.3 Data Locking . 87
6.3.4 Data Ownership . 88
6.3.5 Locking Granularity and Performance 89

6.4 Parallel Fastpath . 91
6.4.1 Reader/Writer Locking . 91
6.4.2 Hierarchical Locking . 91
6.4.3 Resource Allocator Caches 92

6.5 Beyond Partitioning . 96
6.5.1 Work-Queue Parallel Maze Solver 96
6.5.2 Alternative Parallel Maze Solver 97
6.5.3 Maze Validation . 98
6.5.4 Performance Comparison I 99
6.5.5 Alternative Sequential Maze Solver 100
6.5.6 Performance Comparison II 101
6.5.7 Future Directions and Conclusions 101

6.6 Partitioning, Parallelism, and Optimization 102

7 Locking 103
7.1 Staying Alive . 103

7.1.1 Deadlock . 103
7.1.2 Livelock and Starvation . 111
7.1.3 Unfairness . 112
7.1.4 Inefficiency . 112

7.2 Types of Locks . 113
7.2.1 Exclusive Locks . 113
7.2.2 Reader-Writer Locks . 113
7.2.3 Beyond Reader-Writer Locks 114
7.2.4 Scoped Locking . 115

7.3 Locking Implementation Issues . 117
7.3.1 Sample Exclusive-Locking Implementation Based on Atomic

Exchange . 117
7.3.2 Other Exclusive-Locking Implementations 117

7.4 Lock-Based Existence Guarantees 119

v2024.12.27a

vi CONTENTS

7.5 Locking: Hero or Villain? . 120
7.5.1 Locking For Applications: Hero! 121
7.5.2 Locking For Parallel Libraries: Just Another Tool 121
7.5.3 Locking For Parallelizing Sequential Libraries: Villain! . . . 123

7.6 Summary . 125

8 Data Ownership 127
8.1 Multiple Processes . 127
8.2 Partial Data Ownership and pthreads 128
8.3 Function Shipping . 128
8.4 Designated Thread . 128
8.5 Privatization . 129
8.6 Other Uses of Data Ownership . 129

9 Deferred Processing 131
9.1 Running Example . 131
9.2 Reference Counting . 132
9.3 Hazard Pointers . 135
9.4 Sequence Locks . 138
9.5 Read-Copy Update (RCU) . 141

9.5.1 Introduction to RCU . 142
9.5.2 RCU Fundamentals . 148
9.5.3 RCU Linux-Kernel API . 154
9.5.4 RCU Usage . 164
9.5.5 RCU Related Work . 181

9.6 Which to Choose? . 184
9.6.1 Which to Choose? (Overview) 184
9.6.2 Which to Choose? (Details) 185
9.6.3 Which to Choose? (Production Use) 187

9.7 What About Updates? . 188

10 Data Structures 191
10.1 Motivating Application . 191
10.2 Partitionable Data Structures . 192

10.2.1 Hash-Table Design . 192
10.2.2 Hash-Table Implementation 192
10.2.3 Hash-Table Performance . 194

10.3 Read-Mostly Data Structures . 195
10.3.1 RCU-Protected Hash Table Implementation 195
10.3.2 RCU-Protected Hash Table Validation 196
10.3.3 RCU-Protected Hash Table Performance 196
10.3.4 RCU-Protected Hash Table Discussion 199

10.4 Non-Partitionable Data Structures 200
10.4.1 Resizable Hash Table Design 200
10.4.2 Resizable Hash Table Implementation 201
10.4.3 Resizable Hash Table Discussion 206
10.4.4 Other Resizable Hash Tables 207

10.5 Other Data Structures . 209
10.6 Summary . 209

v2024.12.27a

CONTENTS vii

11 Validation 211
11.1 Introduction . 211

11.1.1 Where Do Bugs Come From? 211
11.1.2 Required Mindset . 212
11.1.3 When Should Validation Start? 214
11.1.4 The Open Source Way . 215

11.2 Tracing . 215
11.3 Assertions . 216
11.4 Static Analysis . 217
11.5 Code Review . 217

11.5.1 Inspection . 217
11.5.2 Walkthroughs . 218
11.5.3 Self-Inspection . 218

11.6 Probability and Heisenbugs . 219
11.6.1 Statistics for Discrete Testing 220
11.6.2 Statistics Abuse for Discrete Testing 221
11.6.3 Statistics for Continuous Testing 222
11.6.4 Hunting Heisenbugs . 222

11.7 Performance Estimation . 227
11.7.1 Benchmarking . 227
11.7.2 Profiling . 227
11.7.3 Differential Profiling . 228
11.7.4 Microbenchmarking . 228
11.7.5 Isolation . 229
11.7.6 Detecting Interference . 229

11.8 Summary . 232

12 Formal Verification 233
12.1 State-Space Search . 233

12.1.1 Promela and Spin . 233
12.1.2 How to Use Promela . 235
12.1.3 Promela Example: Locking 238
12.1.4 Promela Example: QRCU 240
12.1.5 Promela Parable: dynticks and Preemptible RCU 245
12.1.6 Validating Preemptible RCU and dynticks 248

12.2 Special-Purpose State-Space Search 261
12.2.1 Anatomy of a Litmus Test 261
12.2.2 What Does This Litmus Test Mean? 262
12.2.3 Running a Litmus Test . 262
12.2.4 PPCMEM Discussion . 263

12.3 Axiomatic Approaches . 264
12.3.1 Axiomatic Approaches and Locking 265
12.3.2 Axiomatic Approaches and RCU 266

12.4 SAT Solvers . 267
12.5 Stateless Model Checkers . 268
12.6 Summary . 269
12.7 Choosing a Validation Plan . 270

v2024.12.27a

viii CONTENTS

13 Putting It All Together 273
13.1 Counter Conundrums . 273

13.1.1 Counting Updates . 273
13.1.2 Counting Lookups . 273

13.2 Refurbish Reference Counting . 274
13.2.1 Implementation of Reference-Counting Categories 275
13.2.2 Counter Optimizations . 278

13.3 Hazard-Pointer Helpers . 278
13.3.1 Scalable Reference Count 278
13.3.2 Long-Duration Accesses . 278

13.4 Sequence-Locking Specials . 278
13.4.1 Dueling Sequence Locks . 278
13.4.2 Correlated Data Elements 279
13.4.3 Atomic Move . 280
13.4.4 Upgrade to Writer . 280

13.5 RCU Rescues . 281
13.5.1 RCU and Per-Thread-Variable-Based Statistical Counters . . . 281
13.5.2 RCU and Counters for Removable I/O Devices 282
13.5.3 Array and Length . 283
13.5.4 Correlated Fields . 284
13.5.5 Update-Friendly Traversal 284
13.5.6 Scalable Reference Count Two 284
13.5.7 Retriggered Grace Periods 285
13.5.8 Long-Duration Accesses Two 286

13.6 Micro-Optimization . 287
13.6.1 Specialization . 287
13.6.2 Bits and Bytes . 288
13.6.3 Hardware Considerations 288

14 Advanced Synchronization 291
14.1 Avoiding Locks . 291
14.2 Non-Blocking Synchronization . 291

14.2.1 Simple NBS . 292
14.2.2 Applicability of NBS Benefits 294
14.2.3 NBS Discussion . 297

14.3 Parallel Real-Time Computing . 298
14.3.1 What is Real-Time Computing? 298
14.3.2 Who Needs Real-Time? . 302
14.3.3 Who Needs Parallel Real-Time? 302
14.3.4 Implementing Parallel Real-Time Systems 303
14.3.5 Implementing Parallel Real-Time Operating Systems 304
14.3.6 Implementing Parallel Real-Time Applications 314
14.3.7 Real Time vs. Real Fast: How to Choose? 317

15 Advanced Synchronization: Memory Ordering 319
15.1 Memory-Model Intuitions . 319

15.1.1 Transitive Intuitions . 320
15.1.2 Rules of Thumb . 323

15.2 Ordering: Why and How? . 325
15.2.1 Why Hardware Misordering? 326

v2024.12.27a

CONTENTS ix

15.2.2 How to Force Ordering? . 328
15.2.3 Basic Rules of Thumb . 329

15.3 Tricks and Traps . 332
15.3.1 Variables With Multiple Values 332
15.3.2 Memory-Reference Reordering 333
15.3.3 Address Dependencies . 336
15.3.4 Data Dependencies . 337
15.3.5 Control Dependencies . 338
15.3.6 Cache Coherence . 339
15.3.7 Multicopy Atomicity . 339
15.3.8 A Counter-Intuitive Case Study 347

15.4 Compile-Time Consternation . 350
15.4.1 Memory-Reference Restrictions 350
15.4.2 Address- and Data-Dependency Difficulties 352
15.4.3 Control-Dependency Calamities 354

15.5 Higher-Level Primitives . 357
15.5.1 Memory Allocation . 357
15.5.2 Locking . 358
15.5.3 RCU . 361
15.5.4 Higher-Level Primitives: Discussion 368

15.6 Hardware Specifics . 368
15.6.1 Alpha . 370
15.6.2 Armv7-A/R . 372
15.6.3 Armv8 . 373
15.6.4 Itanium . 373
15.6.5 MIPS . 374
15.6.6 POWER / PowerPC . 374
15.6.7 SPARC TSO . 375
15.6.8 x86 . 376
15.6.9 z Systems . 377
15.6.10 Hardware Specifics: Discussion 377

16 Ease of Use 379
16.1 What is Easy? . 379
16.2 Rusty Scale for API Design . 379
16.3 Shaving the Mandelbrot Set . 380

17 Conflicting Visions of the Future 383
17.1 The Future of CPU Technology Ain’t What it Used to Be 383

17.1.1 Uniprocessor Über Alles . 383
17.1.2 Multithreaded Mania . 385
17.1.3 More of the Same . 385
17.1.4 Crash Dummies Slamming into the Memory Wall 386
17.1.5 Astounding Accelerators . 387

17.2 Transactional Memory . 387
17.2.1 Outside World . 387
17.2.2 Process Modification . 390
17.2.3 Synchronization . 394
17.2.4 Other Transactions . 397
17.2.5 Case Study: Sequence Locking 398

v2024.12.27a

x CONTENTS

17.2.6 Discussion . 399
17.3 Hardware Transactional Memory . 401

17.3.1 HTM Benefits WRT Locking 401
17.3.2 HTM Weaknesses WRT Locking 402
17.3.3 HTM Weaknesses WRT Locking When Augmented 406
17.3.4 Where Does HTM Best Fit In? 409
17.3.5 Potential Game Changers 409
17.3.6 Conclusions . 412

17.4 Formal Regression Testing? . 413
17.4.1 Automatic Translation . 413
17.4.2 Environment . 414
17.4.3 Overhead . 414
17.4.4 Locate Bugs . 415
17.4.5 Minimal Scaffolding . 416
17.4.6 Relevant Bugs . 416
17.4.7 Formal Regression Scorecard 417

17.5 Functional Programming for Parallelism 417
17.6 Summary . 419

18 Looking Forward and Back 421

A Important Questions 425
A.1 Why Aren’t Parallel Programs Always Faster? 425
A.2 Why Not Remove Locking? . 425
A.3 What Time Is It? . 426
A.4 What Does “After” Mean? . 427
A.5 How Much Ordering Is Needed? . 429

A.5.1 Where is the Defining Data? 430
A.5.2 Consistent Data Used Consistently? 430
A.5.3 Is the Problem Partitionable? 430
A.5.4 None of the Above? . 430

A.6 What is the Difference Between “Concurrent” and “Parallel”? 431
A.7 Why Is Software Buggy? . 432

B “Toy” RCU Implementations 433
B.1 Lock-Based RCU . 433
B.2 Per-Thread Lock-Based RCU . 434
B.3 Simple Counter-Based RCU . 434
B.4 Starvation-Free Counter-Based RCU 435
B.5 Scalable Counter-Based RCU . 437
B.6 Scalable Counter-Based RCU With Shared Grace Periods 438
B.7 RCU Based on Free-Running Counter 440
B.8 Nestable RCU Based on Free-Running Counter 441
B.9 RCU Based on Quiescent States . 443
B.10 Summary of Toy RCU Implementations 444

v2024.12.27a

CONTENTS xi

C Why Memory Barriers? 447
C.1 Cache Structure . 447
C.2 Cache-Coherence Protocols . 449

C.2.1 MESI States . 449
C.2.2 MESI Protocol Messages 449
C.2.3 MESI State Diagram . 450
C.2.4 MESI Protocol Example . 451

C.3 Stores Result in Unnecessary Stalls 452
C.3.1 Store Buffers . 453
C.3.2 Store Forwarding . 453
C.3.3 Store Buffers and Memory Barriers 454

C.4 Store Sequences Result in Unnecessary Stalls 456
C.4.1 Invalidate Queues . 456
C.4.2 Invalidate Queues and Invalidate Acknowledge 456
C.4.3 Invalidate Queues and Memory Barriers 457

C.5 Read and Write Memory Barriers 459
C.6 Example Memory-Barrier Sequences 459

C.6.1 Ordering-Hostile Architecture 459
C.6.2 Example 1 . 460
C.6.3 Example 2 . 460
C.6.4 Example 3 . 461

C.7 Are Memory Barriers Forever? . 461
C.8 Advice to Hardware Designers . 461

D Style Guide 463
D.1 Paul’s Conventions . 463
D.2 NIST Style Guide . 464

D.2.1 Unit Symbol . 464
D.2.2 NIST Guide Yet To Be Followed 465

D.3 LATEX Conventions . 465
D.3.1 Monospace Font . 465
D.3.2 Cross-reference . 469
D.3.3 Non Breakable Spaces . 469
D.3.4 Hyphenation and Dashes . 470
D.3.5 Punctuation . 471
D.3.6 Floating Object Format . 471
D.3.7 Improvement Candidates . 472

E Answers to Quick Quizzes 479
E.1 How To Use This Book . 479
E.2 Introduction . 480
E.3 Hardware and its Habits . 484
E.4 Tools of the Trade . 488
E.5 Counting . 495
E.6 Partitioning and Synchronization Design 508
E.7 Locking . 514
E.8 Data Ownership . 521
E.9 Deferred Processing . 522
E.10 Data Structures . 539
E.11 Validation . 543

v2024.12.27a

xii CONTENTS

E.12 Formal Verification . 550
E.13 Putting It All Together . 557
E.14 Advanced Synchronization . 560
E.15 Advanced Synchronization: Memory Ordering 563
E.16 Ease of Use . 576
E.17 Conflicting Visions of the Future . 577
E.18 Important Questions . 582
E.19 “Toy” RCU Implementations . 583
E.20 Why Memory Barriers? . 589

Glossary 595

Bibliography 605

Credits 651
LATEX Advisor . 651
Reviewers . 651
Machine Owners . 651
Original Publications . 651
Figure Credits . 652
Other Support . 653

Acronyms 655

Index 657

API Index 661

v2024.12.27a

If you would only recognize that life is hard, things

would be so much easier for you.

Louis D. BrandeisChapter 1

How To Use This Book

The purpose of this book is to help you program shared-
memory parallel systems without risking your sanity.1
Nevertheless, you should think of the information in this
book as a foundation on which to build, rather than as
a completed cathedral. Your mission, if you choose to
accept, is to help make further progress in the exciting
field of parallel programming—progress that will in time
render this book obsolete.

Parallel programming in the 21st century is no longer
focused solely on science, research, and grand-challenge
projects. And this is all to the good, because it means
that parallel programming is becoming an engineering
discipline. Therefore, as befits an engineering discipline,
this book examines specific parallel-programming tasks
and describes how to approach them. In some surprisingly
common cases, these tasks can be automated.

This book is written in the hope that presenting the
engineering discipline underlying successful parallel-
programming projects will free a new generation of par-
allel hackers from the need to slowly and painstakingly
reinvent old wheels, enabling them to instead focus their
energy and creativity on new frontiers. However, what
you get from this book will be determined by what you
put into it. It is hoped that simply reading this book will
be helpful, and that working the Quick Quizzes will be
even more helpful. However, the best results come from
applying the techniques taught in this book to real-life
problems. As always, practice makes perfect.

But no matter how you approach it, we sincerely hope
that parallel programming brings you at least as much fun,
excitement, and challenge that it has brought to us!

1 Or, perhaps more accurately, without much greater risk to your
sanity than that incurred by non-parallel programming. Which, come to
think of it, might not be saying all that much.

1.1 Roadmap

Cat: Where are you going?

Alice: Which way should I go?

Cat: That depends on where you are going.

Alice: I don’t know.

Cat: Then it doesn’t matter which way you go.

Lewis Carroll, Alice in Wonderland

This book is a handbook of widely applicable and heav-
ily used design techniques, rather than a collection of
optimal algorithms with tiny areas of applicability. You
are currently reading Chapter 1, but you knew that al-
ready. Chapter 2 gives a high-level overview of parallel
programming.

Chapter 3 introduces shared-memory parallel hardware.
After all, it is difficult to write good parallel code un-
less you understand the underlying hardware. Because
hardware constantly evolves, this chapter will always be
out of date. We will nevertheless do our best to keep up.
Chapter 4 then provides a very brief overview of common
shared-memory parallel-programming primitives.

Chapter 5 takes an in-depth look at parallelizing one
of the simplest problems imaginable, namely counting.
Because almost everyone has an excellent grasp of count-
ing, this chapter is able to delve into many important
parallel-programming issues without the distractions of
more-typical computer-science problems. My impression
is that this chapter has seen the greatest use in parallel-
programming coursework.

Chapter 6 introduces a number of design-level methods
of addressing the issues identified in Chapter 5. It turns out
that it is important to address parallelism at the design level
when feasible: To paraphrase Dĳkstra [Dĳ68], “retrofitted
parallelism considered grossly suboptimal” [McK12c].

1

v2024.12.27a

2 CHAPTER 1. HOW TO USE THIS BOOK

The next three chapters examine three important ap-
proaches to synchronization. Chapter 7 covers locking,
which is still not only the workhorse of production-quality
parallel programming, but is also widely considered to
be parallel programming’s worst villain. Chapter 8 gives
a brief overview of data ownership, an often overlooked
but remarkably pervasive and powerful approach. Finally,
Chapter 9 introduces a number of deferred-processing
mechanisms, including reference counting, hazard point-
ers, sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to
hash tables, which are heavily used due to their excel-
lent partitionability, which (usually) leads to excellent
performance and scalability.

As many have learned to their sorrow, parallel program-
ming without validation is a sure path to abject failure.
Chapter 11 covers various forms of testing. It is of course
impossible to test reliability into your program after the
fact, so Chapter 12 follows up with a brief overview of a
couple of practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel
programming problems. The difficulty of these problems
vary, but should be appropriate for someone who has
mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization meth-
ods, including non-blocking synchronization and parallel
real-time computing, while Chapter 15 covers the ad-
vanced topic of memory ordering. Chapter 16 follows up
with some ease-of-use advice. Chapter 17 looks at a few
possible future directions, including shared-memory par-
allel system design, software and hardware transactional
memory, and functional programming for parallelism. Fi-
nally, Chapter 18 reviews the material in this book and its
origins.

This chapter is followed by a number of appendices. The
most popular of these appears to be Appendix C, which
delves even further into memory ordering. Appendix E
contains the answers to the infamous Quick Quizzes,
which are discussed in the next section.

1.2 Quick Quizzes

Undertake something difficult, otherwise you will

never grow.

Abbreviated from Ronald E. Osburn

“Quick quizzes” appear throughout this book, and the
answers may be found in Appendix E starting on page 479.

Some of them are based on material in which that quick
quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the realm of current
knowledge. As with most endeavors, what you get out of
this book is largely determined by what you are willing to
put into it. Therefore, readers who make a genuine effort
to solve a quiz before looking at the answer find their
effort repaid handsomely with increased understanding of
parallel programming.

Quick Quiz 1.1: Where are the answers to the Quick Quizzes
found?

Quick Quiz 1.2: Some of the Quick Quiz questions seem to
be from the viewpoint of the reader rather than the author. Is
that really the intent?

Quick Quiz 1.3: These Quick Quizzes are just not my cup of
tea. What can I do about it?

In short, if you need a deep understanding of the mate-
rial, then you should invest some time into answering the
Quick Quizzes. Don’t get me wrong, passively reading the
material can be quite valuable, but gaining full problem-
solving capability really does require that you practice
solving problems. Similarly, gaining full code-production
capability really does require that you practice producing
code.
Quick Quiz 1.4: If passively reading this book doesn’t get me
full problem-solving and code-production capabilities, what
on earth is the point???

I learned this the hard way during coursework for my
late-in-life Ph.D. I was studying a familiar topic, and
was surprised at how few of the chapter’s exercises I
could answer off the top of my head.2 Forcing myself to
answer the questions greatly increased my retention of the
material. So with these Quick Quizzes I am not asking
you to do anything that I have not been doing myself.

Finally, the most common learning disability is thinking
that you already understand the material at hand. The
quick quizzes can be an extremely effective cure.

2 So I suppose that it was just as well that my professors refused to
let me waive that class!

v2024.12.27a

1.3. ALTERNATIVES TO THIS BOOK 3

1.3 Alternatives to This Book

Between two evils I always pick the one I never tried

before.

Mae West

As Knuth learned the hard way, if you want your book
to be finite, it must be focused. This book focuses on
shared-memory parallel programming, with an emphasis
on software that lives near the bottom of the software
stack, such as operating-system kernels, parallel data-
management systems, low-level libraries, and the like.
The programming language used by this book is C.

If you are interested in other aspects of parallelism,
you might well be better served by some other book.
Fortunately, there are many alternatives available to you:

1. If you prefer a more academic and rigorous treatment
of parallel programming, you might like Herlihy’s
and Shavit’s textbook [HS08, HSLS20]. This book
starts with an interesting combination of low-level
primitives at high levels of abstraction from the hard-
ware, and works its way through locking and simple
data structures including lists, queues, hash tables,
and counters, culminating with transactional mem-
ory, all in Java. Michael Scott’s textbook [Sco13]
approaches similar material with more of a software-
engineering focus, and, as far as I know, is the first
formally published academic textbook with section
devoted to RCU.
Herlihy, Shavit, Luchangco, and Spear did catch up
in their second edition [HSLS20] by adding short
sections on hazard pointers and on RCU, with the
latter in the guise of EBR.3 They also include
a brief history of both, albeit with an abbreviated
history of RCU that picks up almost a year after it was
accepted into the Linux kernel and more than 20 years
after Kung’s and Lehman’s landmark paper [KL80].
Those wishing a deeper view of the history may find
it in this book’s Section 9.5.5.
However, readers who might otherwise suspect a
hostile attitude towards RCU on the part of this text-
book’s first author should refer to the last full sentence
on the first page of one of his papers [BGHZ16]. This
sentence reads “QSBR [a particular class of RCU im-
plementations] is fast and can be applied to virtually

3 Albeit an implementation that contains a reader-preemption bug
noted by Richard Bornat.

any data structure.” These are clearly not the words
of someone who is hostile towards RCU.

2. If you would like an academic treatment of parallel
programming from a programming-language-prag-
matics viewpoint, you might be interested in the
concurrency chapter from Scott’s textbook [Sco06,
Sco15] on programming-language pragmatics.

3. If you are interested in an object-oriented patternist
treatment of parallel programming focussing on C++,
you might try Volumes 2 and 4 of Schmidt’s POSA
series [SSRB00, BHS07]. Volume 4 in particular
has some interesting chapters applying this work to a
warehouse application. The realism of this example
is attested to by the section entitled “Partitioning the
Big Ball of Mud”, in which the problems inherent
in parallelism often take a back seat to getting one’s
head around a real-world application.

4. If you want to work with Linux-kernel device driv-
ers, then Corbet’s, Rubini’s, and Kroah-Hartman’s
“Linux Device Drivers” [CRKH05] is indispensable,
as is the Linux Weekly News web site (https:
//lwn.net/). There is a large number of books and
resources on the more general topic of Linux kernel
internals.

5. If your primary focus is scientific and technical com-
puting, and you prefer a patternist approach, you
might try Mattson et al.’s textbook [MSM05]. It
covers Java, C/C++, OpenMP, and MPI. Its pat-
terns are admirably focused first on design, then on
implementation.

6. If your primary focus is scientific and technical com-
puting, and you are interested in GPUs, CUDA, and
MPI, you might check out Norm Matloff’s “Program-
ming on Parallel Machines” [Mat17]. Of course, the
GPU vendors have quite a bit of additional informa-
tion [AMD20, Zel11, NVi17a, NVi17b].

7. If you are interested in POSIX Threads, you might
take a look at David R. Butenhof’s book [But97]. In
addition, W. Richard Stevens’s book [Ste92, Ste13]
covers UNIX and POSIX, and Stewart Weiss’s lecture
notes [Wei13] provide an thorough and accessible
introduction with a good set of examples.

8. If you are interested in C++11, you might like
Anthony Williams’s “C++ Concurrency in Action:
Practical Multithreading” [Wil12, Wil19] or Rainer
Grimm’s “Concurrency with Modern C++” [Gri17].

https://lwn.net/
https://lwn.net/

v2024.12.27a

4 CHAPTER 1. HOW TO USE THIS BOOK

9. If you are interested in C++, but in a Windows
environment, you might try Herb Sutter’s “Effective
Concurrency” series in Dr. Dobbs Journal [Sut08].
This series does a reasonable job of presenting a
commonsense approach to parallelism.

10. If you want to try out Intel Threading Building Blocks,
then perhaps James Reinders’s book [Rei07] is what
you are looking for.

11. Those interested in learning how various types of
multi-processor hardware cache organizations affect
the implementation of kernel internals should take
a look at Curt Schimmel’s classic treatment of this
subject [Sch94].

12. If you are looking for a hardware view, Hennessy’s
and Patterson’s classic textbook [HP17] is well worth
a read. A “Readers Digest” version of this tome
geared for scientific and technical workloads (bash-
ing big arrays) may be found in Andrew Chien’s
textbook [Chi22]. If you are looking for an aca-
demic textbook on memory ordering from a more
hardware-centric viewpoint, that of Daniel Sorin
et al. [SHW11, NSHW20] is highly recommended.
For a memory-ordering tutorial from a Linux-kernel
viewpoint, Paolo Bonzini’s LWN series is a good
place to start [Bon21a, Bon21e, Bon21c, Bon21b,
Bon21d, Bon21f].

13. Those wishing to learn about the Rust language’s
support for low-level concurrency should refer to
Mara Bos’s book [Bos23].

14. Finally, those using Java might be well-served by
Doug Lea’s textbooks [Lea97, GPB+07].

However, if you are interested in principles of parallel
design for low-level software, especially software written
in C, read on!

1.4 Sample Source Code

Use the source, Luke!

Unknown Star Wars fan

This book discusses its fair share of source code, and
in many cases this source code may be found in the
CodeSamples directory of this book’s git tree. For ex-
ample, on UNIX systems, you should be able to type the
following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls.c, which
is called out in Appendix B. Non-UNIX systems have
their own well-known ways of locating files by filename.

1.5 Video Resources

I hear and I forget; I see and I remember, I do and I

understand.

Unknown

This section calls attention to some talks covering a few
sections of this book.

Chapter 3 (“Hardware and its Habits”) is covered by a
2023 talk entitled “Hardware and its Concurrency Habits”.
Slides and video are available here: https://kernel-
recipes.org/en/2023/schedule/hardware-and-
its-concurrency-habits/.

Chapter 5 (“Counting”) is covered by the 2024 talk
entitled “Case Study: Concurrent Counting”. Slides
and video are available here: https://kernel-
recipes.org/en/2024/schedule/case-study-
concurrent-counting/.

Section 9.3 (“Hazard Pointers”) is covered by the 2024
talk entitled “Hazard Pointers in the Linux Kernel”, though
it is to be hoped that Maged Michael some day gives a
talk whose video is archived. In the meantime, slides
and video are available here: https://lpc.events/
event/18/contributions/1731/.

Section 9.5.1 (“Introduction to RCU”) and Sec-
tion 9.5.2 (“RCU Fundamentals”) is covered by the
2021 talk entitled “Unraveling RCU-Usage Mysteries
(Fundamentals)”. Slides and video are available
here: http://www.rdrop.com/~paulmck/RCU/
RCUusageFundamental.2021.12.07a.LF.pdf and
https://www.linuxfoundation.org/webinars/
unraveling-rcu-usage-mysteries, respectively.

Section 9.5.4 (“RCU Usage”) is covered by the
2022 talk entitled “Unraveling RCU-Usage Mysteries
(Additional Use Cases)”. Slides and video are available
here: https://events.linuxfoundation.org/wp-
content/uploads/2022/02/RCUusageAdditional.
2022.02.22b.LF-1.pdf and https://www.
linuxfoundation.org/webinars/unraveling-
rcu-usage-mysteries-additional-use-cases,
respectively.

https://kernel-recipes.org/en/2023/schedule/hardware-and-its-concurrency-habits/
https://kernel-recipes.org/en/2023/schedule/hardware-and-its-concurrency-habits/
https://kernel-recipes.org/en/2023/schedule/hardware-and-its-concurrency-habits/
https://kernel-recipes.org/en/2024/schedule/case-study-concurrent-counting/
https://kernel-recipes.org/en/2024/schedule/case-study-concurrent-counting/
https://kernel-recipes.org/en/2024/schedule/case-study-concurrent-counting/
https://lpc.events/event/18/contributions/1731/
https://lpc.events/event/18/contributions/1731/
http://www.rdrop.com/~paulmck/RCU/RCUusageFundamental.2021.12.07a.LF.pdf
http://www.rdrop.com/~paulmck/RCU/RCUusageFundamental.2021.12.07a.LF.pdf
https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries
https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries
https://events.linuxfoundation.org/wp-content/uploads/2022/02/RCUusageAdditional.2022.02.22b.LF-1.pdf
https://events.linuxfoundation.org/wp-content/uploads/2022/02/RCUusageAdditional.2022.02.22b.LF-1.pdf
https://events.linuxfoundation.org/wp-content/uploads/2022/02/RCUusageAdditional.2022.02.22b.LF-1.pdf
https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases
https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases
https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases

v2024.12.27a

1.6. WHOSE BOOK IS THIS? 5

Listing 1.1: Creating an Up-To-Date PDF
git clone git://git.kernel.org/pub/scm/linux/kernel/git/↵

paulmck/perfbook.git↩→
cd perfbook
You may need to install a font. See item 1 in FAQ.txt.
make # -jN for parallel build
evince perfbook.pdf & # Two-column version
make perfbook-1c.pdf
evince perfbook-1c.pdf & # One-column version for e-readers
make help # Display other build options

Section 11.6.4 (“Hunting Heisenbugs”) is covered by
the 2023 talk also entitled “Hunting Heisenbugs”. Slides
and video are available here: https://lpc.events/
event/17/contributions/1504/.

1.6 Whose Book Is This?

If you become a teacher, by your pupils you’ll be

taught.

Oscar Hammerstein II

As the cover says, the editor is one Paul E. McKenney.
However, the editor does accept contributions via the
perfbook@vger.kernel.org email list. These contri-
butions can be in pretty much any form, with popular
approaches including text emails, patches against the
book’s LATEX source, and even git pull requests. Use
whatever form works best for you.

To create patches or git pull requests, you
will need the LATEX source to the book, which
is at git://git.kernel.org/pub/scm/linux/
kernel/git/paulmck/perfbook.git, or, alterna-
tively, https://git.kernel.org/pub/scm/linux/
kernel/git/paulmck/perfbook.git. You will of
course also need git and LATEX, which are available
as part of most mainstream Linux distributions. Other
packages may be required, depending on the distribution
you use. The required list of packages for a few popular
distributions is listed in the file FAQ-BUILD.txt in the
LATEX source to the book.

To create and display a current LATEX source tree of this
book, use the list of Linux commands shown in Listing 1.1.
In some environments, the evince command that displays
perfbook.pdf may need to be replaced, for example,
with acroread. The git clone command need only be
used the first time you create a PDF, subsequently, you
can run the commands shown in Listing 1.2 to pull in any
updates and generate an updated PDF. The commands

Listing 1.2: Generating an Updated PDF
git remote update
git checkout origin/master
make # -jN for parallel build
evince perfbook.pdf & # Two-column version
make perfbook-1c.pdf
evince perfbook-1c.pdf & # One-column version for e-readers

in Listing 1.2 must be run within the perfbook directory
created by the commands shown in Listing 1.1.

PDFs of this book are sporadically posted at
https://kernel.org/pub/linux/kernel/people/
paulmck/perfbook/perfbook.html and at http:
//www.rdrop.com/users/paulmck/perfbook/.

The actual process of contributing patches and
sending git pull requests is similar to that of
the Linux kernel, which is documented here:
https://www.kernel.org/doc/html/latest/
process/submitting-patches.html. One important
requirement is that each patch (or commit, in the
case of a git pull request) must contain a valid
Signed-off-by: line, which has the following format:

Signed-off-by: My Name <myname@example.org>

Please see https://lore.kernel.org/lkml/
20070116022324.GA28513@linux.vnet.ibm.com/
for an example patch with a Signed-off-by: line. Note
well that the Signed-off-by: line has a very specific
meaning, namely that you are certifying that:

(a) The contribution was created in whole or in part by
me and I have the right to submit it under the open
source license indicated in the file; or

(b) The contribution is based upon previous work that, to
the best of my knowledge, is covered under an appro-
priate open source license and I have the right under
that license to submit that work with modifications,
whether created in whole or in part by me, under the
same open source license (unless I am permitted to
submit under a different license), as indicated in the
file; or

(c) The contribution was provided directly to me by
some other person who certified (a), (b) or (c) and I
have not modified it.

(d) I understand and agree that this project and the contri-
bution are public and that a record of the contribution
(including all personal information I submit with it,
including my sign-off) is maintained indefinitely and

https://lpc.events/event/17/contributions/1504/
https://lpc.events/event/17/contributions/1504/
mailto:perfbook@vger.kernel.org
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://lore.kernel.org/lkml/20070116022324.GA28513@linux.vnet.ibm.com/
https://lore.kernel.org/lkml/20070116022324.GA28513@linux.vnet.ibm.com/

v2024.12.27a

6 CHAPTER 1. HOW TO USE THIS BOOK

may be redistributed consistent with this project or
the open source license(s) involved.

This is quite similar to the Developer’s Certificate
of Origin (DCO) 1.1 used by the Linux kernel. You
must use your real name: I unfortunately cannot accept
pseudonymous or anonymous contributions.

The language of this book is American English, however,
the open-source nature of this book permits translations,
and I personally encourage them. The open-source li-
censes covering this book additionally allow you to sell
your translation, if you wish. I do request that you send
me a copy of the translation (hardcopy if available), but
this is a request made as a professional courtesy, and
is not in any way a prerequisite to the permission that
you already have under the Creative Commons and GPL
licenses. Please see the FAQ.txt file in the source tree
for a list of translations currently in progress. I consider
a translation effort to be “in progress” once at least one
chapter has been fully translated.

There are many styles under the “American English”
rubric. The style for this particular book is documented
in Appendix D.

As noted at the beginning of this section, I am this
book’s editor. However, if you choose to contribute, it will
be your book as well. In that spirit, I offer you Chapter 2,
our introduction.

v2024.12.27a

If parallel programming is so hard, why are there so

many parallel programs?

UnknownChapter 2

Introduction

Parallel programming has earned a reputation as one of
the most difficult areas a hacker can tackle. Papers and
textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to
scaling, and excessive realtime latencies. And these perils
are quite real; we authors have accumulated uncounted
years of experience along with the resulting emotional
scars, grey hairs, and hair loss.

However, new technologies that are difficult to use at
introduction invariably become easier over time. For
example, the once-rare ability to drive a car is now com-
monplace in many countries. This dramatic change came
about for two basic reasons: (1) Cars became cheaper
and more readily available, so that more people had the
opportunity to learn to drive, and (2) Cars became easier to
operate due to automatic transmissions, automatic chokes,
automatic starters, greatly improved reliability, and a host
of other technological improvements.

The same is true for many other technologies, includ-
ing computers. It is no longer necessary to operate a
keypunch in order to program. Spreadsheets allow most
non-programmers to get results from their computers that
would have required a team of specialists a few decades
ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has been
easily done by untrained, uneducated people using various
now-commonplace social-networking tools. As recently
as 1968, such content creation was a far-out research
project [Eng68], described at the time as “like a UFO
landing on the White House lawn” [Gri00].

Therefore, if you wish to argue that parallel program-
ming will remain as difficult as it is currently perceived
by many to be, it is you who bears the burden of proof,
keeping in mind the many centuries of counter-examples
in many fields of endeavor.

2.1 Historic Parallel Programming
Difficulties

Not the power to remember, but its very opposite,

the power to forget, is a necessary condition for our

existence.

Sholem Asch

As indicated by its title, this book takes a different ap-
proach. Rather than complain about the difficulty of
parallel programming, it instead examines the reasons
why parallel programming is difficult, and then works to
help the reader to overcome these difficulties. As will be
seen, these difficulties have historically fallen into several
categories, including:

1. The historic high cost and relative rarity of parallel
systems.

2. The typical researcher’s and practitioner’s lack of
experience with parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering disci-
pline of parallel programming.

5. The high overhead of communication relative to that
of processing, even in tightly coupled shared-memory
computers.

Many of these historic difficulties are well on the way
to being overcome. First, over the past few decades,
the cost of parallel systems has decreased from many
multiples of that of a house to that of a modest meal,
courtesy of Moore’s Law [Moo65]. Papers calling out the
advantages of multicore CPUs were published as early

7

v2024.12.27a

8 CHAPTER 2. INTRODUCTION

as 1996 [ONH+96]. IBM introduced simultaneous multi-
threading into its high-end POWER family in 2000, and
multicore in 2001. Intel introduced hyperthreading into
its commodity Pentium line in November 2000, and both
AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in
late 2005. In fact, by 2008, it was becoming difficult to
find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices. By
2012, even smartphones were starting to sport multiple
CPUs. By 2020, safety-critical software standards started
addressing concurrency.

Second, the advent of low-cost and readily available
multicore systems means that the once-rare experience
of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems
have long been within the budget of students and hobbyists.
We can therefore expect greatly increased levels of inven-
tion and innovation surrounding parallel systems, and that
increased familiarity will over time make the once pro-
hibitively expensive field of parallel programming much
more friendly and commonplace.

Third, in the 20th century, large systems of highly par-
allel software were almost always closely guarded propri-
etary secrets. In happy contrast, the 21st century has seen
numerous open-source (and thus publicly available) paral-
lel software projects, including the Linux kernel [Tor03],
database systems [Pos08, MS08], and message-passing
systems [The08, Uni08a]. This book will draw primarily
from the Linux kernel, but will provide much material
suitable for user-level applications.

Fourth, even though the large-scale parallel-program-
ming projects of the 1980s and 1990s were almost all
proprietary projects, these projects have seeded other
communities with cadres of developers who understand
the engineering discipline required to develop production-
quality parallel code. A major purpose of this book is to
present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of com-
munication relative to that of processing, remains largely
in force. This difficulty has been receiving increasing
attention during the new millennium. However, accord-
ing to Stephen Hawking, the finite speed of light and
the atomic nature of matter will limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been
in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers
are increasingly aware of these issues, so perhaps future

hardware will be more friendly to parallel software, as
discussed in Section 3.3.
Quick Quiz 2.1: Come on now!!! Parallel programming has
been known to be exceedingly hard for many decades. You
seem to be hinting that it is not so hard. What sort of game
are you playing?

However, even though parallel programming might not
be as hard as is commonly advertised, it is often more
work than is sequential programming.

Quick Quiz 2.2: How could parallel programming ever be
as easy as sequential programming?

It therefore makes sense to consider alternatives to
parallel programming. However, it is not possible to
reasonably consider parallel-programming alternatives
without understanding parallel-programming goals. This
topic is addressed in the next section.

2.2 Parallel Programming Goals

If you don’t know where you are going, you will end

up somewhere else.

Yogi Berra

The three major goals of parallel programming (over and
above those of sequential programming) are as follows:

1. Performance.

2. Productivity.

3. Generality.

Unfortunately, given the current state of the art, it is
possible to achieve at best two of these three goals for any
given parallel program. These three goals therefore form
the iron triangle of parallel programming, a triangle upon
which overly optimistic hopes all too often come to grief.1

Quick Quiz 2.3: Oh, really??? What about correctness,
maintainability, robustness, and so on?

Quick Quiz 2.4: And if correctness, maintainability, and
robustness don’t make the list, why do productivity and gener-
ality?

1 Kudos to Michael Wong for naming the iron triangle.

v2024.12.27a

2.2. PARALLEL PROGRAMMING GOALS 9

 0.1

 1

 10

 100

 1000

 10000

 1
97

5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

 2
02

0

C
P

U
 C

lo
ck

 F
re

qu
en

cy
 /

M
IP

S

Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

Quick Quiz 2.5: Given that parallel programs are much
harder to prove correct than are sequential programs, again,
shouldn’t correctness really be on the list?

Quick Quiz 2.6: What about just having fun?

Each of these goals is elaborated upon in the following
sections.

2.2.1 Performance
Performance is the primary goal behind most parallel-
programming effort. After all, if performance is not a
concern, why not do yourself a favor: Just write sequential
code, and be happy? It will very likely be easier and you
will probably get done much more quickly.

Quick Quiz 2.7: Are there no cases where parallel program-
ming is about something other than performance?

Note that “performance” is interpreted broadly here,
including for example scalability (performance per CPU)
and efficiency (performance per watt).

That said, the focus of performance has shifted from
hardware to parallel software. This change in focus is due
to the fact that, although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the
traditional single-threaded performance increases. This
can be seen in Figure 2.1,2 which shows that writing

2 This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS (millions

single-threaded code and simply waiting a year or two for
the CPUs to catch up may no longer be an option. Given
the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is
the way to go for those wanting to avail themselves of the
full performance of their systems.

Quick Quiz 2.8: Why not instead rewrite programs from
inefficient scripting languages to C or C++?

Even so, the first goal is performance rather than scal-
ability, especially given that the easiest way to attain
linear scalability is to reduce the performance of each
CPU [Tor01]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions per
second on a single CPU, but does not scale at all? Or
a program that provides 10 transactions per second on a
single CPU, but scales perfectly? The first program seems
like a better bet, though the answer might change if you
happened to have a 32-CPU system.

That said, just because you have multiple CPUs is
not necessarily in and of itself a reason to use them all,
especially given the recent decreases in price of multi-
CPU systems. The key point to understand is that parallel
programming is primarily a performance optimization,
and, as such, it is one potential optimization of many. If
your program is fast enough as currently written, there is no
reason to optimize, either by parallelizing it or by applying
any of a number of potential sequential optimizations.3
By the same token, if you are looking to apply parallelism
as an optimization to a sequential program, then you will
need to compare parallel algorithms to the best sequential
algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing
the performance of parallel algorithms.

of instructions per second, usually from the old Dhrystone benchmark)
for older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for shifting between these two measures is
that the newer CPUs’ ability to retire multiple instructions per clock
is typically limited by memory-system performance. Furthermore, the
benchmarks commonly used on the older CPUs are obsolete, and it is
difficult to run the newer benchmarks on systems containing the old
CPUs, in part because it is hard to find working instances of the old
CPUs.

3 Of course, if you are a hobbyist whose primary interest is writing
parallel software, that is more than enough reason to parallelize whatever
software you are interested in.

v2024.12.27a

10 CHAPTER 2. INTRODUCTION

2.2.2 Productivity

Quick Quiz 2.9: Why all this prattling on about non-technical
issues??? And not just any non-technical issue, but productivity
of all things? Who cares?

Productivity has been becoming increasingly important
in recent decades. To see this, consider that the price of
early computers was tens of millions of dollars at a time
when engineering salaries were but a few thousand dollars
a year. If dedicating a team of ten engineers to such a
machine would improve its performance, even by only
10 %, then their salaries would be repaid many times over.

One such machine was the CSIRAC, the oldest still-
intact stored-program computer, which was put into op-
eration in 1949 [Mus20, Dep17]. Because this machine
was built before the transistor era, it was constructed of
2,000 vacuum tubes, ran with a clock frequency of 1 kHz,
consumed 30 kW of power, and weighed more than three
metric tons. Given that this machine had but 768 words
of RAM, it is safe to say that it did not suffer from the
productivity issues that often plague today’s large-scale
software projects.

Today, it would be quite difficult to purchase a machine
with so little computing power. Perhaps the closest equiv-
alents are 8-bit embedded microprocessors exemplified
by the venerable Z80 [Wik08], but even the old Z80 had
a CPU clock frequency more than 1,000 times faster than
the CSIRAC. The Z80 CPU had 8,500 transistors, and
could be purchased in 2008 for less than $2 US per unit
in 1,000-unit quantities. In stark contrast to the CSIRAC,
software-development costs are anything but insignificant
for the Z80.

The CSIRAC and the Z80 are two points in a long-
term trend, as can be seen in Figure 2.2. This figure
plots an approximation to computational power per die
over the past four decades, showing an impressive six-
order-of-magnitude increase over a period of forty years.
Note that the advent of multicore CPUs has permitted this
increase to continue apace despite the clock-frequency wall
encountered in 2003, albeit courtesy of dies supporting
more than 50 hardware threads each.

One of the inescapable consequences of the rapid de-
crease in the cost of hardware is that software productivity
becomes increasingly important. It is no longer sufficient
merely to make efficient use of the hardware: It is now
necessary to make extremely efficient use of software
developers as well. This has long been the case for se-
quential hardware, but parallel hardware has become a
low-cost commodity only recently. Therefore, only re-

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1
97

5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

 2
02

0

M
IP

S
 p

er
 D

ie

Year

Figure 2.2: MIPS per Die for Intel CPUs

cently has high productivity become critically important
when creating parallel software.
Quick Quiz 2.10: Given how cheap parallel systems have
become, how can anyone afford to pay people to program
them?

Perhaps at one time, the sole purpose of parallel software
was performance. Now, however, productivity is gaining
the spotlight.

2.2.3 Generality
One way to justify the high cost of developing parallel
software is to strive for maximal generality. All else being
equal, the cost of a more-general software artifact can be
spread over more users than that of a less-general one. In
fact, this economic force explains much of the maniacal
focus on portability, which can be seen as an important
special case of generality.4

Unfortunately, generality often comes at the cost of per-
formance, productivity, or both. For example, portability
is often achieved via adaptation layers, which inevitably
exact a performance penalty. To see this more gener-
ally, consider the following popular parallel programming
environments:

C/C++ “Locking Plus Threads”: This category, which
includes POSIX Threads (pthreads) [Ope97], Win-
dows Threads, and numerous operating-system ker-
nel environments, offers excellent performance (at

4 Kudos to Michael Wong for pointing this out.

v2024.12.27a

2.2. PARALLEL PROGRAMMING GOALS 11

least within the confines of a single SMP system) and
also offers good generality. Pity about the relatively
low productivity.

Java: This general purpose and inherently multithreaded
programming environment is widely believed to offer
much higher productivity than C or C++, courtesy
of the automatic garbage collector and the rich set
of class libraries. However, its performance, though
greatly improved in the early 2000s, lags that of C
and C++.

MPI: This Message Passing Interface [MPI08] powers
the largest scientific and technical computing clusters
in the world and offers unparalleled performance
and scalability. In theory, it is general purpose,
but it is mainly used for scientific and technical
computing. Its productivity is believed by many
to be even lower than that of C/C++ “locking plus
threads” environments.

OpenMP: This set of compiler directives can be used to
parallelize loops. It is thus quite specific to this task,
and this specificity often limits its performance. It
is, however, much easier to use than MPI or C/C++
“locking plus threads.”

SQL: Structured Query Language [Int92] is specific to
relational database queries. However, its perfor-
mance is quite good as measured by the Transaction
Processing Performance Council (TPC) benchmark
results [Tra01]. Productivity is excellent; in fact, this
parallel programming environment enables people to
make good use of a large parallel system despite hav-
ing little or no knowledge of parallel programming
concepts.

The nirvana of parallel programming environments,
one that offers world-class performance, productivity, and
generality, simply does not yet exist. Until such a nirvana
appears, it will be necessary to make engineering tradeoffs
among performance, productivity, and generality. One
such tradeoff is depicted by the green “iron triangle”5

shown in Figure 2.3, which shows how productivity be-
comes increasingly important at the upper layers of the
system stack, while performance and generality become
increasingly important at the lower layers of the system
stack. The huge development costs incurred at the lower
layers must be spread over equally huge numbers of users
(hence the importance of generality), and performance

5 Kudos to Michael Wong for coining “iron triangle.”

Application

Middleware (e.g., DBMS)

System Libraries

Operating System Kernel

Hypervisor

Container

Firmware

Hardware

Productivity

P
e

rf
o

rm
a

n
c

e G
e

n
e

ra
lity

Figure 2.3: Software Layers and Performance, Productiv-
ity, and Generality

User 2

User 3
User 4

User 1

General−Purpose
Environment

for User 1
Env Productive

Special−Purpose

Special−Purpose

Special−Purpose Environment
Productive for User 3

Special−Purpose
Environment

Productive for User 4

Productive for User 2
Environment

HW /
Abs

Figure 2.4: Tradeoff Between Productivity and Generality

lost in lower layers cannot easily be recovered further up
the stack. In the upper layers of the stack, there might be
very few users for a given specific application, in which
case productivity concerns are paramount. This explains
the tendency towards “bloatware” further up the stack:
Extra hardware is often cheaper than extra developers.
This book is intended for developers working near the
bottom of the stack, where performance and generality
are of greatest concern.

It is important to note that a tradeoff between produc-
tivity and generality has existed for centuries in many
fields. For but one example, a nailgun is more productive
than a hammer for driving nails, but in contrast to the

v2024.12.27a

12 CHAPTER 2. INTRODUCTION

nailgun, a hammer can be used for many things besides
driving nails. It should therefore be no surprise to see
similar tradeoffs appear in the field of parallel computing.
This tradeoff is shown schematically in Figure 2.4. Here,
users 1, 2, 3, and 4 have specific jobs that they need the
computer to help them with. The most productive possible
language or environment for a given user is one that simply
does that user’s job, without requiring any programming,
configuration, or other setup.
Quick Quiz 2.11: This is a ridiculously unachievable ideal!
Why not focus on something that is achievable in practice?

Unfortunately, a system that does the job required by
user 1 is unlikely to do user 2’s job. In other words, the
most productive languages and environments are domain-
specific, and thus by definition lacking generality.

Another option is to tailor a given programming lan-
guage or environment to the hardware system (for example,
low-level languages such as assembly, C, C++, or Java)
or to some abstraction (for example, Haskell, Prolog, or
Snobol), as is shown by the circular region near the center
of Figure 2.4. These languages can be considered to be
general in the sense that they are equally ill-suited to the
jobs required by users 1, 2, 3, and 4. In other words,
their generality comes at the expense of decreased produc-
tivity when compared to domain-specific languages and
environments. Worse yet, a language that is tailored to a
given abstraction is likely to suffer from performance and
scalability problems unless and until it can be efficiently
mapped to real hardware.

Is there no escape from iron triangle’s three conflicting
goals of performance, productivity, and generality?

It turns out that there often is an escape, for example,
using the alternatives to parallel programming discussed
in the next section. After all, parallel programming can
be a great deal of fun, but it is not always the best tool for
the job.

2.3 Alternatives to Parallel Pro-
gramming

Experiment is folly when experience shows the way.

Roger M. Babson

In order to properly consider alternatives to parallel pro-
gramming, you must first decide on what exactly you
expect the parallelism to do for you. As seen in Sec-
tion 2.2, the primary goals of parallel programming are

performance, productivity, and generality. Because this
book is intended for developers working on performance-
critical code near the bottom of the software stack, the
remainder of this section focuses primarily on performance
improvement.

It is important to keep in mind that parallelism is but
one way to improve performance. Other well-known
approaches include the following, in roughly increasing
order of difficulty:

1. Run multiple instances of a sequential application.

2. Make the application use existing parallel software.

3. Optimize the serial application.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential Ap-
plication

Running multiple instances of a sequential application can
allow you to do parallel programming without actually
doing parallel programming. There are a large number of
ways to approach this, depending on the structure of the
application.

If your program is analyzing a large number of different
scenarios, or is analyzing a large number of independent
data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis,
then use any of a number of scripting environments (for
example the bash shell) to run a number of instances of
that sequential program in parallel. In some cases, this
approach can be easily extended to a cluster of machines.

This approach may seem like cheating, and in fact some
denigrate such programs as “embarrassingly parallel”.
And in fact, this approach does have some potential dis-
advantages, including increased memory consumption,
waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is of-
ten extremely productive, garnering extreme performance
gains with little or no added effort.

2.3.2 Use Existing Parallel Software
There is no longer any shortage of parallel software envi-
ronments that can present a single-threaded programming
environment, including relational databases [Dat82], web-
application servers, and map-reduce environments. For
example, a common design provides a separate process for
each user, each of which generates SQL from user queries.

v2024.12.27a

2.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 13

This per-user SQL is run against a common relational
database, which automatically runs the users’ queries
concurrently. The per-user programs are responsible only
for the user interface, with the relational database tak-
ing full responsibility for the difficult issues surrounding
parallelism and persistence.

In addition, there are a growing number of parallel
library functions, particularly for numeric computation.
Even better, some libraries take advantage of special-
purpose hardware such as vector units and general-purpose
graphical processing units (GPGPUs).

Taking this approach often sacrifices some performance,
at least when compared to carefully hand-coding a fully
parallel application. However, such sacrifice is often well
repaid by a huge reduction in development effort.

Quick Quiz 2.12: Wait a minute! Doesn’t this approach
simply shift the development effort from you to whoever wrote
the existing parallel software you are using?

2.3.3 Performance Optimization
Up through the early 2000s, CPU clock frequencies dou-
bled every 18 months. It was therefore usually more impor-
tant to create new functionality than to carefully optimize
performance. Now that Moore’s Law is “only” increasing
transistor density instead of increasing both transistor
density and per-transistor performance, it might be a good
time to rethink the importance of performance optimiza-
tion. After all, new hardware generations no longer bring
significant single-threaded performance improvements.
Furthermore, many performance optimizations can also
conserve energy.

From this viewpoint, parallel programming is but an-
other performance optimization, albeit one that is be-
coming much more attractive as parallel systems become
cheaper and more readily available. However, it is wise
to keep in mind that the speedup available from paral-
lelism is limited to roughly the number of CPUs (but
see Section 6.5 for an interesting exception). In contrast,
the speedup available from traditional single-threaded
software optimizations can be much larger. For example,
replacing a long linked list with a hash table or a search
tree can improve performance by many orders of mag-
nitude. This highly optimized single-threaded program
might run much faster than its unoptimized parallel coun-
terpart, making parallelization unnecessary. Of course, a
highly optimized parallel program would be even better,
aside from the added development effort required.

Furthermore, different programs might have different
performance bottlenecks. For example, if your program
spends most of its time waiting on data from your disk
drive, using multiple CPUs will probably just increase the
time wasted waiting for the disks. In fact, if the program
was reading from a single large file laid out sequentially
on a rotating disk, parallelizing your program might well
make it a lot slower due to the added seek overhead. You
should instead optimize the data layout so that the file can
be smaller (thus faster to read), split the file into chunks
which can be accessed in parallel from different drives,
cache frequently accessed data in main memory, or, if
possible, reduce the amount of data that must be read.

Quick Quiz 2.13: What other bottlenecks might prevent
additional CPUs from providing additional performance?

Parallelism can be a powerful optimization technique,
but it is not the only such technique, nor is it appropriate
for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes
as an optimization. Parallelization has a reputation of
being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

2.4 What Makes Parallel Program-
ming Hard?

Real difficulties can be overcome; it is only the

imaginary ones that are unconquerable.

Theodore N. Vail

It is important to note that the difficulty of parallel pro-
gramming is as much a human-factors issue as it is a set of
technical properties of the parallel programming problem.
We do need human beings to be able to tell parallel sys-
tems what to do, otherwise known as programming. But
parallel programming involves two-way communication,
with a program’s performance and scalability being the
communication from the machine to the human. In short,
the human writes a program telling the computer what
to do, and the computer critiques this program via the
resulting performance and scalability. Therefore, appeals
to abstractions or to mathematical analyses will often be
of severely limited utility.

In the Industrial Revolution, the interface between hu-
man and machine was evaluated by human-factor studies,
then called time-and-motion studies. Although there have

v2024.12.27a

14 CHAPTER 2. INTRODUCTION

Partitioning

Work

Access Control

Parallel

With Hardware

Interacting

Performance Productivity

Generality

Resource
Partitioning and

Replication

Figure 2.5: Categories of Tasks Required of Parallel
Programmers

been a few human-factor studies examining parallel pro-
gramming [ENS05, ES05, HCS+05, SS94], these studies
have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given
that the normal range of programmer productivity spans
more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10 %
difference in productivity. Although the multiple-order-of-
magnitude differences that such studies can reliably detect
are extremely valuable, the most impressive improvements
tend to be based on a long series of 10 % improvements.

We must therefore take a different approach.
One such approach is to carefully consider the tasks that

parallel programmers must undertake that are not required
of sequential programmers. We can then evaluate how
well a given programming language or environment assists
the developer with these tasks. These tasks fall into the
four categories shown in Figure 2.5, each of which is
covered in the following sections.

2.4.1 Work Partitioning
Work partitioning is absolutely required for parallel ex-
ecution: If there is but one “glob” of work, then it can
be executed by at most one CPU at a time, which is by
definition sequential execution. However, partitioning the
work requires great care. For example, uneven partitioning
can result in sequential execution once the small partitions
have completed [Amd67]. In less extreme cases, load
balancing can be used to fully utilize available hardware
and restore performance and scalability.

Although partitioning can greatly improve performance
and scalability, it can also increase complexity. For
example, partitioning can complicate handling of global

errors and events: A parallel program may need to carry
out non-trivial synchronization in order to safely process
such global events. More generally, each partition requires
some sort of communication: After all, if a given thread
did not communicate at all, it would have no effect and
would thus not need to be executed. However, because
communication incurs overhead, careless partitioning
choices can result in severe performance degradation.

Furthermore, the number of concurrent threads must
often be controlled, as each such thread occupies common
resources, for example, space in CPU caches. If too
many threads are permitted to execute concurrently, the
CPU caches will overflow, resulting in high cache miss
rate, which in turn degrades performance. Conversely,
large numbers of threads are often required to overlap
computation and I/O so as to fully utilize I/O devices.
Quick Quiz 2.14: Other than CPU cache capacity, what
might require limiting the number of concurrent threads?

Finally, permitting threads to execute concurrently
greatly increases the program’s state space, which can
make the program difficult to understand and debug, de-
grading productivity. All else being equal, smaller state
spaces having more regular structure are more easily un-
derstood, but this is a human-factors statement as much as
it is a technical or mathematical statement. Good parallel
designs might have extremely large state spaces, but never-
theless be easy to understand due to their regular structure,
while poor designs can be impenetrable despite having a
comparatively small state space. The best designs exploit
embarrassing parallelism, or transform the problem to
one having an embarrassingly parallel solution. In either
case, “embarrassingly parallel” is in fact an embarrass-
ment of riches. The current state of the art enumerates
good designs; more work is required to make more general
judgments on state-space size and structure.

2.4.2 Parallel Access Control
Given a single-threaded sequential program, that single
thread has full access to all of the program’s resources.
These resources are most often in-memory data structures,
but can be CPUs, memory (including caches), I/O devices,
computational accelerators, files, and much else besides.

The first parallel-access-control issue is whether the
form of access to a given resource depends on that re-
source’s location. For example, in many message-passing
environments, local-variable access is via expressions
and assignments, while remote-variable access uses an
entirely different syntax, usually involving messaging.

v2024.12.27a

2.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 15

The POSIX Threads environment [Ope97], Structured
Query Language (SQL) [Int92], and partitioned global
address-space (PGAS) environments such as Universal
Parallel C (UPC) [EGCD03, CBF13] offer implicit access,
while Message Passing Interface (MPI) [MPI08] offers
explicit access because access to remote data requires
explicit messaging.

The other parallel-access-control issue is how threads
coordinate access to the resources. This coordination is
carried out by the very large number of synchronization
mechanisms provided by various parallel languages and
environments, including message passing, locking, trans-
actions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-
programming concerns such as deadlock, livelock, and
transaction rollback stem from this coordination. This
framework can be elaborated to include comparisons of
these synchronization mechanisms, for example locking
vs. transactional memory [MMW07], but such elaboration
is beyond the scope of this section. (See Sections 17.2
and 17.3 for more information on transactional memory.)

Quick Quiz 2.15: Just what is “explicit timing”???

2.4.3 Resource Partitioning and Replication
The most effective parallel algorithms and systems exploit
resource parallelism, so much so that it is usually wise to
begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly
resources. The resource in question is most frequently
data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies
or hardware threads), pages, cache lines, instances of
synchronization primitives, or critical sections of code.
For example, partitioning over locking primitives is termed
“data locking” [BK85].

Resource partitioning is frequently application depen-
dent. For example, numerical applications frequently par-
tition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures.
Thus, a commercial application might assign the data for
a given customer to a given few computers out of a large
cluster. An application might statically partition data, or
dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it
can be quite challenging for complex multilinked data
structures.

Partitioning

Work

Access Control

Parallel

With Hardware

Interacting

Performance Productivity

Generality

Resource
Partitioning and

Replication

Figure 2.6: Ordering of Parallel-Programming Tasks

2.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the op-
erating system, the compiler, libraries, or other software-
environment infrastructure. However, developers working
with novel hardware features and components will often
need to work directly with such hardware. In addition,
direct access to the hardware can be required when squeez-
ing the last drop of performance out of a given system. In
this case, the developer may need to tailor or configure
the application to the cache geometry, system topology,
or interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a
resource which is subject to partitioning or access control,
as described in the previous sections.

2.4.5 Composite Capabilities

Although these four capabilities are fundamental, good
engineering practice uses composites of these capabilities.
For example, the data-parallel approach first partitions
the data so as to minimize the need for inter-partition
communication, partitions the code accordingly, and fi-
nally maps data partitions and threads so as to maximize
throughput while minimizing inter-thread communication,
as shown in Figure 2.6. The developer can then con-
sider each partition separately, greatly reducing the size
of the relevant state space, in turn increasing productiv-
ity. Even though some problems are non-partitionable,
clever transformations into forms permitting partitioning
can sometimes greatly enhance both performance and
scalability [Met99].

v2024.12.27a

16 CHAPTER 2. INTRODUCTION

2.4.6 How Do Languages and Environments
Assist With These Tasks?

Although many environments require the developer to
deal manually with these tasks, there are long-standing
environments that bring significant automation to bear.
The poster child for these environments is SQL, many
implementations of which automatically parallelize single
large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all
parallel programs, but that of course does not necessarily
mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become
cheaper and more readily available.
Quick Quiz 2.16: Are there any other obstacles to parallel
programming?

2.5 Discussion

Until you try, you don’t know what you can’t do.

Henry James

This section has given an overview of the difficulties with,
goals of, and alternatives to parallel programming. This
overview was followed by a discussion of what can make
parallel programming hard, along with a high-level ap-
proach for dealing with parallel programming’s difficulties.
Those who still insist that parallel programming is impossi-
bly difficult should review some of the older guides to par-
allel programmming [Seq88, Bir89, BK85, Inm85]. The
following quote from Andrew Birrell’s monograph [Bir89]
is especially telling:

Writing concurrent programs has a reputation
for being exotic and difficult. I believe it is
neither. You need a system that provides you
with good primitives and suitable libraries, you
need a basic caution and carefulness, you need
an armory of useful techniques, and you need
to know of the common pitfalls. I hope that
this paper has helped you towards sharing my
belief.

The authors of these older guides were well up to the
parallel programming challenge back in the 1980s. As
such, there are simply no excuses for refusing to step up

to the parallel-programming challenge here in the 21st

century!
We are now ready to proceed to the next chapter, which

dives into the relevant properties of the parallel hardware
underlying our parallel software.

v2024.12.27a

Premature abstraction is the root of all evil.

A cast of thousandsChapter 3

Hardware and its Habits

Most people intuitively understand that passing messages
between systems is more expensive than performing simple
calculations within the confines of a single system. But it
is also the case that communicating among threads within
the confines of a single shared-memory system can be
quite expensive. This chapter therefore looks at the cost
of synchronization and communication within a shared-
memory system. These few pages can do no more than
scratch the surface of shared-memory parallel hardware
design; readers desiring more detail would do well to start
with a recent edition of Hennessy’s and Patterson’s classic
text [HP17].
Quick Quiz 3.1: Why should parallel programmers bother
learning low-level properties of the hardware? Wouldn’t it be
easier, better, and more elegant to remain at a higher level of
abstraction?

3.1 Overview

Mechanical Sympathy: Hardware and software

working together in harmony.

Martin Thompson

Careless reading of computer-system specification sheets
might lead one to believe that CPU performance is a
footrace on a clear track, as illustrated in Figure 3.1,
where the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that
approach the ideal case shown in Figure 3.1, the typical
program more closely resembles an obstacle course than
a race track. This is because the internal architecture of
CPUs has changed dramatically over the past few decades,
courtesy of a collision of Moore’s Law with certain laws
of physics. A number of these architectural changes are
described in the following sections.

CPU Benchmark TrackmeetCPU Benchmark Trackmeet

Figure 3.1: CPU Performance at its Best

3.1.1 Pipelined CPUs
In the 1980s, the typical microprocessor fetched an in-
struction, decoded it, and executed it, typically taking
at least three clock cycles to complete one instruction
before even starting the next. In contrast, the CPU of the
late 1990s and of the 2000s execute many instructions
simultaneously, using pipelines; superscalar techniques;
out-of-order instruction and data handling; speculative ex-
ecution, and more [HP17] in order to optimize the flow of
instructions and data through the CPU. Some cores have
more than one hardware thread, which is variously called
simultaneous multithreading (SMT) or hyperthreading
(HT) [Fen73], each of which appears as an independent
CPU to software, at least from a functional viewpoint.
These modern hardware features can greatly improve
performance, as illustrated by Figure 3.2.

Achieving full performance with a CPU having a long
pipeline requires highly predictable control flow through

17

v2024.12.27a

18 CHAPTER 3. HARDWARE AND ITS HABITS

4.0 GHz clock, 20 MB L3

cache, 20 stage pipeline...

The only pipeline I need

is to cool off that hot-

headed brat.

Figure 3.2: CPUs Old and New

PIPELINE ERROR

PIPELINE ERROR

BR
AN
CH
 M
IS
PR
ED
IC
TI
ON

Figure 3.3: CPU Meets a Pipeline Flush

the program. Suitable control flow is provided by pro-
grams that run in tight loops, for example, those doing
arithmetic on large matrices or vectors. Such loops allow
the CPU to correctly predict that the end-of-loop branch
will be taken in almost all cases, allowing the pipeline to
be kept full and the CPU to execute at full speed.

However, branch prediction is not always so easy. For
example, consider a program with many loops, each of
which iterates a small but random number of times. For an-
other example, consider a museum-piece object-oriented
program with many virtual objects that can reference many
different real objects, all with different implementations
for frequently invoked member functions, resulting in
many calls through pointers. In these cases, it is difficult
or even impossible for the CPU to predict where the next
branch might lead. Then either the CPU must stall waiting

Decode and
Translate

Thread 0
Instructions

Thread 1
Instructions

Micro-Op
Scheduler

Execution
Units

Registers
(100s!)

Figure 3.4: Rough View of Modern Micro-Architecture

for execution to proceed far enough to be certain where that
branch leads, or it must guess and then proceed using spec-
ulative execution. Although guessing works extremely
well for programs with predictable control flow, for un-
predictable branches (such as those in binary search) the
guesses will frequently be wrong. A wrong guess can be
expensive because the CPU must discard any speculatively
executed instructions following the corresponding branch,
resulting in a pipeline flush. If pipeline flushes appear too
frequently, they drastically reduce overall performance, as
fancifully depicted in Figure 3.3.

This gets even worse for hyperthreading (or SMT, if you
prefer), especially on pipelined superscalar out-of-order
CPU featuring speculative execution. In this increasingly
common case, all the hardware threads sharing a core
also share that core’s resources, including registers, cache,
execution units, and so on. The instructions are often
decoded into micro-operations, and use of the shared
execution units and the hundreds of hardware registers
is often coordinated by a micro-operation scheduler. A
rough diagram of such a two-threaded core is shown in
Figure 3.4, and more accurate (and thus more complex)
diagrams are available in textbooks and scholarly papers.1
Therefore, the execution of one hardware thread can and
often is perturbed by the actions of other hardware threads
sharing that core.

Even if only one hardware thread is active (for example,
in old-school CPU designs where there is only one thread),
counterintuitive results are quite common. Execution
units often have overlapping capabilities, so that a CPU’s

1 Here is one example for a late-2010s Intel core: https:
//en.wikichip.org/wiki/intel/microarchitectures/
skylake_(server).

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

v2024.12.27a

3.1. OVERVIEW 19

choice of execution unit can result in pipeline stalls due to
contention for that execution unit from later instructions.
In theory, this contention is avoidable, but in practice
CPUs must choose very quickly and without the benefit of
clairvoyance. In particular, adding an instruction to a tight
loop can sometimes actually cause execution to speed up.

Unfortunately, pipeline flushes and shared-resource
contention are not the only hazards in the obstacle course
that modern CPUs must run. The next section covers the
hazards of referencing memory.

3.1.2 Memory References
In the 1980s, it often took less time for a microprocessor
to load a value from memory than it did to execute an
instruction. More recently, microprocessors might execute
hundreds or even thousands of instructions in the time
required to access memory. This disparity is due to the
fact that Moore’s Law has increased CPU performance at
a much greater rate than it has decreased memory latency,
in part due to the rate at which memory sizes have grown.
For example, a typical 1970s minicomputer might have
4 KB (yes, kilobytes, not megabytes, let alone gigabytes
or terabytes) of main memory, with single-cycle access.2
Present-day CPU designers still can construct a 4 KB
memory with single-cycle access, even on systems with
multi-GHz clock frequencies. And in fact they frequently
do construct such memories, but they now call them
“level-0 caches”, plus they can be a bit larger than 4 KB.

Although the large caches found on modern micro-
processors can do quite a bit to help combat memory-
access latencies, these caches require highly predictable
data-access patterns to successfully hide those latencies.
Unfortunately, common operations such as traversing a
linked list have extremely unpredictable memory-access
patterns—after all, if the pattern was predictable, us soft-
ware types would not bother with the pointers, right?
Therefore, as shown in Figure 3.5, memory references
often pose severe obstacles to modern CPUs.

Thus far, we have only been considering obstacles
that can arise during a given CPU’s execution of single-
threaded code. Multi-threading presents additional obsta-
cles to the CPU, as described in the following sections.

3.1.3 Atomic Operations
One such obstacle is atomic operations. The problem here
is that the whole idea of an atomic operation conflicts

2 It is only fair to add that each of these single cycles lasted no less
than 1.6 microseconds.

Figure 3.5: CPU Meets a Memory Reference

with the piece-at-a-time assembly-line operation of a
CPU pipeline. To hardware designers’ credit, modern
CPUs use a number of extremely clever tricks to make
such operations look atomic even though they are in fact
being executed piece-at-a-time, with one common trick
being to identify all the cachelines containing the data to
be atomically operated on, ensure that these cachelines
are owned by the CPU executing the atomic operation,
and only then proceed with the atomic operation while
ensuring that these cachelines remained owned by this
CPU. Because all the data is private to this CPU, other
CPUs are unable to interfere with the atomic operation
despite the piece-at-a-time nature of the CPU’s pipeline.
Needless to say, this sort of trick can require that the
pipeline must be delayed or even flushed in order to
perform the cacheline-setup operations that permit a given
atomic operation to complete correctly.

In contrast, when executing a non-atomic operation, the
CPU can load values from cachelines as they appear and
place the results in the store buffer, without the need to
wait for cacheline ownership. Although there are a number
of hardware optimizations that can sometimes hide cache
latencies, an atomic operation’s effect on performance is
all too often as depicted in Figure 3.6.

Unfortunately, atomic operations usually apply only to
single elements of data. Because many parallel algorithms
require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide

v2024.12.27a

20 CHAPTER 3. HARDWARE AND ITS HABITS

Figure 3.6: CPU Meets an Atomic Operation

memory barriers. These memory barriers also serve as
performance-sapping obstacles, as described in the next
section.

Quick Quiz 3.2: What types of machines would allow atomic
operations on multiple data elements?

3.1.4 Memory Barriers

Memory barriers will be considered in more detail in
Chapter 15 and Appendix C. In the meantime, consider
the following simple lock-based critical section:

1 spin_lock(&mylock);
2 a = a + 1;
3 spin_unlock(&mylock);

If the CPU were not constrained to execute these state-
ments in the order shown, the effect would be that the
variable “a” would be incremented without the protection
of “mylock”, which would defeat the purpose of acquiring
it. To prevent such destructive reordering, locking primi-
tives contain either explicit or implicit memory barriers.
Because the whole purpose of these memory barriers
is to prevent reorderings that the CPU (to say nothing
of the compiler) would otherwise undertake in order to
increase performance, memory barriers almost always
reduce performance, as depicted in Figure 3.7.

As with atomic operations, CPU designers have been
working hard to reduce memory-barrier overhead, and
have made substantial progress.

Memory

Barrier
Memory

Barrier

Figure 3.7: CPU Meets a Memory Barrier

3.1.5 Functional Unit Failings

Modern superscalar CPUs have numerous functional units
with varying purposes and capabilities. Each CPU is likely
to have several arithmetic-logic units (ALUs) for integer
and boolean arithmetic, a few vector units, a couple of
floating-point units (FPUs), and at least one each branch
unit, load unit, and store unit. Different CPUs will of
course have different combinations of functional units.
However, not only will different applications need different
combinations of functional units, a given application is
likely to need different combinations at different phases
of its execution.

This means that it does not make much sense to think
in terms of a given CPU having a perfect combination
of functional units. Sometimes a CPU instead must
“hop along on one leg” using only a very few out of its
impressive array of functional units, as fancifully depicted
by the unfortunate CPU losing the race in Figure 3.8.

Quick Quiz 3.3: But what does this have to do with scaling
workloads across a multi-core CPU???

Unfortunately, a workload could make perfectly efficient
use of each and every one of a given CPU’s functional
units and still lose, for example, as described in the next
section.

v2024.12.27a

3.1. OVERVIEW 21

Figure 3.8: CPU Functional-Unit Mismatch

Figure 3.9: CPU Encounters Thermal Throttling

3.1.6 Thermal Throttling
One increasingly common frustrating experience is to
carefully micro-optimize a critical code path, greatly
reducing the number of clock cycles consumed by that
code path, only to find that the wall-clock time consumed
by that code has actually increased.

Welcome to modern thermal throttling.
If you reduced the number of clock cycles by making

more effective use of the CPU’s functional units, you will
have increased the power consumed by that CPU. This
will in turn increase the amount of heat dissipated by that
CPU. If this heat dissipation exceeds the cooling system’s
capacity, the system will thermally throttle that CPU, for
example, by reducing its clock frequency, as fancifully
depicted by the snow penguin in Figure 3.9.

If performance is of the essence, the proper fix is im-
proved cooling, an approach loved by serious gamers

and by overclockers.3 But if you cannot modify your
computer’s cooling system, perhaps because you are rent-
ing it from a cloud provider, then you will need to take
some other optimization approach. For example, you
might need to apply algorithmic optimizations instead
of hardware-centric micro-optimizations. Alternatively,
perhaps you can parallelize your code, spreading the work
(and thus the heat) over multiple CPU cores.

Some recommend normalizing the results of a given
test based on the various CPU core clock frequencies,
which can help. However, the latency of cache misses
and memory accesses do not depend on CPU core clock
frequency. In addition, if the code under test features tight
interaction among multiple CPUs, then the performance
that code running on one of the CPUs will depend on the
core clock frequencies of those other CPUs.

Finally, if the goal is instead to obtain repeatable bench-
mark measurements, one approach is to extend traditional
cache warmup to include thermal warmup, with the re-
quired warm-up duration depending on the size and thus
the thermal inertia of the system under test. Even given
careful thermal warmup, results will likely vary depending
on ambient temperature, which can depend strongly on
time of day, to say nothing of time of year in certain parts
of the world.
Quick Quiz 3.4: Given a long thermal warmup period doing
a fixed workload, why would ambient temperature matter?

3.1.7 Cache Misses
An additional multi-threading obstacle to CPU perfor-
mance is the “cache miss”. As noted earlier, modern
CPUs sport large caches in order to reduce the perfor-
mance penalty that would otherwise be incurred due to
high memory latencies. However, these caches are actu-
ally counter-productive for variables that are frequently
shared among CPUs. This is because when a given CPU
wishes to modify the variable, it is most likely the case
that some other CPU has modified it recently. In this case,
the variable will be in that other CPU’s cache, but not in
this CPU’s cache, which will therefore incur an expensive
cache miss (see Appendix C.1 for more detail). Such
cache misses form a major obstacle to CPU performance,
as shown in Figure 3.10.

Quick Quiz 3.5: So have CPU designers also greatly reduced
the overhead of cache misses?

3 Some of whom make good use of liquid nitrogen.

v2024.12.27a

22 CHAPTER 3. HARDWARE AND ITS HABITS

CACHE-
MISS

TOLL

BOOTH

CACHE-
MISS

TOLL

BOOTH

Figure 3.10: CPU Meets a Cache Miss

TELETELE Please stay on the

line. Your call is very

important to us...

Figure 3.11: CPU Waits for I/O Completion

3.1.8 I/O Operations

A cache miss can be thought of as a CPU-to-CPU I/O
operation, and as such is one of the cheapest I/O operations
available. I/O operations involving networking, mass
storage, or (worse yet) human beings pose much greater
obstacles than the internal obstacles called out in the prior
sections, as illustrated by Figure 3.11.

This is one of the differences between shared-memory
and distributed-system parallelism: Shared-memory par-
allel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program
will typically incur the larger network communication
latencies. In both cases, the relevant latencies can be

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory Memory

Speed−of−Light Round−Trip Distance in Vacuum

for 1.8 GHz Clock Period (8 cm)

System Interconnect

Figure 3.12: System Hardware Architecture

thought of as a cost of communication—a cost that would
be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the
actual work being performed is a key design parameter.
A major goal of parallel hardware design is to reduce this
ratio as needed to achieve the relevant performance and
scalability goals. In turn, as will be seen in Chapter 6,
a major goal of parallel software design is to reduce the
frequency of expensive operations like communications
cache misses.

Of course, it is one thing to say that a given operation is
an obstacle, and quite another to show that the operation
is a significant obstacle. This distinction is discussed in
the following sections.

3.2 Overheads

Don’t design bridges in ignorance of materials, and

don’t design low-level software in ignorance of the

underlying hardware.

Unknown

This section presents actual overheads of the obstacles to
performance listed out in the previous section. However,
it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

v2024.12.27a

3.2. OVERHEADS 23

3.2.1 Hardware System Architecture
Figure 3.12 shows a rough schematic of an eight-core
computer system. Each die has a pair of CPU cores, each
with its cache, as well as an interconnect allowing the pair
of CPUs to communicate with each other. The system
interconnect allows the four dies to communicate with
each other and with main memory.

Data moves through this system in units of “cache
lines”, which are power-of-two fixed-size aligned blocks
of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of
its registers, it must first load the cacheline containing
that variable into its cache, which may be thought of as
a hardware hash table. Similarly, when a CPU stores a
value from one of its registers into memory, it must also
load the cacheline containing that variable into its cache,
but must also ensure that no other CPU has a copy of that
cacheline.

For example, suppose that CPU 1 wrote to a variable x
whose cacheline was in CPU 6’s cache. An over-simplified
view of this process is illustrated by the following sequence
of steps in conjunction with Figure 3.13, each row of which
condenses Figure 3.12 to show only CPUs 1 and 6, their
store buffers and local caches, along with the system
interconnect denoted by the grey rectangle connecting the
pair of CPUs.

1. CPU 1 checks its local cache, and does not find the
cacheline. It therefore records the write in its store
buffer as shown in row A of Figure 3.13.

2. A request for this cacheline is forwarded to CPU 0’s
and 1’s interconnect, which checks CPU 1’s local
cache, and does not find the cacheline. Because
nothing has changed, the system state is still as
shown in row A of Figure 3.13.

3. This request is forwarded to the system interconnect,
as shown in row B of Figure 3.13, which checks with
the other three dies, learning that the cacheline is
held by the die containing CPU 6 and 7.

4. This request is forwarded to CPU 6’s and 7’s inter-
connect, which checks both CPUs’ caches, finding
the value in CPU 6’s cache, as shown in row C of
Figure 3.13.

5. CPU 6 forwards the cacheline to its interconnect, and
also flushes the cacheline from its cache, and then
CPU 6’s and 7’s interconnect forwards the cacheline

CPU 1 Store
Buffer

Cache CPU 6Store
Buffer

Cache

x=3

CPU 1 Store
Buffer

Cache

x=5

CPU 6Store
Buffer

Cache

x=3
A.

CPU 1 Store
Buffer

Cache

x=5

CPU 6Store
Buffer

Cache

x=3
C.

x=?

CPU 1 Store
Buffer

Cache

x=5 x=?

CPU 6Store
Buffer

Cache

x=3
B.

CPU 1 Store
Buffer

Cache

x=5

CPU 6Store
Buffer

Cache

x=3D.

CPU 1 Store
Buffer

Cache

x=5

CPU 6Store
Buffer

Cache
E.

x=3

CPU 1 Store
Buffer

Cache

x=5
x=3

CPU 6Store
Buffer

Cache
F.

CPU 1 Store
Buffer

Cache

x=5 x=3

CPU 6Store
Buffer

Cache
G.

CPU 1 Store
Buffer

Cache

x=5

CPU 6Store
Buffer

Cache
H.

Figure 3.13: Lifetime of a “Simple” Store

v2024.12.27a

24 CHAPTER 3. HARDWARE AND ITS HABITS

to the system interconnect, as shown in row D of
Figure 3.13.

6. The system interconnect forwards the cacheline to
CPU 0’s and 1’s interconnect, as shown in row E of
Figure 3.13.

7. CPU 0’s and 1’s interconnect forwards the cacheline
to CPU 1, as shown in row F of Figure 3.13.

8. The cache line is deposited into CPU 1’s cache, as
shown in row G of Figure 3.13.

9. CPU 1 can now complete the write, updating the
relevant portions of the newly arrived cacheline from
the value previously recorded in the store buffer, as
shown in row H of Figure 3.13.

Quick Quiz 3.6: This is a simplified sequence of events?
How could it possibly be any more complex?

Quick Quiz 3.7: Why is it necessary to flush the cacheline
from CPU 6’s cache?

This simplified sequence is just the beginning of a dis-
cipline called cache-coherency protocols [HP95, CSG99,
MHS12, SHW11], which is discussed in more detail in
Appendix C. As can be seen in the sequence of events
triggered by a simple memory write operation, a sin-
gle instruction can cause considerable protocol traffic,
which can significantly degrade your parallel program’s
performance.

Fortunately, if a given variable is being frequently read
during a time interval during which it is never updated,
that variable can be replicated across all CPUs’ caches.
This replication permits all CPUs to enjoy extremely fast
access to this read-mostly variable. Chapter 9 presents
synchronization mechanisms that take full advantage of
this important hardware read-mostly optimization.

3.2.2 Costs of Operations
The overheads of some common operations important to
parallel programs are displayed in Table 3.1. This system’s
clock period rounds to 0.5 ns. Although it is not unusual
for modern microprocessors to be able to retire multiple
instructions per clock period, the operations’ costs are
nevertheless normalized to a clock period in the third
column, labeled “Ratio”. The first thing to note about this
table is the large values of many of the ratios.

The same-CPU compare-and-swap (CAS) operation
consumes about seven nanoseconds, a duration more than

Table 3.1: CPU 0 View of Synchronization Mechanisms
on 8-Socket System With Intel Xeon Platinum 8176
CPUs @ 2.10 GHz

Operation Cost (ns)
Ratio

(cost/clock) CPUs

Clock period 0.5 1.0

Same-CPU 0
CAS 7.0 14.6
lock 15.4 32.3

On-Core 224
Blind CAS 7.2 15.2
CAS 18.0 37.7

Off-Core 1–27
Blind CAS 47.5 99.8 225–251
CAS 101.9 214.0

Off-Socket 28–111
Blind CAS 148.8 312.5 252–335
CAS 442.9 930.1

Cross-Interconnect 112–223
Blind CAS 336.6 706.8 336–447
CAS 944.8 1,984.2

Off-System
Comms Fabric 5,000 10,500
Global Comms 195,000,000 409,500,000

ten times that of the clock period. CAS is an atomic
operation in which the hardware compares the contents
of the specified memory location to a specified “old”
value, and if they compare equal, stores a specified “new”
value, in which case the CAS operation succeeds. If
they compare unequal, the memory location keeps its
(unexpected) value, and the CAS operation fails. The
operation is atomic in that the hardware guarantees that
the memory location will not be changed between the
compare and the store. CAS functionality is provided by
the lock;cmpxchg instruction on x86.

The “same-CPU” prefix means that the CPU now per-
forming the CAS operation on a given variable was also
the last CPU to access this variable, so that the corre-
sponding cacheline is already held in that CPU’s cache.
Similarly, the same-CPU lock operation (a “round trip”
pair consisting of a lock acquisition and release) consumes
more than fifteen nanoseconds, or more than thirty clock
cycles. The lock operation is more expensive than CAS
because it requires two atomic operations on the lock data
structure, one for acquisition and the other for release.

On-core operations involving interactions between the
hardware threads sharing a single core are about the same

v2024.12.27a

3.2. OVERHEADS 25

cost as same-CPU operations. This should not be too
surprising, given that these two hardware threads also
share the full cache hierarchy.

In the case of the blind CAS, the software specifies the
old value without looking at the memory location. This
approach is appropriate when attempting to acquire a lock.
If the unlocked state is represented by zero and the locked
state is represented by the value one, then a CAS operation
on the lock that specifies zero for the old value and one
for the new value will acquire the lock if it is not already
held. The key point is that there is only one access to the
memory location, namely the CAS operation itself.

In contrast, a normal CAS operation’s old value is de-
rived from some earlier load. For example, to implement
an atomic increment, the current value in a shared variable
is loaded into one machine register and then incremented
to produce the new value in another machine register.
Then in the CAS operation, the first register is specified
as the old value and the second register as the new value.
If the shared variable’s value did not change in the mean-
time, the CAS operation would store the new value, thus
incrementing that shared variable. However, if the shared
variable’s value did change, then the old value would not
match, causing a miscompare that would result in the CAS
operation failing and thus making no further change to
that shared variable. The key point is that there are now
two accesses to the memory location, the load and the
CAS.

Thus, it is not surprising that on-core blind CAS con-
sumes only about seven nanoseconds, while on-core CAS
consumes about 18 nanoseconds. The non-blind case’s
extra load does not come for free. That said, the overhead
of these operations are similar to same-CPU CAS and
lock, respectively.

Quick Quiz 3.8: Table 3.1 shows CPU 0 sharing a core with
CPU 224. However, isn’t it more logical for CPU 0 to share a
core with CPU 1 instead of CPU 224???

A blind CAS involving CPUs in different cores but
on the same socket consumes almost fifty nanoseconds,
or almost one hundred clock cycles. The code used for
this cache-miss measurement passes the cache line back
and forth between a pair of CPUs, so this cache miss
is satisfied not from memory, but rather from the other
CPU’s cache. A non-blind CAS operation, which as
noted earlier must look at the old value of the variable
as well as store a new value, consumes over one hundred
nanoseconds, or more than two hundred clock cycles.
Think about this a bit. In the time required to do one CAS
operation, the CPU could have executed more than two

Table 3.2: Cache Geometry for 8-Socket System With
Intel Xeon Platinum 8176 CPUs @ 2.10 GHz

Level Scope Line Size Sets Ways Size

L0 Core 64 64 8 32K
L1 Core 64 64 8 32K
L2 Core 64 1024 16 1024K
L3 Socket 64 57,344 11 39,424K

hundred normal instructions. This should demonstrate
the limitations not only of fine-grained locking, but of any
other synchronization mechanism relying on fine-grained
global agreement.

If the pair of CPUs are on different sockets, the oper-
ations are considerably more expensive. A blind CAS
operation consumes almost 150 nanoseconds, or more
than three hundred clock cycles. A normal CAS operation
consumes more than 400 nanoseconds, or almost one
thousand clock cycles.

Worse yet, not all pairs of sockets are created equal.
This particular system appears to be constructed as a
pair of four-socket components, with additional latency
penalties when the CPUs reside in different components.
In this case, a blind CAS operation consumes more than
three hundred nanoseconds, or more than seven hundred
clock cycles. A CAS operation consumes almost a full
microsecond, or almost two thousand clock cycles.

Quick Quiz 3.9: Surely the hardware designers could be per-
suaded to improve this situation! Why have they been content
with such abysmal performance for these single-instruction
operations?

Quick Quiz 3.10: Table E.1 in the answer to Quick Quiz 3.9
on page 486 says that on-core CAS is faster than both of
same-CPU CAS and on-core blind CAS. What is happening
there?

Unfortunately, the high speed of within-core and within-
socket communication does not come for free. First, there
are only two CPUs within a given core and only 56 within a
given socket, compared to 448 across the system. Second,
as shown in Table 3.2, the on-core caches are quite small
compared to the on-socket caches, which are in turn quite
small compared to the 1.4 TB of memory configured on
this system. Third, again referring to the figure, the caches
are organized as a hardware hash table with a limited
number of items per bucket. For example, the raw size of
the L3 cache (“Size”) is almost 40 MB, but each bucket
(“Line”) can only hold 11 blocks of memory (“Ways”),

v2024.12.27a

26 CHAPTER 3. HARDWARE AND ITS HABITS

each of which can be at most 64 bytes (“Line Size”).
This means that only 12 bytes of memory (admittedly at
carefully chosen addresses) are required to overflow this
40 MB cache. On the other hand, equally careful choice
of addresses might make good use of the entire 40 MB.

Spatial locality of reference is clearly extremely impor-
tant, as is spreading the data across memory.

I/O operations are even more expensive. As shown
in the “Comms Fabric” row, high performance (and ex-
pensive!) communications fabric, such as InfiniBand or
any number of proprietary interconnects, has a latency of
roughly five microseconds for an end-to-end round trip,
during which time more than ten thousand instructions
might have been executed. Standards-based communi-
cations networks often require some sort of protocol
processing, which further increases the latency. Of course,
geographic distance also increases latency, with the speed-
of-light through optical fiber latency around the world
coming to roughly 195 milliseconds, or more than 400
million clock cycles, as shown in the “Global Comms”
row of Table E.2.
Quick Quiz 3.11: These numbers are insanely large! How
can I possibly get my head around them?

3.2.3 Hardware Optimizations
It is only natural to ask how the hardware is helping, and
the answer is “Quite a bit!”

One hardware optimization is large cachelines. This
can provide a big performance boost, especially when
software is accessing memory sequentially. For example,
given a 64-byte cacheline and software accessing 64-
bit variables, the first access will still be slow due to
speed-of-light delays (if nothing else), but the remaining
seven can be quite fast. However, this optimization has
a dark side, namely false sharing, which happens when
different variables in the same cacheline are being updated
by different CPUs, resulting in a high cache-miss rate.4
Software can use the alignment directives available in
many compilers to avoid false sharing, and adding such
directives is a common step in tuning parallel software.

A second related hardware optimization is cache
prefetching, in which the hardware reacts to consecutive
accesses by prefetching subsequent cachelines, thereby
evading speed-of-light delays for these subsequent cache-
lines. Of course, the hardware must use simple heuristics

4 This situation is sometimes referred to as “cache thrashing” or
“cacheline bouncing”.

to determine when to prefetch, and these heuristics can be
fooled by the complex data-access patterns in many appli-
cations. Fortunately, some CPU families allow for this by
providing special prefetch instructions. Unfortunately, the
effectiveness of these instructions in the general case is
the subject of some dispute.

A third hardware optimization is the store buffer, which
allows a string of store instructions to execute quickly
even when the stores are to non-consecutive addresses
and when none of the needed cachelines are present in
the CPU’s cache. The dark side of this optimization is
memory misordering, for which see Chapter 15.

A fourth hardware optimization is speculative execution,
which can allow the hardware to make good use of the store
buffers without resulting in memory misordering. The
dark side of this optimization can be energy inefficiency
and lowered performance if the speculative execution goes
awry and must be rolled back and retried. Worse yet, the
advent of Spectre and Meltdown [Hor18] made it apparent
that hardware speculation can also enable side-channel
attacks that defeat memory-protection hardware so as to
allow unprivileged processes to read memory that they
should not have access to. It is clear that the combination
of speculative execution and cloud computing needs more
than a bit of rework!

One could argue that if people would act reasonably,
mitigations for side-channel attacks would not be neces-
sary. However, remotely accessible computer systems
really are often under attack by organized crime and by na-
tion states, to say nothing of by bored teenagers. There is
an old saying “It only takes a few to spoil things for every-
one”, but the reality is that remotely accessible computer
systems must be actively defended from attack.

A fifth hardware optimization is large caches, allowing
individual CPUs to operate on larger datasets without
incurring expensive cache misses. Although large caches
can degrade both energy efficiency and cache-miss latency,
the ever-growing cache sizes on production microproces-
sors attests to the power of this optimization.

A final hardware optimization is read-mostly replication,
in which data that is frequently read but rarely updated is
present in all CPUs’ caches. This optimization allows the
read-mostly data to be accessed exceedingly efficiently,
and is the subject of Chapter 9.

In short, hardware and software engineers are really on
the same side, with both trying to make computers go fast
despite the best efforts of the laws of physics, as fancifully
depicted in Figure 3.14 where our data stream is trying its
best to exceed the speed of light, further hindered by the

v2024.12.27a

3.3. HARDWARE FREE LUNCH? 27

Figure 3.14: Hardware and Software: On Same Side

non-zero sizes of atoms. The next section discusses some
additional things that the hardware engineers might (or
might not) be able to do, depending on how well recent
research translates to practice. Software’s contribution to
this noble goal is outlined in the remaining chapters of
this book.

3.3 Hardware Free Lunch?

The great trouble today is that there are too many

people looking for someone else to do something for

them. The solution to most of our troubles is to be

found in everyone doing something for themselves.

Henry Ford, updated

The major reason that concurrency has been receiving so
much focus over the past few years is the end of Moore’s-
Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 2.1 on page 9.
This section briefly surveys a few ways that hardware
designers might bring back the “free lunch”.

However, the preceding section presented some substan-
tial hardware obstacles to exploiting concurrency. One
severe physical limitation that hardware designers face
is the finite speed of light. As noted in Figure 3.12 on
page 22, light can manage only about an 8-centimeters
round trip in a vacuum during the duration of a 1.8 GHz
clock period. This distance drops to about 3 centimeters
for a 5 GHz clock. Both of these distances are relatively
small compared to the size of modern computer systems.

To make matters even worse, electric waves in silicon
move from three to thirty times more slowly than does light
in a vacuum, and common clocked logic constructs run
still more slowly, for example, a memory reference may

need to wait for a local cache lookup to complete before
the request may be passed on to the rest of the system.
Furthermore, relatively low speed and high power drivers
are required to move electrical signals from one silicon
die to another, for example, to communicate between a
CPU and main memory.
Quick Quiz 3.12: But individual electrons don’t move
anywhere near that fast, even in conductors!!! The electron
drift velocity in a conductor under semiconductor voltage
levels is on the order of only one millimeter per second. What
gives???

In fact, Stephen Hawking is said to have claimed that
semiconductor manufacturers have but two fundamental
problems: (1) The finite speed of light and (2) The atomic
nature of matter [Gar07]. That is right, light is too slow
and atoms are too big!!!

There are nevertheless some technologies (both hard-
ware and software) that might help improve matters:

1. Novel materials and processes,

2. Substituting light for electricity,

3. 3D integration,

4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following
sections.

3.3.1 Novel Materials and Processes
It is possible that Stephen Hawking is right, and that
semiconductor manufacturers are approaching the limits
implied by the finite speed of light and the non-zero
sizes of atoms. However, there are a few avenues of
research and development focused on working around
these fundamental laws of physics.

One workaround for the atomic nature of matter are
so-called “high-K dielectric” materials, which allow larger
devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fab-
rication challenges, but nevertheless may help push the
frontiers out a bit farther. Another more-exotic work-
around stores multiple bits in a single electron, relying
on the fact that a given electron can exist at a number
of energy levels. It remains to be seen if this particular
approach can be made to work reliably in production
semiconductor devices.

v2024.12.27a

28 CHAPTER 3. HARDWARE AND ITS HABITS

Another proposed workaround is the “quantum dot”
approach that allows much smaller device sizes, but which
is still in the research stage. Yet another proposed work-
around is to replace the atoms making up the base of
a traditional transistor with a vacuum, resulting in the
vacuum-gap transistor.

One challenge is that many recent hardware-device-
level breakthroughs require very tight control of which
atoms are placed where [Kel17]. It therefore seems likely
that whoever finds a good way to hand-place atoms on
each of the billions of devices on a chip will have most
excellent bragging rights, if nothing else!

3.3.2 Light, Not Electrons
Although the speed of light would be a hard limit, the fact
is that semiconductor devices are limited by the speed of
electricity rather than that of light, given that electric waves
in semiconductor materials move at between 3 % and 30 %
of the speed of light in a vacuum. The use of copper
connections on silicon devices is one way to increase the
speed of electricity, and it is quite possible that additional
advances will push closer still to the actual speed of
light. In addition, there have been some experiments with
tiny optical fibers as interconnects within and between
chips, based on the fact that the speed of light in glass is
more than 60 % of the speed of light in a vacuum. One
obstacle to such optical fibers is the inefficiency conversion
between electricity and light and vice versa, resulting in
both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the
field of physics, any exponential increases in the speed of
data flow will be sharply limited by the actual speed of
light in a vacuum.

3.3.3 3D Integration
3-dimensional integration (3DI) is the practice of bonding
very thin silicon dies to each other in a vertical stack.
This practice provides potential benefits, but also poses
significant fabrication challenges [Kni08].

Perhaps the most important benefit of 3DI is decreased
path length through the system, as shown in Figure 3.15.
A 3-centimeter silicon die is replaced with a stack of four
1.5-centimeter dies, in theory decreasing the maximum
path through the system by a factor of two, keeping in
mind that each layer is quite thin. In addition, given proper
attention to design and placement, long horizontal electri-
cal connections (which are both slow and power hungry)

1.5 cm3 cm

70 um

Figure 3.15: Latency Benefit of 3D Integration

Figure 3.16: Example 3D Integration

can be replaced by short vertical electrical connections,
which are both faster and more power efficient.

If you cannot make light go faster, make your devices
smaller!

However, delays due to levels of clocked logic will not be
decreased by 3D integration, and significant manufactur-
ing, testing, power-supply, and heat-dissipation problems
must be solved for 3D integration to reach production
while still delivering on its promise. The heat-dissipation
problems might be solved using semiconductors based
on diamond, which is a good conductor for heat, but an
electrical insulator. That said, it remains difficult to grow
large single diamond crystals, to say nothing of slicing
them into wafers. In addition, it seems unlikely that any of
these technologies will be able to deliver the exponential
increases to which some people have become accustomed.
That said, they may be necessary steps on the path to the
late Jim Gray’s “smoking hairy golf balls” [Gra02].

In the meantime, ca. 2020 advances in chiplet5 tech-
nology have made serious progress in this direction,
as depicted in Figure 3.16. Some researchers are tak-
ing this further, stacking transistors within a single
chip [Moo20, RK22].

5 https://en.wikipedia.org/wiki/Chiplet

https://en.wikipedia.org/wiki/Chiplet

v2024.12.27a

3.4. SOFTWARE DESIGN IMPLICATIONS 29

3.3.4 Special-Purpose Accelerators
A general-purpose CPU working on a specialized problem
is often spending significant time and energy doing work
that is only tangentially related to the problem at hand.
For example, when taking the dot product of a pair of
vectors, a general-purpose CPU will normally use a loop
(possibly unrolled) with a loop counter. Decoding the
instructions, incrementing the loop counter, testing this
counter, and branching back to the top of the loop are in
some sense wasted effort: The real goal is instead to multi-
ply corresponding elements of the two vectors. Therefore,
a specialized piece of hardware designed specifically to
multiply vectors could get the job done more quickly and
with less energy consumed.

This is in fact the motivation for the vector instructions
present in many commodity microprocessors. Because
these instructions operate on multiple data items simulta-
neously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently
encrypt and decrypt, compress and decompress, encode
and decode, and many other tasks besides. Unfortunately,
this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more
transistors, which will consume some power even when
not in use. Software must be modified to take advan-
tage of this specialized hardware, and this specialized
hardware must be sufficiently generally useful that the
high up-front hardware-design costs can be spread over
enough users to make the specialized hardware affordable.
In part due to these sorts of economic considerations,
specialized hardware has thus far appeared only for a few
application areas, including graphics processing (GPUs),
vector processors (MMX, SSE, and VMX instructions),
and, to a lesser extent, encryption and compression. And
even in these areas, it is not always easy to realize the
expected performance gains, for example, due to thermal
throttling [Kra17, Lem18, Dow20].

Unlike the server and PC arena, smartphones have long
used a wide variety of hardware accelerators. These hard-
ware accelerators are often used for media decoding, so
much so that a high-end MP3 player might be able to play
audio for several minutes—with its CPU fully powered
off the entire time. The purpose of these accelerators
is to improve energy efficiency and thus extend battery
life: Special purpose hardware can often compute more
efficiently than can a general-purpose CPU. This is an-
other example of the principle called out in Section 2.2.3:
Generality is almost never free.

Nevertheless, given the end of Moore’s-Law-induced
single-threaded performance increases, it seems safe to
assume that increasing varieties of special-purpose hard-
ware will appear. For example, in the mid-2020s, many
are betting on special-purpose accelerators for artificial-
intelligence and machine-learning workloads.

3.3.5 Existing Parallel Software
Although multicore CPUs seem to have taken the com-
puting industry by surprise, the fact remains that shared-
memory parallel computer systems have been readily (if
expensively) available since at least the 1980s. This is
more than enough time for significant parallel software to
make its appearance, and it indeed has. Parallel operating
systems are quite commonplace, as are parallel threading
libraries, parallel relational database management sys-
tems, and parallel numerical software. Use of existing
parallel software can go a long ways towards solving any
parallel-software crisis we might encounter.

Perhaps the most common example is the parallel re-
lational database management system. It is not unusual
for single-threaded programs, often written in high-level
scripting languages, to access a central relational database
concurrently. In the resulting highly parallel system, only
the database need actually deal directly with parallelism.
A very nice trick when it works!

3.4 Software Design Implications

One ship drives east and another west

While the self-same breezes blow;

’Tis the set of the sail and not the gail

That bids them where to go.

Ella Wheeler Wilcox

The values of the ratios in Table 3.1 are critically important,
as they limit the efficiency of a given parallel application.
To see this, suppose that the parallel application uses CAS
operations to communicate among threads. These CAS
operations will typically involve a cache miss, that is,
assuming that the threads are communicating primarily
with each other rather than with themselves. Suppose
further that the unit of work corresponding to each CAS
communication operation takes 300 ns, which is sufficient
time to compute several floating-point transcendental
functions. Then about half of the execution time will be
consumed by the CAS communication operations! This

v2024.12.27a

30 CHAPTER 3. HARDWARE AND ITS HABITS

in turn means that a two-CPU system running such a
parallel program would run no faster than a sequential
implementation running on a single CPU.

The situation is even worse in the distributed-system
case, where the latency of a single communications oper-
ation might take as long as thousands or even millions of
floating-point operations. This illustrates how important
it is for communications operations to be extremely infre-
quent and to enable very large quantities of processing.

Quick Quiz 3.13: Given that distributed-systems communi-
cation is so horribly expensive, why does anyone bother with
such systems?

The lesson should be quite clear: Parallel algorithms
must be explicitly designed with these hardware properties
firmly in mind. One approach is to run nearly independent
threads. The less frequently the threads communicate,
whether by atomic operations, locks, or explicit messages,
the better the application’s performance and scalability
will be. This approach will be touched on in Chapter 5,
explored in Chapter 6, and taken to its logical extreme in
Chapter 8.

Another approach is to make sure that any sharing be
read-mostly, which allows the CPUs’ caches to replicate
the read-mostly data, in turn allowing all CPUs fast access.
This approach is touched on in Section 5.2.4, and explored
more deeply in Chapter 9.

In short, achieving excellent parallel performance and
scalability means striving for embarrassingly parallel al-
gorithms and implementations, whether by careful choice
of data structures and algorithms, use of existing paral-
lel applications and environments, or transforming the
problem into an embarrassingly parallel form.

Quick Quiz 3.14: OK, if we are going to have to apply
distributed-programming techniques to shared-memory par-
allel programs, why not just always use these distributed
techniques and dispense with shared memory?

So, to sum up:

1. The good news is that multicore systems are inexpen-
sive and readily available.

2. More good news: The overhead of many synchro-
nization operations is much lower than it was on
parallel systems from the early 2000s.

3. The bad news is that the overhead of cache misses is
still high, especially on large systems.

The remainder of this book describes ways of handling
this bad news.

In particular, Chapter 4 will cover some of the low-
level tools used for parallel programming, Chapter 5 will
investigate problems and solutions to parallel counting,
and Chapter 6 will discuss design disciplines that promote
performance and scalability.

v2024.12.27a

You are only as good as your tools, and your tools

are only as good as you are.

UnknownChapter 4

Tools of the Trade

This chapter provides a brief introduction to some basic
tools of the parallel-programming trade, focusing mainly
on those available to user applications running on op-
erating systems similar to Linux. Section 4.1 begins
with scripting languages, Section 4.2 describes the multi-
process parallelism supported by the POSIX API and
touches on POSIX threads, Section 4.3 presents analogous
operations in other environments, and finally, Section 4.4
helps to choose the tool that will get the job done.
Quick Quiz 4.1: You call these tools??? They look more
like low-level synchronization primitives to me!

Please note that this chapter provides but a brief intro-
duction. More detail is available from the references (and
from the Internet), and more information will be provided
in later chapters.

4.1 Scripting Languages

The supreme excellence is simplicity.

Henry Wadsworth Longfellow, simplified

The Linux shell scripting languages provide simple but
effective ways of managing parallelism. For example,
suppose that you had a program compute_it that you
needed to run twice with two different sets of arguments.
This can be accomplished using UNIX shell scripting as
follows:

1 compute_it 1 > compute_it.1.out &
2 compute_it 2 > compute_it.2.out &
3 wait
4 cat compute_it.1.out
5 cat compute_it.2.out

Lines 1 and 2 launch two instances of this program,
redirecting their output to two separate files, with the &

compute_it 1 >

compute_it.1.out &

compute_it 2 >

compute_it.2.out &

wait

cat compute_it.1.out

cat compute_it.2.out

Figure 4.1: Execution Diagram for Parallel Shell Execu-
tion

character directing the shell to run the two instances of
the program in the background. Line 3 waits for both
instances to complete, and lines 4 and 5 display their
output. The resulting execution is as shown in Figure 4.1:
The two instances of compute_it execute in parallel,
wait completes after both of them do, and then the two
instances of cat execute sequentially.

Quick Quiz 4.2: But this silly shell script isn’t a real parallel
program! Why bother with such trivia???

Quick Quiz 4.3: Is there a simpler way to create a parallel
shell script? If so, how? If not, why not?

For another example, the make software-build scripting
language provides a -j option that specifies how much par-
allelism should be introduced into the build process. Thus,
typing make -j4 when building a Linux kernel specifies
that up to four build steps be executed concurrently.

31

v2024.12.27a

32 CHAPTER 4. TOOLS OF THE TRADE

It is hoped that these simple examples convince you
that parallel programming need not always be complex or
difficult.
Quick Quiz 4.4: But if script-based parallel programming is
so easy, why bother with anything else?

4.2 POSIX Multiprocessing

A camel is a horse designed by committee.

Unknown

This section scratches the surface of the POSIX environ-
ment, including pthreads [Ope97], as this environment is
readily available and widely implemented. Section 4.2.1
provides a glimpse of the POSIX fork() and related
primitives, Section 4.2.2 touches on thread creation and
destruction, Section 4.2.3 gives a brief overview of POSIX
locking, and, finally, Section 4.2.4 describes a specific
lock which can be used for data that is read by many
threads and only occasionally updated.

4.2.1 POSIX Process Creation and Destruc-
tion

Processes are created using the fork() primitive, they
may be destroyed using the kill() primitive, they may
destroy themselves using the exit() primitive. A process
executing a fork() primitive is said to be the “parent”
of the newly created process. A parent may wait on its
children using the wait() primitive.

Please note that the examples in this section are quite
simple. Real-world applications using these primitives
might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In
addition, some applications need to take specific actions
if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These
issues can of course add substantial complexity to the code.
For more information, see any of a number of textbooks
on the subject [Ste92, Wei13].

If fork() succeeds, it returns twice, once for the
parent and again for the child. The value returned from
fork() allows the caller to tell the difference, as shown in
Listing 4.1 (forkjoin.c). Line 1 executes the fork()
primitive, and saves its return value in local variable pid.
Line 2 checks to see if pid is zero, in which case, this
is the child, which continues on to execute line 3. As

Listing 4.1: Using the fork() Primitive
1 pid = fork();
2 if (pid == 0) {
3 /* child */
4 } else if (pid < 0) {
5 /* parent, upon error */
6 perror("fork");
7 exit(EXIT_FAILURE);
8 } else {
9 /* parent, pid == child ID */

10 }

Listing 4.2: Using the wait() Primitive
1 static __inline__ void waitall(void)
2 {
3 int pid;
4 int status;
5
6 for (;;) {
7 pid = wait(&status);
8 if (pid == -1) {
9 if (errno == ECHILD)

10 break;
11 perror("wait");
12 exit(EXIT_FAILURE);
13 }
14 }
15 }

noted earlier, the child may terminate via the exit()
primitive. Otherwise, this is the parent, which checks for
an error return from the fork() primitive on line 4, and
prints an error and exits on lines 5–7 if so. Otherwise,
the fork() has executed successfully, and the parent
therefore executes line 9 with the variable pid containing
the process ID of the child.

The parent process may use the wait() primitive to
wait for its children to complete. However, use of this
primitive is a bit more complicated than its shell-script
counterpart, as each invocation of wait() waits for but one
child process. It is therefore customary to wrap wait()
into a function similar to the waitall() function shown
in Listing 4.2 (api-pthreads.h), with this waitall()
function having semantics similar to the shell-script wait
command. Each pass through the loop spanning lines 6–14
waits on one child process. Line 7 invokes the wait()
primitive, which blocks until a child process exits, and
returns that child’s process ID. If the process ID is instead
−1, this indicates that the wait() primitive was unable to
wait on a child. If so, line 9 checks for the ECHILD errno,
which indicates that there are no more child processes, so
that line 10 exits the loop. Otherwise, lines 11 and 12
print an error and exit.

Quick Quiz 4.5: Why does this wait() primitive need to be
so complicated? Why not just make it work like the shell-script
wait does?

v2024.12.27a

4.2. POSIX MULTIPROCESSING 33

Listing 4.3: Processes Created Via fork() Do Not Share
Memory

1 int x = 0;
2
3 int main(int argc, char *argv[])
4 {
5 int pid;
6
7 pid = fork();
8 if (pid == 0) { /* child */
9 x = 1;

10 printf("Child process set x=1\n");
11 exit(EXIT_SUCCESS);
12 }
13 if (pid < 0) { /* parent, upon error */
14 perror("fork");
15 exit(EXIT_FAILURE);
16 }
17
18 /* parent */
19
20 waitall();
21 printf("Parent process sees x=%d\n", x);
22
23 return EXIT_SUCCESS;
24 }

It is critically important to note that the parent and child
do not share memory. This is illustrated by the program
shown in Listing 4.3 (forkjoinvar.c), in which the
child sets a global variable x to 1 on line 9, prints a
message on line 10, and exits on line 11. The parent
continues at line 20, where it waits on the child, and on
line 21 finds that its copy of the variable x is still zero.
The output is thus as follows:

Child process set x=1
Parent process sees x=0

Quick Quiz 4.6: Isn’t there a lot more to fork() and wait()
than discussed here?

The finest-grained parallelism requires shared memory,
and this is covered in Section 4.2.2. That said, shared-
memory parallelism can be significantly more complex
than fork-join parallelism.

4.2.2 POSIX Thread Creation and Destruc-
tion

To create a thread within an existing process, invoke the
pthread_create() primitive, for example, as shown
on lines 16 and 17 of Listing 4.4 (pcreate.c). The
first argument is a pointer to a pthread_t in which to
store the ID of the thread to be created, the second NULL
argument is a pointer to an optional pthread_attr_t, the
third argument is the function (in this case, mythread())

Listing 4.4: Threads Created Via pthread_create() Share
Memory

1 int x = 0;
2
3 void *mythread(void *arg)
4 {
5 x = 1;
6 printf("Child process set x=1\n");
7 return NULL;
8 }
9

10 int main(int argc, char *argv[])
11 {
12 int en;
13 pthread_t tid;
14 void *vp;
15
16 if ((en = pthread_create(&tid, NULL,
17 mythread, NULL)) != 0) {
18 fprintf(stderr, "pthread_create: %s\n", strerror(en));
19 exit(EXIT_FAILURE);
20 }
21
22 /* parent */
23
24 if ((en = pthread_join(tid, &vp)) != 0) {
25 fprintf(stderr, "pthread_join: %s\n", strerror(en));
26 exit(EXIT_FAILURE);
27 }
28 printf("Parent process sees x=%d\n", x);
29
30 return EXIT_SUCCESS;
31 }

that is to be invoked by the new thread, and the last
NULL argument is the argument that will be passed to
mythread().

In this example, mythread() simply returns, but it
could instead call pthread_exit().

Quick Quiz 4.7: If the mythread() function in Listing 4.4
can simply return, why bother with pthread_exit()?

The pthread_join() primitive, shown on line 24, is
analogous to the fork-join wait() primitive. It blocks
until the thread specified by the tid variable completes
execution, either by invoking pthread_exit() or by re-
turning from the thread’s top-level function. The thread’s
exit value will be stored through the pointer passed as
the second argument to pthread_join(). The thread’s
exit value is either the value passed to pthread_exit()
or the value returned by the thread’s top-level function,
depending on how the thread in question exits.

The program shown in Listing 4.4 produces output
as follows, demonstrating that memory is in fact shared
between the two threads:

Child process set x=1
Parent process sees x=1

v2024.12.27a

34 CHAPTER 4. TOOLS OF THE TRADE

Note that this program carefully makes sure that only
one of the threads stores a value to variable x at a time.
Any situation in which one thread might be storing a
value to a given variable while some other thread either
loads from or stores to that same variable is termed a data
race. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable,
we need some way of safely accessing and modifying data
concurrently, such as the locking primitives discussed in
the following section.

But your data races are benign, you say? Well, maybe
they are. But please do everyone (yourself included) a
big favor and read Section 4.3.4.1 very carefully. As
compilers optimize more and more aggressively, there are
fewer and fewer truly benign data races.

Quick Quiz 4.8: If the C language makes no guarantees in
presence of a data race, then why does the Linux kernel have
so many data races? Are you trying to tell me that the Linux
kernel is completely broken???

4.2.3 POSIX Locking
The POSIX standard allows the programmer to avoid
data races via “POSIX locking”. POSIX locking fea-
tures a number of primitives, the most fundamental
of which are pthread_mutex_lock() and pthread_
mutex_unlock(). These primitives operate on locks,
which are of type pthread_mutex_t. These locks may be
declared statically and initialized with PTHREAD_MUTEX_
INITIALIZER, or they may be allocated dynamically and
initialized using the pthread_mutex_init() primitive.
The demonstration code in this section will take the former
course.

The pthread_mutex_lock() primitive “acquires” the
specified lock, and the pthread_mutex_unlock() “re-
leases” the specified lock. Because these are “exclusive”
locking primitives, only one thread at a time may “hold”
a given lock at a given time. For example, if a pair of
threads attempt to acquire the same lock concurrently,
one of the pair will be “granted” the lock first, and the
other will wait until the first thread releases the lock. A
simple and reasonably useful programming model permits
a given data item to be accessed only while holding the
corresponding lock [Hoa74].

Quick Quiz 4.9: What if I want several threads to hold the
same lock at the same time?

This exclusive-locking property is demonstrated using
the code shown in Listing 4.5 (lock.c). Line 1 defines

Listing 4.5: Demonstration of Exclusive Locks
1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3
4 int x = 0;
5
6 void *lock_reader(void *arg)
7 {
8 int en;
9 int i;

10 int newx = -1;
11 int oldx = -1;
12 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
13
14 if ((en = pthread_mutex_lock(pmlp)) != 0) {
15 fprintf(stderr, "lock_reader:pthread_mutex_lock: %s\n",
16 strerror(en));
17 exit(EXIT_FAILURE);
18 }
19 for (i = 0; i < 100; i++) {
20 newx = READ_ONCE(x);
21 if (newx != oldx) {
22 printf("lock_reader(): x = %d\n", newx);
23 }
24 oldx = newx;
25 poll(NULL, 0, 1);
26 }
27 if ((en = pthread_mutex_unlock(pmlp)) != 0) {
28 fprintf(stderr, "lock_reader:pthread_mutex_unlock: %s\n",
29 strerror(en));
30 exit(EXIT_FAILURE);
31 }
32 return NULL;
33 }
34
35 void *lock_writer(void *arg)
36 {
37 int en;
38 int i;
39 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
40
41 if ((en = pthread_mutex_lock(pmlp)) != 0) {
42 fprintf(stderr, "lock_writer:pthread_mutex_lock: %s\n",
43 strerror(en));
44 exit(EXIT_FAILURE);
45 }
46 for (i = 0; i < 3; i++) {
47 WRITE_ONCE(x, READ_ONCE(x) + 1);
48 poll(NULL, 0, 5);
49 }
50 if ((en = pthread_mutex_unlock(pmlp)) != 0) {
51 fprintf(stderr, "lock_writer:pthread_mutex_unlock: %s\n",
52 strerror(en));
53 exit(EXIT_FAILURE);
54 }
55 return NULL;
56 }

v2024.12.27a

4.2. POSIX MULTIPROCESSING 35

and initializes a POSIX lock named lock_a, while line 2
similarly defines and initializes a lock named lock_b.
Line 4 defines and initializes a shared variable x.

Lines 6–33 define a function lock_reader() which
repeatedly reads the shared variable x while holding the
lock specified by arg. Line 12 casts arg to a pointer to a
pthread_mutex_t, as required by the pthread_mutex_
lock() and pthread_mutex_unlock() primitives.

Quick Quiz 4.10: Why not simply make the argument to
lock_reader() on line 6 of Listing 4.5 be a pointer to a
pthread_mutex_t?

Quick Quiz 4.11: What is the READ_ONCE() on lines 20
and 47 and the WRITE_ONCE() on line 47 of Listing 4.5?

Lines 14–18 acquire the specified pthread_mutex_t,
checking for errors and exiting the program if any occur.
Lines 19–26 repeatedly check the value of x, printing
the new value each time that it changes. Line 25 sleeps
for one millisecond, which allows this demonstration
to run nicely on a uniprocessor machine. Lines 27–31
release the pthread_mutex_t, again checking for errors
and exiting the program if any occur. Finally, line 32
returns NULL, again to match the function type required
by pthread_create().

Quick Quiz 4.12: Writing four lines of code for each
acquisition and release of a pthread_mutex_t sure seems
painful! Isn’t there a better way?

Lines 35–56 of Listing 4.5 show lock_writer(),
which periodically updates the shared variable x while
holding the specified pthread_mutex_t. As with lock_
reader(), line 39 casts arg to a pointer to pthread_
mutex_t, lines 41–45 acquire the specified lock, and
lines 50–54 release it. While holding the lock, lines 46–49
increment the shared variable x, sleeping for five millisec-
onds between each increment. Finally, lines 50–54 release
the lock.

Listing 4.6 shows a code fragment that runs lock_
reader() and lock_writer() as threads using the same
lock, namely, lock_a. Lines 2–6 create a thread running
lock_reader(), and then lines 7–11 create a thread
running lock_writer(). Lines 12–19 wait for both
threads to complete. The output of this code fragment is
as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Listing 4.6: Demonstration of Same Exclusive Lock
1 printf("Creating two threads using same lock:\n");
2 en = pthread_create(&tid1, NULL, lock_reader, &lock_a);
3 if (en != 0) {
4 fprintf(stderr, "pthread_create: %s\n", strerror(en));
5 exit(EXIT_FAILURE);
6 }
7 en = pthread_create(&tid2, NULL, lock_writer, &lock_a);
8 if (en != 0) {
9 fprintf(stderr, "pthread_create: %s\n", strerror(en));

10 exit(EXIT_FAILURE);
11 }
12 if ((en = pthread_join(tid1, &vp)) != 0) {
13 fprintf(stderr, "pthread_join: %s\n", strerror(en));
14 exit(EXIT_FAILURE);
15 }
16 if ((en = pthread_join(tid2, &vp)) != 0) {
17 fprintf(stderr, "pthread_join: %s\n", strerror(en));
18 exit(EXIT_FAILURE);
19 }

Listing 4.7: Demonstration of Different Exclusive Locks
1 printf("Creating two threads w/different locks:\n");
2 x = 0;
3 en = pthread_create(&tid1, NULL, lock_reader, &lock_a);
4 if (en != 0) {
5 fprintf(stderr, "pthread_create: %s\n", strerror(en));
6 exit(EXIT_FAILURE);
7 }
8 en = pthread_create(&tid2, NULL, lock_writer, &lock_b);
9 if (en != 0) {

10 fprintf(stderr, "pthread_create: %s\n", strerror(en));
11 exit(EXIT_FAILURE);
12 }
13 if ((en = pthread_join(tid1, &vp)) != 0) {
14 fprintf(stderr, "pthread_join: %s\n", strerror(en));
15 exit(EXIT_FAILURE);
16 }
17 if ((en = pthread_join(tid2, &vp)) != 0) {
18 fprintf(stderr, "pthread_join: %s\n", strerror(en));
19 exit(EXIT_FAILURE);
20 }

Because both threads are using the same lock, the lock_
reader() thread cannot see any of the intermediate values
of x produced by lock_writer() while holding the lock.
Quick Quiz 4.13: Is “x = 0” the only possible output from
the code fragment shown in Listing 4.6? If so, why? If not,
what other output could appear, and why?

Listing 4.7 shows a similar code fragment, but this time
using different locks: lock_a for lock_reader() and
lock_b for lock_writer(). The output of this code
fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0
lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x = 3

Because the two threads are using different locks, they
do not exclude each other, and can run concurrently. The

v2024.12.27a

36 CHAPTER 4. TOOLS OF THE TRADE

lock_reader() function can therefore see the interme-
diate values of x stored by lock_writer().

Quick Quiz 4.14: Using different locks could cause quite
a bit of confusion, what with threads seeing each others’
intermediate states. So should well-written parallel programs
restrict themselves to using a single lock in order to avoid this
kind of confusion?

Quick Quiz 4.15: In the code shown in Listing 4.7, is
lock_reader() guaranteed to see all the values produced by
lock_writer()? Why or why not?

Quick Quiz 4.16: Wait a minute here!!! Listing 4.6 didn’t
initialize shared variable x, so why does it need to be initialized
in Listing 4.7?

Although there is quite a bit more to POSIX exclusive
locking, these primitives provide a good start and are in
fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

4.2.4 POSIX Reader-Writer Locking
The POSIX API provides a reader-writer lock, which
is represented by a pthread_rwlock_t. As with
pthread_mutex_t, pthread_rwlock_t may be stat-
ically initialized via PTHREAD_RWLOCK_INITIALIZER
or dynamically initialized via the pthread_rwlock_
init() primitive. The pthread_rwlock_rdlock()
primitive read-acquires the specified pthread_rwlock_
t, the pthread_rwlock_wrlock() primitive write-
acquires it, and the pthread_rwlock_unlock() prim-
itive releases it. Only a single thread may write-hold a
given pthread_rwlock_t at any given time, but multiple
threads may read-hold a given pthread_rwlock_t, at
least while there is no thread currently write-holding it.

As you might expect, reader-writer locks are designed
for read-mostly situations. In these situations, a reader-
writer lock can provide greater scalability than can an
exclusive lock because the exclusive lock is by definition
limited to a single thread holding the lock at any given time,
while the reader-writer lock permits an arbitrarily large
number of readers to concurrently hold the lock. How-
ever, in practice, we need to know how much additional
scalability is provided by reader-writer locks.

Listing 4.8 (rwlockscale.c) shows one way of mea-
suring reader-writer lock scalability. Line 1 shows the
definition and initialization of the reader-writer lock, line 2
shows the holdtime argument controlling the time each
thread holds the reader-writer lock, line 3 shows the

Listing 4.8: Measuring Reader-Writer Lock Scalability
1 pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
2 unsigned long holdtime = 0;
3 unsigned long thinktime = 0;
4 long long *readcounts;
5 int nreadersrunning = 0;
6
7 #define GOFLAG_INIT 0
8 #define GOFLAG_RUN 1
9 #define GOFLAG_STOP 2

10 char goflag = GOFLAG_INIT;
11
12 void *reader(void *arg)
13 {
14 int en;
15 int i;
16 long long loopcnt = 0;
17 long me = (long)arg;
18
19 __sync_fetch_and_add(&nreadersrunning, 1);
20 while (READ_ONCE(goflag) == GOFLAG_INIT) {
21 continue;
22 }
23 while (READ_ONCE(goflag) == GOFLAG_RUN) {
24 if ((en = pthread_rwlock_rdlock(&rwl)) != 0) {
25 fprintf(stderr,
26 "pthread_rwlock_rdlock: %s\n", strerror(en));
27 exit(EXIT_FAILURE);
28 }
29 for (i = 1; i < holdtime; i++) {
30 wait_microseconds(1);
31 }
32 if ((en = pthread_rwlock_unlock(&rwl)) != 0) {
33 fprintf(stderr,
34 "pthread_rwlock_unlock: %s\n", strerror(en));
35 exit(EXIT_FAILURE);
36 }
37 for (i = 1; i < thinktime; i++) {
38 wait_microseconds(1);
39 }
40 loopcnt++;
41 }
42 readcounts[me] = loopcnt;
43 return NULL;
44 }

v2024.12.27a

4.2. POSIX MULTIPROCESSING 37

thinktime argument controlling the time between the
release of the reader-writer lock and the next acquisition,
line 4 defines the readcounts array into which each
reader thread places the number of times it acquired the
lock, and line 5 defines the nreadersrunning variable,
which determines when all reader threads have started
running.

Lines 7–10 define goflag, which synchronizes the
start and the end of the test. This variable is initially set to
GOFLAG_INIT, then set to GOFLAG_RUN after all the reader
threads have started, and finally set to GOFLAG_STOP to
terminate the test run.

Lines 12–44 define reader(), which is the
reader thread. Line 19 atomically increments the
nreadersrunning variable to indicate that this thread
is now running, and lines 20–22 wait for the test to start.
The READ_ONCE() primitive forces the compiler to fetch
goflag on each pass through the loop—the compiler
would otherwise be within its rights to assume that the
value of goflag would never change.

Quick Quiz 4.17: Instead of using READ_ONCE() everywhere,
why not just declare goflag as volatile on line 10 of
Listing 4.8?

Quick Quiz 4.18: READ_ONCE() only affects the compiler,
not the CPU. Don’t we also need memory barriers to make
sure that the change in goflag’s value propagates to the CPU
in a timely fashion in Listing 4.8?

Quick Quiz 4.19: Would it ever be necessary to use READ_
ONCE() when accessing a per-thread variable, for example, a
variable declared using GCC’s __thread storage class?

The loop spanning lines 23–41 carries out the perfor-
mance test. Lines 24–28 acquire the lock, lines 29–31
hold the lock for the specified number of microseconds,
lines 32–36 release the lock, and lines 37–39 wait for the
specified number of microseconds before re-acquiring the
lock. Line 40 counts this lock acquisition.

Line 42 moves the lock-acquisition count to this thread’s
element of the readcounts[] array, and line 43 returns,
terminating this thread.

Figure 4.2 shows the results of running this test on a
224-core Xeon system with two hardware threads per core
for a total of 448 software-visible CPUs. The thinktime
parameter was zero for all these tests, and the holdtime
parameter set to values ranging from one microsecond
(“1us” on the graph) to 10,000 microseconds (“10000us”

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 50 100 150 200 250 300 350 400 450

ideal 10000us

1000us

100us

10us

1us

C
rit

ic
al

 S
ec

tio
n

P
er

fo
rm

an
ce

Number of CPUs (Threads)

Figure 4.2: Reader-Writer Lock Scalability vs. Microsec-
onds in Critical Section on 8-Socket System With
Intel Xeon Platinum 8176 CPUs @ 2.10GHz

on the graph). The actual value plotted is:

𝐿𝑁

𝑁𝐿1
(4.1)

where 𝑁 is the number of threads in the current run, 𝐿𝑁 is
the total number of lock acquisitions by all 𝑁 threads in the
current run, and 𝐿1 is the number of lock acquisitions in
a single-threaded run. Given ideal hardware and software
scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking
scalability is decidedly non-ideal, especially for smaller
sizes of critical sections. To see why read-acquisition can
be so slow, consider that all the acquiring threads must
update the pthread_rwlock_t data structure. Therefore,
if all 448 executing threads attempt to read-acquire the
reader-writer lock concurrently, they must update this
underlying pthread_rwlock_t one at a time. One lucky
thread might do so almost immediately, but the least-lucky
thread must wait for all the other 447 threads to do their
updates. This situation will only get worse as you add
CPUs. Note also the logscale y-axis. Even though the
10,000 microsecond trace appears quite ideal, it has in fact
degraded by about 10 % from ideal.
Quick Quiz 4.20: Isn’t comparing against single-CPU
throughput a bit harsh?

Quick Quiz 4.21: But one microsecond is not a particularly
small size for a critical section. What do I do if I need a much

v2024.12.27a

38 CHAPTER 4. TOOLS OF THE TRADE

smaller critical section, for example, one containing only a few
instructions?

Quick Quiz 4.22: The system used is a few years old, and
new hardware should be faster. So why should anyone worry
about reader-writer locks being slow?

Despite these limitations, reader-writer locking is quite
useful in many cases, for example when the readers must
do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 5 and 9.

4.2.5 Atomic Operations (GCC Classic)
Figure 4.2 shows that the overhead of reader-writer locking
is most severe for the smallest critical sections, so it would
be nice to have some other way of protecting tiny critical
sections. One such way uses atomic operations. We have
seen an atomic operation already, namely the __sync_
fetch_and_add() primitive on line 19 of Listing 4.8.
This primitive atomically adds the value of its second
argument to the value referenced by its first argument,
returning the old value (which was ignored in this case).
If a pair of threads concurrently execute __sync_fetch_
and_add() on the same variable, the resulting value of
the variable will include the result of both additions.

The GNU C compiler offers a number of addi-
tional atomic operations, including __sync_fetch_and_
sub(), __sync_fetch_and_or(), __sync_fetch_
and_and(), __sync_fetch_and_xor(), and __sync_
fetch_and_nand(), all of which return the old value.
If you instead need the new value, you can instead
use the __sync_add_and_fetch(), __sync_sub_
and_fetch(), __sync_or_and_fetch(), __sync_
and_and_fetch(), __sync_xor_and_fetch(), and
__sync_nand_and_fetch() primitives.

Quick Quiz 4.23: Is it really necessary to have both sets of
primitives?

The classic compare-and-swap operation is provided
by a pair of primitives, __sync_bool_compare_and_
swap() and __sync_val_compare_and_swap(). Both
of these primitives atomically update a location to a new
value, but only if its prior value was equal to the specified
old value. The first variant returns 1 if the operation
succeeded and 0 if it failed, for example, if the prior value
was not equal to the specified old value. The second
variant returns the prior value of the location, which, if
equal to the specified old value, indicates that the operation
succeeded. Either of the compare-and-swap operation

Listing 4.9: Compiler Barrier Primitive (for GCC)
#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define READ_ONCE(x) \

({ typeof(x) ___x = ACCESS_ONCE(x); ___x; })
#define WRITE_ONCE(x, val) \

do { ACCESS_ONCE(x) = (val); } while (0)
#define barrier() __asm__ __volatile__("": : :"memory")

is “universal” in the sense that any atomic operation
on a single location can be implemented in terms of
compare-and-swap, though the earlier operations are often
more efficient where they apply. The compare-and-swap
operation is also capable of serving as the basis for a
wider set of atomic operations, though the more elaborate
of these often suffer from complexity, scalability, and
performance problems [Her90].

Quick Quiz 4.24: Given that these atomic operations will
often be able to generate single atomic instructions that are
directly supported by the underlying instruction set, shouldn’t
they be the fastest possible way to get things done?

The __sync_synchronize() primitive issues a
“memory barrier”, which constrains both the compiler’s
and the CPU’s ability to reorder operations, as discussed in
Chapter 15. In some cases, it is sufficient to constrain the
compiler’s ability to reorder operations, while allowing the
CPU free rein, in which case the barrier() primitive may
be used. In some cases, it is only necessary to ensure that
the compiler avoids optimizing away a given memory read,
in which case the READ_ONCE() primitive may be used,
as it was on line 20 of Listing 4.5. Similarly, the WRITE_
ONCE() primitive may be used to prevent the compiler
from optimizing away a given memory write. These last
three primitives are not provided directly by GCC, but may
be implemented straightforwardly as shown in Listing 4.9,
and all three are discussed at length in Section 4.3.4. Al-
ternatively, READ_ONCE(x) has much in common with
the GCC intrinsic __atomic_load_n(&x, __ATOMIC_
RELAXED) and WRITE_ONCE() has much in common
with the GCC intrinsic __atomic_store_n(&x, v,
__ATOMIC_RELAXED).

Quick Quiz 4.25: What happened to ACCESS_ONCE()?

4.2.6 Atomic Operations (C11)
The C11 standard added atomic operations, in-
cluding loads (atomic_load()), stores (atomic_
store()), memory barriers (atomic_thread_fence()
and atomic_signal_fence()), and read-modify-

v2024.12.27a

4.3. ALTERNATIVES TO POSIX OPERATIONS 39

write atomics. The read-modify-write atom-
ics include atomic_fetch_add(), atomic_fetch_
sub(), atomic_fetch_and(), atomic_fetch_xor(),
atomic_exchange(), atomic_compare_exchange_
strong(), and atomic_compare_exchange_weak().
These operate in a manner similar to those described
in Section 4.2.5, but with the addition of memory-order
arguments to _explicit variants of all of the opera-
tions. Without memory-order arguments, all the atomic
operations are fully ordered, and the arguments per-
mit weaker orderings. For example, “atomic_load_
explicit(&a, memory_order_relaxed)” is vaguely
similar to the Linux kernel’s “READ_ONCE()”.1

4.2.7 Atomic Operations (Modern GCC)
One restriction of the C11 atomics is that they apply
only to special atomic types, which can be problematic.
The GNU C compiler therefore provides atomic intrin-
sics, including __atomic_load(), __atomic_load_
n(), __atomic_store(), __atomic_store_n(), __
atomic_thread_fence(), etc. These intrinsics offer
the same semantics as their C11 counterparts, but may
be used on plain non-atomic objects. Some of these in-
trinsics may be passed a memory-order argument from
this list: __ATOMIC_RELAXED, __ATOMIC_CONSUME,
__ATOMIC_ACQUIRE, __ATOMIC_RELEASE, __ATOMIC_
ACQ_REL, and __ATOMIC_SEQ_CST.

4.2.8 Per-Thread Variables
Per-thread variables, also called thread-specific data,
thread-local storage, and other less-polite names, are used
extremely heavily in concurrent code, as will be explored
in Chapters 5 and 8. POSIX supplies the pthread_key_
create() function to create a per-thread variable (and
return the corresponding key), pthread_key_delete()
to delete the per-thread variable corresponding to key,
pthread_setspecific() to set the value of the current
thread’s variable corresponding to the specified key, and
pthread_getspecific() to return that value.

A number of compilers (including GCC) provide a __
thread specifier that may be used in a variable definition
to designate that variable as being per-thread. The name of
the variable may then be used normally to access the value
of the current thread’s instance of that variable. Of course,
__thread is much easier to use than the POSIX thread-
specific data, and so __thread is usually preferred for

1 Memory ordering is described in more detail in Chapter 15 and
Appendix C.

code that is to be built only with GCC or other compilers
supporting __thread.

Fortunately, the C11 standard introduced a _Thread_
local keyword that can be used in place of __thread. In
the fullness of time, this new keyword should combine the
ease of use of __thread with the portability of POSIX
thread-specific data.

4.3 Alternatives to POSIX Opera-
tions

The strategic marketing paradigm of Open Source is

a massively parallel drunkard’s walk filtered by a

Darwinistic process.

Bruce Perens

Unfortunately, threading operations, locking primitives,
and atomic operations were in reasonably wide use long
before the various standards committees got around to
them. As a result, there is considerable variation in how
these operations are supported. It is still quite common to
find these operations implemented in assembly language,
either for historical reasons or to obtain better perfor-
mance in specialized circumstances. For example, GCC’s
__sync_ family of primitives all provide full memory-
ordering semantics, which in the past motivated many
developers to create their own implementations for situa-
tions where the full memory ordering semantics are not
required. The following sections show some alternatives
from the Linux kernel and some historical primitives used
by this book’s sample code.

4.3.1 Organization and Initialization
Although many environments do not require any special
initialization code, the code samples in this book start
with a call to smp_init(), which initializes a mapping
from pthread_t to consecutive integers. The userspace
RCU library2 similarly requires a call to rcu_init().
Although these calls can be hidden in environments (such
as that of GCC) that support constructors, most of the
RCU flavors supported by the userspace RCU library also
require each thread invoke rcu_register_thread()
upon thread creation and rcu_unregister_thread()
before thread exit.

2 See Section 9.5 for more information on RCU.

v2024.12.27a

40 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.10: Thread API
int smp_thread_id(void)
thread_id_t create_thread(void *(*func)(void *), void *arg)
for_each_thread(t)
for_each_running_thread(t)
void *wait_thread(thread_id_t tid)
void wait_all_threads(void)

In the case of the Linux kernel, it is a philosophical
question as to whether the kernel does not require calls
to special initialization code or whether the kernel’s boot-
time code is in fact the required initialization code.

4.3.2 Thread Creation, Destruction, and
Control

The Linux kernel uses struct task_struct pointers
to track kthreads, kthread_create() to create them,
kthread_should_stop() to externally suggest that they
stop (which has no POSIX equivalent),3 kthread_
stop() to wait for them to stop, and schedule_
timeout_interruptible() for a timed wait. There
are quite a few additional kthread-management APIs, but
this provides a good start, as well as good search terms.

The CodeSamples API focuses on “threads”, which are a
locus of control.4 Each such thread has an identifier of type
thread_id_t, and no two threads running at a given time
will have the same identifier. Threads share everything
except for per-thread local state,5 which includes program
counter and stack.

The thread API is shown in Listing 4.10, and members
are described in the following section.

4.3.2.1 API Members

create_thread()
The create_thread() primitive creates a new
thread, starting the new thread’s execution at the func-
tion func specified by create_thread()’s first ar-
gument, and passing it the argument specified by
create_thread()’s second argument. This newly
created thread will terminate when it returns from the
starting function specified by func. The create_

3 POSIX environments can work around the lack of kthread_
should_stop() by using a properly synchronized boolean flag in
conjunction with pthread_join().

4 There are many other names for similar software constructs,
including “process”, “task”, “fiber”, “event”, “execution agent”, and so
on. Similar design principles apply to all of them.

5 How is that for a circular definition?

thread() primitive returns the thread_id_t cor-
responding to the newly created child thread.
This primitive will abort the program if more than
NR_THREADS threads are created, counting the one
implicitly created by running the program. NR_
THREADS is a compile-time constant that may be
modified, though some systems may have an upper
bound for the allowable number of threads.

smp_thread_id()
Because the thread_id_t returned from create_
thread() is system-dependent, the smp_thread_
id() primitive returns a thread index corresponding
to the thread making the request. This index is
guaranteed to be less than the maximum number of
threads that have been in existence since the program
started, and is therefore useful for bitmasks, array
indices, and the like.

for_each_thread()
The for_each_thread() macro loops through all
threads that exist, including all threads that would
exist if created. This macro is useful for handling the
per-thread variables introduced in Section 4.2.8.

for_each_running_thread()
The for_each_running_thread() macro loops
through only those threads that currently exist. It is
the caller’s responsibility to synchronize with thread
creation and deletion if required.

wait_thread()
The wait_thread() primitive waits for completion
of the thread specified by the thread_id_t passed
to it. This in no way interferes with the execution
of the specified thread; instead, it merely waits for
it. Note that wait_thread() returns the value that
was returned by the corresponding thread.

wait_all_threads()
The wait_all_threads() primitive waits for com-
pletion of all currently running threads. It is the
caller’s responsibility to synchronize with thread
creation and deletion if required. However, this prim-
itive is normally used to clean up at the end of a run,
so such synchronization is normally not needed.

4.3.2.2 Example Usage

Listing 4.11 (threadcreate.c) shows an example hello-
world-like child thread. As noted earlier, each thread

v2024.12.27a

4.3. ALTERNATIVES TO POSIX OPERATIONS 41

Listing 4.11: Example Child Thread
1 void *thread_test(void *arg)
2 {
3 int myarg = (intptr_t)arg;
4
5 printf("child thread %d: smp_thread_id() = %d\n",
6 myarg, smp_thread_id());
7 return NULL;
8 }

Listing 4.12: Example Parent Thread
1 int main(int argc, char *argv[])
2 {
3 int i;
4 int nkids = 1;
5
6 smp_init();
7
8 if (argc > 1) {
9 nkids = strtoul(argv[1], NULL, 0);

10 if (nkids > NR_THREADS) {
11 fprintf(stderr, "nkids = %d too large, max = %d\n",
12 nkids, NR_THREADS);
13 usage(argv[0]);
14 }
15 }
16 printf("Parent thread spawning %d threads.\n", nkids);
17
18 for (i = 0; i < nkids; i++)
19 create_thread(thread_test, (void *)(intptr_t)i);
20
21 wait_all_threads();
22
23 printf("All spawned threads completed.\n");
24
25 exit(0);
26 }

is allocated its own stack, so each thread has its own
private arg argument and myarg variable. Each child
simply prints its argument and its smp_thread_id()
before exiting. Note that the return statement on line 7
terminates the thread, returning a NULL to whoever invokes
wait_thread() on this thread.

The parent program is shown in Listing 4.12. It invokes
smp_init() to initialize the threading system on line 6,
parses arguments on lines 8–15, and announces its pres-
ence on line 16. It creates the specified number of child
threads on lines 18–19, and waits for them to complete
on line 21. Note that wait_all_threads() discards the
threads return values, as in this case they are all NULL,
which is not very interesting.
Quick Quiz 4.26: What happened to the Linux-kernel
equivalents to fork() and wait()?

4.3.3 Locking
A good starting subset of the Linux kernel’s locking API is
shown in Listing 4.13, each API element being described in

Listing 4.13: Locking API
void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);
int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

the following section. This book’s CodeSamples locking
API closely follows that of the Linux kernel.

4.3.3.1 API Members

spin_lock_init()
The spin_lock_init() primitive initializes the
specified spinlock_t variable, and must be invoked
before this variable is passed to any other spinlock
primitive.

spin_lock()
The spin_lock() primitive acquires the specified
spinlock, if necessary, waiting until the spinlock
becomes available. In some environments, such as
pthreads, this waiting will involve blocking, while in
others, such as the Linux kernel, it might involve a
CPU-bound spin loop.
The key point is that only one thread may hold a
spinlock at any given time.

spin_trylock()
The spin_trylock() primitive acquires the speci-
fied spinlock, but only if it is immediately available.
It returns true if it was able to acquire the spinlock
and false otherwise.

spin_unlock()
The spin_unlock() primitive releases the specified
spinlock, allowing other threads to acquire it.

4.3.3.2 Example Usage

A spinlock named mutex may be used to protect a variable
counter as follows:

spin_lock(&mutex);
counter++;
spin_unlock(&mutex);

Quick Quiz 4.27: What problems could occur if the variable
counter were incremented without the protection of mutex?

However, the spin_lock() and spin_unlock()
primitives do have performance consequences, as will
be seen in Chapter 10.

v2024.12.27a

42 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.14: Living Dangerously Early 1990s Style
1 ptr = global_ptr;
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.15: C Compilers Can Invent Loads
1 if (global_ptr != NULL &&
2 global_ptr < high_address)
3 do_low(global_ptr);

4.3.4 Accessing Shared Variables
It was not until 2011 that the C standard defined seman-
tics for concurrent read/write access to shared variables.
However, concurrent C code was being written at least
a quarter century earlier [BK85, Inm85]. This raises the
question as to what today’s greybeards did back in long-
past pre-C11 days. A short answer to this question is “they
lived dangerously”.

At least they would have been living dangerously had
they been using 2021 compilers. In (say) the early 1990s,
compilers did fewer optimizations, in part because there
were fewer compiler writers and in part due to the relatively
small memories of that era. Nevertheless, problems did
arise, as shown in Listing 4.14, which the compiler is
within its rights to transform into Listing 4.15. As you
can see, the temporary on line 1 of Listing 4.14 has been
optimized away, so that global_ptr will be loaded up to
three times.
Quick Quiz 4.28: What is wrong with loading Listing 4.14’s
global_ptr up to three times?

Section 4.3.4.1 describes additional problems caused by
plain accesses, Sections 4.3.4.2 and 4.3.4.3 describe some
pre-C11 solutions. Of course, where practical, direct
C-language memory references should be replaced by
the primitives described in Section 4.2.5 or (especially)
Section 4.2.6. Use these primitives to avoid data races,
that is, ensure that if there are multiple concurrent C-
language accesses to a given variable, all of those accesses
are loads.

4.3.4.1 Shared-Variable Shenanigans

Given code that does plain loads and stores,6 the compiler
is within its rights to assume that the affected variables are
neither accessed nor modified by any other thread. This
assumption allows the compiler to carry out a large number

6 That is, normal loads and stores instead of C11 atomics, inline
assembly, or volatile accesses.

of transformations, including load tearing, store tearing,
load fusing, store fusing, code reordering, invented loads,
invented stores, store-to-load transformations, and dead-
code elimination, all of which work just fine in single-
threaded code. But concurrent code can be broken by each
of these transformations, or shared-variable shenanigans,
as described below.

Load tearing occurs when the compiler uses multiple
load instructions for a single access. For example,
the compiler could in theory compile the load from
global_ptr (see line 1 of Listing 4.14) as a series of
one-byte loads. If some other thread was concurrently
setting global_ptr to NULL, the result might have
all but one byte of the pointer set to zero, thus forming
a “wild pointer”. Stores using such a wild pointer
could corrupt arbitrary regions of memory, resulting
in rare and difficult-to-debug crashes.
Worse yet, on (say) an 8-bit system with 16-bit
pointers, the compiler might have no choice but to
use a pair of 8-bit instructions to access a given
pointer. Because the C standard must support all
manner of systems, the standard cannot rule out load
tearing in the general case.

Store tearing occurs when the compiler uses multiple
store instructions for a single access. For example,
one thread might store 0x12345678 to a four-byte
integer variable at the same time another thread stored
0xabcdef00. If the compiler used 16-bit stores for
either access, the result might well be 0x1234ef00,
which could come as quite a surprise to code loading
from this integer. Nor is this a strictly theoretical
issue. For example, there are CPUs that feature small
immediate instruction fields, and on such CPUs, the
compiler might split a 64-bit store into two 32-bit
stores in order to reduce the overhead of explicitly
forming the 64-bit constant in a register, even on
a 64-bit CPU. There are historical reports of this
actually happening in the wild (e.g. [KM13]), but
there is also a recent report [Dea19].7

Of course, the compiler simply has no choice but to
tear some stores in the general case, given the possi-
bility of code using 64-bit integers running on a 32-

7 Note that this tearing can happen even on properly aligned and
machine-word-sized accesses, and in this particular case, even for volatile
stores. Some might argue that this behavior constitutes a bug in the
compiler, but either way it illustrates the perceived value of store tearing
from a compiler-writer viewpoint.

v2024.12.27a

4.3. ALTERNATIVES TO POSIX OPERATIONS 43

Listing 4.16: Inviting Load Fusing
1 while (!need_to_stop)
2 do_something_quickly();

Listing 4.17: C Compilers Can Fuse Loads
1 if (!need_to_stop)
2 for (;;) {
3 do_something_quickly();
4 do_something_quickly();
5 do_something_quickly();
6 do_something_quickly();
7 do_something_quickly();
8 do_something_quickly();
9 do_something_quickly();

10 do_something_quickly();
11 do_something_quickly();
12 do_something_quickly();
13 do_something_quickly();
14 do_something_quickly();
15 do_something_quickly();
16 do_something_quickly();
17 do_something_quickly();
18 do_something_quickly();
19 }

bit system. But for properly aligned machine-sized
stores, WRITE_ONCE() will prevent store tearing.

Load fusing occurs when the compiler uses the result of a
prior load from a given variable instead of repeating
the load. Not only is this sort of optimization just
fine in single-threaded code, it is often just fine in
multithreaded code. Unfortunately, the word “often”
hides some truly annoying exceptions.
For example, suppose that a real-time system
needs to invoke a function named do_something_
quickly() repeatedly until the variable need_to_
stop was set, and that the compiler can see that do_
something_quickly() does not store to need_
to_stop. One (unsafe) way to code this is shown
in Listing 4.16. The compiler might reasonably un-
roll this loop sixteen times in order to reduce the
per-invocation of the backwards branch at the end
of the loop. Worse yet, because the compiler knows
that do_something_quickly() does not store to
need_to_stop, the compiler could quite reasonably
decide to check this variable only once, resulting
in the code shown in Listing 4.17. Once entered,
the loop on lines 2–19 will never exit, regardless of
how many times some other thread stores a non-zero
value to need_to_stop. The result will at best be
consternation, and might well also include severe
physical damage.
The compiler can fuse loads across surprisingly large
spans of code. For example, in Listing 4.18, t0() and

Listing 4.18: C Compilers Can Fuse Non-Adjacent Loads
1 int *gp;
2
3 void t0(void)
4 {
5 WRITE_ONCE(gp, &myvar);
6 }
7
8 void t1(void)
9 {

10 p1 = gp;
11 do_something(p1);
12 p2 = READ_ONCE(gp);
13 if (p2) {
14 do_something_else();
15 p3 = *gp;
16 }
17 }

t1() run concurrently, and do_something() and
do_something_else() are inline functions. Line 1
declares pointer gp, which C initializes to NULL by
default. At some point, line 5 of t0() stores a non-
NULL pointer to gp. Meanwhile, t1() loads from gp
three times on lines 10, 12, and 15. Given that line 13
finds that gp is non-NULL, one might hope that the
dereference on line 15 would be guaranteed never to
fault. Unfortunately, the compiler is within its rights
to fuse the read on lines 10 and 15, which means
that if line 10 loads NULL and line 12 loads &myvar,
line 15 could load NULL, resulting in a fault.8 Note
that the intervening READ_ONCE() does not prevent
the other two loads from being fused, despite the fact
that all three are loading from the same variable.

Quick Quiz 4.29: Why does it matter whether
do_something() and do_something_else() in List-
ing 4.18 are inline functions?

Store fusing can occur when the compiler notices a pair
of successive stores to a given variable with no
intervening loads from that variable. In this case, the
compiler is within its rights to omit the first store.
This is never a problem in single-threaded code,
and in fact it is usually not a problem in correctly
written concurrent code. After all, if the two stores
are executed in quick succession, there is very little
chance that some other thread could load the value
from the first store.
However, there are exceptions, for example as shown
in Listing 4.19. The function shut_it_down()
stores to the shared variable status on lines 3 and 8,
and so assuming that neither start_shutdown()

8 Will Deacon reports that this happened in the Linux kernel.

v2024.12.27a

44 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.19: C Compilers Can Fuse Stores
1 void shut_it_down(void)
2 {
3 status = SHUTTING_DOWN; /* BUGGY!!! */
4 start_shutdown();
5 while (!other_task_ready) /* BUGGY!!! */
6 continue;
7 finish_shutdown();
8 status = SHUT_DOWN; /* BUGGY!!! */
9 do_something_else();

10 }
11
12 void work_until_shut_down(void)
13 {
14 while (status != SHUTTING_DOWN) /* BUGGY!!! */
15 do_more_work();
16 other_task_ready = 1; /* BUGGY!!! */
17 }

nor finish_shutdown() access status, the com-
piler could reasonably remove the store to status
on line 3. Unfortunately, this would mean that
work_until_shut_down() would never exit its
loop spanning lines 14 and 15, and thus would never
set other_task_ready, which would in turn mean
that shut_it_down() would never exit its loop span-
ning lines 5 and 6, even if the compiler chooses not to
fuse the successive loads from other_task_ready
on line 5.
And there are more problems with the code in List-
ing 4.19, including code reordering.

Code reordering is a common compilation technique
used to combine common subexpressions, reduce
register pressure, and improve utilization of the many
functional units available on modern superscalar mi-
croprocessors. It is also another reason why the code
in Listing 4.19 is buggy. For example, suppose that
the do_more_work() function on line 15 does not ac-
cess other_task_ready. Then the compiler would
be within its rights to move the assignment to other_
task_ready on line 16 to precede line 14, which
might be a great disappointment for anyone hoping
that the last call to do_more_work() on line 15
happens before the call to finish_shutdown() on
line 7.
It might seem futile to prevent the compiler from
changing the order of accesses in cases where the
underlying hardware is free to reorder them. However,
modern machines have exact exceptions and exact
interrupts, meaning that any interrupt or exception
will appear to have happened at a specific place in
the instruction stream. This means that the handler
will see the effect of all prior instructions, but won’t

Listing 4.20: Inviting an Invented Store
1 if (condition)
2 a = 1;
3 else
4 do_a_bunch_of_stuff(&a);

Listing 4.21: Compiler Invents an Invited Store
1 a = 1;
2 if (!condition) {
3 a = 0;
4 do_a_bunch_of_stuff(&a);
5 }

see the effect of any subsequent instructions. READ_
ONCE() and WRITE_ONCE() can therefore be used
to control communication between interrupted code
and interrupt handlers, independent of the ordering
provided by the underlying hardware.9

Invented loads were illustrated by the code in List-
ings 4.14 and 4.15, in which the compiler optimized
away a temporary variable, thus loading from a
shared variable more often than intended.
Invented loads can be a performance hazard. These
hazards can occur when a load of variable in a “hot”
cacheline is hoisted out of an if statement. These
hoisting optimizations are not uncommon, and can
cause significant increases in cache misses, and thus
significant degradation of both performance and
scalability.

Invented stores can occur in a number of situations.
For example, a compiler emitting code for work_
until_shut_down() in Listing 4.19 might notice
that other_task_ready is not accessed by do_
more_work(), and stored to on line 16. If do_more_
work() was a complex inline function, it might
be necessary to do a register spill, in which case
one attractive place to use for temporary storage is
other_task_ready. After all, there are no accesses
to it, so what is the harm?
Of course, a non-zero store to this variable at just the
wrong time would result in the while loop on line 5
terminating prematurely, again allowing finish_
shutdown() to run concurrently with do_more_
work(). Given that the entire point of this while
appears to be to prevent such concurrency, this is not
a good thing.

9 That said, the various standards committees would prefer that
you use atomics or variables of type sig_atomic_t, instead of READ_
ONCE() and WRITE_ONCE().

v2024.12.27a

4.3. ALTERNATIVES TO POSIX OPERATIONS 45

Listing 4.22: Inviting a Store-to-Load Conversion
1 r1 = p;
2 if (unlikely(r1))
3 do_something_with(r1);
4 barrier();
5 p = NULL;

Using a stored-to variable as a temporary might
seem outlandish, but it is permitted by the standard.
Nevertheless, readers might be justified in wanting
a less outlandish example, which is provided by
Listings 4.20 and 4.21.
A compiler emitting code for Listing 4.20 might know
that the value of a is initially zero, which might be
a strong temptation to optimize away one branch by
transforming this code to that in Listing 4.21. Here,
line 1 unconditionally stores 1 to a, then resets the
value back to zero on line 3 if condition was not
set. This transforms the if-then-else into an if-then,
saving one branch.

Quick Quiz 4.30: Ouch! So can’t the compiler invent a
store to a normal variable pretty much any time it likes?

Finally, pre-C11 compilers could invent writes to
unrelated variables that happened to be adjacent
to written-to variables [Boe05, Section 4.2]. This
variant of invented stores has been outlawed by the
prohibition against compiler optimizations that invent
data races.

Store-to-load transformations can occur when the com-
piler notices that a plain store might not actually
change the value in memory. For example, consider
Listing 4.22. Line 1 fetches p, but the “if” statement
on line 2 also tells the compiler that the developer
thinks that p is usually zero.10 The barrier() state-
ment on line 4 forces the compiler to forget the value
of p, but one could imagine a compiler choosing
to remember the hint—or getting an additional hint
via feedback-directed optimization. Doing so would
cause the compiler to realize that line 5 is often an
expensive no-op.
Such a compiler might therefore guard the store of
NULL with a check, as shown on lines 5 and 6 of
Listing 4.23. Although this transformation is often

10 The unlikely() function provides this hint to the com-
piler, and different compilers provide different ways of implementing
unlikely().

Listing 4.23: Compiler Converts a Store to a Load
1 r1 = p;
2 if (unlikely(r1))
3 do_something_with(r1);
4 barrier();
5 if (p != NULL)
6 p = NULL;

desirable, it could be problematic if the actual store
was required for ordering. For example, a write
memory barrier (Linux kernel smp_wmb()) would
order the store, but not the load. This situation
might suggest use of smp_store_release() over
smp_wmb().

Dead-code elimination can occur when the compiler
notices that the value from a load is never used, or
when a variable is stored to, but never loaded from.
This can of course eliminate an access to a shared
variable, which can in turn defeat a memory-ordering
primitive, which could cause your concurrent code to
act in surprising ways. Experience thus far indicates
that relatively few such surprises will be at all pleas-
ant. Elimination of store-only variables is especially
dangerous in cases where external code locates the
variable via symbol tables: The compiler is neces-
sarily ignorant of such external-code accesses, and
might thus eliminate a variable that the external code
relies upon.

Reliable concurrent code clearly needs a way to cause
the compiler to preserve the number, order, and type of
important accesses to shared memory, a topic taken up by
Sections 4.3.4.2 and 4.3.4.3, which are up next.

4.3.4.2 A Volatile Solution

Although it is now much maligned, before the advent of
C11 and C++11 [Bec11], the volatile keyword was an
indispensable tool in the parallel programmer’s toolbox.
This raises the question of exactly what volatile means,
a question that is not answered with excessive precision
even by more recent versions of this standard [Smi19].11

This version guarantees that “Accesses through volatile
glvalues are evaluated strictly according to the rules of
the abstract machine”, that volatile accesses are side
effects, that they are one of the four forward-progress indi-
cators, and that their exact semantics are implementation-
defined. Perhaps the clearest guidance is provided by this
non-normative note:

11 JF Bastien thoroughly documented the history and use cases for
the volatile keyword in C++ [Bas18].

v2024.12.27a

46 CHAPTER 4. TOOLS OF THE TRADE

volatile is a hint to the implementation to
avoid aggressive optimization involving the ob-
ject because the value of the object might be
changed by means undetectable by an implemen-
tation. Furthermore, for some implementations,
volatile might indicate that special hardware
instructions are required to access the object.
See 6.8.1 for detailed semantics. In general, the
semantics of volatile are intended to be the
same in C++ as they are in C.

This wording might be reassuring to those writing low-
level code, except for the fact that compiler writers are
free to completely ignore non-normative notes. Parallel
programmers might instead reassure themselves that com-
piler writers would like to avoid breaking device drivers
(though perhaps only after a few “frank and open” discus-
sions with device-driver developers), and device drivers
impose at least the following constraints [MWPF18]:

1. Implementations are forbidden from tearing an
aligned volatile access when machine instructions of
that access’s size and type are available.12 Concur-
rent code relies on this constraint to avoid unneces-
sary load and store tearing.

2. Implementations must not assume anything about the
semantics of a volatile access, nor, for any volatile
access that returns a value, about the possible set of
values that might be returned.13 Concurrent code
relies on this constraint to avoid optimizations that
are inapplicable given that other processors might be
concurrently accessing the location in question.

3. Aligned machine-sized non-mixed-size volatile ac-
cesses interact naturally with volatile assembly-code
sequences before and after. This is necessary because
some devices must be accessed using a combina-
tion of volatile MMIO accesses and special-purpose
assembly-language instructions. Concurrent code
relies on this constraint in order to achieve the desired
ordering properties from combinations of volatile ac-
cesses and other means discussed in Section 4.3.4.3.

Concurrent code also relies on the first two constraints
to avoid undefined behavior that could result due to data
races if any of the accesses to a given object was either

12 Note that this leaves unspecified what to do with 128-bit loads and
stores on CPUs having 128-bit CAS but not 128-bit loads and stores.

13 This is strongly implied by the implementation-defined semantics
called out above.

Listing 4.24: Avoiding Danger, 2018 Style
1 ptr = READ_ONCE(global_ptr);
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.25: Preventing Load Fusing
1 while (!READ_ONCE(need_to_stop))
2 do_something_quickly();

Listing 4.26: Preventing Store Fusing and Invented Stores
1 void shut_it_down(void)
2 {
3 WRITE_ONCE(status, SHUTTING_DOWN); /* BUGGY!!! */
4 start_shutdown();
5 while (!READ_ONCE(other_task_ready)) /* BUGGY!!! */
6 continue;
7 finish_shutdown();
8 WRITE_ONCE(status, SHUT_DOWN); /* BUGGY!!! */
9 do_something_else();

10 }
11
12 void work_until_shut_down(void)
13 {
14 while (READ_ONCE(status) != SHUTTING_DOWN) /* BUGGY!!! */
15 do_more_work();
16 WRITE_ONCE(other_task_ready, 1); /* BUGGY!!! */
17 }

non-atomic or non-volatile, assuming that all accesses are
aligned and machine-sized. The semantics of mixed-size
accesses to the same locations are more complex, and are
left aside for the time being.

So how does volatile stack up against the earlier
examples?

Using READ_ONCE() on line 1 of Listing 4.14 avoids
invented loads, resulting in the code shown in Listing 4.24.

As shown in Listing 4.25, READ_ONCE() can also pre-
vent the loop unrolling in Listing 4.17.

READ_ONCE() and WRITE_ONCE() can also be used
to prevent the store fusing and invented stores that were
shown in Listing 4.19, with the result shown in List-
ing 4.26. However, this does nothing to prevent code
reordering, which requires some additional tricks taught
in Section 4.3.4.3.

Finally, WRITE_ONCE() can be used to prevent the store
invention shown in Listing 4.20, with the resulting code
shown in Listing 4.27.

To summarize, the volatile keyword can prevent
load tearing and store tearing in cases where the loads

Listing 4.27: Disinviting an Invented Store
1 if (condition)
2 WRITE_ONCE(a, 1);
3 else
4 do_a_bunch_of_stuff();

v2024.12.27a

4.3. ALTERNATIVES TO POSIX OPERATIONS 47

Listing 4.28: Preventing C Compilers From Fusing Loads
1 while (!need_to_stop) {
2 barrier();
3 do_something_quickly();
4 barrier();
5 }

and stores are machine-sized and properly aligned. It
can also prevent load fusing, store fusing, invented loads,
and invented stores. However, although it does prevent
the compiler from reordering volatile accesses with
each other, it does nothing to prevent the CPU from
reordering these accesses. Furthermore, it does nothing
to prevent either compiler or CPU from reordering non-
volatile accesses with each other or with volatile
accesses. Preventing these types of reordering requires
the techniques described in the next section.

4.3.4.3 Assembling the Rest of a Solution

Additional ordering has traditionally been provided by
recourse to assembly language, for example, GCC asm
directives. Oddly enough, these directives need not ac-
tually contain assembly language, as exemplified by the
barrier() macro shown in Listing 4.9.

In the barrier() macro, the __asm__ introduces the
asm directive, the __volatile__ prevents the compiler
from optimizing the asm away, the empty string specifies
that no actual instructions are to be emitted, and the
final "memory" tells the compiler that this do-nothing
asm can arbitrarily change memory. In response, the
compiler will avoid moving any memory references across
the barrier() macro. This means that the real-time-
destroying loop unrolling shown in Listing 4.17 can be
prevented by adding barrier() calls as shown on lines 2
and 4 of Listing 4.28. These two lines of code prevent the
compiler from pushing the load from need_to_stop into
or past do_something_quickly() from either direction.

However, this does nothing to prevent the CPU from
reordering the references. In many cases, this is not
a problem because the hardware can only do a certain
amount of reordering. However, there are cases such
as Listing 4.19 where the hardware must be constrained.
Listing 4.26 prevented store fusing and invention, and
Listing 4.29 further prevents the remaining reordering
by addition of smp_mb() on lines 4, 8, 10, 18, and 21.
The smp_mb() macro is similar to barrier() shown in
Listing 4.9, but with the empty string replaced by a string
containing the instruction for a full memory barrier, for
example, "mfence" on x86 or "sync" on PowerPC.

Listing 4.29: Preventing Reordering
1 void shut_it_down(void)
2 {
3 WRITE_ONCE(status, SHUTTING_DOWN);
4 smp_mb();
5 start_shutdown();
6 while (!READ_ONCE(other_task_ready))
7 continue;
8 smp_mb();
9 finish_shutdown();

10 smp_mb();
11 WRITE_ONCE(status, SHUT_DOWN);
12 do_something_else();
13 }
14
15 void work_until_shut_down(void)
16 {
17 while (READ_ONCE(status) != SHUTTING_DOWN) {
18 smp_mb();
19 do_more_work();
20 }
21 smp_mb();
22 WRITE_ONCE(other_task_ready, 1);
23 }

Quick Quiz 4.31: But aren’t full memory barriers very
heavyweight? Isn’t there a cheaper way to enforce the ordering
needed in Listing 4.29?

Ordering is also provided by some read-modify-write
atomic operations, some of which are presented in Sec-
tion 4.3.5. In the general case, memory ordering can be
quite subtle, as discussed in Chapter 15. The next section
covers an alternative to memory ordering, namely limiting
or even entirely avoiding data races.

4.3.4.4 Avoiding Data Races

“Doctor, it hurts my head when I think about
concurrently accessing shared variables!”

“Then stop concurrently accessing shared vari-
ables!!!”

The doctor’s advice might seem unhelpful, but one
time-tested way to avoid concurrently accessing shared
variables is access those variables only when holding a
particular lock, as will be discussed in Chapter 7. Another
way is to access a given “shared” variable only from a
given CPU or thread, as will be discussed in Chapter 8. It
is possible to combine these two approaches, for example,
a given variable might be modified only by a given CPU or
thread while holding a particular lock, and might be read
either from that same CPU or thread on the one hand, or
from some other CPU or thread while holding that same
lock on the other. In all of these situations, all accesses to
the shared variables may be plain C-language accesses.

v2024.12.27a

48 CHAPTER 4. TOOLS OF THE TRADE

Here is a list of situations allowing plain loads and stores
for some accesses to a given variable, while requiring
markings (such as READ_ONCE() and WRITE_ONCE()) for
other accesses to that same variable:

1. A shared variable is only modified by a given owning
CPU or thread, but is read by other CPUs or threads.
All stores must use WRITE_ONCE(). The owning
CPU or thread may use plain loads. Everything else
must use READ_ONCE() for loads.

2. A shared variable is only modified while holding a
given lock, but is read by code not holding that lock.
All stores must use WRITE_ONCE(). CPUs or threads
holding the lock may use plain loads. Everything
else must use READ_ONCE() for loads.

3. A shared variable is only modified while holding a
given lock by a given owning CPU or thread, but is
read by other CPUs or threads or by code not holding
that lock. All stores must use WRITE_ONCE(). The
owning CPU or thread may use plain loads, as may
any CPU or thread holding the lock. Everything else
must use READ_ONCE() for loads.

4. A shared variable is only accessed by a given CPU or
thread and by a signal or interrupt handler running
in that CPU’s or thread’s context. The handler can
use plain loads and stores, as can any code that
has prevented the handler from being invoked, that
is, code that has blocked signals and/or interrupts.
All other code must use READ_ONCE() and WRITE_
ONCE().

5. A shared variable is only accessed by a given CPU or
thread and by a signal or interrupt handler running
in that CPU’s or thread’s context, and the handler
always restores the values of any variables that it
has written before return. The handler can use plain
loads and stores, as can any code that has prevented
the handler from being invoked, that is, code that
has blocked signals and/or interrupts. All other code
can use plain loads, but must use WRITE_ONCE()
to prevent store tearing, store fusing, and invented
stores.

Quick Quiz 4.32: What needs to happen if an interrupt or
signal handler might itself be interrupted?

In most other cases, loads from and stores to a shared
variable must use READ_ONCE() and WRITE_ONCE() or
stronger, respectively. But it bears repeating that neither

READ_ONCE() nor WRITE_ONCE() provide any ordering
guarantees other than within the compiler. See the above
Section 4.3.4.3 or Chapter 15 for information on such
guarantees.

Examples of many of these data-race-avoidance patterns
are presented in Chapter 5.

4.3.5 Atomic Operations
The Linux kernel provides a wide variety of atomic opera-
tions, but those defined on type atomic_t provide a good
start. Normal non-tearing reads and stores are provided by
atomic_read() and atomic_set(), respectively. Ac-
quire load is provided by smp_load_acquire() and
release store by smp_store_release().

Non-value-returning fetch-and-add operations are pro-
vided by atomic_add(), atomic_sub(), atomic_
inc(), and atomic_dec(), among others. An atomic
decrement that returns a reached-zero indication is pro-
vided by both atomic_dec_and_test() and atomic_
sub_and_test(). An atomic add that returns the
new value is provided by atomic_add_return().
Both atomic_add_unless() and atomic_inc_not_
zero() provide conditional atomic operations, where
nothing happens unless the original value of the atomic
variable is different than the value specified (these are very
handy for managing reference counters, for example).

An atomic exchange operation is provided by atomic_
xchg(), and the celebrated compare-and-swap (CAS)
operation is provided by atomic_cmpxchg(). Both
of these return the old value. Many additional atomic
RMW primitives are available in the Linux kernel, see
the Documentation/atomic_t.txt file in the Linux-
kernel source tree.14

This book’s CodeSamples API closely follows that of
the Linux kernel.

4.3.6 Per-CPU Variables
The Linux kernel uses DEFINE_PER_CPU() to define a
per-CPU variable, this_cpu_ptr() to form a reference
to this CPU’s instance of a given per-CPU variable, per_
cpu() to access a specified CPU’s instance of a given
per-CPU variable, along with many other special-purpose
per-CPU operations.

Listing 4.30 shows this book’s per-thread-variable API,
which is patterned after the Linux kernel’s per-CPU-
variable API. This API provides the per-thread equivalent

14 As of Linux kernel v5.11.

v2024.12.27a

4.4. THE RIGHT TOOL FOR THE JOB: HOW TO CHOOSE? 49

Listing 4.30: Per-Thread-Variable API
DEFINE_PER_THREAD(type, name)
DECLARE_PER_THREAD(type, name)
per_thread(name, thread)
__get_thread_var(name)
init_per_thread(name, v)

of global variables. Although this API is, strictly speaking,
not necessary,15 it can provide a good userspace analogy
to Linux kernel code.
Quick Quiz 4.33: How could you work around the lack of a
per-thread-variable API on systems that do not provide it?

4.3.6.1 API Members

DEFINE_PER_THREAD()
The DEFINE_PER_THREAD() primitive defines a per-
thread variable. Unfortunately, it is not possible
to provide an initializer in the way permitted by
the Linux kernel’s DEFINE_PER_CPU() primitive,
but there is an init_per_thread() primitive that
permits easy runtime initialization.

DECLARE_PER_THREAD()
The DECLARE_PER_THREAD() primitive is a declara-
tion in the C sense, as opposed to a definition. Thus,
a DECLARE_PER_THREAD() primitive may be used
to access a per-thread variable defined in some other
file.

per_thread()
The per_thread() primitive accesses the specified
thread’s variable.

__get_thread_var()
The __get_thread_var() primitive accesses the
current thread’s variable.

init_per_thread()
The init_per_thread() primitive sets all threads’
instances of the specified variable to the specified
value. The Linux kernel accomplishes this via normal
C initialization, relying in clever use of linker scripts
and code executed during the CPU-online process.

4.3.6.2 Usage Example

Suppose that we have a counter that is incremented very
frequently but read out quite rarely. As will become clear
in Section 5.2, it is helpful to implement such a counter

15 You could instead use __thread or _Thread_local.

using a per-thread variable. Such a variable can be defined
as follows:

DEFINE_PER_THREAD(int, counter);

The counter must be initialized as follows:

init_per_thread(counter, 0);

A thread can increment its instance of this counter as
follows:

p_counter = &__get_thread_var(counter);
WRITE_ONCE(*p_counter, *p_counter + 1);

The value of the counter is then the sum of its instances.
A snapshot of the value of the counter can thus be collected
as follows:

for_each_thread(t)
sum += READ_ONCE(per_thread(counter, t));

Again, it is possible to gain a similar effect using other
mechanisms, but per-thread variables combine conve-
nience and high performance, as will be shown in more
detail in Section 5.2.
Quick Quiz 4.34: What do you do if you need a per-thread
(not per-CPU!) variable in the Linux kernel?

4.4 The Right Tool for the Job: How
to Choose?

If you get stuck, change your tools; it may free your

thinking.

Paul Arden, abbreviated

As a rough rule of thumb, use the simplest tool that will
get the job done. If you can, simply program sequentially.
If that is insufficient, try using a shell script to mediate
parallelism. If the resulting shell-script fork()/exec()
overhead (about 480 microseconds for a minimal C pro-
gram on an Intel Core Duo laptop) is too large, try using
the C-language fork() and wait() primitives. If the
overhead of these primitives (about 80 microseconds for
a minimal child process) is still too large, then you might
need to use the POSIX threading primitives, choosing the
appropriate locking and/or atomic-operation primitives.
If the overhead of the POSIX threading primitives (typi-
cally sub-microsecond) is too great, then the primitives

v2024.12.27a

50 CHAPTER 4. TOOLS OF THE TRADE

introduced in Chapter 9 may be required. Of course, the
actual overheads will depend not only on your hardware,
but most critically on the manner in which you use the
primitives. Furthermore, always remember that inter-
process communication and message-passing can be good
alternatives to shared-memory multithreaded execution,
especially when your code makes good use of the design
principles called out in Chapter 6.

Quick Quiz 4.35: Wouldn’t the shell normally use vfork()
rather than fork()?

Because concurrency was added to the C standard
several decades after the C language was first used to
build concurrent systems, there are a number of ways
of concurrently accessing shared variables. All else
being equal, the C11 standard operations described in
Section 4.2.6 should be your first stop. If you need to
access a given shared variable both with plain accesses and
atomically, then the modern GCC atomics described in
Section 4.2.7 might work well for you. If you are working
on an old codebase that uses the classic GCC __sync
API, then you should review Section 4.2.5 as well as the
relevant GCC documentation. If you are working on the
Linux kernel or similar codebase that combines use of the
volatile keyword with inline assembly, or if you need
dependencies to provide ordering, look at the material
presented in Section 4.3.4 as well as that in Chapter 15.

Whatever approach you take, please keep in mind that
randomly hacking multi-threaded code is a spectacularly
bad idea, especially given that shared-memory parallel
systems use your own perceived intelligence against you:
The smarter you think you are, the deeper a hole you
will dig for yourself before you realize that you are in
trouble [Pok16]. Therefore, it is necessary to make the
right design choices as well as the correct choice of
individual primitives, as will be discussed at length in
subsequent chapters.

v2024.12.27a

As easy as 1, 2, 3!

UnknownChapter 5

Counting

Counting is perhaps the simplest and most natural thing
a computer can do. However, counting efficiently and
scalably on a large shared-memory multiprocessor can
be quite challenging. Furthermore, the simplicity of the
underlying concept of counting allows us to explore the
fundamental issues of concurrency without the distractions
of elaborate data structures or complex synchronization
primitives. Counting therefore provides an excellent
introduction to parallel programming.

This chapter covers a number of special cases for which
there are simple, fast, and scalable counting algorithms.
But first, let us find out how much you already know about
concurrent counting.

Quick Quiz 5.1: Why should efficient and scalable counting
be hard??? After all, computers have special hardware for the
sole purpose of doing counting!!!

Quick Quiz 5.2: Network-packet counting problem. Sup-
pose that you need to collect statistics on the number of
networking packets transmitted and received. Packets might
be transmitted or received by any CPU on the system. Suppose
further that your system is capable of handling millions of
packets per second per CPU, and that a systems-monitoring
package reads the count every five seconds. How would you
implement this counter?

Quick Quiz 5.3: Approximate structure-allocation limit
problem. Suppose that you need to maintain a count of the
number of structures allocated in order to fail any allocations
once the number of structures in use exceeds a limit (say,
10,000). Suppose further that the structures are short-lived,
the limit is rarely exceeded, and a “sloppy” approximate limit
is acceptable.

Quick Quiz 5.4: Exact structure-allocation limit problem.
Suppose that you need to maintain a count of the number of
structures allocated in order to fail any allocations once the

number of structures in use exceeds an exact limit (again, say
10,000). Suppose further that these structures are short-lived,
and that the limit is rarely exceeded, that there is almost always
at least one structure in use, and suppose further still that it is
necessary to know exactly when this counter reaches zero, for
example, in order to free up some memory that is not required
unless there is at least one structure in use.

Quick Quiz 5.5: Removable I/O device access-count
problem. Suppose that you need to maintain a reference count
on a heavily used removable mass-storage device, so that you
can tell the user when it is safe to remove the device. As usual,
the user indicates a desire to remove the device, and the system
tells the user when it is safe to do so.

Section 5.1 shows why counting is non-trivial. Sec-
tions 5.2 and 5.3 investigate network-packet counting
and approximate structure-allocation limits, respectively.
Section 5.4 takes on exact structure-allocation limits. Fi-
nally, Section 5.5 presents performance measurements
and discussion.

Sections 5.1 and 5.2 contain introductory material,
while the remaining sections are more advanced.

5.1 Why Isn’t Concurrent Counting
Trivial?

Seek simplicity, and distrust it.

Alfred North Whitehead

Let’s start with something simple, for example, the
straightforward use of arithmetic shown in Listing 5.1
(count_nonatomic.c). Here, we have a counter on
line 1, we increment it on line 5, and we read out its value
on line 10. What could be simpler?

51

v2024.12.27a

52 CHAPTER 5. COUNTING

Listing 5.1: Just Count!
1 unsigned long counter = 0;
2
3 static __inline__ void inc_count(void)
4 {
5 WRITE_ONCE(counter, READ_ONCE(counter) + 1);
6 }
7
8 static __inline__ unsigned long read_count(void)
9 {

10 return READ_ONCE(counter);
11 }

Listing 5.2: Just Count Atomically!
1 atomic_t counter = ATOMIC_INIT(0);
2
3 static __inline__ void inc_count(void)
4 {
5 atomic_inc(&counter);
6 }
7
8 static __inline__ long read_count(void)
9 {

10 return atomic_read(&counter);
11 }

Quick Quiz 5.6: One thing that could be simpler is ++ instead
of that concatenation of READ_ONCE() and WRITE_ONCE().
Why all that extra typing???

This approach has the additional advantage of being
blazingly fast if you are doing lots of reading and almost
no incrementing, and on small systems, the performance
is excellent.

There is just one large fly in the ointment: This approach
can lose counts. On my six-core x86 laptop, a short run
invoked inc_count() 285,824,000 times, but the final
value of the counter was only 35,385,525. Although
approximation does have a large place in computing, loss
of 87 % of the counts is a bit excessive.
Quick Quiz 5.7: But can’t a smart compiler prove that line 5
of Listing 5.1 is equivalent to the ++ operator and produce an
x86 add-to-memory instruction? And won’t the CPU cache
cause this to be atomic?

Quick Quiz 5.8: The 8-figure accuracy on the number of
failures indicates that you really did test this. Why would it be
necessary to test such a trivial program, especially when the
bug is easily seen by inspection?

The straightforward way to count accurately is to use
atomic operations, as shown in Listing 5.2 (count_
atomic.c). Line 1 defines an atomic variable, line 5
atomically increments it, and line 10 reads it out. Be-
cause this is atomic, it keeps perfect count. However, it is
slower: On my six-core x86 laptop, it is more than twenty

 1

 10

 100

 1000

 10000

 100000

 1 1
0

 1
00

Ti
m

e
P

er
 In

cr
em

en
t (

ns
)

Number of CPUs (Threads)

Figure 5.1: Atomic Increment Scalability on x86

times slower than non-atomic increment, even when only
a single thread is incrementing.1

This poor performance should not be a surprise, given
the discussion in Chapter 3, nor should it be a surprise
that the performance of atomic increment gets slower
as the number of CPUs and threads increase, as shown
in Figure 5.1. In this figure, the horizontal dashed line
resting on the x axis is the ideal performance that would
be achieved by a perfectly scalable algorithm: With
such an algorithm, a given increment would incur the
same overhead that it would in a single-threaded program.
Atomic increment of a single global variable is clearly
decidedly non-ideal, and gets multiple orders of magnitude
worse with additional CPUs.
Quick Quiz 5.9: Why doesn’t the horizontal dashed line on
the x axis meet the diagonal line at 𝑥 = 1?

Quick Quiz 5.10: But atomic increment is still pretty fast.
And incrementing a single variable in a tight loop sounds pretty
unrealistic to me, after all, most of the program’s execution
should be devoted to actually doing work, not accounting for
the work it has done! Why should I care about making this go
faster?

For another perspective on global atomic increment,
consider Figure 5.2. In order for each CPU to get a
chance to increment a given global variable, the cache
line containing that variable must circulate among all the

1 Interestingly enough, non-atomically incrementing a counter will
advance the counter more quickly than atomically incrementing the
counter. Of course, if your only goal is to make the counter increase
quickly, an easier approach is to simply assign a large value to the counter.
Nevertheless, there is likely to be a role for algorithms that use carefully
relaxed notions of correctness in order to gain greater performance and
scalability [And91, ACMS03, Rin13, Ung11].

v2024.12.27a

5.2. STATISTICAL COUNTERS 53

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory MemorySystem Interconnect

Figure 5.2: Data Flow For Global Atomic Increment

One one thousand.

Two one thousand.

Three one thousand...

Figure 5.3: Waiting to Count

CPUs, as shown by the red arrows. Such circulation will
take significant time, courtesy of the finite speed of light
and the non-zero size of atoms, laws of physics that were
discussed in Section 3.3. This slow circulation will in
turn result in the poor performance seen in Figure 5.1, or
as more fancifully depicted in Figure 5.3. The following
sections discuss high-performance counting, which avoids
the delays inherent in such circulation.

Quick Quiz 5.11: But why can’t CPU designers simply
ship the addition operation to the data, avoiding the need to
circulate the cache line containing the global variable being
incremented?

Listing 5.3: Array-Based Per-Thread Statistical Counters
1 DEFINE_PER_THREAD(unsigned long, counter);
2
3 static __inline__ void inc_count(void)
4 {
5 unsigned long *p_counter = &__get_thread_var(counter);
6
7 WRITE_ONCE(*p_counter, *p_counter + 1);
8 }
9

10 static __inline__ unsigned long read_count(void)
11 {
12 int t;
13 unsigned long sum = 0;
14
15 for_each_thread(t)
16 sum += READ_ONCE(per_thread(counter, t));
17 return sum;
18 }

5.2 Statistical Counters

Facts are stubborn things, but statistics are pliable.

Mark Twain

This section covers the common special case of statistical
counters, where the count is updated extremely frequently
and the value is read out rarely, if ever. These will be used
to solve the network-packet counting problem posed in
Quick Quiz 5.2.

5.2.1 Design
Statistical counting is typically handled by providing a
counter per thread (or CPU, when running in the kernel),
so that each thread updates its own counter, as was fore-
shadowed in Section 4.3.6 on page 48. The aggregate
value of the counters is read out by simply summing up
all of the threads’ counters, relying on the commutative
and associative properties of addition. This is an example
of the Data Ownership pattern that will be introduced in
Section 6.3.4 on page 88.

Quick Quiz 5.12: But doesn’t the fact that C’s “integers” are
limited in size complicate things?

5.2.2 Array-Based Implementation
One way to provide per-thread variables is to allocate
an array with one element per thread (presumably cache
aligned and padded to avoid false sharing).

Quick Quiz 5.13: An array??? But doesn’t that limit the
number of threads?

v2024.12.27a

54 CHAPTER 5. COUNTING

Such an array can be wrapped into per-thread primitives,
as shown in Listing 5.3 (count_stat.c). Line 1 defines
an array containing a set of per-thread counters of type
unsigned long named, creatively enough, counter.

Lines 3–8 show a function that increments the counters,
using the __get_thread_var() primitive to locate the
currently running thread’s element of the counter array.
Because this element is modified only by the correspond-
ing thread, non-atomic increment suffices. However, this
code uses WRITE_ONCE() to prevent destructive compiler
optimizations. For but one example, the compiler is within
its rights to use a to-be-stored-to location as temporary
storage, thus writing what would be for all intents and
purposes garbage to that location just before doing the
desired store. This could of course be rather confusing
to anything attempting to read out the count. The use
of WRITE_ONCE() prevents this optimization and others
besides.
Quick Quiz 5.14: What other nasty optimizations could
GCC apply?

Lines 10–18 show a function that reads out the aggregate
value of the counter, using the for_each_thread()
primitive to iterate over the list of currently running
threads, and using the per_thread() primitive to fetch
the specified thread’s counter. This code also uses READ_
ONCE() to ensure that the compiler doesn’t optimize these
loads into oblivion. For but one example, a pair of
consecutive calls to read_count() might be inlined, and
an intrepid optimizer might notice that the same locations
were being summed and thus incorrectly conclude that it
would be simply wonderful to sum them once and use the
resulting value twice. This sort of optimization might be
rather frustrating to people expecting later read_count()
calls to account for the activities of other threads. The use
of READ_ONCE() prevents this optimization and others
besides.
Quick Quiz 5.15: How does the per-thread counter variable
in Listing 5.3 get initialized?

Quick Quiz 5.16: How is the code in Listing 5.3 supposed
to permit more than one counter?

This approach scales linearly with increasing number
of updater threads invoking inc_count(). As is shown
by the green arrows on each CPU in Figure 5.4, the
reason for this is that each CPU can make rapid progress
incrementing its thread’s variable, without any expensive
cross-system communication. In other words, the updating
of per-CPU counters is not inconvenienced by slow light

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory MemorySystem Interconnect

Figure 5.4: Data Flow For Per-Thread Increment

and big atoms2 to anywhere near the degree as is the
atomic incrementing of a single global counter. As such,
this section solves the network-packet counting problem
presented at the beginning of this chapter.

Quick Quiz 5.17: The read operation takes time to sum
up the per-thread values, and during that time, the counter
could well be changing. This means that the value returned
by read_count() in Listing 5.3 will not necessarily be exact.
Assume that the counter is being incremented at rate 𝑟 counts
per unit time, and that read_count()’s execution consumes
𝛥 units of time. What is the expected error in the return value?

However, many implementations provide cheaper mech-
anisms for per-thread data that are free from arbitrary
array-size limits. This is the topic of the next section.

5.2.3 Per-Thread-Variable-Based Imple-
mentation

The C language, since C11, features a _Thread_local
storage class that provides per-thread storage.3 This can be
used as shown in Listing 5.4 (count_end.c) to implement
a statistical counter that not only scales well and avoids
arbitrary thread-number limits, but that also incurs little
or no performance penalty to incrementers compared to
simple non-atomic increment.

Lines 1–4 define needed variables: counter is the
per-thread counter variable, the counterp[] array allows
threads to access each others’ counters, finalcount ac-
cumulates the total as individual threads exit, and final_

2 Again, see Section 3.3.
3 GCC provides its own __thread storage class, which was used

in previous versions of this book. The two methods for specifying a
thread-local variable are interchangeable when using GCC.

v2024.12.27a

5.2. STATISTICAL COUNTERS 55

Listing 5.4: Per-Thread Statistical Counters
1 unsigned long _Thread_local counter = 0;
2 unsigned long *counterp[NR_THREADS] = { NULL };
3 unsigned long finalcount = 0;
4 DEFINE_SPINLOCK(final_mutex);
5
6 static inline void inc_count(void)
7 {
8 WRITE_ONCE(counter, counter + 1);
9 }

10
11 static inline unsigned long read_count(void)
12 {
13 int t;
14 unsigned long sum;
15
16 spin_lock(&final_mutex);
17 sum = finalcount;
18 for_each_thread(t)
19 if (counterp[t] != NULL)
20 sum += READ_ONCE(*counterp[t]);
21 spin_unlock(&final_mutex);
22 return sum;
23 }
24
25 void count_register_thread(unsigned long *p)
26 {
27 int idx = smp_thread_id();
28
29 spin_lock(&final_mutex);
30 counterp[idx] = &counter;
31 spin_unlock(&final_mutex);
32 }
33
34 void count_unregister_thread(int nthreadsexpected)
35 {
36 int idx = smp_thread_id();
37
38 spin_lock(&final_mutex);
39 finalcount += counter;
40 counterp[idx] = NULL;
41 spin_unlock(&final_mutex);
42 }

mutex coordinates between threads accumulating the total
value of the counter and exiting threads.

Quick Quiz 5.18: Doesn’t that explicit counterp array
in Listing 5.4 reimpose an arbitrary limit on the number
of threads? Why doesn’t the C language provide a per_
thread() interface, similar to the Linux kernel’s per_cpu()
primitive, to allow threads to more easily access each others’
per-thread variables?

The inc_count() function used by updaters is quite
simple, as can be seen on lines 6–9.

The read_count() function used by readers is a bit
more complex. Line 16 acquires a lock to exclude exiting
threads, and line 21 releases it. Line 17 initializes the
sum to the count accumulated by those threads that have
already exited, and lines 18–20 sum the counts being
accumulated by threads currently running. Finally, line 22
returns the sum.

Quick Quiz 5.19: Doesn’t the check for NULL on line 19
of Listing 5.4 add extra branch mispredictions? Why not
have a variable set permanently to zero, and point unused
counter-pointers to that variable rather than setting them to
NULL?

Quick Quiz 5.20: Why on earth do we need something as
heavyweight as a lock guarding the summation in the function
read_count() in Listing 5.4?

Lines 25–32 show the count_register_thread()
function, which must be called by each thread before its
first use of this counter. This function simply sets up this
thread’s element of the counterp[] array to point to its
per-thread counter variable.

Quick Quiz 5.21: Why on earth do we need to acquire the
lock in count_register_thread() in Listing 5.4? It is a
single properly aligned machine-word store to a location that
no other thread is modifying, so it should be atomic anyway,
right?

Lines 34–42 show the count_unregister_
thread() function, which must be called prior to exit
by each thread that previously called count_register_
thread(). Line 38 acquires the lock, and line 41 releases
it, thus excluding any calls to read_count() as well as
other calls to count_unregister_thread(). Line 39
adds this thread’s counter to the global finalcount,
and then line 40 NULLs out its counterp[] array entry.
A subsequent call to read_count() will see the exiting
thread’s count in the global finalcount, and will
skip the exiting thread when sequencing through the
counterp[] array, thus obtaining the correct total.

This approach gives updaters almost exactly the same
performance as a non-atomic add, and also scales linearly.
On the other hand, concurrent reads contend for a sin-
gle global lock, and therefore perform poorly and scale
abysmally. However, this is not a problem for statistical
counters, where incrementing happens often and readout
happens almost never. Of course, this approach is consid-
erably more complex than the array-based scheme, due to
the fact that a given thread’s per-thread variables vanish
when that thread exits.
Quick Quiz 5.22: Fine, but the Linux kernel doesn’t have
to acquire a lock when reading out the aggregate value of
per-CPU counters. So why should user-space code need to do
this???

Both the array-based and _Thread_local-based ap-
proaches offer excellent update-side performance and
scalability. However, these benefits result in large read-

v2024.12.27a

56 CHAPTER 5. COUNTING

side expense for large numbers of threads. The next
section shows one way to reduce read-side expense while
still retaining the update-side scalability.

5.2.4 Eventually Consistent Implementa-
tion

One way to retain update-side scalability while greatly
improving read-side performance is to weaken consis-
tency requirements. The counting algorithm in the pre-
vious section is guaranteed to return a value between the
value that an ideal counter would have taken on near the
beginning of read_count()’s execution and that near
the end of read_count()’s execution. Eventual consis-
tency [Vog09] provides a weaker guarantee: In absence
of calls to inc_count(), calls to read_count() will
eventually return an accurate count.

We exploit eventual consistency by maintaining a global
counter. However, updaters only manipulate their per-
thread counters. A separate thread is provided to transfer
counts from the per-thread counters to the global counter.
Readers simply access the value of the global counter. If
updaters are active, the value used by the readers will
be out of date, however, once updates cease, the global
counter will eventually converge on the true value—hence
this approach qualifies as eventually consistent.

The implementation is shown in Listing 5.5 (count_
stat_eventual.c). Lines 1–2 show the per-thread vari-
able and the global variable that track the counter’s value,
and line 3 shows stopflag which is used to coordinate
termination (for the case where we want to terminate
the program with an accurate counter value). The inc_
count() function shown on lines 5–10 is similar to its
counterpart in Listing 5.3. The read_count() function
shown on lines 12–15 simply returns the value of the
global_count variable.

However, the count_init() function on lines 34–44
creates the eventual() thread shown on lines 17–32,
which cycles through all the threads, summing the per-
thread local counter and storing the sum to the global_
count variable. The eventual() thread waits an arbi-
trarily chosen one millisecond between passes.

Quick Quiz 5.23: Wouldn’t that period scan be bad for
battery lifetime?

The count_cleanup() function on lines 46–51
coordinates termination. The call to smp_load_
acquire() here and the call to smp_store_release()
in eventual() ensure that all updates to global_

Listing 5.5: Array-Based Per-Thread Eventually Consistent
Counters

1 DEFINE_PER_THREAD(unsigned long, counter);
2 unsigned long global_count;
3 int stopflag;
4
5 static __inline__ void inc_count(void)
6 {
7 unsigned long *p_counter = &__get_thread_var(counter);
8
9 WRITE_ONCE(*p_counter, *p_counter + 1);

10 }
11
12 static __inline__ unsigned long read_count(void)
13 {
14 return READ_ONCE(global_count);
15 }
16
17 void *eventual(void *arg)
18 {
19 int t;
20 unsigned long sum;
21
22 while (READ_ONCE(stopflag) < 3) {
23 sum = 0;
24 for_each_thread(t)
25 sum += READ_ONCE(per_thread(counter, t));
26 WRITE_ONCE(global_count, sum);
27 poll(NULL, 0, 1);
28 if (READ_ONCE(stopflag))
29 smp_store_release(&stopflag, stopflag + 1);
30 }
31 return NULL;
32 }
33
34 void count_init(void)
35 {
36 int en;
37 pthread_t tid;
38
39 en = pthread_create(&tid, NULL, eventual, NULL);
40 if (en != 0) {
41 fprintf(stderr, "pthread_create: %s\n", strerror(en));
42 exit(EXIT_FAILURE);
43 }
44 }
45
46 void count_cleanup(void)
47 {
48 WRITE_ONCE(stopflag, 1);
49 while (smp_load_acquire(&stopflag) < 3)
50 poll(NULL, 0, 1);
51 }

v2024.12.27a

5.3. APPROXIMATE LIMIT COUNTERS 57

count are visible to code following the call to count_
cleanup().

This approach gives extremely fast counter read-out
while still supporting linear counter-update scalability.
However, this excellent read-side performance and update-
side scalability comes at the cost of the additional thread
running eventual().

Quick Quiz 5.24: Why doesn’t inc_count() in Listing 5.5
need to use atomic instructions? After all, we now have
multiple threads accessing the per-thread counters!

Quick Quiz 5.25: Won’t the single global thread in the func-
tion eventual() of Listing 5.5 be just as severe a bottleneck
as a global lock would be?

Quick Quiz 5.26: Won’t the estimate returned by read_
count() in Listing 5.5 become increasingly inaccurate as the
number of threads rises?

Quick Quiz 5.27: Given that in the eventually-consistent
algorithm shown in Listing 5.5 both reads and updates have
extremely low overhead and are extremely scalable, why
would anyone bother with the implementation described in
Section 5.2.2, given its costly read-side code?

Quick Quiz 5.28: What is the accuracy of the estimate
returned by read_count() in Listing 5.5?

5.2.5 Discussion
These three implementations show that it is possible
to obtain near-uniprocessor performance for statistical
counters, despite running on a parallel machine.

Quick Quiz 5.29: What fundamental difference is there
between counting packets and counting the total number of
bytes in the packets, given that the packets vary in size?

Quick Quiz 5.30: Given that the reader must sum all the
threads’ counters, this counter-read operation could take a long
time given large numbers of threads. Is there any way that
the increment operation can remain fast and scalable while
allowing readers to also enjoy not only reasonable performance
and scalability, but also good accuracy?

Given what has been presented in this section, you
should now be able to answer the Quick Quiz about
statistical counters for networking near the beginning of
this chapter.

5.3 Approximate Limit Counters

An approximate answer to the right problem is worth

a good deal more than an exact answer to an

approximate problem.

John Tukey

Another special case of counting involves limit-checking.
For example, as noted in the approximate structure-
allocation limit problem in Quick Quiz 5.3, suppose that
you need to maintain a count of the number of structures
allocated in order to fail any allocations once the number
of structures in use exceeds a limit, in this case, 10,000.
Suppose further that these structures are short-lived, that
this limit is rarely exceeded, and that this limit is approx-
imate in that it is OK either to exceed it sometimes by
some bounded amount or to fail to reach it sometimes,
again by some bounded amount. See Section 5.4 if you
instead need the limit to be exact.

5.3.1 Design
One possible design for limit counters is to divide the
limit of 10,000 by the number of threads, and give each
thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100
structures. This approach is simple, and in some cases
works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by
another [MS93]. On the one hand, if a given thread takes
credit for any structures it frees, then the thread doing
most of the allocating runs out of structures, while the
threads doing most of the freeing have lots of credits that
they cannot use. On the other hand, if freed structures
are credited to the CPU that allocated them, it will be
necessary for CPUs to manipulate each others’ counters,
which will require expensive atomic instructions or other
means of communicating between threads.4

In short, for many important workloads, we cannot fully
partition the counter. Given that partitioning the counters
was what brought the excellent update-side performance
for the three schemes discussed in Section 5.2, this might
be grounds for some pessimism. However, the eventually
consistent algorithm presented in Section 5.2.4 provides
an interesting hint. Recall that this algorithm kept two sets
of books, a per-thread counter variable for updaters and a

4 That said, if each structure will always be freed by the same CPU
(or thread) that allocated it, then this simple partitioning approach works
extremely well.

v2024.12.27a

58 CHAPTER 5. COUNTING

global_count variable for readers, with an eventual()
thread that periodically updated global_count to be
eventually consistent with the values of the per-thread
counter. The per-thread counter perfectly partitioned
the counter value, while global_count kept the full
value.

For limit counters, we can use a variation on this theme
where we partially partition the counter. For example,
consider four threads with each having not only a per-
thread counter, but also a per-thread maximum value
(call it countermax).

But then what happens if a given thread needs to
increment its counter, but counter is equal to its
countermax? The trick here is to move half of that
thread’s counter value to a globalcount, then incre-
ment counter. For example, if a given thread’s counter
and countermax variables were both equal to 10, we do
the following:

1. Acquire a global lock.

2. Add five to globalcount.

3. To balance out the addition, subtract five from this
thread’s counter.

4. Release the global lock.

5. Increment this thread’s counter, resulting in a value
of six.

Although this procedure still requires a global lock,
that lock need only be acquired once for every five in-
crement operations, greatly reducing that lock’s level of
contention. We can reduce this contention as low as we
wish by increasing the value of countermax. However,
the corresponding penalty for increasing the value of
countermax is reduced accuracy of globalcount. To
see this, note that on a four-CPU system, if countermax
is equal to ten, globalcount will be in error by at most
40 counts. In contrast, if countermax is increased to
100, globalcount might be in error by as much as 400
counts.

This raises the question of just how much we care about
globalcount’s deviation from the aggregate value of
the counter, where this aggregate value is the sum of
globalcount and each thread’s counter variable. The
answer to this question depends on how far the aggregate
value is from the counter’s limit (call it globalcountmax).
The larger the difference between these two values, the
larger countermax can be without risk of exceeding the

Listing 5.6: Simple Limit Counter Variables
1 unsigned long __thread counter = 0;
2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;
5 unsigned long globalreserve = 0;
6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLOCK(gblcnt_mutex);

globalcountmax limit. This means that the value of a
given thread’s countermax variable can be set based on
this difference. When far from the limit, the countermax
per-thread variables are set to large values to optimize for
performance and scalability, while when close to the limit,
these same variables are set to small values to minimize
the error in the checks against the globalcountmax limit.

This design is an example of parallel fastpath, which is
an important design pattern in which the common case
executes with no expensive instructions and no interactions
between threads, but where occasional use is also made
of a more conservatively designed (and higher overhead)
global algorithm. This design pattern is covered in more
detail in Section 6.4.

5.3.2 Simple Limit Counter Implementa-
tion

Listing 5.6 shows both the per-thread and global variables
used by this implementation. The per-thread counter
and countermax variables are the corresponding thread’s
local counter and the upper bound on that counter, re-
spectively. The globalcountmax variable on line 3
contains the upper bound for the aggregate counter, and
the globalcount variable on line 4 is the global counter.
The sum of globalcount and each thread’s counter
gives the aggregate value of the overall counter. The
globalreserve variable on line 5 is at least the sum of
all of the per-thread countermax variables. The relation-
ship among these variables is shown by Figure 5.5:

1. The sum of globalcount and globalreserve
must be less than or equal to globalcountmax.

2. The sum of all threads’ countermax values must be
less than or equal to globalreserve.

3. Each thread’s counter must be less than or equal to
that thread’s countermax.

Each element of the counterp[] array references the
corresponding thread’s counter variable, and, finally, the
gblcnt_mutex spinlock guards all of the global variables,

v2024.12.27a

5.3. APPROXIMATE LIMIT COUNTERS 59

counter 3
countermax 3

g
l
o
b
a
l
c
o
u
n
t
m
a
x

counter 0
countermax 0

countermax 1 counter 1

g
l
o
b
a
l
c
o
u
n
t

g
l
o
b
a
l
r
e
s
e
r
v
e

countermax 2 counter 2

Figure 5.5: Simple Limit Counter Variable Relationships

in other words, no thread is permitted to access or modify
any of the global variables unless it has acquired gblcnt_
mutex.

Listing 5.7 shows the add_count(), sub_count(),
and read_count() functions (count_lim.c).

Quick Quiz 5.31: Why does Listing 5.7 provide add_
count() and sub_count() instead of the inc_count() and
dec_count() interfaces show in Section 5.2?

Lines 1–18 show add_count(), which adds the speci-
fied value delta to the counter. Line 3 checks to see if
there is room for delta on this thread’s counter, and, if
so, line 4 adds it and line 5 returns success. This is the
add_counter() fastpath, and it does no atomic opera-
tions, references only per-thread variables, and should not
incur any cache misses.

Quick Quiz 5.32: What is with the strange form of the
condition on line 3 of Listing 5.7? Why not the more intuitive
form of the fastpath shown in Listing 5.8?

If the test on line 3 fails, we must access global variables,
and thus must acquire gblcnt_mutex on line 7, which we
release on line 11 in the failure case or on line 16 in the suc-
cess case. Line 8 invokes globalize_count(), shown
in Listing 5.9, which clears the thread-local variables,
adjusting the global variables as needed, thus simplifying
global processing. (But don’t take my word for it, try
coding it yourself!) Lines 9 and 10 check to see if addition
of delta can be accommodated, with the meaning of

Listing 5.7: Simple Limit Counter Add, Subtract, and Read
1 static __inline__ int add_count(unsigned long delta)
2 {
3 if (countermax - counter >= delta) {
4 WRITE_ONCE(counter, counter + delta);
5 return 1;
6 }
7 spin_lock(&gblcnt_mutex);
8 globalize_count();
9 if (globalcountmax -

10 globalcount - globalreserve < delta) {
11 spin_unlock(&gblcnt_mutex);
12 return 0;
13 }
14 globalcount += delta;
15 balance_count();
16 spin_unlock(&gblcnt_mutex);
17 return 1;
18 }
19
20 static __inline__ int sub_count(unsigned long delta)
21 {
22 if (counter >= delta) {
23 WRITE_ONCE(counter, counter - delta);
24 return 1;
25 }
26 spin_lock(&gblcnt_mutex);
27 globalize_count();
28 if (globalcount < delta) {
29 spin_unlock(&gblcnt_mutex);
30 return 0;
31 }
32 globalcount -= delta;
33 balance_count();
34 spin_unlock(&gblcnt_mutex);
35 return 1;
36 }
37
38 static __inline__ unsigned long read_count(void)
39 {
40 int t;
41 unsigned long sum;
42
43 spin_lock(&gblcnt_mutex);
44 sum = globalcount;
45 for_each_thread(t) {
46 if (counterp[t] != NULL)
47 sum += READ_ONCE(*counterp[t]);
48 }
49 spin_unlock(&gblcnt_mutex);
50 return sum;
51 }

Listing 5.8: Intuitive Fastpath
3 if (counter + delta <= countermax) {
4 WRITE_ONCE(counter, counter + delta);
5 return 1;
6 }

v2024.12.27a

60 CHAPTER 5. COUNTING

the expression preceding the less-than sign shown in Fig-
ure 5.5 as the difference in height of the two red (leftmost)
bars. If the addition of delta cannot be accommodated,
then line 11 (as noted earlier) releases gblcnt_mutex
and line 12 returns indicating failure.

Otherwise, we take the slowpath. Line 14 adds delta
to globalcount, and then line 15 invokes balance_
count() (shown in Listing 5.9) in order to update both the
global and the per-thread variables. This call to balance_
count() will usually set this thread’s countermax to
re-enable the fastpath. Line 16 then releases gblcnt_
mutex (again, as noted earlier), and, finally, line 17 returns
indicating success.

Quick Quiz 5.33: Why does globalize_count() zero the
per-thread variables, only to later call balance_count() to
refill them in Listing 5.7? Why not just leave the per-thread
variables non-zero?

Lines 20–36 show sub_count(), which subtracts the
specified delta from the counter. Line 22 checks to see if
the per-thread counter can accommodate this subtraction,
and, if so, line 23 does the subtraction and line 24 returns
success. These lines form sub_count()’s fastpath, and,
as with add_count(), this fastpath executes no costly
operations.

If the fastpath cannot accommodate subtraction of
delta, execution proceeds to the slowpath on lines 26–35.
Because the slowpath must access global state, line 26 ac-
quires gblcnt_mutex, which is released either by line 29
(in case of failure) or by line 34 (in case of success).
Line 27 invokes globalize_count(), shown in List-
ing 5.9, which again clears the thread-local variables,
adjusting the global variables as needed. Line 28 checks
to see if the counter can accommodate subtracting delta,
and, if not, line 29 releases gblcnt_mutex (as noted
earlier) and line 30 returns failure.

Quick Quiz 5.34: Given that globalreserve counted
against us in add_count(), why doesn’t it count for us in
sub_count() in Listing 5.7?

Quick Quiz 5.35: Suppose that one thread invokes add_
count() shown in Listing 5.7, and then another thread in-
vokes sub_count(). Won’t sub_count() return failure even
though the value of the counter is non-zero?

If, on the other hand, line 28 finds that the counter
can accommodate subtracting delta, we complete the
slowpath. Line 32 does the subtraction and then line 33 in-
vokes balance_count() (shown in Listing 5.9) in order
to update both global and per-thread variables (hopefully

Listing 5.9: Simple Limit Counter Utility Functions
1 static __inline__ void globalize_count(void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve -= countermax;
6 countermax = 0;
7 }
8
9 static __inline__ void balance_count(void)

10 {
11 countermax = globalcountmax -
12 globalcount - globalreserve;
13 countermax /= num_online_threads();
14 globalreserve += countermax;
15 counter = countermax / 2;
16 if (counter > globalcount)
17 counter = globalcount;
18 globalcount -= counter;
19 }
20
21 void count_register_thread(void)
22 {
23 int idx = smp_thread_id();
24
25 spin_lock(&gblcnt_mutex);
26 counterp[idx] = &counter;
27 spin_unlock(&gblcnt_mutex);
28 }
29
30 void count_unregister_thread(int nthreadsexpected)
31 {
32 int idx = smp_thread_id();
33
34 spin_lock(&gblcnt_mutex);
35 globalize_count();
36 counterp[idx] = NULL;
37 spin_unlock(&gblcnt_mutex);
38 }

re-enabling the fastpath). Then line 34 releases gblcnt_
mutex, and line 35 returns success.

Quick Quiz 5.36: Why have both add_count() and sub_
count() in Listing 5.7? Why not simply pass a negative
number to add_count()?

Lines 38–51 show read_count(), which returns the
aggregate value of the counter. It acquires gblcnt_
mutex on line 43 and releases it on line 49, excluding
global operations from add_count() and sub_count(),
and, as we will see, also excluding thread creation and
exit. Line 44 initializes local variable sum to the value of
globalcount, and then the loop spanning lines 45–48
sums the per-thread counter variables. Line 50 then
returns the sum.

Listing 5.9 shows a number of utility functions used by
the add_count(), sub_count(), and read_count()
primitives shown in Listing 5.7.

Lines 1–7 show globalize_count(), which zeros
the current thread’s per-thread counters, adjusting the
global variables appropriately. It is important to note that

v2024.12.27a

5.3. APPROXIMATE LIMIT COUNTERS 61

this function does not change the aggregate value of the
counter, but instead changes how the counter’s current
value is represented. Line 3 adds the thread’s counter
variable to globalcount, and line 4 zeroes counter.
Similarly, line 5 subtracts the per-thread countermax
from globalreserve, and line 6 zeroes countermax. It
is helpful to refer to Figure 5.5 when reading both this
function and balance_count(), which is next.

Lines 9–19 show balance_count(), which is roughly
speaking the inverse of globalize_count(). This func-
tion’s job is to set the current thread’s countermax vari-
able to the largest value that avoids the risk of the counter
exceeding the globalcountmax limit. Changing the
current thread’s countermax variable of course requires
corresponding adjustments to counter, globalcount
and globalreserve, as can be seen by referring back to
Figure 5.5. By doing this, balance_count() maximizes
use of add_count()’s and sub_count()’s low-overhead
fastpaths. As with globalize_count(), balance_
count() is not permitted to change the aggregate value
of the counter.

Lines 11–13 compute this thread’s share of that por-
tion of globalcountmax that is not already covered by
either globalcount or globalreserve, and assign the
computed quantity to this thread’s countermax. Line 14
makes the corresponding adjustment to globalreserve.
Line 15 sets this thread’s counter to the middle of the
range from zero to countermax. Line 16 checks to
see whether globalcount can in fact accommodate this
value of counter, and, if not, line 17 decreases counter
accordingly. Finally, in either case, line 18 makes the
corresponding adjustment to globalcount.

Quick Quiz 5.37: Why set counter to countermax / 2
in line 15 of Listing 5.9? Wouldn’t it be simpler to just take
countermax counts?

It is helpful to look at a schematic depicting how the
relationship of the counters changes with the execution of
first globalize_count() and then balance_count(),
as shown in Figure 5.6. Time advances from left to right,
with the leftmost configuration roughly that of Figure 5.5.
The center configuration shows the relationship of these
same counters after globalize_count() is executed by
thread 0. As can be seen from the figure, thread 0’s
counter (“c 0” in the figure) is added to globalcount,
while the value of globalreserve is reduced by this same
amount. Both thread 0’s counter and its countermax
(“cm 0” in the figure) are reduced to zero. The other three
threads’ counters are unchanged. Note that this change
did not affect the overall value of the counter, as indicated

by the bottommost dotted line connecting the leftmost
and center configurations. In other words, the sum of
globalcount and the four threads’ counter variables is
the same in both configurations. Similarly, this change did
not affect the sum of globalcount and globalreserve,
as indicated by the upper dotted line.

The rightmost configuration shows the relationship
of these counters after balance_count() is executed,
again by thread 0. One-quarter of the remaining count,
denoted by the vertical line extending up from all three
configurations, is added to thread 0’s countermax and
half of that to thread 0’s counter. The amount added to
thread 0’s counter is also subtracted from globalcount
in order to avoid changing the overall value of the counter
(which is again the sum of globalcount and the three
threads’ counter variables), again as indicated by the
lowermost of the two dotted lines connecting the center and
rightmost configurations. The globalreserve variable
is also adjusted so that this variable remains equal to the
sum of the four threads’ countermax variables. Because
thread 0’s counter is less than its countermax, thread 0
can once again increment the counter locally.

Quick Quiz 5.38: In Figure 5.6, even though a quarter of the
remaining count up to the limit is assigned to thread 0, only an
eighth of the remaining count is consumed, as indicated by the
uppermost dotted line connecting the center and the rightmost
configurations. Why is that?

Lines 21–28 show count_register_thread(),
which sets up state for newly created threads. This
function simply installs a pointer to the newly created
thread’s counter variable into the corresponding entry of
the counterp[] array under the protection of gblcnt_
mutex.

Finally, lines 30–38 show count_unregister_
thread(), which tears down state for a soon-to-be-exiting
thread. Line 34 acquires gblcnt_mutex and line 37 re-
leases it. Line 35 invokes globalize_count() to clear
out this thread’s counter state, and line 36 clears this
thread’s entry in the counterp[] array.

5.3.3 Simple Limit Counter Discussion
This type of counter is quite fast when aggregate val-
ues are near zero, with some overhead due to the com-
parison and branch in both add_count()’s and sub_
count()’s fastpaths. However, the use of a per-thread
countermax reserve means that add_count() can fail
even when the aggregate value of the counter is nowhere
near globalcountmax. Similarly, sub_count() can fail

v2024.12.27a

62 CHAPTER 5. COUNTING

g
l
o
b
a
l
c
o
u
n
t

g
l
o
b
a
l
r
e
s
e
r
v
e

cm 0 c 0

cm 3

cm 2

cm 1

c 3

c 1

c 2

g
l
o
b
a
l
c
o
u
n
t

g
l
o
b
a
l
r
e
s
e
r
v
e

cm 3

cm 2

cm 1

c 3

c 1

c 2

g
l
o
b
a
l
c
o
u
n
t

cm 3

cm 2

cm 1

c 3

c 1

c 2

g
l
o
b
a
l
r
e
s
e
r
v
e

cm 0
c 0

globalize_count() balance_count()

Figure 5.6: Schematic of Globalization and Balancing

even when the aggregate value of the counter is nowhere
near zero.

In many cases, this is unacceptable. Even if the
globalcountmax is intended to be an approximate limit,
there is usually a limit to exactly how much approxima-
tion can be tolerated. One way to limit the degree of
approximation is to impose an upper limit on the value
of the per-thread countermax instances. This task is
undertaken in the next section.

5.3.4 Approximate Limit Counter Imple-
mentation

Because this implementation (count_lim_app.c) is
quite similar to that in the previous section (Listings 5.6,
5.7, and 5.9), only the changes are shown here. List-
ing 5.10 is identical to Listing 5.6, with the addition of
MAX_COUNTERMAX, which sets the maximum permissible
value of the per-thread countermax variable.

Similarly, Listing 5.11 is identical to the balance_
count() function in Listing 5.9, with the addition of
lines 6 and 7, which enforce the MAX_COUNTERMAX limit
on the per-thread countermax variable.

Listing 5.10: Approximate Limit Counter Variables
1 unsigned long __thread counter = 0;
2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;
5 unsigned long globalreserve = 0;
6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLOCK(gblcnt_mutex);
8 #define MAX_COUNTERMAX 100

Listing 5.11: Approximate Limit Counter Balancing
1 static void balance_count(void)
2 {
3 countermax = globalcountmax -
4 globalcount - globalreserve;
5 countermax /= num_online_threads();
6 if (countermax > MAX_COUNTERMAX)
7 countermax = MAX_COUNTERMAX;
8 globalreserve += countermax;
9 counter = countermax / 2;

10 if (counter > globalcount)
11 counter = globalcount;
12 globalcount -= counter;
13 }

v2024.12.27a

5.4. EXACT LIMIT COUNTERS 63

5.3.5 Approximate Limit Counter Discus-
sion

These changes greatly reduce the limit inaccuracy seen in
the previous version, but present another problem: Any
given value of MAX_COUNTERMAX will cause a workload-
dependent fraction of accesses to fall off the fastpath. As
the number of threads increase, non-fastpath execution
will become both a performance and a scalability problem.
However, we will defer this problem and turn instead to
counters with exact limits.

5.4 Exact Limit Counters

Exactitude can be expensive. Spend wisely.

Unknown

To solve the exact structure-allocation limit problem noted
in Quick Quiz 5.4, we need a limit counter that can
tell exactly when its limits are exceeded. One way of
implementing such a limit counter is to cause threads
that have reserved counts to give them up. One way to
do this is to use atomic instructions. Of course, atomic
instructions will slow down the fastpath, but on the other
hand, it would be silly not to at least give them a try.

5.4.1 Atomic Limit Counter Implementa-
tion

Unfortunately, if one thread is to safely remove counts
from another thread, both threads will need to atomically
manipulate that thread’s counter and countermax vari-
ables. The usual way to do this is to combine these two
variables into a single variable, for example, given a 32-bit
variable, using the high-order 16 bits to represent counter
and the low-order 16 bits to represent countermax.
Quick Quiz 5.39: Why is it necessary to atomically manip-
ulate the thread’s counter and countermax variables as a
unit? Wouldn’t it be good enough to atomically manipulate
them individually?

The variables and access functions for a simple atomic
limit counter are shown in Listing 5.12 (count_lim_
atomic.c). The counter and countermax variables in
earlier algorithms are combined into the single variable
counterandmax shown on line 1, with counter in the
upper half and countermax in the lower half. This
variable is of type atomic_t, which has an underlying
representation of int.

Listing 5.12: Atomic Limit Counter Variables and Access
Functions

1 atomic_t __thread counterandmax = ATOMIC_INIT(0);
2 unsigned long globalcountmax = 1 << 25;
3 unsigned long globalcount = 0;
4 unsigned long globalreserve = 0;
5 atomic_t *counterp[NR_THREADS] = { NULL };
6 DEFINE_SPINLOCK(gblcnt_mutex);
7 #define CM_BITS (sizeof(atomic_t) * 4)
8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)
9

10 static __inline__ void
11 split_counterandmax_int(int cami, int *c, int *cm)
12 {
13 *c = (cami >> CM_BITS) & MAX_COUNTERMAX;
14 *cm = cami & MAX_COUNTERMAX;
15 }
16
17 static __inline__ void
18 split_counterandmax(atomic_t *cam, int *old, int *c, int *cm)
19 {
20 unsigned int cami = atomic_read(cam);
21
22 *old = cami;
23 split_counterandmax_int(cami, c, cm);
24 }
25
26 static __inline__ int merge_counterandmax(int c, int cm)
27 {
28 unsigned int cami;
29
30 cami = (c << CM_BITS) | cm;
31 return ((int)cami);
32 }

Lines 2–6 show the definitions for globalcountmax,
globalcount, globalreserve, counterp, and
gblcnt_mutex, all of which take on roles similar to
their counterparts in Listing 5.10. Line 7 defines CM_
BITS, which gives the number of bits in each half of
counterandmax, and line 8 defines MAX_COUNTERMAX,
which gives the maximum value that may be held in either
half of counterandmax.

Quick Quiz 5.40: In what way does line 7 of Listing 5.12
violate the C standard?

Lines 10–15 show the split_counterandmax_
int() function, which, when given the underlying int
from the atomic_t counterandmax variable, splits it
into its counter (c) and countermax (cm) components.
Line 13 isolates the most-significant half of this int,
placing the result as specified by argument c, and line 14
isolates the least-significant half of this int, placing the
result as specified by argument cm.

Lines 17–24 show the split_counterandmax() func-
tion, which picks up the underlying int from the spec-
ified variable on line 20, stores it as specified by the
old argument on line 22, and then invokes split_
counterandmax_int() to split it on line 23.

v2024.12.27a

64 CHAPTER 5. COUNTING

Quick Quiz 5.41: Given that there is only one
counterandmax variable, why bother passing in a pointer
to it on line 18 of Listing 5.12?

Lines 26–32 show the merge_counterandmax() func-
tion, which can be thought of as the inverse of split_
counterandmax(). Line 30 merges the counter and
countermax values passed in c and cm, respectively, and
returns the result.
Quick Quiz 5.42: Why does merge_counterandmax() in
Listing 5.12 return an int rather than storing directly into an
atomic_t?

Listing 5.13 shows the add_count() and sub_
count() functions.

Lines 1–32 show add_count(), whose fastpath spans
lines 8–15, with the remainder of the function being the
slowpath. Lines 8–14 of the fastpath form a compare-and-
swap (CAS) loop, with the atomic_cmpxchg() primitive
on lines 13–14 performing the actual CAS. Line 9 splits
the current thread’s counterandmax variable into its
counter (in c) and countermax (in cm) components,
while placing the underlying int into old. Line 10
checks whether the amount delta can be accommodated
locally (taking care to avoid integer overflow), and if not,
line 11 transfers to the slowpath. Otherwise, line 12
combines an updated counter value with the original
countermax value into new. The atomic_cmpxchg()
primitive on lines 13–14 then atomically compares this
thread’s counterandmax variable to old, updating its
value to new if the comparison succeeds. If the comparison
succeeds, line 15 returns success, otherwise, execution
continues in the loop at line 8.
Quick Quiz 5.43: Yecch! Why the ugly goto on line 11 of
Listing 5.13? Haven’t you heard of the break statement???

Quick Quiz 5.44: Why would the atomic_cmpxchg()
primitive at lines 13–14 of Listing 5.13 ever fail? After all, we
picked up its old value on line 9 and have not changed it!

Lines 16–31 of Listing 5.13 show add_count()’s
slowpath, which is protected by gblcnt_mutex, which
is acquired on line 17 and released on lines 24 and 30.
Line 18 invokes globalize_count(), which moves this
thread’s state to the global counters. Lines 19–20 check
whether the delta value can be accommodated by the
current global state, and, if not, line 21 invokes flush_
local_count() to flush all threads’ local state to the
global counters, and then lines 22–23 recheck whether
delta can be accommodated. If, after all that, the addition

Listing 5.13: Atomic Limit Counter Add and Subtract
1 int add_count(unsigned long delta)
2 {
3 int c;
4 int cm;
5 int old;
6 int new;
7
8 do {
9 split_counterandmax(&counterandmax, &old, &c, &cm);

10 if (delta > MAX_COUNTERMAX || c + delta > cm)
11 goto slowpath;
12 new = merge_counterandmax(c + delta, cm);
13 } while (atomic_cmpxchg(&counterandmax,
14 old, new) != old);
15 return 1;
16 slowpath:
17 spin_lock(&gblcnt_mutex);
18 globalize_count();
19 if (globalcountmax - globalcount -
20 globalreserve < delta) {
21 flush_local_count();
22 if (globalcountmax - globalcount -
23 globalreserve < delta) {
24 spin_unlock(&gblcnt_mutex);
25 return 0;
26 }
27 }
28 globalcount += delta;
29 balance_count();
30 spin_unlock(&gblcnt_mutex);
31 return 1;
32 }
33
34 int sub_count(unsigned long delta)
35 {
36 int c;
37 int cm;
38 int old;
39 int new;
40
41 do {
42 split_counterandmax(&counterandmax, &old, &c, &cm);
43 if (delta > c)
44 goto slowpath;
45 new = merge_counterandmax(c - delta, cm);
46 } while (atomic_cmpxchg(&counterandmax,
47 old, new) != old);
48 return 1;
49 slowpath:
50 spin_lock(&gblcnt_mutex);
51 globalize_count();
52 if (globalcount < delta) {
53 flush_local_count();
54 if (globalcount < delta) {
55 spin_unlock(&gblcnt_mutex);
56 return 0;
57 }
58 }
59 globalcount -= delta;
60 balance_count();
61 spin_unlock(&gblcnt_mutex);
62 return 1;
63 }

v2024.12.27a

5.4. EXACT LIMIT COUNTERS 65

Listing 5.14: Atomic Limit Counter Read
1 unsigned long read_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6 int t;
7 unsigned long sum;
8
9 spin_lock(&gblcnt_mutex);

10 sum = globalcount;
11 for_each_thread(t) {
12 if (counterp[t] != NULL) {
13 split_counterandmax(counterp[t], &old, &c, &cm);
14 sum += c;
15 }
16 }
17 spin_unlock(&gblcnt_mutex);
18 return sum;
19 }

of delta still cannot be accommodated, then line 24
releases gblcnt_mutex (as noted earlier), and then line 25
returns failure.

Otherwise, line 28 adds delta to the global counter,
line 29 spreads counts to the local state if appropriate,
line 30 releases gblcnt_mutex (again, as noted earlier),
and finally, line 31 returns success.

Lines 34–63 of Listing 5.13 show sub_count(), which
is structured similarly to add_count(), having a fastpath
on lines 41–48 and a slowpath on lines 49–62. A line-by-
line analysis of this function is left as an exercise to the
reader.

Listing 5.14 shows read_count(). Line 9 acquires
gblcnt_mutex and line 17 releases it. Line 10 initializes
local variable sum to the value of globalcount, and the
loop spanning lines 11–16 adds the per-thread counters to
this sum, isolating each per-thread counter using split_
counterandmax on line 13. Finally, line 18 returns the
sum.

Listings 5.15 and 5.16 show the utility func-
tions globalize_count(), flush_local_count(),
balance_count(), count_register_thread(), and
count_unregister_thread(). The code for
globalize_count() is shown on lines 1–12 of List-
ing 5.15, and is similar to that of previous algorithms,
with the addition of line 7, which is now required to split
out counter and countermax from counterandmax.

The code for flush_local_count(), which moves
all threads’ local counter state to the global counter, is
shown on lines 14–33. Line 22 checks to see if the value
of globalreserve permits any per-thread counts, and,
if not, line 23 returns. Otherwise, line 24 initializes
local variable zero to a combined zeroed counter and
countermax. The loop spanning lines 25–32 sequences

Listing 5.15: Atomic Limit Counter Utility Functions 1
1 static void globalize_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6
7 split_counterandmax(&counterandmax, &old, &c, &cm);
8 globalcount += c;
9 globalreserve -= cm;

10 old = merge_counterandmax(0, 0);
11 atomic_set(&counterandmax, old);
12 }
13
14 static void flush_local_count(void)
15 {
16 int c;
17 int cm;
18 int old;
19 int t;
20 int zero;
21
22 if (globalreserve == 0)
23 return;
24 zero = merge_counterandmax(0, 0);
25 for_each_thread(t) {
26 if (counterp[t] != NULL) {
27 old = atomic_xchg(counterp[t], zero);
28 split_counterandmax_int(old, &c, &cm);
29 globalcount += c;
30 globalreserve -= cm;
31 }
32 }
33 }

through each thread. Line 26 checks to see if the current
thread has counter state, and, if so, lines 27–30 move that
state to the global counters. Line 27 atomically fetches
the current thread’s state while replacing it with zero.
Line 28 splits this state into its counter (in local variable
c) and countermax (in local variable cm) components.
Line 29 adds this thread’s counter to globalcount,
while line 30 subtracts this thread’s countermax from
globalreserve.

Quick Quiz 5.45: What stops a thread from simply refilling its
counterandmax variable immediately after flush_local_
count() on line 14 of Listing 5.15 empties it?

Quick Quiz 5.46: What prevents concurrent execution of
the fastpath of either add_count() or sub_count() from
interfering with the counterandmax variable while flush_
local_count() is accessing it on line 27 of Listing 5.15?

Lines 1–22 on Listing 5.16 show the code for
balance_count(), which refills the calling thread’s local
counterandmax variable. This function is quite similar
to that of the preceding algorithms, with changes required
to handle the merged counterandmax variable. Detailed
analysis of the code is left as an exercise for the reader, as

v2024.12.27a

66 CHAPTER 5. COUNTING

Listing 5.16: Atomic Limit Counter Utility Functions 2
1 static void balance_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6 unsigned long limit;
7
8 limit = globalcountmax - globalcount -
9 globalreserve;

10 limit /= num_online_threads();
11 if (limit > MAX_COUNTERMAX)
12 cm = MAX_COUNTERMAX;
13 else
14 cm = limit;
15 globalreserve += cm;
16 c = cm / 2;
17 if (c > globalcount)
18 c = globalcount;
19 globalcount -= c;
20 old = merge_counterandmax(c, cm);
21 atomic_set(&counterandmax, old);
22 }
23
24 void count_register_thread(void)
25 {
26 int idx = smp_thread_id();
27
28 spin_lock(&gblcnt_mutex);
29 counterp[idx] = &counterandmax;
30 spin_unlock(&gblcnt_mutex);
31 }
32
33 void count_unregister_thread(int nthreadsexpected)
34 {
35 int idx = smp_thread_id();
36
37 spin_lock(&gblcnt_mutex);
38 globalize_count();
39 counterp[idx] = NULL;
40 spin_unlock(&gblcnt_mutex);
41 }

it is with the count_register_thread() function start-
ing on line 24 and the count_unregister_thread()
function starting on line 33.

Quick Quiz 5.47: How can line 21 of balance_count()
in Listing 5.16 work correctly in face of concurrent flush_
local_count() updates to this variable?

Quick Quiz 5.48: Does the atomic_set() primitive in
balance_count() really need to be atomic?

The next section qualitatively evaluates this design.

5.4.2 Atomic Limit Counter Discussion
This is the first implementation that actually allows the
counter to be run all the way to either of its limits, but it
does so at the expense of adding atomic operations to the
fastpaths, which slow down the fastpaths significantly on
some systems. Although some workloads might tolerate

IDLE

REQ

need
flush

READY

no
count

!counting

ACK

counting

flushed

done
counting

Figure 5.7: Signal-Theft State Machine

this slowdown, it is worthwhile looking for algorithms
with better write-side performance. One such algorithm
uses a signal handler to steal counts from other threads.
Because signal handlers run in the context of the signaled
thread, atomic operations are not necessary, as shown in
the next section.
Quick Quiz 5.49: But signal handlers can be migrated to
some other CPU while running. Doesn’t this possibility require
that atomic instructions and memory barriers are required to
reliably communicate between a thread and a signal handler
that interrupts that thread?

5.4.3 Signal-Theft Limit Counter Design
Even though per-thread state will now be manipulated
only by the corresponding thread, there will still need
to be synchronization with the signal handlers. This
synchronization is provided by the state machine shown
in Figure 5.7.

The state machine starts out in the IDLE state, and when
add_count() or sub_count() find that the combination
of the local thread’s count and the global count cannot
accommodate the request, the corresponding slowpath sets
each thread’s theft state to REQ (unless that thread has
no count, in which case it transitions directly to READY).
Only the slowpath, which holds the gblcnt_mutex lock,
is permitted to transition from the IDLE state, as indicated
by the green color.5 The slowpath then sends a signal

5 For those with black-and-white versions of this book, IDLE and
READY are green, REQ is red, and ACK is blue.

v2024.12.27a

5.4. EXACT LIMIT COUNTERS 67

to each thread, and the corresponding signal handler
checks the corresponding thread’s theft and counting
variables. If the theft state is not REQ, then the signal
handler is not permitted to change the state, and therefore
simply returns. Otherwise, if the counting variable is set,
indicating that the current thread’s fastpath is in progress,
the signal handler sets the theft state to ACK, otherwise
to READY.

If the theft state is ACK, only the fastpath is permitted
to change the theft state, as indicated by the blue color.
When the fastpath completes, it sets the theft state to
READY.

Once the slowpath sees a thread’s theft state is
READY, the slowpath is permitted to steal that thread’s
count. The slowpath then sets that thread’s theft state to
IDLE.
Quick Quiz 5.50: In Figure 5.7, why is the REQ theft state
colored red?

Quick Quiz 5.51: In Figure 5.7, what is the point of having
separate REQ and ACK theft states? Why not simplify the
state machine by collapsing them into a single REQACK state?
Then whichever of the signal handler or the fastpath gets there
first could set the state to READY.

5.4.4 Signal-Theft Limit Counter Imple-
mentation

Listing 5.17 (count_lim_sig.c) shows the data struc-
tures used by the signal-theft based counter implemen-
tation. Lines 1–7 define the states and values for the
per-thread theft state machine described in the preceding
section. Lines 8–17 are similar to earlier implementa-
tions, with the addition of lines 14 and 15 to allow remote
access to a thread’s countermax and theft variables,
respectively.

Listing 5.18 shows the functions responsible for migrat-
ing counts between per-thread variables and the global
variables. Lines 1–7 show globalize_count(), which
is identical to earlier implementations. Lines 9–16 show
flush_local_count_sig(), which is the signal han-
dler used in the theft process. Lines 11 and 12 check
to see if the theft state is REQ, and, if not returns
without change. Line 13 sets the theft state to ACK,
and, if line 14 sees that this thread’s fastpaths are not
running, line 15 uses smp_store_release() to set the
theft state to READY, further ensuring that any change
to counter in the fastpath happens before this change of
theft to READY.

Listing 5.17: Signal-Theft Limit Counter Data
1 #define THEFT_IDLE 0
2 #define THEFT_REQ 1
3 #define THEFT_ACK 2
4 #define THEFT_READY 3
5
6 int __thread theft = THEFT_IDLE;
7 int __thread counting = 0;
8 unsigned long __thread counter = 0;
9 unsigned long __thread countermax = 0;

10 unsigned long globalcountmax = 10000;
11 unsigned long globalcount = 0;
12 unsigned long globalreserve = 0;
13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };
16 DEFINE_SPINLOCK(gblcnt_mutex);
17 #define MAX_COUNTERMAX 100

Quick Quiz 5.52: In Listing 5.18, doesn’t flush_local_
count_sig() need stronger memory barriers?

Lines 18–47 show flush_local_count(), which is
called from the slowpath to flush all threads’ local counts.
The loop spanning lines 23–32 advances the theft state
for each thread that has local count, and also sends that
thread a signal. Line 24 skips any non-existent threads.
Otherwise, line 25 checks to see if the current thread
holds any local count, and, if not, line 26 sets the thread’s
theft state to READY and line 27 skips to the next thread.
Otherwise, line 29 sets the thread’s theft state to REQ
and line 30 sends the thread a signal.
Quick Quiz 5.53: In Listing 5.18, why is it safe for line 25 to
directly access the other thread’s countermax variable?

Quick Quiz 5.54: In Listing 5.18, why doesn’t line 30 check
for the current thread sending itself a signal?

Quick Quiz 5.55: The code shown in Listings 5.17 and 5.18
works with GCC and POSIX. What would be required to make
it also conform to the ISO C standard?

The loop spanning lines 33–46 waits until each thread
reaches READY state, then steals that thread’s count.
Lines 34–35 skip any non-existent threads, and the loop
spanning lines 36–40 waits until the current thread’s
theft state becomes READY. Line 37 blocks for a
millisecond to avoid priority-inversion problems, and if
line 38 determines that the thread’s signal has not yet
arrived, line 39 resends the signal. Execution reaches
line 41 when the thread’s theft state becomes READY,
so lines 41–44 do the thieving. Line 45 then sets the
thread’s theft state back to IDLE.
Quick Quiz 5.56: In Listing 5.18, why does line 39 resend
the signal?

v2024.12.27a

68 CHAPTER 5. COUNTING

Listing 5.18: Signal-Theft Limit Counter Value-Migration
Functions

1 static void globalize_count(void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve -= countermax;
6 countermax = 0;
7 }
8
9 static void flush_local_count_sig(int unused)

10 {
11 if (READ_ONCE(theft) != THEFT_REQ)
12 return;
13 WRITE_ONCE(theft, THEFT_ACK);
14 if (!counting)
15 smp_store_release(&theft, THEFT_READY);
16 }
17
18 static void flush_local_count(void)
19 {
20 int t;
21 thread_id_t tid;
22
23 for_each_tid(t, tid) {
24 if (theftp[t] != NULL) {
25 if (*countermaxp[t] == 0) {
26 WRITE_ONCE(*theftp[t], THEFT_READY);
27 continue;
28 }
29 WRITE_ONCE(*theftp[t], THEFT_REQ);
30 pthread_kill(tid, SIGUSR1);
31 }
32 }
33 for_each_tid(t, tid) {
34 if (theftp[t] == NULL)
35 continue;
36 while (smp_load_acquire(theftp[t]) != THEFT_READY) {
37 poll(NULL, 0, 1);
38 if (READ_ONCE(*theftp[t]) == THEFT_REQ)
39 pthread_kill(tid, SIGUSR1);
40 }
41 globalcount += *counterp[t];
42 *counterp[t] = 0;
43 globalreserve -= *countermaxp[t];
44 *countermaxp[t] = 0;
45 smp_store_release(theftp[t], THEFT_IDLE);
46 }
47 }
48
49 static void balance_count(void)
50 {
51 countermax = globalcountmax - globalcount -
52 globalreserve;
53 countermax /= num_online_threads();
54 if (countermax > MAX_COUNTERMAX)
55 countermax = MAX_COUNTERMAX;
56 globalreserve += countermax;
57 counter = countermax / 2;
58 if (counter > globalcount)
59 counter = globalcount;
60 globalcount -= counter;
61 }

Listing 5.19: Signal-Theft Limit Counter Add Function
1 int add_count(unsigned long delta)
2 {
3 int fastpath = 0;
4
5 WRITE_ONCE(counting, 1);
6 barrier();
7 if (smp_load_acquire(&theft) <= THEFT_REQ &&
8 countermax - counter >= delta) {
9 WRITE_ONCE(counter, counter + delta);

10 fastpath = 1;
11 }
12 barrier();
13 WRITE_ONCE(counting, 0);
14 barrier();
15 if (READ_ONCE(theft) == THEFT_ACK)
16 smp_store_release(&theft, THEFT_READY);
17 if (fastpath)
18 return 1;
19 spin_lock(&gblcnt_mutex);
20 globalize_count();
21 if (globalcountmax - globalcount -
22 globalreserve < delta) {
23 flush_local_count();
24 if (globalcountmax - globalcount -
25 globalreserve < delta) {
26 spin_unlock(&gblcnt_mutex);
27 return 0;
28 }
29 }
30 globalcount += delta;
31 balance_count();
32 spin_unlock(&gblcnt_mutex);
33 return 1;
34 }

Lines 49–61 show balance_count(), which is similar
to that of earlier examples.

Listing 5.19 shows the add_count() function. The
fastpath spans lines 5–18, and the slowpath lines 19–33.
Line 5 sets the per-thread counting variable to 1 so that
any subsequent signal handlers interrupting this thread will
set the theft state to ACK rather than READY, allowing
this fastpath to complete properly. Line 6 prevents the
compiler from reordering any of the fastpath body to
precede the setting of counting. Lines 7 and 8 check
to see if the per-thread data can accommodate the add_
count() and if there is no ongoing theft in progress, and
if so line 9 does the fastpath addition and line 10 notes
that the fastpath was taken.

In either case, line 12 prevents the compiler from
reordering the fastpath body to follow line 13, which
permits any subsequent signal handlers to undertake theft.
Line 14 again disables compiler reordering, and then
line 15 checks to see if the signal handler deferred the
theft state-change to READY, and, if so, line 16 uses
smp_store_release() to set the theft state to READY,
further ensuring that any CPU that sees the READY state
also sees the effects of line 9. If the fastpath addition at
line 9 was executed, then line 18 returns success.

v2024.12.27a

5.4. EXACT LIMIT COUNTERS 69

Listing 5.20: Signal-Theft Limit Counter Subtract Function
1 int sub_count(unsigned long delta)
2 {
3 int fastpath = 0;
4
5 WRITE_ONCE(counting, 1);
6 barrier();
7 if (smp_load_acquire(&theft) <= THEFT_REQ &&
8 counter >= delta) {
9 WRITE_ONCE(counter, counter - delta);

10 fastpath = 1;
11 }
12 barrier();
13 WRITE_ONCE(counting, 0);
14 barrier();
15 if (READ_ONCE(theft) == THEFT_ACK)
16 smp_store_release(&theft, THEFT_READY);
17 if (fastpath)
18 return 1;
19 spin_lock(&gblcnt_mutex);
20 globalize_count();
21 if (globalcount < delta) {
22 flush_local_count();
23 if (globalcount < delta) {
24 spin_unlock(&gblcnt_mutex);
25 return 0;
26 }
27 }
28 globalcount -= delta;
29 balance_count();
30 spin_unlock(&gblcnt_mutex);
31 return 1;
32 }

Listing 5.21: Signal-Theft Limit Counter Read Function
1 unsigned long read_count(void)
2 {
3 int t;
4 unsigned long sum;
5
6 spin_lock(&gblcnt_mutex);
7 sum = globalcount;
8 for_each_thread(t) {
9 if (counterp[t] != NULL)

10 sum += READ_ONCE(*counterp[t]);
11 }
12 spin_unlock(&gblcnt_mutex);
13 return sum;
14 }

Listing 5.22: Signal-Theft Limit Counter Initialization Func-
tions

1 void count_init(void)
2 {
3 struct sigaction sa;
4
5 sa.sa_handler = flush_local_count_sig;
6 sigemptyset(&sa.sa_mask);
7 sa.sa_flags = 0;
8 if (sigaction(SIGUSR1, &sa, NULL) != 0) {
9 perror("sigaction");

10 exit(EXIT_FAILURE);
11 }
12 }
13
14 void count_register_thread(void)
15 {
16 int idx = smp_thread_id();
17
18 spin_lock(&gblcnt_mutex);
19 counterp[idx] = &counter;
20 countermaxp[idx] = &countermax;
21 theftp[idx] = &theft;
22 spin_unlock(&gblcnt_mutex);
23 }
24
25 void count_unregister_thread(int nthreadsexpected)
26 {
27 int idx = smp_thread_id();
28
29 spin_lock(&gblcnt_mutex);
30 globalize_count();
31 counterp[idx] = NULL;
32 countermaxp[idx] = NULL;
33 theftp[idx] = NULL;
34 spin_unlock(&gblcnt_mutex);
35 }

Otherwise, we fall through to the slowpath starting at
line 19. The structure of the slowpath is similar to those
of earlier examples, so its analysis is left as an exercise
to the reader. Similarly, the structure of sub_count()
on Listing 5.20 is the same as that of add_count(), so
the analysis of sub_count() is also left as an exercise
for the reader, as is the analysis of read_count() in
Listing 5.21.

Lines 1–12 of Listing 5.22 show count_init(), which
set up flush_local_count_sig() as the signal han-
dler for SIGUSR1, enabling the pthread_kill() calls
in flush_local_count() to invoke flush_local_
count_sig(). The code for thread registry and unregistry
is similar to that of earlier examples, so its analysis is left
as an exercise for the reader.

5.4.5 Signal-Theft Limit Counter Discus-
sion

The signal-theft implementation runs more than eight
times as fast as the atomic implementation on my six-core
x86 laptop. Is it always preferable?

v2024.12.27a

70 CHAPTER 5. COUNTING

The signal-theft implementation would be vastly prefer-
able on Pentium-4 systems, given their slow atomic in-
structions, but the old 80386-based Sequent Symmetry
systems would do much better with the shorter path length
of the atomic implementation. However, this increased
update-side performance comes at the prices of higher
read-side overhead: Those POSIX signals are not free. If
ultimate performance is of the essence, you will need to
measure them both on the system that your application is
to be deployed on.

Quick Quiz 5.57: Not only are POSIX signals slow, sending
one to each thread simply does not scale. What would you do
if you had (say) 10,000 threads and needed the read side to be
fast?

This is but one reason why high-quality APIs are so
important: They permit implementations to be changed
as required by ever-changing hardware performance char-
acteristics.
Quick Quiz 5.58: What if you want an exact limit counter to
be exact only for its lower limit, but to allow the upper limit to
be inexact?

5.4.6 Applying Exact Limit Counters
Although the exact limit counter implementations pre-
sented in this section can be very useful, they are not
much help if the counter’s value remains near zero at
all times, as it might when counting the number of out-
standing accesses to an I/O device. The high overhead
of such near-zero counting is especially painful given
that we normally don’t care how many references there
are. As noted in the removable I/O device access-count
problem posed by Quick Quiz 5.5, the number of accesses
is irrelevant except in those rare cases when someone is
actually trying to remove the device.

One simple solution to this problem is to add a large
“bias” (for example, one billion) to the counter in order
to ensure that the value is far enough from zero that the
counter can operate efficiently. When someone wants
to remove the device, this bias is subtracted from the
counter value. Counting the last few accesses will be quite
inefficient, but the important point is that the many prior
accesses will have been counted at full speed.

Quick Quiz 5.59: What else had you better have done when
using a biased counter?

Although a biased counter can be quite helpful and
useful, it is only a partial solution to the removable I/O

device access-count problem called out on page 51. When
attempting to remove a device, we must not only know
the precise number of current I/O accesses, we also need
to prevent any future accesses from starting. One way
to accomplish this is to read-acquire a reader-writer lock
when updating the counter, and to write-acquire that same
reader-writer lock when checking the counter. Code for
doing I/O might be as follows:

1 read_lock(&mylock);
2 if (removing) {
3 read_unlock(&mylock);
4 cancel_io();
5 } else {
6 add_count(1);
7 read_unlock(&mylock);
8 do_io();
9 sub_count(1);

10 }

Line 1 read-acquires the lock, and either line 3 or 7
releases it. Line 2 checks to see if the device is being
removed, and, if so, line 3 releases the lock and line 4
cancels the I/O, or takes whatever action is appropriate
given that the device is to be removed. Otherwise, line 6
increments the access count, line 7 releases the lock, line 8
performs the I/O, and line 9 decrements the access count.

Quick Quiz 5.60: This is ridiculous! We are read-acquiring
a reader-writer lock to update the counter? What are you
playing at???

The code to remove the device might be as follows:

1 write_lock(&mylock);
2 removing = 1;
3 sub_count(mybias);
4 write_unlock(&mylock);
5 while (read_count() != 0)
6 poll(NULL, 0, 1);
7 remove_device();

Line 1 write-acquires the lock and line 4 releases it.
Line 2 notes that the device is being removed, and the
loop spanning lines 5–6 waits for any I/O operations to
complete. Finally, line 7 does any additional processing
needed to prepare for device removal.

Quick Quiz 5.61: What other issues would need to be
accounted for in a real system?

v2024.12.27a

5.5. PARALLEL COUNTING DISCUSSION 71

5.5 Parallel Counting Discussion

This idea that there is generality in the specific is of

far-reaching importance.

Douglas R. Hofstadter

This chapter has presented the reliability, performance, and
scalability problems with traditional counting primitives.
The C-language ++ operator is not guaranteed to function
reliably in multithreaded code, and atomic operations to a
single variable neither perform nor scale well. This chapter
therefore presented a number of counting algorithms that
perform and scale extremely well in certain special cases.

It is well worth reviewing the lessons from these count-
ing algorithms. To that end, Section 5.5.1 overviews
requisite validation, Section 5.5.2 summarizes perfor-
mance and scalability, Section 5.5.3 discusses the need
for specialization, and finally, Section 5.5.4 enumerates
lessons learned and calls attention to later chapters that
will expand on these lessons.

5.5.1 Parallel Counting Validation
Many of the algorithms in this section are quite simple, so
much so that it is tempting to declare them to be correct
by construction or by inspection. Unfortunately, it is all
too easy for those carrying out the construction or the
inspection to become overconfident, tired, confused, or
just plain sloppy, all of which can result in bugs. And
early implementations of these limit counters have in fact
contained bugs, in some cases aided and abetted by the
complexities inherent in maintaining a 64-bit count on a
32-bit system. Therefore, validation is not optional, even
for the simple algorithms presented in this chapter.

The statistical counters are tested for acting like counters
(“counttorture.h”), that is, that the aggregate sum in
the counter changes by the sum of the amounts added by
the various update-side threads.

The limit counters are also tested for acting like counters
(“limtorture.h”), and additionally checked for their
ability to accommodate the specified limit.

Both of these test suites produce performance data that
is used in Section 5.5.2.

Although this level of validation is good and sufficient
for textbook implementations such as these, it would be
wise to apply additional validation before putting similar
algorithms into production. Chapter 11 describes addi-
tional approaches to testing, and given the simplicity of

most of these counting algorithms, most of the techniques
described in Chapter 12 can also be quite helpful.

5.5.2 Parallel Counting Performance
The top half of Table 5.1 shows the performance of the
four parallel statistical counting algorithms. All four algo-
rithms provide near-perfect linear scalability for updates.
The per-thread-variable implementation (count_end.c)
is significantly faster on updates than the array-based
implementation (count_stat.c), but is slower at reads
on large numbers of core, and suffers severe lock con-
tention when there are many parallel readers. This con-
tention can be addressed using the deferred-processing
techniques introduced in Chapter 9, as shown on the
count_end_rcu.c row of Table 5.1. Deferred process-
ing also shines on the count_stat_eventual.c row,
courtesy of eventual consistency.

Quick Quiz 5.62: On the count_stat.c row of Table 5.1,
we see that the read-side scales linearly with the number of
threads. How is that possible given that the more threads there
are, the more per-thread counters must be summed up?

Quick Quiz 5.63: Even on the fourth row of Table 5.1,
the read-side performance of these statistical counter imple-
mentations is pretty horrible. So why bother with them?

The bottom half of Table 5.1 shows the performance of
the parallel limit-counting algorithms. Exact enforcement
of the limits incurs a substantial update-side performance
penalty, although on this x86 system that penalty can
be reduced by substituting signals for atomic operations.
All of these implementations suffer from read-side lock
contention in the face of concurrent readers.

Quick Quiz 5.64: Given the performance data shown in the
bottom half of Table 5.1, we should always prefer signals over
atomic operations, right?

Quick Quiz 5.65: Can advanced techniques be applied to
address the lock contention for readers seen in the bottom half
of Table 5.1?

In short, this chapter has demonstrated a number of
counting algorithms that perform and scale extremely
well in a number of special cases. But must our parallel
counting be confined to special cases? Wouldn’t it be
better to have a general algorithm that operated efficiently
in all cases? The next section looks at these questions.

v2024.12.27a

72 CHAPTER 5. COUNTING

Table 5.1: Statistical/Limit Counter Performance on x86

Algorithm
(count_*.c) Ex

ac
t?

Updates
(ns)

Reads (ns)

Section 1 CPU 8 CPUs 64 CPUs 420 CPUs

stat 5.2.2 6.3 294 303 315 612
stat_eventual 5.2.4 6.4 1 1 1 1
end 5.2.3 2.9 301 6,309 147,594 239,683
end_rcu 13.5.1 2.9 454 481 508 2,317

lim 5.3.2 N 3.2 435 6,678 156,175 239,422
lim_app 5.3.4 N 2.4 485 7,041 173,108 239,682
lim_atomic 5.4.1 Y 19.7 513 7,085 199,957 239,450
lim_sig 5.4.4 Y 4.7 519 6,805 120,000 238,811

5.5.3 Parallel Counting Specializations
The fact that these algorithms only work well in their
respective special cases might be considered a major
problem with parallel programming in general. After
all, the C-language ++ operator works just fine in single-
threaded code, and not just for special cases, but in general,
right?

This line of reasoning does contain a grain of truth, but
is in essence misguided. The problem is not parallelism
as such, but rather scalability. To understand this, first
consider the C-language ++ operator. The fact is that it
does not work in general, only for a restricted range of
numbers. If you need to deal with 1,000-digit decimal
numbers, the C-language ++ operator will not work for
you.

Quick Quiz 5.66: The ++ operator works just fine for 1,000-
digit numbers! Haven’t you heard of operator overloading???

This problem is not specific to arithmetic. Suppose you
need to store and query data. Should you use an ASCII
file? XML? A relational database? A linked list? A dense
array? A B-tree? A radix tree? Or one of the plethora of
other data structures and environments that permit data to
be stored and queried? It depends on what you need to
do, how fast you need it done, and how large your data set
is—even on sequential systems.

Similarly, if you need to count, your solution will
depend on how large of numbers you need to work with,
how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what level
of performance and scalability you will need.

Nor is this problem specific to software. The design
for a bridge meant to allow people to walk across a small

brook might be a simple as a single wooden plank. But you
would probably not use a plank to span the kilometers-wide
mouth of the Columbia River, nor would such a design be
advisable for bridges carrying concrete trucks. In short,
just as bridge design must change with increasing span
and load, so must software design change as the number of
CPUs increases. That said, it would be good to automate
this process, so that the software adapts to changes in
hardware configuration and in workload. There has in fact
been some research into this sort of automation [AHS+03,
SAH+03], and the Linux kernel does some boot-time
reconfiguration, including limited binary rewriting. This
sort of adaptation will become increasingly important as
the number of CPUs on mainstream systems continues to
increase.

In short, as discussed in Chapter 3, the laws of physics
constrain parallel software just as surely as they constrain
mechanical artifacts such as bridges. These constraints
force specialization, though in the case of software it
might be possible to automate the choice of specialization
to fit the hardware and workload in question.

Of course, even generalized counting is quite special-
ized. We need to do a great number of other things with
computers. The next section relates what we have learned
from counters to topics taken up later in this book.

5.5.4 Parallel Counting Lessons
The opening paragraph of this chapter promised that our
study of counting would provide an excellent introduction
to parallel programming. This section makes explicit
connections between the lessons from this chapter and the
material presented in a number of later chapters.

The examples in this chapter have shown that an impor-
tant scalability and performance tool is partitioning. The

v2024.12.27a

5.5. PARALLEL COUNTING DISCUSSION 73

counters might be fully partitioned, as in the statistical
counters discussed in Section 5.2, or partially partitioned
as in the limit counters discussed in Sections 5.3 and 5.4.
Partitioning will be considered in far greater depth in Chap-
ter 6, and partial parallelization in particular in Section 6.4,
where it is called parallel fastpath.
Quick Quiz 5.67: But if we are going to have to partition
everything, why bother with shared-memory multithreading?
Why not just partition the problem completely and run as
multiple processes, each in its own address space?

The partially partitioned counting algorithms used lock-
ing to guard the global data, and locking is the subject
of Chapter 7. In contrast, the partitioned data tended to
be fully under the control of the corresponding thread, so
that no synchronization whatsoever was required. This
data ownership will be introduced in Section 6.3.4 and
discussed in more detail in Chapter 8.

Because integer addition and subtraction are extremely
cheap compared to typical synchronization operations,
achieving reasonable scalability requires synchronization
operations be used sparingly. One way of achieving this
is to batch the addition and subtraction operations, so that
a great many of these cheap operations are handled by a
single synchronization operation. Batching optimizations
of one sort or another are used by each of the counting
algorithms listed in Table 5.1.

Finally, the eventually consistent statistical counter dis-
cussed in Section 5.2.4 showed how deferring activity
(in that case, updating the global counter) can provide
substantial performance and scalability benefits. This
approach allows common case code to use much cheaper
synchronization operations than would otherwise be pos-
sible. Chapter 9 will examine a number of additional ways
that deferral can improve performance, scalability, and
even real-time response.

Summarizing the summary:

1. Partitioning promotes performance and scalability.

2. Partial partitioning, that is, partitioning applied only
to common code paths, works almost as well.

3. Partial partitioning can be applied to code (as in
Section 5.2’s statistical counters’ partitioned updates
and non-partitioned reads), but also across time (as in
Section 5.3’s and Section 5.4’s limit counters running
fast when far from the limit, but slowly when close
to the limit).

4. Partitioning across time often batches updates locally
in order to reduce the number of expensive global

Partitioning

Work

Access Control

Parallel

With Hardware

Interacting

Resource
Partitioning and

Replication

PartitionWeaken

Batch

Figure 5.8: Optimization and the Four Parallel-
Programming Tasks

operations, thereby decreasing synchronization over-
head, in turn improving performance and scalability.
All the algorithms shown in Table 5.1 make heavy
use of batching.

5. Read-only code paths should remain read-only: Spu-
rious synchronization writes to shared memory
kill performance and scalability, as seen in the
count_end.c row of Table 5.1.

6. Judicious use of delay promotes performance and
scalability, as seen in Section 5.2.4.

7. Parallel performance and scalability is usually a
balancing act: Beyond a certain point, optimizing
some code paths will degrade others. The count_
stat.c and count_end_rcu.c rows of Table 5.1
illustrate this point.

8. Different levels of performance and scalability will
affect algorithm and data-structure design, as do a
large number of other factors. Figure 5.1 illustrates
this point: Atomic increment might be completely
acceptable for a two-CPU system, but nevertheless
be completely inadequate for an eight-CPU system.

Summarizing still further, we have the “big three” meth-
ods of increasing performance and scalability, namely
(1) partitioning over CPUs or threads, (2) batching so that
more work can be done by each expensive synchronization
operation, and (3) weakening synchronization operations
where feasible. As a rough rule of thumb, you should
apply these methods in this order, as was noted earlier
in the discussion of Figure 2.6 on page 15. The parti-
tioning optimization applies to the “Resource Partitioning
and Replication” bubble, the batching optimization to the

v2024.12.27a

74 CHAPTER 5. COUNTING

“Work Partitioning” bubble, and the weakening optimiza-
tion to the “Parallel Access Control” bubble, as shown in
Figure 5.8. Of course, if you are using special-purpose
hardware such as digital signal processors (DSPs), field-
programmable gate arrays (FPGAs), or general-purpose
graphical processing units (GPGPUs), you may need to
pay close attention to the “Interacting With Hardware”
bubble throughout the design process. For example, the
structure of a GPGPU’s hardware threads and memory
connectivity might richly reward very careful partitioning
and batching design decisions.

In short, as noted at the beginning of this chapter, the
simplicity of counting have allowed us to explore many
fundamental concurrency issues without the distraction
of complex synchronization primitives or elaborate data
structures. Such synchronization primitives and data
structures are covered in later chapters.

v2024.12.27a

Divide and rule.

Philip II of MacedonChapter 6

Partitioning and Synchronization Design

This chapter describes how to design software to take ad-
vantage of modern commodity multicore systems by using
idioms, or “design patterns” [Ale79, GHJV95, SSRB00],
to balance performance, scalability, and response time.
Correctly partitioned problems lead to simple, scalable,
and high-performance solutions, while poorly partitioned
problems result in slow and complex solutions. This
chapter will help you design partitioning into your code,
with some discussion of batching and weakening as well.
The word “design” is very important: You should parti-
tion first, batch second, weaken third, and code fourth.
Changing this order often leads to poor performance and
scalability along with great frustration.1

This chapter will also look at some specific problems,
including:

1. Constraints on the classic Dining Philosophers prob-
lem requiring that all the philophers be able to dine
concurrently.

2. Lock-based double-ended queue implementations
that provide concurrency between operations on both
ends of a given queue when there are many elements
in the queue, but still work correctly when the queue
contains only a few elements. (Or, for that matter, no
elements.)

3. Summarizing the rough quality of a concurrent algo-
rithm with only a few numbers.

4. Selecting the right granularity of partitioning.

5. Concurrent designs for applications that do not fully
partition.

6. Obtaining more than 2x speedup from two CPUs.
1 That other great dodge around the Laws of Physics, read-only

replication, is covered in Chapter 9.

To this end, Section 6.1 presents partitioning exercises,
Section 6.2 reviews partitionability design criteria, Sec-
tion 6.3 discusses synchronization granularity selection,
Section 6.4 overviews important parallel-fastpath design
patterns that provide speed and scalability on common-
case fastpaths while using simpler less-scalable “slow path”
fallbacks for unusual situations, and finally Section 6.5
takes a brief look beyond partitioning.

6.1 Partitioning Exercises

Whenever a theory appears to you as the only

possible one, take this as a sign that you have

neither understood the theory nor the problem

which it was intended to solve.

Karl Popper

Although partitioning is more widely understood than it
was in the early 2000s, its value is still underappreciated.
Section 6.1.1 therefore takes more highly parallel look at
the classic Dining Philosophers problem and Section 6.1.2
revisits the double-ended queue.

6.1.1 Dining Philosophers Problem
Figure 6.1 shows a diagram of the classic Dining Philoso-
phers problem [Dĳ71]. This problem features five philoso-
phers who do nothing but think and eat a “very difficult
kind of spaghetti” which requires two forks to eat.2 A
given philosopher is permitted to use only the forks to his
or her immediate right and left, but will not put a given
fork down until sated.

The object is to construct an algorithm that, quite
literally, prevents starvation. One starvation scenario

2 But feel free to instead think in terms of chopsticks.

75

v2024.12.27a

76 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

P1

P2

P3P4

P5

Figure 6.1: Dining Philosophers Problem

would be if all of the philosophers picked up their leftmost
forks simultaneously. Because none of them will put down
their fork until after they finished eating, and because none
of them may pick up their second fork until at least one
of them has finished eating, they all starve. Please note
that it is not sufficient to allow at least one philosopher to
eat. As Figure 6.2 shows, starvation of even a few of the
philosophers is to be avoided.

Dĳkstra’s solution used a global semaphore, which
works fine assuming negligible communications delays,
an assumption that became invalid in the late 1980s or
early 1990s.3 More recent solutions number the forks
as shown in Figure 6.3. Each philosopher picks up the
lowest-numbered fork next to his or her plate, then picks
up the other fork. The philosopher sitting in the uppermost
position in the diagram thus picks up the leftmost fork first,
then the rightmost fork, while the rest of the philosophers
instead pick up their rightmost fork first. Because two of
the philosophers will attempt to pick up fork 1 first, and
because only one of those two philosophers will succeed,
there will be five forks available to four philosophers. At
least one of these four will have two forks, and will thus
be able to eat.

This general technique of numbering resources and
acquiring them in numerical order is heavily used as a
deadlock-prevention technique. However, it is easy to
imagine a sequence of events that will result in only one
philosopher eating at a time even though all are hungry:

3 It is all too easy to denigrate Dĳkstra from the viewpoint of the
year 2021, more than 50 years after the fact. If you still feel the need
to denigrate Dĳkstra, my advice is to publish something, wait 50 years,
and then see how well your ideas stood the test of time.

1. P2 picks up fork 1, preventing P1 from taking a fork.

2. P3 picks up fork 2.

3. P4 picks up fork 3.

4. P5 picks up fork 4.

5. P5 picks up fork 5 and eats.

6. P5 puts down forks 4 and 5.

7. P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philoso-
pher eating at a given time, even when all five philosophers
are hungry, despite the fact that there are more than enough
forks for two philosophers to eat concurrently. It should
be possible to do better than this!

One approach is shown in Figure 6.4, which includes
four philosophers rather than five to better illustrate the
partition technique. Here the upper and rightmost philoso-
phers share a pair of forks, while the lower and leftmost
philosophers share another pair of forks. If all philoso-
phers are simultaneously hungry, at least two will always
be able to eat concurrently. In addition, as shown in the
figure, the forks can now be bundled so that the pair are
picked up and put down simultaneously, simplifying the
acquisition and release algorithms.

Quick Quiz 6.1: Is there a better solution to the Dining
Philosophers Problem?

Quick Quiz 6.2: How would you valididate an algorithm
alleged to solve the Dining Philosophers Problem?

This is an example of “horizontal parallelism” [Inm85]
or “data parallelism”, so named because there is no depen-
dency among the pairs of philosophers. In a horizontally
parallel data-processing system, a given item of data would
be processed by only one of a replicated set of software
components.

Quick Quiz 6.3: And in just what sense can this “horizontal
parallelism” be said to be “horizontal”?

6.1.2 Double-Ended Queue
A double-ended queue is a data structure containing a
list of elements that may be inserted or removed from
either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both
ends of the double-ended queue is difficult [Gro07]. This

v2024.12.27a

6.1. PARTITIONING EXERCISES 77

Figure 6.2: Partial Starvation Is Also Bad

P1

1

P2

2

P3

3

P4

4

P5

5

Figure 6.3: Dining Philosophers Problem, Textbook
Solution

section shows how a partitioning design strategy can result
in a reasonably simple implementation, looking at three
general approaches in the following sections. But first,
how should we validate a concurrent double-ended queue?

6.1.2.1 Double-Ended Queue Validation

A good place to start is with invariants. For example, if
elements are pushed onto one end of a double-ended queue
and popped off of the other, the order of those elements
must be preserved. Similarly, if elements are pushed onto
one end of the queue and popped off of that same end, the
order of those elements must be reversed. Any element
popped from the queue must have been most recently
pushed onto that queue, and if the queue is emptied, all

P1

P2

P3

P4

Figure 6.4: Dining Philosophers Problem, Partitioned

elements pushed onto it must have already been popped
from it.

The beginnings of a test suite for concurrent double-
ended queues (“deqtorture.h”) provides the following
checks:

1. Element-ordering checks provided by CHECK_
SEQUENCE_PAIR().

2. Checks that elements popped were most recently
pushed, provided by melee().

3. Checks that elements pushed are popped before the
queue is emptied, also provided by melee().

This suite includes both sequential and concurrent tests.
Although this suite is good and sufficient for textbook

v2024.12.27a

78 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Header L

Lock L

0 Header R

Lock R

Header L

Lock L

Header L

Lock L

0 1 Header R

Lock R

Header R

Lock R

Header L

Lock L

0 1 2 Header R

Lock R

Header L

Lock L

0 1 2 Header R

Lock R

3

Figure 6.5: Double-Ended Queue With Left- and Right-
Hand Locks

code, you should test considerably more thoroughly for
code intended for production use. Chapters 11 and 12
cover a large array of validation tools and techniques.

But with a prototype test suite in place, we are ready
to look at the double-ended-queue algorithms in the next
sections.

6.1.2.2 Left- and Right-Hand Locks

One seemingly straightforward approach would be to use
a doubly linked list with a left-hand lock for left-hand-end
enqueue and dequeue operations along with a right-hand
lock for right-hand-end operations, as shown in Figure 6.5.
However, the problem with this approach is that the two
locks’ domains must overlap when there are fewer than
four elements on the list. This overlap is due to the
fact that removing any given element affects not only
that element, but also its left- and right-hand neighbors.
These domains are indicated by color in the figure, with
blue with downward stripes indicating the domain of
the left-hand lock, red with upward stripes indicating the
domain of the right-hand lock, and purple (with no stripes)
indicating overlapping domains. Although it is possible
to create an algorithm that works this way, perhaps using
a dummy element similar to the two-lock queue presented
by Michael and Scott [MS96], the fact that it has no

Lock L

DEQ L

Lock R

DEQ R

Figure 6.6: Compound Double-Ended Queue

fewer than five special cases should raise a big red flag,
especially given that concurrent activity at the other end
of the list can shift the queue from one special case to
another at any time.

It is far better to consider other designs.

6.1.2.3 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is
shown in Figure 6.6. Two separate double-ended queues
are run in tandem, each protected by its own lock. This
means that elements must occasionally be shuttled from
one of the double-ended queues to the other, in which case
both locks must be held. A simple lock hierarchy may
be used to avoid deadlock, for example, always acquiring
the left-hand lock before acquiring the right-hand lock.
This will be much simpler than applying two locks to the
same double-ended queue, as we can unconditionally left-
enqueue elements to the left-hand queue and right-enqueue
elements to the right-hand queue. The main complication
arises when dequeuing from an empty queue, in which
case it is necessary to:

1. If holding the right-hand lock, release it and acquire
the left-hand lock.

2. Acquire the right-hand lock.

3. Rebalance the elements across the two queues.

4. Remove the required element if there is one.

5. Release both locks.

Quick Quiz 6.4: In this compound double-ended queue
implementation, what should be done if the queue has become
non-empty while releasing and reacquiring the lock?

The resulting code (locktdeq.c) is quite straightfor-
ward. The rebalancing operation might well shuttle a given
element back and forth between the two queues, wasting
time and possibly requiring workload-dependent heuris-
tics to obtain optimal performance. Although this might
well be the best approach in some cases, it is interesting
to try for an algorithm with greater determinism.

v2024.12.27a

6.1. PARTITIONING EXERCISES 79

Lock 0

DEQ 0 DEQ 1

Lock 1

DEQ 2

Lock 2

DEQ 3

Lock 3

Index R

Lock RLock L

Index L

Figure 6.7: Hashed Double-Ended Queue

6.1.2.4 Hashed Double-Ended Queue

One of the simplest and most effective ways to determinis-
tically partition a data structure is to hash it. It is possible
to trivially hash a double-ended queue by assigning each
element a sequence number based on its position in the list,
so that the first element left-enqueued into an empty queue
is numbered zero and the first element right-enqueued
into an empty queue is numbered one. A series of ele-
ments left-enqueued into an otherwise-idle queue would
be assigned decreasing numbers (−1, −2, −3, . . .), while
a series of elements right-enqueued into an otherwise-idle
queue would be assigned increasing numbers (2, 3, 4, . . .).
A key point is that it is not necessary to actually represent
a given element’s number, as this number will be implied
by its position in the queue.

Given this approach, we assign one lock to guard the
left-hand index, one to guard the right-hand index, and one
lock for each hash chain. Figure 6.7 shows the resulting
data structure given four hash chains. Note that the lock
domains do not overlap, and that deadlock is avoided by
acquiring the index locks before the chain locks, and by
never acquiring more than one lock of a given type (index
or chain) at a time.

Each hash chain is itself a double-ended queue, and
in this example, each holds every fourth element. The
uppermost portion of Figure 6.8 shows the state after a
single element (“R1”) has been right-enqueued, with the
right-hand index having been incremented to reference
hash chain 2. The middle portion of this same figure
shows the state after three more elements have been
right-enqueued. As you can see, the indexes are back to
their initial states (see Figure 6.7), however, each hash
chain is now non-empty. The lower portion of this figure
shows the state after three additional elements have been
left-enqueued and an additional element has been right-
enqueued.

DEQ 0 DEQ 1 DEQ 2 DEQ 3

Index RIndex L

Enq 3R

R1

DEQ 0 DEQ 1 DEQ 2 DEQ 3

Index RIndex L

Enq 3L1R

R1 R2 R3R4

L0 L −1

DEQ 0 DEQ 1 DEQ 2 DEQ 3

Index RIndex L

R1

R2 R3R4 R5

L −2

Figure 6.8: Hashed Double-Ended Queue After Insertions

v2024.12.27a

80 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

L0 R1 R2 R3

L−1L−2L−3L−4

L−8 L−7 L−6

R4 R5 R6 R7

L−5

Figure 6.9: Hashed Double-Ended Queue With 16 Ele-
ments

Listing 6.1: Lock-Based Parallel Double-Ended Queue Data
Structure

1 struct pdeq {
2 spinlock_t llock;
3 int lidx;
4 spinlock_t rlock;
5 int ridx;
6 struct deq bkt[PDEQ_N_BKTS];
7 };

From the last state shown in Figure 6.8, a left-dequeue
operation would return element “L−2” and leave the left-
hand index referencing hash chain 2, which would then
contain only a single element (“R2”). In this state, a
left-enqueue running concurrently with a right-enqueue
would result in lock contention, but the probability of
such contention can be reduced to arbitrarily low levels
by using a larger hash table.

Figure 6.9 shows how 16 elements would be organized
in a four-hash-bucket parallel double-ended queue. Each
underlying single-lock double-ended queue holds a one-
quarter slice of the full parallel double-ended queue.

Listing 6.1 shows the corresponding C-language data
structure, assuming an existing struct deq that provides
a trivially locked double-ended-queue implementation.
This data structure contains the left-hand lock on line 2,
the left-hand index on line 3, the right-hand lock on line 4
(which is cache-aligned in the actual implementation), the
right-hand index on line 5, and, finally, the hashed array
of simple lock-based double-ended queues on line 6. A
high-performance implementation would of course use
padding or special alignment directives to avoid false
sharing.

Listing 6.2 (lockhdeq.c) shows the implementation of
the enqueue and dequeue functions.4 Discussion will focus
on the left-hand operations, as the right-hand operations
are trivially derived from them.

Lines 1–13 show pdeq_pop_l(), which left-dequeues
and returns an element if possible, returning NULL other-

4 One could easily create a polymorphic implementation in any
number of languages, but doing so is left as an exercise for the reader.

Listing 6.2: Lock-Based Parallel Double-Ended Queue Imple-
mentation

1 struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {
3 struct cds_list_head *e;
4 int i;
5
6 spin_lock(&d->llock);
7 i = moveright(d->lidx);
8 e = deq_pop_l(&d->bkt[i]);
9 if (e != NULL)

10 d->lidx = i;
11 spin_unlock(&d->llock);
12 return e;
13 }
14
15 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
16 {
17 struct cds_list_head *e;
18 int i;
19
20 spin_lock(&d->rlock);
21 i = moveleft(d->ridx);
22 e = deq_pop_r(&d->bkt[i]);
23 if (e != NULL)
24 d->ridx = i;
25 spin_unlock(&d->rlock);
26 return e;
27 }
28
29 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
30 {
31 int i;
32
33 spin_lock(&d->llock);
34 i = d->lidx;
35 deq_push_l(e, &d->bkt[i]);
36 d->lidx = moveleft(d->lidx);
37 spin_unlock(&d->llock);
38 }
39
40 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
41 {
42 int i;
43
44 spin_lock(&d->rlock);
45 i = d->ridx;
46 deq_push_r(e, &d->bkt[i]);
47 d->ridx = moveright(d->ridx);
48 spin_unlock(&d->rlock);
49 }

v2024.12.27a

6.1. PARTITIONING EXERCISES 81

wise. Line 6 acquires the left-hand spinlock, and line 7
computes the index to be dequeued from. Line 8 dequeues
the element, and, if line 9 finds the result to be non-NULL,
line 10 records the new left-hand index. Either way, line 11
releases the lock, and, finally, line 12 returns the element
if there was one, or NULL otherwise.

Lines 29–38 show pdeq_push_l(), which left-
enqueues the specified element. Line 33 acquires the
left-hand lock, and line 34 picks up the left-hand in-
dex. Line 35 left-enqueues the specified element onto
the double-ended queue indexed by the left-hand index.
Line 36 then updates the left-hand index and line 37
releases the lock.

As noted earlier, the right-hand operations are com-
pletely analogous to their left-handed counterparts, so
their analysis is left as an exercise for the reader.

Quick Quiz 6.5: Is the hashed double-ended queue a good
solution? Why or why not?

6.1.2.5 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue,
using a trivial rebalancing scheme that moves all the
elements from the non-empty queue to the now-empty
queue.

Quick Quiz 6.6: Move all the elements to the queue that
became empty? In what possible universe is this brain-dead
solution in any way optimal???

In contrast to the hashed implementation presented in
the previous section, the compound implementation will
build on a sequential implementation of a double-ended
queue that uses neither locks nor atomic operations.

Listing 6.3 shows the implementation. Unlike the
hashed implementation, this compound implementation is
asymmetric, so that we must consider the pdeq_pop_l()
and pdeq_pop_r() implementations separately.

Quick Quiz 6.7: Why can’t the compound parallel double-
ended queue implementation be symmetric?

The pdeq_pop_l() implementation is shown on
lines 1–16 of the figure. Line 5 acquires the left-hand lock,
which line 14 releases. Line 6 attempts to left-dequeue
an element from the left-hand underlying double-ended
queue, and, if successful, skips lines 8–13 to simply return
this element. Otherwise, line 8 acquires the right-hand
lock, line 9 left-dequeues an element from the right-hand
queue, and line 10 moves any remaining elements on the
right-hand queue to the left-hand queue, line 11 initializes

Listing 6.3: Compound Parallel Double-Ended Queue Imple-
mentation

1 struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {
3 struct cds_list_head *e;
4
5 spin_lock(&d->llock);
6 e = deq_pop_l(&d->ldeq);
7 if (e == NULL) {
8 spin_lock(&d->rlock);
9 e = deq_pop_l(&d->rdeq);

10 cds_list_splice(&d->rdeq.chain, &d->ldeq.chain);
11 CDS_INIT_LIST_HEAD(&d->rdeq.chain);
12 spin_unlock(&d->rlock);
13 }
14 spin_unlock(&d->llock);
15 return e;
16 }
17
18 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
19 {
20 struct cds_list_head *e;
21
22 spin_lock(&d->rlock);
23 e = deq_pop_r(&d->rdeq);
24 if (e == NULL) {
25 spin_unlock(&d->rlock);
26 spin_lock(&d->llock);
27 spin_lock(&d->rlock);
28 e = deq_pop_r(&d->rdeq);
29 if (e == NULL) {
30 e = deq_pop_r(&d->ldeq);
31 cds_list_splice(&d->ldeq.chain, &d->rdeq.chain);
32 CDS_INIT_LIST_HEAD(&d->ldeq.chain);
33 }
34 spin_unlock(&d->llock);
35 }
36 spin_unlock(&d->rlock);
37 return e;
38 }
39
40 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
41 {
42 spin_lock(&d->llock);
43 deq_push_l(e, &d->ldeq);
44 spin_unlock(&d->llock);
45 }
46
47 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
48 {
49 spin_lock(&d->rlock);
50 deq_push_r(e, &d->rdeq);
51 spin_unlock(&d->rlock);
52 }

v2024.12.27a

82 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

the right-hand queue, and line 12 releases the right-hand
lock. The element, if any, that was dequeued on line 9
will be returned.

The pdeq_pop_r() implementation is shown on
lines 18–38 of the figure. As before, line 22 acquires
the right-hand lock (and line 36 releases it), and line 23
attempts to right-dequeue an element from the right-hand
queue, and, if successful, skips lines 25–35 to simply
return this element. However, if line 24 determines that
there was no element to dequeue, line 25 releases the
right-hand lock and lines 26–27 acquire both locks in
the proper order. Line 28 then attempts to right-dequeue
an element from the right-hand list again, and if line 29
determines that this second attempt has failed, line 30
right-dequeues an element from the left-hand queue (if
there is one available), line 31 moves any remaining ele-
ments from the left-hand queue to the right-hand queue,
and line 32 initializes the left-hand queue. Either way,
line 34 releases the left-hand lock.
Quick Quiz 6.8: Why is it necessary to retry the right-dequeue
operation on line 28 of Listing 6.3?

Quick Quiz 6.9: Surely the left-hand lock must sometimes be
available!!! So why is it necessary that line 25 of Listing 6.3
unconditionally release the right-hand lock?

The pdeq_push_l() implementation is shown on
lines 40–45 of Listing 6.3. Line 42 acquires the left-
hand spinlock, line 43 left-enqueues the element onto the
left-hand queue, and finally line 44 releases the lock. The
pdeq_push_r() implementation (shown on lines 47–52)
is quite similar.
Quick Quiz 6.10: But in the case where data is flowing in
only one direction, the algorithm shown in Listing 6.3 will
have both ends attempting to acquire the same lock whenever
the consuming end empties its underlying double-ended queue.
Doesn’t that mean that sometimes this algorithm fails to provide
concurrent access to both ends of the queue even when the
queue contains an arbitrarily large number of elements?

6.1.2.6 Double-Ended Queue Discussion

The compound implementation is somewhat more com-
plex than the hashed variant presented in Section 6.1.2.4,
but is still reasonably simple. Of course, a more intelligent
rebalancing scheme could be arbitrarily complex, but the
simple scheme shown here has been shown to perform well
compared to software alternatives [DCW+11] and even
compared to algorithms using hardware assist [DLM+10].
Nevertheless, the best we can hope for from such a scheme

is 2x scalability, as at most two threads can be holding the
dequeue’s locks concurrently. This limitation also applies
to algorithms based on non-blocking synchronization,
such as the compare-and-swap-based dequeue algorithm
of Michael [Mic03].5

Quick Quiz 6.11: Why are there not one but two solutions to
the double-ended queue problem?

In fact, as noted by Dice et al. [DLM+10], an unsynchro-
nized single-threaded double-ended queue significantly
outperforms any of the parallel implementations they stud-
ied. Therefore, the key point is that there can be significant
overhead enqueuing to or dequeuing from a shared queue,
regardless of implementation. This should come as no
surprise in light of the material in Chapter 3, given the
strict first-in-first-out (FIFO) nature of these queues.

Furthermore, these strict FIFO queues are strictly FIFO
only with respect to linearization points [HW90]6 that
are not visible to the caller, in fact, in these examples, the
linearization points are buried in the lock-based critical
sections. These queues are not strictly FIFO with respect
to (say) the times at which the individual operations
started [HKLP12]. This indicates that the strict FIFO
property is not all that valuable in concurrent programs,
and in fact, Kirsch et al. present less-strict queues that
provide improved performance and scalability [KLP12].7
All that said, if you are pushing all the data used by your
concurrent program through a single queue, you really
need to rethink your overall design.

6.1.3 Partitioning Example Discussion
The optimal solution to the dining philosophers problem
given in the answer to the Quick Quiz in Section 6.1.1 is
an excellent example of “horizontal parallelism” or “data
parallelism”. The synchronization overhead in this case
is nearly (or even exactly) zero. In contrast, the double-
ended queue implementations are examples of “vertical
parallelism” or “pipelining”, given that data moves from

5 This paper is interesting in that it showed that special double-
compare-and-swap (DCAS) instructions are not needed for lock-free
implementations of double-ended queues. Instead, the common compare-
and-swap (e.g., x86 cmpxchg) suffices.

6 In short, a linearization point is a single point within a given
function where that function can be said to have taken effect. In this
lock-based implementation, the linearization points can be said to be
anywhere within the critical section that does the work.

7 Nir Shavit produced relaxed stacks for roughly the same rea-
sons [Sha11]. This situation leads some to believe that the linearization
points are useful to theorists rather than developers, and leads others
to wonder to what extent the designers of such data structures and
algorithms were considering the needs of their users.

v2024.12.27a

6.2. DESIGN CRITERIA 83

one thread to another. The tighter coordination required
for pipelining in turn requires larger units of work to obtain
a given level of efficiency.

Quick Quiz 6.12: The tandem double-ended queue runs
about twice as fast as the hashed double-ended queue, even
when I increase the size of the hash table to an insanely large
number. Why is that?

Quick Quiz 6.13: Is there a significantly better way of
handling concurrency for double-ended queues?

These two examples show just how powerful partition-
ing can be in devising parallel algorithms. Section 6.3.5
looks briefly at a third example, matrix multiply. However,
all three of these examples beg for more and better design
criteria for parallel programs, a topic taken up in the next
section.

6.2 Design Criteria

One pound of learning requires ten pounds of

commonsense to apply it.

Persian proverb

One way to obtain the best performance and scalability is
to simply hack away until you converge on the best possible
parallel program. Unfortunately, if your program is other
than microscopically tiny, the space of possible parallel
programs is so huge that convergence is not guaranteed in
the lifetime of the universe. Besides, what exactly is the
“best possible parallel program”? After all, Section 2.2
called out no fewer than three parallel-programming goals
of performance, productivity, and generality, and the best
possible performance will likely come at a cost in terms
of productivity and generality. We clearly need to be able
to make higher-level choices at design time in order to
arrive at an acceptably good parallel program before that
program becomes obsolete.

However, more detailed design criteria are required to
actually produce a real-world design, a task taken up in
this section. This being the real world, these criteria often
conflict to a greater or lesser degree, requiring that the
designer carefully balance the resulting tradeoffs.

As such, these criteria may be thought of as the
“forces” acting on the design, with particularly good
tradeoffs between these forces being called “design pat-
terns” [Ale79, GHJV95].

The design criteria for attaining the three parallel-
programming goals are speedup, contention, overhead,
read-to-write ratio, and complexity:

Speedup: As noted in Section 2.2, increased performance
is the major reason to go to all of the time and trouble
required to parallelize it. Speedup is defined to be the
ratio of the time required to run a sequential version
of the program to the time required to run a parallel
version.

Contention: If more CPUs are applied to a parallel pro-
gram than can be kept busy by that program, the
excess CPUs are prevented from doing useful work
by contention. This may be lock contention, memory
contention, or a host of other performance killers.

Work-to-Synchronization Ratio: A uniprocessor, sin-
gle-threaded, non-preemptible, and non-interrupt-
ible8 version of a given parallel program would not
need any synchronization primitives. Therefore,
any time consumed by these primitives (including
communication cache misses as well as message
latency, locking primitives, atomic instructions, and
memory barriers) is overhead that does not contrib-
ute directly to the useful work that the program is
intended to accomplish. Note that the important
measure is the relationship between the synchroniza-
tion overhead and the overhead of the code in the
critical section, with larger critical sections able to
tolerate greater synchronization overhead. The work-
to-synchronization ratio is related to the notion of
synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely up-
dated may often be replicated rather than partitioned,
and furthermore may be protected with asymmet-
ric synchronization primitives that reduce readers’
synchronization overhead at the expense of that of
writers, thereby reducing overall synchronization
overhead. Corresponding optimizations are possible
for frequently updated data structures, as discussed
in Chapter 5.

Complexity: A parallel program is more complex than an
equivalent sequential program because the parallel
program has a much larger state space than does
the sequential program, although large state spaces
having regular structures can in some cases be easily
understood. A parallel programmer must consider

8 Either by masking interrupts or by being oblivious to them.

v2024.12.27a

84 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

synchronization primitives, messaging, locking de-
sign, critical-section identification, and deadlock in
the context of this larger state space.
This greater complexity often translates to higher
development and maintenance costs. Therefore, bud-
getary constraints can limit the number and types
of modifications made to an existing program, since
a given degree of speedup is worth only so much
time and trouble. Worse yet, added complexity can
actually reduce performance and scalability.
Therefore, beyond a certain point, there may be
potential sequential optimizations that are cheaper
and more effective than parallelization. As noted
in Section 2.2.1, parallelization is but one perfor-
mance optimization of many, and is furthermore an
optimization that applies most readily to CPU-based
bottlenecks.

These criteria will act together to enforce a maximum
speedup. The first three criteria are deeply interrelated,
so the remainder of this section analyzes these interrela-
tionships.9

Note that these criteria may also appear as part of
the requirements specification, and further that they are
one solution to the problem of summarizing the quality
of a concurrent algorithm from page 75. For example,
speedup may act as a relative desideratum (“the faster, the
better”) or as an absolute requirement of the workload
(“the system must support at least 1,000,000 web hits
per second”). Classic design pattern languages describe
relative desiderata as forces and absolute requirements as
context.

An understanding of the relationships between these
design criteria can be very helpful when identifying ap-
propriate design tradeoffs for a parallel program.

1. The less time a program spends in exclusive-lock
critical sections, the greater the potential speedup.
This is a consequence of Amdahl’s Law [Amd67]
because only one CPU may execute within a given
exclusive-lock critical section at a given time.
More specifically, for unbounded linear scalability,
the fraction of time that the program spends in a
given exclusive critical section must decrease as the
number of CPUs increases. For example, a program
will not scale to 10 CPUs unless it spends much

9 A real-world parallel system will be subject to many additional
design criteria, such as data-structure layout, memory size, memory-
hierarchy latencies, bandwidth limitations, and I/O issues.

less than one tenth of its time in the most-restrictive
exclusive-lock critical section.

2. Contention effects consume the excess CPU and/or
wallclock time when the actual speedup is less than
the number of available CPUs. The larger the gap
between the number of CPUs and the actual speedup,
the less efficiently the CPUs will be used. Similarly,
the greater the desired efficiency, the smaller the
achievable speedup.

3. If the available synchronization primitives have high
overhead compared to the critical sections that they
guard, the best way to improve speedup is to reduce
the number of times that the primitives are invoked.
This can be accomplished by batching critical sec-
tions, using data ownership (see Chapter 8), using
asymmetric primitives (see Chapter 9), or by using a
coarse-grained design such as code locking.

4. If the critical sections have high overhead compared
to the primitives guarding them, the best way to
improve speedup is to increase parallelism by moving
to reader/writer locking, data locking, asymmetric,
or data ownership.

5. If the critical sections have high overhead compared
to the primitives guarding them and the data structure
being guarded is read much more often than modified,
the best way to increase parallelism is to move to
reader/writer locking or asymmetric primitives.

6. Many changes that improve SMP performance, for
example, reducing lock contention, also improve
real-time latencies [McK05c].

Quick Quiz 6.14: Don’t all these problems with critical
sections mean that we should just always use non-blocking
synchronization [Her90], which don’t have critical sections?

It is worth reiterating that contention has many guises,
including lock contention, memory contention, cache
overflow, thermal throttling, and much else besides. This
chapter looks primarily at lock and memory contention.

v2024.12.27a

6.3. SYNCHRONIZATION GRANULARITY 85

Program
Sequential
Program

Sequential

Ownership
Data

Locking
Data

Locking
Code

Batch

Disown

Batch

Own

Partition

Partition

Figure 6.10: Design Patterns and Lock Granularity

6.3 Synchronization Granularity

Doing little things well is a step toward doing big

things better.

Harry F. Banks

Figure 6.10 gives a pictorial view of different levels of
synchronization granularity, each of which is described
in one of the following sections. These sections focus
primarily on locking, but similar granularity issues arise
with all forms of synchronization.

6.3.1 Sequential Program
If the program runs fast enough on a single processor,
and has no interactions with other processes, threads, or
interrupt handlers, you should remove the synchronization
primitives and spare yourself their overhead and complex-
ity. Some years back, there were those who would argue
that Moore’s Law would eventually force all programs
into this category. However, as can be seen in Figure 6.11,
the exponential increase in single-threaded performance
halted in about 2003. Therefore, increasing performance
will increasingly require parallelism.10 Given that back
in 2006 Paul typed the first version of this sentence on
a dual-core laptop, and further given that many of the
graphs added in 2020 were generated on a system with

10 This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS for
older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’
ability to retire multiple instructions per clock is typically limited by
memory-system performance.

 0.1

 1

 10

 100

 1000

 10000

 1
97

5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

 2
02

0

C
P

U
 C

lo
ck

 F
re

qu
en

cy
 /

M
IP

S

Year

Figure 6.11: MIPS/Clock-Frequency Trend for Intel
CPUs

56 hardware threads per socket, parallelism is well and
truly here. It is also important to note that Ethernet band-
width is continuing to grow, as shown in Figure 6.12. This
growth will continue to motivate multithreaded servers in
order to handle the communications load.

Please note that this does not mean that you should
code each and every program in a multi-threaded manner.
Again, if a program runs quickly enough on a single
processor, spare yourself the overhead and complexity of
SMP synchronization primitives. The simplicity of the
hash-table lookup code in Listing 6.4 underscores this
point.11 A key point is that speedups due to parallelism
are normally limited to the number of CPUs. In contrast,
speedups due to sequential optimizations, for example,
careful choice of data structure, can be arbitrarily large.

Quick Quiz 6.15: What should you do to validate a hash
table?

On the other hand, if you are not in this happy situation,
read on!

6.3.2 Code Locking
Code locking is quite simple due to the fact that it uses
only global locks.12 It is especially easy to retrofit an

11 The examples in this section are taken from Hart et al. [HMB06],
adapted for clarity by gathering related code from multiple files.

12 If your program instead has locks in data structures, or, in the case
of Java, uses classes with synchronized instances, you are instead using
“data locking”, described in Section 6.3.3.

v2024.12.27a

86 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1
97

0

 1
97

5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

 2
02

0

Ethernet

x86 CPUs

R
el

at
iv

e
P

er
fo

rm
an

ce

Year

Figure 6.12: Ethernet Bandwidth vs. Intel x86 CPU
Performance

Listing 6.4: Sequential-Program Hash Table Search
1 struct hash_table
2 {
3 long nbuckets;
4 struct node **buckets;
5 };
6
7 typedef struct node {
8 unsigned long key;
9 struct node *next;

10 } node_t;
11
12 int hash_search(struct hash_table *h, long key)
13 {
14 struct node *cur;
15
16 cur = h->buckets[key % h->nbuckets];
17 while (cur != NULL) {
18 if (cur->key >= key) {
19 return (cur->key == key);
20 }
21 cur = cur->next;
22 }
23 return 0;
24 }

Listing 6.5: Code-Locking Hash Table Search
1 spinlock_t hash_lock;
2
3 struct hash_table
4 {
5 long nbuckets;
6 struct node **buckets;
7 };
8
9 typedef struct node {

10 unsigned long key;
11 struct node *next;
12 } node_t;
13
14 int hash_search(struct hash_table *h, long key)
15 {
16 struct node *cur;
17 int retval;
18
19 spin_lock(&hash_lock);
20 cur = h->buckets[key % h->nbuckets];
21 while (cur != NULL) {
22 if (cur->key >= key) {
23 retval = (cur->key == key);
24 spin_unlock(&hash_lock);
25 return retval;
26 }
27 cur = cur->next;
28 }
29 spin_unlock(&hash_lock);
30 return 0;
31 }

existing program to use code locking in order to run it on
a multiprocessor. If the program has only a single shared
resource, code locking will even give optimal performance.
However, many of the larger and more complex programs
require much of the execution to occur in critical sections,
which in turn causes code locking to sharply limits their
scalability.

Therefore, you should use code locking on programs
that spend only a small fraction of their execution time
in critical sections or from which only modest scaling is
required. In addition, programs that primarily use the
more scalable approaches described in later sections often
use code locking to handle rare error cases or significant
state transitions. In these cases, code locking will provide
a relatively simple program that is very similar to its
sequential counterpart, as can be seen in Listing 6.5.
However, note that the simple return of the comparison
in hash_search() in Listing 6.4 has now become three
statements due to the need to release the lock before
returning.

Note that the hash_lock acquisition and release state-
ments on lines 19, 24, and 29 are mediating ownership of
the hash table among the CPUs wishing to concurrently
access that hash table. Another way of looking at this
is that hash_lock is partitioning time, thus giving each
requesting CPU its own partition of time during which

v2024.12.27a

6.3. SYNCHRONIZATION GRANULARITY 87

toy

Figure 6.13: Lock Contention

it owns this hash table. In addition, in a well-designed
algorithm, there should be ample partitions of time during
which no CPU owns this hash table.

Quick Quiz 6.16: “Partitioning time”? Isn’t that an odd turn
of phrase?

Unfortunately, code locking is particularly prone to
“lock contention”, where multiple CPUs need to acquire
the lock concurrently. SMP programmers who have taken
care of groups of small children (or groups of older people
who are acting like children) will immediately recognize
the danger of having only one of something, as illustrated
in Figure 6.13.

One solution to this problem, named “data locking”, is
described in the next section.

6.3.3 Data Locking
Many data structures may be partitioned, with each par-
tition of the data structure having its own lock. Then
the critical sections for each part of the data structure
can execute in parallel, although only one instance of the
critical section for a given part could be executing at a
given time. You should use data locking when contention
must be reduced, and where synchronization overhead is
not limiting speedups. Data locking reduces contention
by distributing the instances of the overly-large critical
section across multiple data structures, for example, main-
taining per-hash-bucket critical sections in a hash table,
as shown in Listing 6.6. The increased scalability again

Listing 6.6: Data-Locking Hash Table Search
1 struct hash_table
2 {
3 long nbuckets;
4 struct bucket **buckets;
5 };
6
7 struct bucket {
8 spinlock_t bucket_lock;
9 node_t *list_head;

10 };
11
12 typedef struct node {
13 unsigned long key;
14 struct node *next;
15 } node_t;
16
17 int hash_search(struct hash_table *h, long key)
18 {
19 struct bucket *bp;
20 struct node *cur;
21 int retval;
22
23 bp = h->buckets[key % h->nbuckets];
24 spin_lock(&bp->bucket_lock);
25 cur = bp->list_head;
26 while (cur != NULL) {
27 if (cur->key >= key) {
28 retval = (cur->key == key);
29 spin_unlock(&bp->bucket_lock);
30 return retval;
31 }
32 cur = cur->next;
33 }
34 spin_unlock(&bp->bucket_lock);
35 return 0;
36 }

results in a slight increase in complexity in the form of an
additional data structure, the struct bucket.

In contrast with the contentious situation shown in
Figure 6.13, data locking helps promote harmony, as
illustrated by Figure 6.14—and in parallel programs, this
almost always translates into increased performance and
scalability. For this reason, data locking was heavily used
by Sequent in its kernels [BK85, Inm85, Gar90, Dov90,
MD92, MG92, MS93].

Another way of looking at this is to think of each ->
bucket_lock as mediating ownership not of the entire
hash table as was done for code locking, but only for the
bucket corresponding to that ->bucket_lock. Each lock
still partitions time, but the per-bucket-locking technique
also partitions the address space, so that the overall tech-
nique can be said to partition spacetime. If the number of
buckets is large enough, this partitioning of space should
with high probability permit a given CPU immediate
access to a given hash bucket.

However, as those who have taken care of small children
can again attest, even providing enough to go around is
no guarantee of tranquillity. The analogous situation

v2024.12.27a

88 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

toy

toy

toy

Figure 6.14: Data Locking

toy

toy

toy toy

Figure 6.15: Data Locking and Skew

can arise in SMP programs. For example, the Linux
kernel maintains a cache of files and directories (called
“dcache”). Each entry in this cache has its own lock, but the
entries corresponding to the root directory and its direct
descendants are much more likely to be traversed than
are more obscure entries. This can result in many CPUs
contending for the locks of these popular entries, resulting
in a situation not unlike that shown in Figure 6.15.

In many cases, algorithms can be designed to re-
duce the instance of data skew, and in some cases
eliminate it entirely (for example, in the Linux ker-
nel’s dcache [MSS04, Cor10a, Bro15a, Bro15b, Bro15c]).
Data locking is often used for partitionable data structures

such as hash tables, as well as in situations where multiple
entities are each represented by an instance of a given
data structure. The Linux-kernel task list is an example of
the latter, each task structure having its own alloc_lock
and pi_lock.

A key challenge with data locking on dynamically
allocated structures is ensuring that the structure remains
in existence while the lock is being acquired [GKAS99].
The code in Listing 6.6 finesses this challenge by placing
the locks in the statically allocated hash buckets, which
are never freed. However, this trick would not work if
the hash table were resizeable, so that the locks were now
dynamically allocated. In this case, there would need to
be some means to prevent the hash bucket from being
freed during the time that its lock was being acquired.

Quick Quiz 6.17: What are some ways of preventing a
structure from being freed while its lock is being acquired?

6.3.4 Data Ownership
Data ownership partitions a given data structure over the
threads or CPUs, so that each thread/CPU accesses its
subset of the data structure without any synchronization
overhead whatsoever. However, if one thread wishes
to access some other thread’s data, the first thread is
unable to do so directly. Instead, the first thread must
communicate with the second thread, so that the second
thread performs the operation on behalf of the first, or,
alternatively, migrates the data to the first thread.

Data ownership might seem arcane, but it is used very
frequently:

1. Any variables accessible by only one CPU or thread
(such as auto variables in C and C++) are owned by
that CPU or process.

2. An instance of a user interface owns the correspond-
ing user’s context. It is very common for applications
interacting with parallel database engines to be writ-
ten as if they were entirely sequential programs. Such
applications own the user interface and his current
action. Explicit parallelism is thus confined to the
database engine itself.

3. Parametric simulations are often trivially parallelized
by granting each thread ownership of a particular
region of the parameter space. There are also com-
puting frameworks designed for this type of prob-
lem [Uni08a].

v2024.12.27a

6.3. SYNCHRONIZATION GRANULARITY 89

If there is significant sharing, communication between
the threads or CPUs can result in significant complexity
and overhead. Furthermore, if the most-heavily used data
happens to be that owned by a single CPU, that CPU will be
a “hot spot”, sometimes with results resembling that shown
in Figure 6.15. However, in situations where no sharing
is required, data ownership achieves ideal performance,
and with code that can be as simple as the sequential-
program case shown in Listing 6.4. Such situations are
often referred to as “embarrassingly parallel”, and, in
the best case, resemble the situation previously shown in
Figure 6.14.

Another important instance of data ownership occurs
when the data is read-only, in which case, all threads can
“own” it via replication.

Where data locking partitions both the address space
(with one hash buckets per partition) and time (using
per-bucket locks), data ownership partitions only the ad-
dress space. The reason that data ownership need not
partition time is because a given thread or CPU is assigned
permanent ownership of a given address-space partition.

Quick Quiz 6.18: But won’t system boot and shutdown (or
application startup and shutdown) be partitioning time, even
for data ownership?

Data ownership will be presented in more detail in
Chapter 8.

6.3.5 Locking Granularity and Perfor-
mance

This section looks at locking granularity and performance
from a mathematical synchronization-efficiency viewpoint.
Readers who are uninspired by mathematics might choose
to skip this section.

The approach is to use a crude queueing model for the
efficiency of synchronization mechanism that operate on
a single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially
distributed “inter-arrival rate” 𝜆 and an exponentially
distributed “service rate” 𝜇. The inter-arrival rate 𝜆 can
be thought of as the average number of synchronization
operations per second that the system would process if the
synchronization were free, in other words, 𝜆 is an inverse
measure of the overhead of each non-synchronization
unit of work. For example, if each unit of work was a
transaction, and if each transaction took one millisecond
to process, excluding synchronization overhead, then 𝜆

would be 1,000 transactions per second.

The service rate 𝜇 is defined similarly, but for the
average number of synchronization operations per second
that the system would process if the overhead of each
transaction was zero, and ignoring the fact that CPUs
must wait on each other to complete their synchronization
operations, in other words, 𝜇 can be roughly thought of as
the synchronization overhead in absence of contention. For
example, suppose that each transaction’s synchronization
operation involves an atomic increment instruction, and
that a computer system is able to do a private-variable
atomic increment every 5 nanoseconds on each CPU
(see Figure 5.1).13 The value of 𝜇 is therefore about
200,000,000 atomic increments per second.

Of course, the value of 𝜆 increases as increasing num-
bers of CPUs increment a shared variable because each
CPU is capable of processing transactions independently
(again, ignoring synchronization):

𝜆 = 𝑛𝜆0 (6.1)
Here, 𝑛 is the number of CPUs and 𝜆0 is the transaction-

processing capability of a single CPU. Note that the
expected time for a single CPU to execute a single trans-
action in the absence of contention is 1/𝜆0.

Because the CPUs have to “wait in line” behind each
other to get their chance to increment the single shared vari-
able, we can use the M/M/1 queueing-model expression
for the expected total waiting time:

𝑇 =
1

𝜇 − 𝜆
(6.2)

Substituting the above value of 𝜆:

𝑇 =
1

𝜇 − 𝑛𝜆0
(6.3)

Now, the efficiency is just the ratio of the time required
to process a transaction in absence of synchronization
(1/𝜆0) to the time required including synchronization
(𝑇 + 1/𝜆0):

𝑒 =
1/𝜆0

𝑇 + 1/𝜆0
(6.4)

Substituting the above value for 𝑇 and simplifying:

𝑒 =

𝜇

𝜆0
− 𝑛

𝜇

𝜆0
− (𝑛 − 1)

(6.5)

13 Of course, if there are 8 CPUs all incrementing the same shared
variable, then each CPU must wait at least 35 nanoseconds for each
of the other CPUs to do its increment before consuming an additional
5 nanoseconds doing its own increment. In fact, the wait will be longer
due to the need to move the variable from one CPU to another.

v2024.12.27a

90 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

10
25

50
75

100

S
yn

ch
ro

ni
za

tio
n

E
ffi

ci
en

cy

Number of CPUs (Threads)

Figure 6.16: Synchronization Efficiency

But the value of 𝜇/𝜆0 is just the ratio of the time
required to process the transaction (absent synchronization
overhead) to that of the synchronization overhead itself
(absent contention). If we call this ratio 𝑓 , we have:

𝑒 =
𝑓 − 𝑛

𝑓 − (𝑛 − 1) (6.6)

Figure 6.16 plots the synchronization efficiency 𝑒 as
a function of the number of CPUs/threads 𝑛 for a few
values of the overhead ratio 𝑓 . For example, again us-
ing the 5-nanosecond atomic increment, the 𝑓 = 10
line corresponds to each CPU attempting an atomic in-
crement every 50 nanoseconds, and the 𝑓 = 100 line
corresponds to each CPU attempting an atomic increment
every 500 nanoseconds, which in turn corresponds to some
hundreds (perhaps thousands) of instructions. Given that
each trace drops off sharply with increasing numbers of
CPUs or threads, we can conclude that synchronization
mechanisms based on atomic manipulation of a single
global shared variable will not scale well if used heavily
on current commodity hardware. This is an abstract math-
ematical depiction of the forces leading to the parallel
counting algorithms that were discussed in Chapter 5.
Your real-world mileage may differ.

Nevertheless, the concept of efficiency is useful, and
even in cases having little or no formal synchronization.
Consider for example a matrix multiply, in which the
columns of one matrix are multiplied (via “dot product”)
by the rows of another, resulting in an entry in a third
matrix. Because none of these operations conflict, it
is possible to partition the columns of the first matrix
among a group of threads, with each thread computing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100

64

128

256

512

1024

M
at

rix
 M

ul
tip

ly
 E

ffi
ci

en
cy

Number of CPUs (Threads)

Figure 6.17: Matrix Multiply Efficiency

the corresponding columns of the result matrix. The
threads can therefore operate entirely independently, with
no synchronization overhead whatsoever, as is done in
matmul.c. One might therefore expect a perfect efficiency
of 1.0.

However, Figure 6.17 tells a different story, especially
for a 64-by-64 matrix multiply, which never gets above
an efficiency of about 0.3, even when running single-
threaded, and drops sharply as more threads are added.14

The 128-by-128 matrix does better, but still fails to demon-
strate much performance increase with added threads. The
256-by-256 matrix does scale reasonably well, but only
up to a handful of CPUs. The 512-by-512 matrix mul-
tiply’s efficiency is measurably less than 1.0 on as few
as 10 threads, and even the 1024-by-1024 matrix multi-
ply deviates noticeably from perfection at a few tens of
threads. Nevertheless, this figure clearly demonstrates the
performance and scalability benefits of batching: If you
must incur synchronization overhead, you may as well get
your money’s worth, which is the solution to the problem
of deciding on granularity of synchronization put forth on
page 75.

Quick Quiz 6.19: How can a single-threaded 64-by-64 matrix
multiple possibly have an efficiency of less than 1.0? Shouldn’t
all of the traces in Figure 6.17 have efficiency of exactly 1.0
when running on one thread?

Given these inefficiencies, it is worthwhile to look
into more-scalable approaches such as the data locking
described in Section 6.3.3 or the parallel-fastpath approach
discussed in the next section.

14 In contrast to the smooth traces of Figure 6.16, the wide error bars
and jagged traces of Figure 6.17 gives evidence of its real-world nature.

v2024.12.27a

6.4. PARALLEL FASTPATH 91

Fastpath
Parallel

Caches
Allocator

Locking
Hierarchical

Locking
Reader/Writer

RCU

Figure 6.18: Parallel-Fastpath Design Patterns

Quick Quiz 6.20: How are data-parallel techniques going to
help with matrix multiply? It is already data parallel!!!

Quick Quiz 6.21: What did you do to validate this matrix
multiply algorithm?

6.4 Parallel Fastpath

There are two ways of meeting difficulties: You alter

the difficulties, or you alter yourself to meet them.

Phyllis Bottome

Fine-grained (and therefore usually higher-performance)
designs are typically more complex than are coarser-
grained designs. In many cases, most of the overhead is
incurred by a small fraction of the code [Knu73]. So why
not focus effort on that small fraction?

This is the idea behind the parallel-fastpath design
pattern, to aggressively parallelize the common-case code
path without incurring the complexity that would be
required to aggressively parallelize the entire algorithm.
You must understand not only the specific algorithm you
wish to parallelize, but also the workload that the algorithm
will be subjected to. Great creativity and design effort is
often required to construct a parallel fastpath.

Parallel fastpath combines different patterns (one for
the fastpath, one elsewhere) and is therefore a template
pattern. The following instances of parallel fastpath occur
often enough to warrant their own patterns, as depicted in
Figure 6.18:

1. Reader/Writer Locking (described below in Sec-
tion 6.4.1).

2. Read-copy update (RCU), which may be used as a
high-performance replacement for reader/writer lock-
ing, is introduced in Section 9.5. Other alternatives
include hazard pointers (Section 9.3) and sequence
locking (Section 9.4). These alternatives will not be
discussed further in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched
upon in Section 6.4.2.

4. Resource Allocator Caches ([McK96a, MS93]). See
Section 6.4.3 for more detail.

6.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example, if
the program uses coarse-grained parallelism with large
critical sections), and if only a small fraction of the critical
sections modify data, then allowing multiple readers to
proceed in parallel can greatly increase scalability. Writ-
ers exclude both readers and each other. There are many
implementations of reader-writer locking, including the
POSIX implementation described in Section 4.2.4. List-
ing 6.7 shows how the hash search might be implemented
using reader-writer locking.

Reader/writer locking is a simple instance of asymmet-
ric locking. Snaman [ST87] describes a more ornate six-
mode asymmetric locking design used in several clustered
systems. Locking in general and reader-writer locking in
particular is described extensively in Chapter 7.

6.4.2 Hierarchical Locking

The idea behind hierarchical locking is to have a coarse-
grained lock that is held only long enough to work out
which fine-grained lock to acquire. Listing 6.8 shows how
our hash-table search might be adapted to do hierarchical
locking, but also shows the great weakness of this ap-
proach: We have paid the overhead of acquiring a second
lock, but we only hold it for a short time. In this case,
the data-locking approach would be simpler and likely
perform better.

Quick Quiz 6.22: In what situation would hierarchical
locking work well?

v2024.12.27a

92 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.7: Reader-Writer-Locking Hash Table Search
1 rwlock_t hash_lock;
2
3 struct hash_table
4 {
5 long nbuckets;
6 struct node **buckets;
7 };
8
9 typedef struct node {

10 unsigned long key;
11 struct node *next;
12 } node_t;
13
14 int hash_search(struct hash_table *h, long key)
15 {
16 struct node *cur;
17 int retval;
18
19 read_lock(&hash_lock);
20 cur = h->buckets[key % h->nbuckets];
21 while (cur != NULL) {
22 if (cur->key >= key) {
23 retval = (cur->key == key);
24 read_unlock(&hash_lock);
25 return retval;
26 }
27 cur = cur->next;
28 }
29 read_unlock(&hash_lock);
30 return 0;
31 }

6.4.3 Resource Allocator Caches
This section presents a simplified schematic of a parallel
fixed-block-size memory allocator. More detailed descrip-
tions may be found in the literature [MG92, MS93, BA01,
MSK01, Eva11, Ken20] or in the Linux kernel [Tor03].

6.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator
is the tension between the need to provide extremely
fast memory allocation and freeing in the common case
and the need to efficiently distribute memory in face of
unfavorable allocation and freeing patterns.

To see this tension, consider a straightforward applica-
tion of data ownership to this problem—simply carve up
memory so that each CPU owns its share. For example,
suppose that a system with 12 CPUs has 64 gigabytes of
memory, for example, the laptop I am using right now.
We could simply assign each CPU a five-gigabyte region
of memory, and allow each CPU to allocate from its own
region, without the need for locking and its complexities
and overheads. Unfortunately, this scheme fails when
CPU 0 only allocates memory and CPU 1 only frees it, as
happens in simple producer-consumer workloads.

The other extreme, code locking, suffers from excessive
lock contention and overhead [MS93].

Listing 6.8: Hierarchical-Locking Hash Table Search
1 struct hash_table
2 {
3 long nbuckets;
4 struct bucket **buckets;
5 };
6
7 struct bucket {
8 spinlock_t bucket_lock;
9 node_t *list_head;

10 };
11
12 typedef struct node {
13 spinlock_t node_lock;
14 unsigned long key;
15 struct node *next;
16 } node_t;
17
18 int hash_search(struct hash_table *h, long key)
19 {
20 struct bucket *bp;
21 struct node *cur;
22 int retval;
23
24 bp = h->buckets[key % h->nbuckets];
25 spin_lock(&bp->bucket_lock);
26 cur = bp->list_head;
27 while (cur != NULL) {
28 if (cur->key >= key) {
29 spin_lock(&cur->node_lock);
30 spin_unlock(&bp->bucket_lock);
31 retval = (cur->key == key);
32 spin_unlock(&cur->node_lock);
33 return retval;
34 }
35 cur = cur->next;
36 }
37 spin_unlock(&bp->bucket_lock);
38 return 0;
39 }

6.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with
each CPU owning a modest cache of blocks, and with a
large code-locked shared pool for additional blocks. To
prevent any given CPU from monopolizing the memory
blocks, we place a limit on the number of blocks that can
be in each CPU’s cache. In a two-CPU system, the flow of
memory blocks will be as shown in Figure 6.19: When a
given CPU is trying to free a block when its pool is full, it
sends blocks to the global pool, and, similarly, when that
CPU is trying to allocate a block when its pool is empty,
it retrieves blocks from the global pool.

6.4.3.3 Data Structures

The actual data structures for a “toy” implementation of
allocator caches are shown in Listing 6.9 (“smpalloc.c”).
The “Global Pool” of Figure 6.19 is implemented by
globalmem of type struct globalmempool, and the
two CPU pools by the per-thread variable perthreadmem

v2024.12.27a

6.4. PARALLEL FASTPATH 93

CPU 0 Pool

(Owned by CPU 0)

CPU 1 Pool

(Owned by CPU 1)

Global Pool

(Code Locked)

Allocate/Free

O
v
e
rf

lo
w

E
m

p
ty O

v
e
rf

lo
w

E
m

p
ty

Figure 6.19: Allocator Cache Schematic

Listing 6.9: Allocator-Cache Data Structures
1 #define TARGET_POOL_SIZE 3
2 #define GLOBAL_POOL_SIZE 40
3
4 struct globalmempool {
5 spinlock_t mutex;
6 int cur;
7 struct memblock *pool[GLOBAL_POOL_SIZE];
8 } globalmem;
9

10 struct perthreadmempool {
11 int cur;
12 struct memblock *pool[2 * TARGET_POOL_SIZE];
13 };
14
15 DEFINE_PER_THREAD(struct perthreadmempool, perthreadmem);

of type struct perthreadmempool. Both of these data
structures have arrays of pointers to blocks in their pool
fields, which are filled from index zero upwards. Thus,
if globalmem.pool[3] is NULL, then the remainder of
the array from index 4 up must also be NULL. The cur
fields contain the index of the highest-numbered full
element of the pool array, or −1 if all elements are
empty. All elements from globalmem.pool[0] through
globalmem.pool[globalmem.cur] must be full, and
all the rest must be empty.15

The operation of the pool data structures is illustrated
by Figure 6.20, with the six boxes representing the array
of pointers making up the pool field, and the number
preceding them representing the cur field. The shaded

15 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_SIZE)
are unrealistically small, but this small size makes it easier to single-step
the program in order to get a feel for its operation.

−1(Empty)

0

1

2

3

4

5

Figure 6.20: Allocator Pool Schematic

boxes represent non-NULL pointers, while the empty boxes
represent NULL pointers. An important, though potentially
confusing, invariant of this data structure is that the cur
field is always one smaller than the number of non-NULL
pointers.

6.4.3.4 Allocation Function

The allocation function memblock_alloc() may be seen
in Listing 6.10. Line 7 picks up the current thread’s
per-thread pool, and line 8 checks to see if it is empty.

If so, lines 9–16 attempt to refill it from the global pool
under the spinlock acquired on line 9 and released on
line 16. Lines 10–14 move blocks from the global to the
per-thread pool until either the local pool reaches its target
size (half full) or the global pool is exhausted, and line 15
sets the per-thread pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool still
being empty, and if not, lines 19–21 remove a block and
return it. Otherwise, line 23 tells the sad tale of memory
exhaustion.

6.4.3.5 Free Function

Listing 6.11 shows the memory-block free function. Line 6
gets a pointer to this thread’s pool, and line 7 checks to
see if this per-thread pool is full.

If so, lines 8–15 empty half of the per-thread pool
into the global pool, with lines 8 and 14 acquiring and
releasing the spinlock. Lines 9–12 implement the loop
moving blocks from the local to the global pool, and
line 13 sets the per-thread pool’s count to the proper value.

In either case, line 16 then places the newly freed block
into the per-thread pool.

v2024.12.27a

94 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.10: Allocator-Cache Allocator Function
1 struct memblock *memblock_alloc(void)
2 {
3 int i;
4 struct memblock *p;
5 struct perthreadmempool *pcpp;
6
7 pcpp = &__get_thread_var(perthreadmem);
8 if (pcpp->cur < 0) {
9 spin_lock(&globalmem.mutex);

10 for (i = 0; i < TARGET_POOL_SIZE &&
11 globalmem.cur >= 0; i++) {
12 pcpp->pool[i] = globalmem.pool[globalmem.cur];
13 globalmem.pool[globalmem.cur--] = NULL;
14 }
15 pcpp->cur = i - 1;
16 spin_unlock(&globalmem.mutex);
17 }
18 if (pcpp->cur >= 0) {
19 p = pcpp->pool[pcpp->cur];
20 pcpp->pool[pcpp->cur--] = NULL;
21 return p;
22 }
23 return NULL;
24 }

Listing 6.11: Allocator-Cache Free Function
1 void memblock_free(struct memblock *p)
2 {
3 int i;
4 struct perthreadmempool *pcpp;
5
6 pcpp = &__get_thread_var(perthreadmem);
7 if (pcpp->cur >= 2 * TARGET_POOL_SIZE - 1) {
8 spin_lock(&globalmem.mutex);
9 for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {

10 globalmem.pool[++globalmem.cur] = pcpp->pool[i];
11 pcpp->pool[i] = NULL;
12 }
13 pcpp->cur = i;
14 spin_unlock(&globalmem.mutex);
15 }
16 pcpp->pool[++pcpp->cur] = p;
17 }

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

A
llo

ca
tio

ns
/F

re
es

 P
er

 M
ic

ro
se

co
nd

Allocation Run Length

Figure 6.21: Allocator Cache Performance

Quick Quiz 6.23: Doesn’t this resource-allocator design
resemble that of the approximate limit counters covered in
Section 5.3?

6.4.3.6 Performance

Rough performance results16 are shown in Figure 6.21,
running on a dual-core Intel x86 running at 1 GHz (4300
bogomips per CPU) with at most six blocks allowed in
each CPU’s cache. In this micro-benchmark, each thread
repeatedly allocates a group of blocks and then frees all
the blocks in that group, with the number of blocks in
the group being the “allocation run length” displayed on
the x-axis. The y-axis shows the number of successful
allocation/free pairs per microsecond—failed allocations
are not counted. The “X”s are from a two-thread run,
while the “+”s are from a single-threaded run.

Note that run lengths up to six scale linearly and give
excellent performance, while run lengths greater than
six show poor performance and almost always also show
negative scaling. It is therefore quite important to size
TARGET_POOL_SIZE sufficiently large, which fortunately
is usually quite easy to do in actual practice [MSK01],
especially given today’s large memories. For example,
in most systems, it is quite reasonable to set TARGET_
POOL_SIZE to 100, in which case allocations and frees

16 This data was not collected in a statistically meaningful way, and
therefore should be viewed with great skepticism and suspicion. Good
data-collection and -reduction practice is discussed in Chapter 11. That
said, repeated runs gave similar results, and these results match more
careful evaluations of similar algorithms.

v2024.12.27a

6.4. PARALLEL FASTPATH 95

are guaranteed to be confined to per-thread pools at least
99 % of the time.

As can be seen from the figure, the situations where
the common-case data-ownership applies (run lengths up
to six) provide greatly improved performance compared
to the cases where locks must be acquired. Avoiding
synchronization in the common case will be a recurring
theme through this book.

Quick Quiz 6.24: In Figure 6.21, there is a pattern of
performance rising with increasing run length in groups of
three samples, for example, for run lengths 10, 11, and 12.
Why?

Quick Quiz 6.25: Allocation failures were observed in the
two-thread tests at run lengths of 19 and greater. Given the
global-pool size of 40 and the per-thread target pool size 𝑠

of three, number of threads 𝑛 equal to two, and assuming
that the per-thread pools are initially empty with none of the
memory in use, what is the smallest allocation run length 𝑚 at
which failures can occur? (Recall that each thread repeatedly
allocates 𝑚 block of memory, and then frees the 𝑚 blocks of
memory.) Alternatively, given 𝑛 threads each with pool size
𝑠, and where each thread repeatedly first allocates 𝑚 blocks
of memory and then frees those 𝑚 blocks, how large must the
global pool size be? Note: Obtaining the correct answer will
require you to examine the smpalloc.c source code, and very
likely single-step it as well. You have been warned!

6.4.3.7 Validation

Validation of this simple allocator spawns a specified
number of threads, with each thread repeatedly allocating a
specified number of memory blocks and then deallocating
them. This simple regimen suffices to exercise both the
per-thread caches and the global pool, as can be seen in
Figure 6.21.

Much more aggressive validation is required for mem-
ory allocators that are to be used in production. The
test suites for tcmalloc [Ken20] and jemalloc [Eva11] are
instructive, as are the tests for the Linux kernel’s memory
allocator.

6.4.3.8 Real-World Design

The toy parallel resource allocator was quite simple, but
real-world designs expand on this approach in a number
of ways.

First, real-world allocators are required to handle a wide
range of allocation sizes, as opposed to the single size
shown in this toy example. One popular way to do this is

Table 6.1: Schematic of Real-World Parallel Allocator

Level Locking Purpose

Per-thread pool Data ownership High-speed
allocation

Global block pool Data locking Distributing blocks
among threads

Coalescing Data locking Combining blocks
into pages

System memory Code locking Memory from/to
system

to offer a fixed set of sizes, spaced so as to balance external
and internal fragmentation, such as in the late-1980s BSD
memory allocator [MK88]. Doing this would mean that
the “globalmem” variable would need to be replicated
on a per-size basis, and that the associated lock would
similarly be replicated, resulting in data locking rather
than the toy program’s code locking.

Second, production-quality systems must be able to
repurpose memory, meaning that they must be able to co-
alesce blocks into larger structures, such as pages [MS93].
This coalescing will also need to be protected by a lock,
which again could be replicated on a per-size basis.

Third, coalesced memory must be returned to the un-
derlying memory system, and pages of memory must
also be allocated from the underlying memory system.
The locking required at this level will depend on that
of the underlying memory system, but could well be
code locking. Code locking can often be tolerated at
this level, because this level is so infrequently reached in
well-designed systems [MSK01].

Concurrent userspace allocators face similar chal-
lenges [Ken20, Eva11].

Despite this real-world design’s greater complexity,
the underlying idea is the same—repeated application of
parallel fastpath, as shown in Table 6.1.

And “parallel fastpath” is one of the solutions to the non-
partitionable application problem put forth on page 75.

v2024.12.27a

96 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

6.5 Beyond Partitioning

It is all right to aim high if you have plenty of

ammunition.

Hawley R. Everhart

This chapter has discussed how data partitioning can be
used to design simple linearly scalable parallel programs.
Section 6.3.4 hinted at the possibilities of data replication,
which will be used to great effect in Section 9.5.

The main goal of applying partitioning and replication
is to achieve linear speedups, in other words, to ensure
that the total amount of work required does not increase
significantly as the number of CPUs or threads increases.
A problem that can be solved via partitioning and/or
replication, resulting in linear speedups, is embarrassingly
parallel. But can we do better?

To answer this question, let us examine the solution of
labyrinths and mazes. Of course, labyrinths and mazes
have been objects of fascination for millennia [Wik12],
so it should come as no surprise that they are generated
and solved using computers, including biological com-
puters [Ada11], GPGPUs [Eri08], and even discrete hard-
ware [KFC11]. Parallel solution of mazes is sometimes
used as a class project in universities [ETH11, Uni10]
and as a vehicle to demonstrate the benefits of parallel-
programming frameworks [Fos10].

Common advice is to use a parallel work-queue algo-
rithm (PWQ) [ETH11, Fos10]. This section evaluates this
advice by comparing PWQ against a sequential algorithm
(SEQ) and also against an alternative parallel algorithm,
in all cases solving randomly generated square mazes.
Section 6.5.1 discusses PWQ, Section 6.5.2 discusses
an alternative parallel algorithm, Section 6.5.4 analyzes
its anomalous performance, Section 6.5.5 derives an im-
proved sequential algorithm from the alternative paral-
lel algorithm, Section 6.5.6 makes further performance
comparisons, and finally Section 6.5.7 presents future
directions and concluding remarks.

6.5.1 Work-Queue Parallel Maze Solver
PWQ is based on SEQ, which is shown in Listing 6.12
(pseudocode for maze_seq.c). The maze is represented
by a 2D array of cells and a linear-array-based work queue
named ->visited.

Line 7 visits the initial cell, and each iteration of the loop
spanning lines 8–21 traverses passages headed by one cell.
The loop spanning lines 9–13 scans the ->visited[]

Listing 6.12: SEQ Pseudocode
1 int maze_solve(maze *mp, cell sc, cell ec)
2 {
3 cell c = sc;
4 cell n;
5 int vi = 0;
6
7 maze_try_visit_cell(mp, c, c, &n, 1);
8 for (;;) {
9 while (!maze_find_any_next_cell(mp, c, &n)) {

10 if (++vi >= mp->vi)
11 return 0;
12 c = mp->visited[vi].c;
13 }
14 do {
15 if (n == ec) {
16 return 1;
17 }
18 c = n;
19 } while (maze_find_any_next_cell(mp, c, &n));
20 c = mp->visited[vi].c;
21 }
22 }

array for a visited cell with an unvisited neighbor, and
the loop spanning lines 14–19 traverses one fork of the
submaze headed by that neighbor. Line 20 initializes for
the next pass through the outer loop.

The pseudocode for maze_try_visit_cell() is
shown on lines 1–12 of Listing 6.13 (maze.c). Line 4
checks to see if cells c and t are adjacent and connected,
while line 5 checks to see if cell t has not yet been vis-
ited. The celladdr() function returns the address of the
specified cell. If either check fails, line 6 returns failure.
Line 7 indicates the next cell, line 8 records this cell in the
next slot of the ->visited[] array, line 9 indicates that
this slot is now full, and line 10 marks this cell as visited
and also records the distance from the maze start. Line 11
then returns success.

The pseudocode for maze_find_any_next_cell()
is shown on lines 14–28 of Listing 6.13 (maze.c). Line 17
picks up the current cell’s distance plus 1, while lines 19,
21, 23, and 25 check the cell in each direction, and
lines 20, 22, 24, and 26 return true if the corresponding
cell is a candidate next cell. The prevcol(), nextcol(),
prevrow(), and nextrow() each do the specified array-
index-conversion operation. If none of the cells is a
candidate, line 27 returns false.

The path is recorded in the maze by counting the number
of cells from the starting point, as shown in Figure 6.22,
where the starting cell is in the upper left and the ending
cell is in the lower right. Starting at the ending cell and
following consecutively decreasing cell numbers traverses
the solution.

The parallel work-queue solver is a straightforward
parallelization of the algorithm shown in Listings 6.12

v2024.12.27a

6.5. BEYOND PARTITIONING 97

Listing 6.13: SEQ Helper Pseudocode
1 int maze_try_visit_cell(struct maze *mp, cell c, cell t,
2 cell *n, int d)
3 {
4 if (!maze_cells_connected(mp, c, t) ||
5 (*celladdr(mp, t) & VISITED))
6 return 0;
7 *n = t;
8 mp->visited[mp->vi] = t;
9 mp->vi++;

10 *celladdr(mp, t) |= VISITED | d;
11 return 1;
12 }
13
14 int maze_find_any_next_cell(struct maze *mp, cell c,
15 cell *n)
16 {
17 int d = (*celladdr(mp, c) & DISTANCE) + 1;
18
19 if (maze_try_visit_cell(mp, c, prevcol(c), n, d))
20 return 1;
21 if (maze_try_visit_cell(mp, c, nextcol(c), n, d))
22 return 1;
23 if (maze_try_visit_cell(mp, c, prevrow(c), n, d))
24 return 1;
25 if (maze_try_visit_cell(mp, c, nextrow(c), n, d))
26 return 1;
27 return 0;
28 }

2

2

3

1 3

3

4 5

4

Figure 6.22: Cell-Number Solution Tracking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

P
ro

b
a

b
ili

ty

CDF of Solution Time (ms)

SEQ

PWQ

Figure 6.23: CDF of Solution Times For SEQ and PWQ

and 6.13. Line 10 of Listing 6.12 must use fetch-and-
add, and the local variable vi must be shared among the
various threads. Lines 5 and 10 of Listing 6.13 must be
combined into a CAS loop, with CAS failure indicating
a loop in the maze. Lines 8–9 of this listing must use
fetch-and-add to arbitrate concurrent attempts to record
cells in the ->visited[] array.

This approach does provide significant speedups on a
dual-CPU Lenovo W500 running at 2.53 GHz, as shown
in Figure 6.23, which shows the cumulative distribution
functions (CDFs) for the solution times of the two al-
gorithms, based on the solution of 500 different square
500-by-500 randomly generated mazes. The substantial
overlap of the projection of the CDFs onto the x-axis will
be addressed in Section 6.5.4.

Interestingly enough, the sequential solution-path track-
ing works unchanged for the parallel algorithm. However,
this uncovers a significant weakness in the parallel algo-
rithm: At most one thread may be making progress along
the solution path at any given time. This weakness is
addressed in the next section.

6.5.2 Alternative Parallel Maze Solver
Youthful maze solvers are often urged to start at both ends,
and this advice has been repeated more recently in the
context of automated maze solving [Uni10]. This advice
amounts to partitioning, which has been a powerful paral-
lelization strategy in the context of parallel programming
for both operating-system kernels [BK85, Inm85] and
applications [Pat10]. This section applies this strategy,
using two child threads that start at opposite ends of the
solution path, and takes a brief look at the performance
and scalability consequences.

The partitioned parallel algorithm (PART), shown in
Listing 6.14 (maze_part.c), is similar to SEQ, but has
a few important differences. First, each child thread
has its own visited array, passed in by the parent as
shown on line 1, which must be initialized to all [−1, −1].
Line 7 stores a pointer to this array into the per-thread
variable myvisited to allow access by helper functions,
and similarly stores a pointer to the local visit index.
Second, the parent visits the first cell on each child’s
behalf, which the child retrieves on line 8. Third, the
maze is solved as soon as one child locates a cell that has
been visited by the other child. When maze_try_visit_
cell() detects this, it sets a ->done field in the maze
structure. Fourth, each child must therefore periodically
check the ->done field, as shown on lines 13, 18, and 23.
The READ_ONCE() primitive must disable any compiler

v2024.12.27a

98 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.14: Partitioned Parallel Solver Pseudocode
1 int maze_solve_child(maze *mp, cell *visited, cell sc)
2 {
3 cell c;
4 cell n;
5 int vi = 0;
6
7 myvisited = visited; myvi = &vi;
8 c = visited[vi];
9 do {

10 while (!maze_find_any_next_cell(mp, c, &n)) {
11 if (visited[++vi].row < 0)
12 return 0;
13 if (READ_ONCE(mp->done))
14 return 1;
15 c = visited[vi];
16 }
17 do {
18 if (READ_ONCE(mp->done))
19 return 1;
20 c = n;
21 } while (maze_find_any_next_cell(mp, c, &n));
22 c = visited[vi];
23 } while (!READ_ONCE(mp->done));
24 return 1;
25 }

Listing 6.15: Partitioned Parallel Helper Pseudocode
1 int maze_try_visit_cell(struct maze *mp, int c, int t,
2 int *n, int d)
3 {
4 cell_t t;
5 cell_t *tp;
6 int vi;
7
8 if (!maze_cells_connected(mp, c, t))
9 return 0;

10 tp = celladdr(mp, t);
11 do {
12 t = READ_ONCE(*tp);
13 if (t & VISITED) {
14 if ((t & TID) != mytid)
15 mp->done = 1;
16 return 0;
17 }
18 } while (!CAS(tp, t, t | VISITED | myid | d));
19 *n = t;
20 vi = (*myvi)++;
21 myvisited[vi] = t;
22 return 1;
23 }

optimizations that might combine consecutive loads or
that might reload the value. A C++1x volatile relaxed load
suffices [Smi19]. Finally, the maze_find_any_next_
cell() function must use compare-and-swap to mark a
cell as visited, however no constraints on ordering are
required beyond those provided by thread creation and
join.

The pseudocode for maze_find_any_next_cell()
is identical to that shown in Listing 6.13, but the pseu-
docode for maze_try_visit_cell() differs, and is
shown in Listing 6.15. Lines 8–9 check to see if the
cells are connected, returning failure if not. The loop

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

P
ro

b
a

b
ili

ty

CDF of Solution Time (ms)

SEQ

PWQ

PART

Figure 6.24: CDF of Solution Times For SEQ, PWQ,
and PART

spanning lines 11–18 attempts to mark the new cell visited.
Line 13 checks to see if it has already been visited, in
which case line 16 returns failure, but only after line 14
checks to see if we have encountered the other thread, in
which case line 15 indicates that the solution has been
located. Line 19 updates to the new cell, lines 20 and 21
update this thread’s visited array, and line 22 returns
success.

Performance testing revealed a surprising anomaly,
shown in Figure 6.24. The median solution time for PART
(17 milliseconds) is more than four times faster than that
of SEQ (79 milliseconds), despite running on only two
threads.

The first reaction to such a dramatic performance anom-
aly is to check for bugs, which suggests stringent validation
be applied. This is the topic of the next section.

6.5.3 Maze Validation
Much of the validation effort comprised consistency
checks, which can be located by searching for ABORT()
in CodeSamples/SMPdesign/maze/*.c. Examples
checks include:

1. Maze solution steps that end up outside of the maze.

2. Mazes that suddenly have zero or fewer rows or
columns.

3. Newly created mazes with unreachable cells.

4. Mazes that have no solution.

5. Discontinuous maze solutions.

6. Attempts to start the maze solver outside of the maze.

v2024.12.27a

6.5. BEYOND PARTITIONING 99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

P
ro

b
a

b
ili

ty

CDF of Speedup Relative to SEQ

SEQ/PWQ SEQ/PART

Figure 6.25: CDF of SEQ/PWQ and SEQ/PART Solution-
Time Ratios

7. Mazes whose solution path is longer than the number
of cells in the maze.

8. Subsolutions by different threads cross each other.

9. Memory-allocation failure.

10. System-call failure.

Additional manual validation was applied by Paul’s
wife, who greatly enjoys solving puzzles.

However, if this maze software was to be used in pro-
duction, whatever that might mean, it would be wise to
construct an independent maze fsck program. Never-
theless, the mazes and solutions all proved to be quite
valid. The next section therefore more deeply analyzes
the scalability anomaly called out in Section 6.5.2.

6.5.4 Performance Comparison I
Although the algorithms were in fact finding valid so-
lutions to valid mazes, the plot of CDFs in Figure 6.24
assumes independent data points. This is not the case:
The performance tests randomly generate a maze, and
then run all solvers on that maze. It therefore makes sense
to plot the CDF of the ratios of solution times for each
generated maze, as shown in Figure 6.25, greatly reduc-
ing the CDFs’ overlap. This plot reveals that for some
mazes, PART is more than forty times faster than SEQ. In
contrast, PWQ is never more than about two times faster
than SEQ. A forty-times speedup on two threads demands
explanation. After all, this is not merely embarrassingly
parallel, where partitionability means that adding threads
does not increase the overall computational cost. It is in-
stead humiliatingly parallel: Adding threads significantly

Figure 6.26: Reason for Small Visit Percentages

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

S
o

lu
ti
o

n
 T

im
e

 (
m

s
)

Percent of Maze Cells Visited

SEQ

PART

PWQ

Figure 6.27: Correlation Between Visit Percentage and
Solution Time

reduces the overall computational cost, resulting in large
algorithmic superlinear speedups.

Further investigation showed that PART sometimes
visited fewer than 2 % of the maze’s cells, while SEQ
and PWQ never visited fewer than about 9 %. The reason
for this difference is shown by Figure 6.26. If the thread
traversing the solution from the upper left reaches the
circle, the other thread cannot reach the upper-right portion
of the maze. Similarly, if the other thread reaches the
square, the first thread cannot reach the lower-left portion
of the maze. Therefore, PART will likely visit a small
fraction of the non-solution-path cells. In short, the
superlinear speedups are due to threads getting in each
others’ way. This is a sharp contrast with decades of
experience with parallel programming, where workers
have struggled to keep threads out of each others’ way.

Figure 6.27 confirms a strong correlation between cells
visited and solution time for all three methods. The slope
of PART’s scatterplot is smaller than that of SEQ, indi-
cating that PART’s pair of threads visits a given fraction
of the maze faster than can SEQ’s single thread. PART’s
scatterplot is also weighted toward small visit percent-

v2024.12.27a

100 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.28: PWQ Potential Contention Points

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

P
ro

b
a

b
ili

ty

CDF of Speedup Relative to SEQ

PWQ

PART

SEQ -O3

Figure 6.29: Effect of Compiler Optimization (-O3)

ages, confirming that PART does less total work, hence
the observed humiliating parallelism. This humiliating
parallelism also provides more than 2x speedup on two
CPUs, as put forth in page 75.

The fraction of cells visited by PWQ is similar to that
of SEQ. In addition, PWQ’s solution time is greater than
that of PART, even for equal visit fractions. The reason
for this is shown in Figure 6.28, which has a red circle on
each cell with more than two neighbors. Each such cell
can result in contention in PWQ, because one thread can
enter but two threads can exit, which hurts performance,
as noted earlier in this chapter. In contrast, PART can
incur such contention but once, namely when the solution
is located. Of course, SEQ never contends.

Quick Quiz 6.26: Given that a 2D maze achieved 4x speedup
on two CPUs, would a 3D maze achieve an 8x speedup on two
CPUs?

Although PART’s speedup is impressive, we should
not neglect sequential optimizations. Figure 6.29 shows
that SEQ, when compiled with -O3, is about twice as
fast as unoptimized PWQ, approaching the performance
of unoptimized PART. Compiling all three algorithms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

P
ro

b
a

b
ili

ty

CDF of Speedup Relative to SEQ (-O3)

PWQ
PART

COPART

Figure 6.30: Partitioned Coroutines

with -O3 gives results similar to (albeit faster than) those
shown in Figure 6.25, except that PWQ provides almost
no speedup compared to SEQ, in keeping with Amdahl’s
Law [Amd67]. However, if the goal is to double per-
formance compared to unoptimized SEQ, as opposed to
achieving optimality, compiler optimizations are quite
attractive.

Cache alignment and padding often improves perfor-
mance by reducing false sharing. However, for these maze-
solution algorithms, aligning and padding the maze-cell
array degrades performance by up to 42 % for 1000x1000
mazes. Cache locality is more important than avoiding
false sharing, especially for large mazes. For smaller
20-by-20 or 50-by-50 mazes, aligning and padding can
produce up to a 40 % performance improvement for PART,
but for these small sizes, SEQ performs better anyway
because there is insufficient time for PART to make up for
the overhead of thread creation and destruction.

In short, the partitioned parallel maze solver is an
interesting example of an algorithmic superlinear speedup.
If “algorithmic superlinear speedup” causes cognitive
dissonance, please proceed to the next section.

6.5.5 Alternative Sequential Maze Solver
The presence of algorithmic superlinear speedups sug-
gests simulating parallelism via co-routines, for example,
manually switching context between threads on each pass
through the main do-while loop in Listing 6.14. This
context switching is straightforward because the context
consists only of the variables c and vi: Of the numer-
ous ways to achieve the effect, this is a good tradeoff
between context-switch overhead and visit percentage.
As can be seen in Figure 6.30, this coroutine algorithm

v2024.12.27a

6.5. BEYOND PARTITIONING 101

 0

 2

 4

 6

 8

 10

 12

 10 100 1000

S
p
e
e
d
u
p
 R

e
la

ti
v
e
 t
o
 S

E
Q

 (
-O

3
)

Maze Size

PWQPART

Figure 6.31: Varying Maze Size vs. SEQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10 100 1000

S
p
e
e
d
u
p
 R

e
la

ti
v
e
 t
o
 C

O
P

A
R

T
 (

-O
3
)

Maze Size

PWQ

PART

Figure 6.32: Varying Maze Size vs. COPART

(COPART) is quite effective, with the performance on one
thread being within about 30 % of PART on two threads
(maze_2seq.c).

6.5.6 Performance Comparison II
Figures 6.31 and 6.32 show the effects of varying maze
size, comparing both PWQ and PART running on two
threads against either SEQ or COPART, respectively, with
90-percent-confidence error bars. PART shows superlin-
ear scalability against SEQ and modest scalability against
COPART for 100-by-100 and larger mazes. PART exceeds
theoretical energy-efficiency breakeven against COPART
at roughly the 200-by-200 maze size, given that power
consumption rises as roughly the square of the frequency
for high frequencies [Mud01], so that 1.4x scaling on two
threads consumes the same energy as a single thread at
equal solution speeds. In contrast, PWQ shows poor scala-
bility against both SEQ and COPART unless unoptimized:
Figures 6.31 and 6.32 were generated using -O3.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

M
e

a
n

 S
p

e
e

d
u

p
 R

e
la

ti
v
e

 t
o

 C
O

P
A

R
T

 (
-O

3
)

Number of Threads

PWQ

PART

Figure 6.33: Mean Speedup vs. Number of Threads,
1000x1000 Maze

Figure 6.33 shows the performance of PWQ and PART
relative to COPART. For PART runs with more than
two threads, the additional threads were started evenly
spaced along the diagonal connecting the starting and
ending cells. Simplified link-state routing [BG87] was
used to detect early termination on PART runs with more
than two threads (the solution is flagged when a thread is
connected to both beginning and end). PWQ performs
quite poorly, but PART hits breakeven at two threads and
again at five threads, achieving modest speedups beyond
five threads. Theoretical energy efficiency breakeven is
within the 90-percent-confidence interval for seven and
eight threads. The reasons for the peak at two threads
are (1) the lower complexity of termination detection in
the two-thread case and (2) the fact that there is a lower
probability of the third and subsequent threads making
useful forward progress: Only the first two threads are
guaranteed to start on the solution line. This disappointing
performance compared to results in Figure 6.32 is due to
the less-tightly integrated hardware available in the larger
and older Xeon system running at 2.66 GHz.

Quick Quiz 6.27: Why place the third, fourth, and so on
threads on the diagonal? Why not instead distribute them
evenly around the maze?

6.5.7 Future Directions and Conclusions
Much future work remains. First, this section applied
only one technique used by human maze solvers. Oth-
ers include following walls to exclude portions of the
maze and choosing internal starting points based on the
locations of previously traversed paths. Second, different

v2024.12.27a

102 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

choices of starting and ending points might favor different
algorithms. Third, although placement of the PART algo-
rithm’s first two threads is straightforward, there are any
number of placement schemes for the remaining threads.
Optimal placement might well depend on the starting
and ending points. Fourth, study of unsolvable mazes
and cyclic mazes is likely to produce interesting results.
Fifth, the lightweight C++11 atomic operations might
improve performance. Sixth, it would be interesting to
compare the speedups for three-dimensional mazes (or of
even higher-order mazes). Finally, for mazes, humiliating
parallelism indicated a more-efficient sequential imple-
mentation using coroutines. Do humiliatingly parallel
algorithms always lead to more-efficient sequential imple-
mentations, or are there inherently humiliatingly parallel
algorithms for which coroutine context-switch overhead
overwhelms the speedups?

This section demonstrated and analyzed parallelization
of maze-solution algorithms. A conventional work-queue-
based algorithm did well only when compiler optimiza-
tions were disabled, suggesting that some prior results
obtained using high-level/overhead languages will be in-
validated by advances in optimization.

This section gave a clear example where approaching
parallelism as a first-class optimization technique rather
than as a derivative of a sequential algorithm paves the
way for an improved sequential algorithm. High-level
design-time application of parallelism is likely to be a
fruitful field of study. This section took the problem
of solving mazes from mildly scalable to humiliatingly
parallel and back again. It is hoped that this experience will
motivate work on parallelism as a first-class design-time
whole-application optimization technique, rather than as
a grossly suboptimal after-the-fact micro-optimization to
be retrofitted into existing programs.

6.6 Partitioning, Parallelism, and
Optimization

Knowledge is of no value unless you put it into

practice.

Anton Chekhov

Most important, although this chapter has demonstrated
that applying parallelism at the design level gives excellent
results, this final section shows that this is not enough.
For search problems such as maze solution, this section
has shown that search strategy is even more important

than parallel design. Yes, for this particular type of maze,
intelligently applying parallelism identified a superior
search strategy, but this sort of luck is no substitute for a
clear focus on search strategy itself.

As noted back in Section 2.2, parallelism is but one
potential optimization of many. A successful design needs
to focus on the most important optimization. Much though
I might wish to claim otherwise, that optimization might
or might not be parallelism.

However, for the many cases where parallelism is the
right optimization, the next section covers that synchro-
nization workhorse, locking.

v2024.12.27a

Locking is the worst general-purpose

synchronization mechanism except for all those

other mechanisms that have been tried from time to

time.

With apologies to the memory of Winston Churchill
and to whoever he was quoting

Chapter 7

Locking

In recent concurrency research, locking often plays the role
of villain. Locking stands accused of inciting deadlocks,
convoying, starvation, unfairness, data races, and all man-
ner of other concurrency sins. Interestingly enough, the
role of workhorse in production-quality shared-memory
parallel software is also played by locking. This chapter
will look into this dichotomy between villain and hero, as
fancifully depicted in Figures 7.1 and 7.2.

There are a number of reasons behind this Jekyll-and-
Hyde dichotomy:

1. Many of locking’s sins have pragmatic design solu-
tions that work well in most cases, for example:

(a) Use of lock hierarchies to avoid deadlock.
(b) Deadlock-detection tools, for example, the

Linux kernel’s lockdep facility [Cor06a].
(c) Locking-friendly data structures, such as arrays,

hash tables, and radix trees, which will be
covered in Chapter 10.

2. Some of locking’s sins are problems only at high
levels of contention, levels reached only by poorly
designed programs.

3. Some of locking’s sins are avoided by using other
synchronization mechanisms in concert with locking.
These other mechanisms include statistical counters
(see Chapter 5), reference counters (see Section 9.2),
hazard pointers (see Section 9.3), sequence-locking
readers (see Section 9.4), RCU (see Section 9.5),
and simple non-blocking data structures (see Sec-
tion 14.2).

4. Until quite recently, almost all large shared-memory
parallel programs were developed in secret, so that it
was not easy to learn of these pragmatic solutions.

5. Locking works extremely well for some software
artifacts and extremely poorly for others. Developers
who have worked on artifacts for which locking works
well can be expected to have a much more positive
opinion of locking than those who have worked on
artifacts for which locking works poorly, as will be
discussed in Section 7.5.

6. All good stories need a villain, and locking has a long
and honorable history serving as a research-paper
whipping boy.

Quick Quiz 7.1: Just how can serving as a whipping boy be
considered to be in any way honorable???

This chapter will give an overview of a number of ways
to avoid locking’s more serious sins.

7.1 Staying Alive

I work to stay alive.

Bette Davis

Given that locking stands accused of deadlock and starva-
tion, one important concern for shared-memory parallel
developers is simply staying alive. The following sections
therefore cover deadlock, livelock, starvation, unfairness,
and inefficiency.

7.1.1 Deadlock
Deadlock occurs when each member of a group of threads
is holding at least one lock while at the same time waiting
on a lock held by a member of that same group. This
happens even in groups containing a single thread when

103

v2024.12.27a

104 CHAPTER 7. LOCKING

XXXX

Figure 7.1: Locking: Villain or Slob?

Figure 7.2: Locking: Workhorse or Hero?

Lock 1

Thread A Lock 2

Thread BLock 3

Thread C Lock 4

Figure 7.3: Deadlock Cycle

that thread attempts to acquire a non-recursive lock that it
already holds. Deadlock can therefore occur even given
but one thread and one lock!

Without some sort of external intervention, deadlock
is forever. No thread can acquire the lock it is waiting on
until that lock is released by the thread holding it, but the
thread holding it cannot release it until the holding thread
acquires the lock that it is in turn waiting on.

We can create a directed-graph representation of a
deadlock scenario with nodes for threads and locks, as
shown in Figure 7.3. An arrow from a lock to a thread
indicates that the thread holds the lock, for example,
Thread B holds Locks 2 and 4. An arrow from a thread to
a lock indicates that the thread is waiting on the lock, for
example, Thread B is waiting on Lock 3.

A deadlock scenario will always contain at least one
deadlock cycle. In Figure 7.3, this cycle is Thread B,
Lock 3, Thread C, Lock 4, and back to Thread B.
Quick Quiz 7.2: But the definition of lock-based deadlock
only said that each thread was holding at least one lock and
waiting on another lock that was held by some thread. How
do you know that there is a cycle?

Although there are some software environments such
as database systems that can recover from an existing
deadlock, this approach requires either that one of the
threads be killed or that a lock be forcibly stolen from one
of the threads. This killing and forcible stealing works
well for transactions, but is often problematic for kernel
and application-level use of locking: Dealing with the
resulting partially updated structures can be extremely
complex, hazardous, and error-prone.

Therefore, kernels and applications should instead
avoid deadlocks. Deadlock-avoidance strategies in-

v2024.12.27a

7.1. STAYING ALIVE 105

clude locking hierarchies (Section 7.1.1.1), local lock-
ing hierarchies (Section 7.1.1.2), layered locking hier-
archies (Section 7.1.1.3), temporal locking hierarchies
(Section 7.1.1.4), strategies for dealing with APIs con-
taining pointers to locks (Section 7.1.1.5), conditional
locking (Section 7.1.1.6), acquiring all needed locks
first (Section 7.1.1.7), single-lock-at-a-time designs (Sec-
tion 7.1.1.8), and strategies for signal/interrupt handlers
(Section 7.1.1.9). Although there is no deadlock-avoidance
strategy that works perfectly for all situations, there is a
good selection of tools to choose from.

7.1.1.1 Locking Hierarchies

Locking hierarchies order the locks and prohibit acquiring
locks out of order. In Figure 7.3, we might order the
locks numerically, thus forbidding a thread from acquiring
a given lock if it already holds a lock with the same or
a higher number. Thread B has violated this hierarchy
because it is attempting to acquire Lock 3 while holding
Lock 4. This violation permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks
and prohibit out-of-order lock acquisition. For different
types of locks, it is helpful to have a carefully considered
hierarchy from one type to the next. For many instances
of the same type of lock, for example, a per-node lock
in a search tree, the traditional approach is to carry out
lock acquisition in order of the addresses of the locks to
be acquired. Either way, in large program, it is wise to
use tools such as the Linux-kernel lockdep [Cor06a] to
enforce your locking hierarchy.

7.1.1.2 Local Locking Hierarchies

However, the global nature of locking hierarchies makes
them difficult to apply to library functions. After all, when
a program using a given library function has not yet been
written, how can the poor library-function implementor
possibly follow the yet-to-be-defined locking hierarchy?

One special (but common) case is when the library
function does not invoke any of the caller’s code. In
this case, the caller’s locks will never be acquired while
holding any of the library’s locks, so that there cannot be
a deadlock cycle containing locks from both the library
and the caller.
Quick Quiz 7.3: Are there any exceptions to this rule, so that
there really could be a deadlock cycle containing locks from
both the library and the caller, even given that the library code
never invokes any of the caller’s functions?

Application

Lock A

foo()

Lock B

bar() cmp()

Library

Lock C

qsort()

Figure 7.4: No qsort() Compare-Function Locking

But suppose that a library function does invoke the
caller’s code. For example, qsort() invokes a caller-
provided comparison function. Now, normally this com-
parison function will operate on unchanging local data,
so that it need not acquire locks, as shown in Figure 7.4.
But maybe someone is crazy enough to sort a collection
whose keys are changing, thus requiring that the compari-
son function acquire locks, which might result in deadlock,
as shown in Figure 7.5. How can the library function
avoid this deadlock?

The golden rule in this case is “Release all locks before
invoking unknown code.” To follow this rule, the qsort()
function must release all of its locks before invoking the
comparison function. Thus qsort() will not be holding
any of its locks while the comparison function acquires
any of the caller’s locks, thus avoiding deadlock.

Quick Quiz 7.4: But if qsort() releases all its locks before
invoking the comparison function, how can it protect against
races with other qsort() threads?

To see the benefits of local locking hierarchies, compare
Figures 7.5 and 7.6. In both figures, application func-
tions foo() and bar() invoke qsort() while holding
Locks A and B, respectively. Because this is a parallel im-
plementation of qsort(), it acquires Lock C. Function
foo() passes function cmp() to qsort(), and cmp()
acquires Lock B. Function bar() passes a simple integer-
comparison function (not shown) to qsort(), and this
simple function does not acquire any locks.

Now, if qsort() holds Lock C while calling cmp()
in violation of the golden release-all-locks rule above, as
shown in Figure 7.5, deadlock can occur. To see this,
suppose that one thread invokes foo() while a second

v2024.12.27a

106 CHAPTER 7. LOCKING

Application

Lock A

foo()

Lock B

bar()

Lock B

cmp()

Library

Lock C

qsort()

DEADLOCK

Figure 7.5: Without qsort() Local Locking Hierarchy

Application

Lock A

foo()

Lock B

bar()

Lock B

cmp()

Library

Lock C

qsort()

Figure 7.6: Local Locking Hierarchy for qsort()

thread concurrently invokes bar(). The first thread will
acquire Lock A and the second thread will acquire Lock B.
If the first thread’s call to qsort() acquires Lock C, then
it will be unable to acquire Lock B when it calls cmp().
But the first thread holds Lock C, so the second thread’s
call to qsort() will be unable to acquire it, and thus
unable to release Lock B, resulting in deadlock.

In contrast, if qsort() releases Lock C before invoking
the comparison function, which is unknown code from
qsort()’s perspective, then deadlock is avoided as shown
in Figure 7.6.

If each module releases all locks before invoking un-
known code, then deadlock is avoided if each module
separately avoids deadlock. This rule therefore greatly
simplifies deadlock analysis and greatly improves modu-
larity.

Nevertheless, this golden rule comes with a warning.
When you release those locks, any state that they protect
is subject to arbitrary changes, changes that are all too
easy for the function’s caller to forget, resulting in subtle
and difficult-to-reproduce bugs. Because the qsort()
comparison function rarely acquires locks, let’s switch to
a different example.

Consider the recursive tree iterator in Listing 7.1 (rec_
tree_itr.c). The iterator visits every node in the tree,
invoking a user’s callback function. The tree lock is
released before the invocation and re-acquired after return.
This code makes dangerous assumptions: (1) The number
of children of the current node has not changed, (2) The
ancestors stored on the stack by the recursion are still there,
and (3) The visited node itself has not been removed and
freed. A few of these hazards can be encountered if one
thread calls tree_add() while another thread releases
the tree’s lock to run a callback function.
Quick Quiz 7.5: So the iterating thread may or may not
observe the added child. What is the big deal?

One strategy is to ensure that state is preserved de-
spite the lock being released, for example, by acquiring
a reference on a node to prevent it from being freed. Al-
ternatively, the state can be re-initialized once the lock is
re-acquired after the callback function returns.

7.1.1.3 Layered Locking Hierarchies

Unfortunately, it might be infeasible to preserve state
on the one hand or to re-initialize it on the other, thus
ruling out a local locking hierarchy where all locks are
released before invoking unknown code. However, we can
instead construct a layered locking hierarchy, as shown in

v2024.12.27a

7.1. STAYING ALIVE 107

Listing 7.1: Recursive Tree Iterator
1 struct node {
2 int data;
3 int nchildren;
4 struct node **children;
5 };
6
7 struct tree {
8 spinlock_t s;
9 struct node *root;

10 };
11
12 void tree_for_each_rec(struct tree *tr, struct node *nd,
13 void (*callback)(struct node *))
14 {
15 struct node **itr;
16
17 spin_unlock(&tr->s);
18 callback(nd);
19 spin_lock(&tr->s);
20
21 itr = nd->children;
22 for (int i = 0; i < nd->nchildren; i++) {
23 tree_for_each_rec(tr, *itr, callback);
24 itr++;
25 }
26 }
27
28 void tree_for_each(struct tree *tr,
29 void (*callback)(struct node *))
30 {
31 spin_lock(&tr->s);
32 tree_for_each_rec(tr, tr->root, callback);
33 spin_unlock(&tr->s);
34 }
35
36 void tree_add(struct tree *tr, struct node *parent,
37 struct node *new_child)
38 {
39 spin_lock(&tr->s);
40 parent->nchildren++;
41 parent->children = realloc(parent->children,
42 sizeof(struct node *) *
43 parent->nchildren);
44 parent->children[parent->nchildren - 1] = new_child;
45 spin_unlock(&tr->s);
46 }

Application

Lock A

foo()

Lock B

bar()

Lock D

cmp()

Library

Lock C

qsort()

Figure 7.7: Layered Locking Hierarchy for qsort()

Figure 7.7. Here, the cmp() function uses a new Lock D
that is acquired after all of Locks A, B, and C, avoiding
deadlock. We therefore have three layers to the global
deadlock hierarchy, the first containing Locks A and B,
the second containing Lock C, and the third containing
Lock D.

Please note that it is not typically possible to mechan-
ically change cmp() to use the new Lock D. Quite the
opposite: It is often necessary to make profound design-
level modifications. Nevertheless, the effort required for
such modifications is normally a small price to pay in
order to avoid deadlock. More to the point, this potential
deadlock should preferably be detected at design time,
before any code has been generated!

For another example where releasing all locks before
invoking unknown code is impractical, imagine an iterator
over a linked list, as shown in Listing 7.2 (locked_list.
c). The list_start() function acquires a lock on the
list and returns the first element (if there is one), and
list_next() either returns a pointer to the next element
in the list or releases the lock and returns NULL if the end
of the list has been reached.

Listing 7.3 shows how this list iterator may be used.
Lines 1–4 define the list_ints element containing a
single integer, and lines 6–17 show how to iterate over
the list. Line 11 locks the list and fetches a pointer to the

v2024.12.27a

108 CHAPTER 7. LOCKING

Listing 7.2: Concurrent List Iterator
1 struct locked_list {
2 spinlock_t s;
3 struct cds_list_head h;
4 };
5
6 struct cds_list_head *list_start(struct locked_list *lp)
7 {
8 spin_lock(&lp->s);
9 return list_next(lp, &lp->h);

10 }
11
12 struct cds_list_head *list_next(struct locked_list *lp,
13 struct cds_list_head *np)
14 {
15 struct cds_list_head *ret;
16
17 ret = np->next;
18 if (ret == &lp->h) {
19 spin_unlock(&lp->s);
20 ret = NULL;
21 }
22 return ret;
23 }

Listing 7.3: Concurrent List Iterator Usage
1 struct list_ints {
2 struct cds_list_head n;
3 int a;
4 };
5
6 void list_print(struct locked_list *lp)
7 {
8 struct cds_list_head *np;
9 struct list_ints *ip;

10
11 np = list_start(lp);
12 while (np != NULL) {
13 ip = cds_list_entry(np, struct list_ints, n);
14 printf("\t%d\n", ip->a);
15 np = list_next(lp, np);
16 }
17 }

first element, line 13 provides a pointer to our enclosing
list_ints structure, line 14 prints the corresponding
integer, and line 15 moves to the next element. This is
quite simple, and hides all of the locking.

That is, the locking remains hidden as long as the code
processing each list element does not itself acquire a lock
that is held across some other call to list_start() or
list_next(), which results in deadlock. We can avoid
the deadlock by layering the locking hierarchy to take the
list-iterator locking into account.

This layered approach can be extended to an arbitrarily
large number of layers, but each added layer increases
the complexity of the locking design. Such increases in
complexity are particularly inconvenient for some types of
object-oriented designs, in which control passes back and
forth among a large group of objects in an undisciplined
manner.1 This mismatch between the habits of object-
oriented design and the need to avoid deadlock is an
important reason why parallel programming is perceived
by some to be so difficult.

Some alternatives to highly layered locking hierarchies
are covered in Chapter 9.

7.1.1.4 Temporal Locking Hierarchies

One way to avoid deadlock is to defer acquisition of one
of the conflicting locks. This approach is used in Linux-
kernel RCU, whose call_rcu() function is invoked by
the Linux-kernel scheduler while holding its locks. This
means that call_rcu() cannot always safely invoke the
scheduler to do a wakeup, for example, in order to wake
up an RCU kthread in order to start the new grace period
that is required by the callback queued by call_rcu().

Quick Quiz 7.6: What do you mean “cannot always safely
invoke the scheduler”? Either call_rcu() can or cannot
safely invoke the scheduler, right?

However, grace periods last for many milliseconds, so
waiting another millisecond before starting a new grace pe-
riod is not normally a problem. Therefore, if call_rcu()
detects a possible deadlock with the scheduler, it arranges
to start the new grace period later, either within a timer
handler or within the scheduler-clock interrupt handler,
depending on configuration. Because no scheduler locks
are held across either handler, deadlock is successfully
avoided.

1 One name for this is “object-oriented spaghetti code.”

v2024.12.27a

7.1. STAYING ALIVE 109

The overall approach is thus to adhere to a locking
hierarchy by deferring lock acquisition to an environment
in which no locks are held.

7.1.1.5 Locking Hierarchies and Pointers to Locks

Although there are some exceptions, an external API
containing a pointer to a lock is very often a misdesigned
API. Handing an internal lock to some other software
component is after all the antithesis of information hiding,
which is in turn a key design principle.

Quick Quiz 7.7: Name one common situation where a pointer
to a lock is passed into a function.

One exception is functions that hand off some entity,
where the caller’s lock must be held until the handoff is
complete, but where the lock must be released before the
function returns. One example of such a function is the
POSIX pthread_cond_wait() function, where passing
a pointer to a pthread_mutex_t prevents hangs due to
lost wakeups.

Quick Quiz 7.8: Doesn’t the fact that pthread_cond_
wait() first releases the mutex and then re-acquires it elimi-
nate the possibility of deadlock?

In short, if you find yourself exporting an API with a
pointer to a lock as an argument or as the return value, do
yourself a favor and carefully reconsider your API design.
It might well be the right thing to do, but experience
indicates that this is unlikely.

7.1.1.6 Conditional Locking

But suppose that there is no reasonable locking hierarchy.
This can happen in real life, for example, in some types
of layered network protocol stacks where packets flow
in both directions, for example, in implementations of
distributed lock managers. In the networking case, it
might be necessary to hold the locks from both layers
when passing a packet from one layer to another. Given
that packets travel both up and down the protocol stack,
this is an excellent recipe for deadlock, as illustrated in
Listing 7.4. Here, a packet moving down the stack towards
the wire must acquire the next layer’s lock out of order.
Given that packets moving up the stack away from the
wire are acquiring the locks in order, the lock acquisition
in line 4 of the listing can result in deadlock.

One way to avoid deadlocks in this case is to impose
a locking hierarchy, but when it is necessary to acquire
a lock out of order, acquire it conditionally, as shown

Listing 7.4: Protocol Layering and Deadlock
1 spin_lock(&lock2);
2 layer_2_processing(pkt);
3 nextlayer = layer_1(pkt);
4 spin_lock(&nextlayer->lock1);
5 spin_unlock(&lock2);
6 layer_1_processing(pkt);
7 spin_unlock(&nextlayer->lock1);

Listing 7.5: Avoiding Deadlock Via Conditional Locking
1 retry:
2 spin_lock(&lock2);
3 layer_2_processing(pkt);
4 nextlayer = layer_1(pkt);
5 if (!spin_trylock(&nextlayer->lock1)) {
6 spin_unlock(&lock2);
7 spin_lock(&nextlayer->lock1);
8 spin_lock(&lock2);
9 if (layer_1(pkt) != nextlayer) {

10 spin_unlock(&nextlayer->lock1);
11 spin_unlock(&lock2);
12 goto retry;
13 }
14 }
15 spin_unlock(&lock2);
16 layer_1_processing(pkt);
17 spin_unlock(&nextlayer->lock1);

in Listing 7.5. Instead of unconditionally acquiring the
layer-1 lock, line 5 conditionally acquires the lock using
the spin_trylock() primitive. This primitive acquires
the lock immediately if the lock is available (returning
non-zero), and otherwise returns zero without acquiring
the lock.

If spin_trylock() was successful, line 16 does the
needed layer-1 processing. Otherwise, line 6 releases
the lock, and lines 7 and 8 acquire them in the correct
order. Unfortunately, there might be multiple networking
devices on the system (e.g., Ethernet and WiFi), so that
the layer_1() function must make a routing decision.
This decision might change at any time, especially if the
system is mobile.2 Therefore, line 9 must recheck the
decision, and if it has changed, must release the locks and
start over.
Quick Quiz 7.9: Can the transformation from Listing 7.4 to
Listing 7.5 be applied universally?

Quick Quiz 7.10: But the complexity in Listing 7.5 is well
worthwhile given that it avoids deadlock, right?

7.1.1.7 Acquire Needed Locks First

In an important special case of conditional locking, all
needed locks are acquired before any processing is carried

2 And, in contrast to the 1900s, mobility is the common case.

v2024.12.27a

110 CHAPTER 7. LOCKING

out, where the needed locks might be identified by hashing
the addresses of the data structures involved. In this case,
processing need not be idempotent: If it turns out to be
impossible to acquire a given lock without first releasing
one that was already acquired, just release all the locks
and try again. Only once all needed locks are held will
any processing be carried out.

However, this procedure can result in livelock, which
will be discussed in Section 7.1.2.
Quick Quiz 7.11: When using the “acquire needed locks
first” approach described in Section 7.1.1.7, how can livelock
be avoided?

A related approach, two-phase locking [BHG87], has
seen long production use in transactional database systems.
In the first phase of a two-phase locking transaction, locks
are acquired but not released. Once all needed locks have
been acquired, the transaction enters the second phase,
where locks are released, but not acquired. This locking
approach allows databases to provide serializability guar-
antees for their transactions, in other words, to guarantee
that all values seen and produced by the transactions are
consistent with some global ordering of all the transac-
tions. Many such systems rely on the ability to abort
transactions, although this can be simplified by avoiding
making any changes to shared data until all needed locks
are acquired. Livelock and deadlock are issues in such
systems, but practical solutions may be found in any of a
number of database textbooks.

7.1.1.8 Single-Lock-at-a-Time Designs

In some cases, it is possible to avoid nesting locks, thus
avoiding deadlock. For example, if a problem is perfectly
partitionable, a single lock may be assigned to each par-
tition. Then a thread working on a given partition need
only acquire the one corresponding lock. Because no
thread ever holds more than one lock at a time, deadlock
is impossible.

However, there must be some mechanism to ensure that
the needed data structures remain in existence during the
time that neither lock is held. One such mechanism is
discussed in Section 7.4 and several others are presented
in Chapter 9.

7.1.1.9 Signal/Interrupt Handlers

Deadlocks involving signal handlers are often quickly
dismissed by noting that it is not legal to invoke pthread_
mutex_lock() from within a signal handler [Ope97].

However, it is possible (though often unwise) to hand-
craft locking primitives that can be invoked from signal
handlers. Besides which, almost all operating-system
kernels permit locks to be acquired from within interrupt
handlers, which are analogous to signal handlers.

The trick is to block signals (or disable interrupts, as
the case may be) when acquiring any lock that might
be acquired within a signal (or an interrupt) handler.
Furthermore, if holding such a lock, it is illegal to attempt
to acquire any lock that is ever acquired outside of a signal
handler without blocking signals.
Quick Quiz 7.12: Suppose Lock A is never acquired within
a signal handler, but Lock B is acquired both from thread
context and by signal handlers. Suppose further that Lock A is
sometimes acquired with signals unblocked. Why is it illegal
to acquire Lock A holding Lock B?

If a lock is acquired by the handlers for several signals,
then each and every one of these signals must be blocked
whenever that lock is acquired, even when that lock is
acquired within a signal handler.
Quick Quiz 7.13: How can you legally block signals within
a signal handler?

Unfortunately, blocking and unblocking signals can be
expensive in some operating systems, notably including
Linux, so performance concerns often mean that locks
acquired in signal handlers are only acquired in signal
handlers, and that lockless synchronization mechanisms
are used to communicate between application code and
signal handlers.

Or that signal handlers are avoided completely except
for handling fatal errors.
Quick Quiz 7.14: If acquiring locks in signal handlers is
such a bad idea, why even discuss ways of making it safe?

7.1.1.10 Discussion

There are a large number of deadlock-avoidance strategies
available to the shared-memory parallel programmer, but
there are sequential programs for which none of them
is a good fit. This is one of the reasons that expert
programmers have more than one tool in their toolbox:
Locking is a powerful concurrency tool, but there are jobs
better addressed with other tools.
Quick Quiz 7.15: Given an object-oriented application that
passes control freely among a group of objects such that there
is no straightforward locking hierarchy,a layered or otherwise,
how can this application be parallelized?

v2024.12.27a

7.1. STAYING ALIVE 111

Listing 7.6: Abusing Conditional Locking
1 void thread1(void)
2 {
3 retry:
4 spin_lock(&lock1);
5 do_one_thing();
6 if (!spin_trylock(&lock2)) {
7 spin_unlock(&lock1);
8 goto retry;
9 }

10 do_another_thing();
11 spin_unlock(&lock2);
12 spin_unlock(&lock1);
13 }
14
15 void thread2(void)
16 {
17 retry:
18 spin_lock(&lock2);
19 do_a_third_thing();
20 if (!spin_trylock(&lock1)) {
21 spin_unlock(&lock2);
22 goto retry;
23 }
24 do_a_fourth_thing();
25 spin_unlock(&lock1);
26 spin_unlock(&lock2);
27 }

a Also known as “object-oriented spaghetti code.”

Nevertheless, the strategies described in this section
have proven quite useful in many settings.

7.1.2 Livelock and Starvation
Although conditional locking can be an effective deadlock-
avoidance mechanism, it can be abused. Consider for
example the beautifully symmetric example shown in
Listing 7.6. This example’s beauty hides an ugly livelock.
To see this, consider the following sequence of events:

1. Thread 1 acquires lock1 on line 4, then invokes
do_one_thing().

2. Thread 2 acquires lock2 on line 18, then invokes
do_a_third_thing().

3. Thread 1 attempts to acquire lock2 on line 6, but
fails because Thread 2 holds it.

4. Thread 2 attempts to acquire lock1 on line 20, but
fails because Thread 1 holds it.

5. Thread 1 releases lock1 on line 7, then jumps to
retry at line 3.

6. Thread 2 releases lock2 on line 21, and jumps to
retry at line 17.

Listing 7.7: Conditional Locking and Exponential Backoff
1 void thread1(void)
2 {
3 unsigned int wait = 1;
4 retry:
5 spin_lock(&lock1);
6 do_one_thing();
7 if (!spin_trylock(&lock2)) {
8 spin_unlock(&lock1);
9 sleep(wait);

10 wait = wait << 1;
11 goto retry;
12 }
13 do_another_thing();
14 spin_unlock(&lock2);
15 spin_unlock(&lock1);
16 }
17
18 void thread2(void)
19 {
20 unsigned int wait = 1;
21 retry:
22 spin_lock(&lock2);
23 do_a_third_thing();
24 if (!spin_trylock(&lock1)) {
25 spin_unlock(&lock2);
26 sleep(wait);
27 wait = wait << 1;
28 goto retry;
29 }
30 do_a_fourth_thing();
31 spin_unlock(&lock1);
32 spin_unlock(&lock2);
33 }

7. The livelock dance repeats from the beginning.

Quick Quiz 7.16: How can the livelock shown in Listing 7.6
be avoided?

Livelock can be thought of as an extreme form of
starvation where a group of threads starves, rather than
just one of them.3

Livelock and starvation are serious issues in software
transactional memory implementations, and so the concept
of contention manager has been introduced to encapsulate
these issues. In the case of locking, simple exponential
backoff can often address livelock and starvation. The
idea is to introduce exponentially increasing delays before
each retry, as shown in Listing 7.7.

Quick Quiz 7.17: What problems can you spot in the code
in Listing 7.7?

For better results, backoffs should be bounded, and
even better high-contention results are obtained via queued
locking [And90], which is discussed more in Section 7.3.2.

3 Try not to get too hung up on the exact definitions of terms like
livelock, starvation, and unfairness. Anything that causes a group of
threads to fail to make adequate forward progress is a bug that needs to
be fixed, and debating names doesn’t fix bugs.

v2024.12.27a

112 CHAPTER 7. LOCKING

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory Memory

Speed−of−Light Round−Trip Distance in Vacuum

for 1.8 GHz Clock Period (8 cm)

System Interconnect

Figure 7.8: System Architecture and Lock Unfairness

Of course, best of all is to use a good parallel design that
avoids these problems by maintaining low lock contention.

7.1.3 Unfairness
Unfairness can be thought of as a less-severe form of star-
vation, where a subset of threads contending for a given
lock are granted the lion’s share of the acquisitions. This
can happen on machines with shared caches or NUMA
characteristics, for example, as shown in Figure 7.8. If
CPU 0 releases a lock that all the other CPUs are attempt-
ing to acquire, the interconnect shared between CPUs 0
and 1 means that CPU 1 will have an advantage over
CPUs 2–7. Therefore CPU 1 will likely acquire the lock.
If CPU 1 holds the lock long enough for CPU 0 to be
requesting the lock by the time CPU 1 releases it and
vice versa, the lock can shuttle between CPUs 0 and 1,
bypassing CPUs 2–7.

Quick Quiz 7.18: Wouldn’t it be better just to use a good
parallel design so that lock contention was low enough to avoid
unfairness?

7.1.4 Inefficiency
Locks are implemented using atomic instructions and
memory barriers, and often involve cache misses. As we
saw in Chapter 3, these instructions are quite expensive,
roughly two orders of magnitude greater overhead than
simple instructions. This can be a serious problem for
locking: If you protect a single instruction with a lock,

Figure 7.9: Saw Kerf

you will increase the overhead by a factor of one hundred.
Even assuming perfect scalability, one hundred CPUs
would be required to keep up with a single CPU executing
the same code without locking.

This situation is not confined to locking. Figure 7.9
shows how this same principle applies to the age-old
activity of sawing wood. As can be seen in the figure,
sawing a board converts a small piece of that board (the
width of the saw blade) into sawdust. Of course, locks
partition time instead of sawing wood,4 but just like sawing
wood, using locks to partition time wastes some of that
time due to lock overhead and (worse yet) lock contention.
One important difference is that if someone saws a board
into too-small pieces, the resulting conversion of most
of that board into sawdust will be immediately obvious.
In contrast, it is not always obvious that a given lock
acquisition is wasting excessive amounts of time.

And this situation underscores the importance of the
synchronization-granularity tradeoff discussed in Sec-
tion 6.3, especially Figure 6.16: Too coarse a granularity
will limit scalability, while too fine a granularity will
result in excessive synchronization overhead.

Acquiring a lock might be expensive, but once held,
the CPU’s caches are an effective performance booster, at
least for large critical sections. In addition, once a lock is
held, the data protected by that lock can be accessed by
the lock holder without interference from other threads.
Quick Quiz 7.19: How might the lock holder be interfered
with?

The Rust programming language takes lock/data asso-
ciation a step further by allowing the developer to make a
compiler-visible association between a lock and the data
that it protects [JJKD21]. When such an association has
been made, attempts to access the data without the benefit
of the corresponding lock will result in a compile-time
diagnostic. The hope is that this will greatly reduce the

4 That is, locking is temporal synchronization. Mechanisms that
synchronize both temporally and spatially are described in Chapter 9.

v2024.12.27a

7.2. TYPES OF LOCKS 113

frequency of this class of bugs. Of course, this approach
does not apply straightforwardly to cases where the data to
be locked is distributed throughout the nodes of some data
structure or when that which is locked is purely abstract,
for example, when a small subset of state-machine transi-
tions is to be protected by a given lock. For this reason,
Rust allows locks to be associated with types rather than
data items or even to be associated with nothing at all. This
last option permits Rust to emulate traditional locking use
cases, but is not popular among Rust developers. Perhaps
the Rust community will come up with other mechanisms
tailored to other locking use cases.

7.2 Types of Locks

Only locks in life are what you think you know, but

don’t. Accept your ignorance and try something new.

Dennis Vickers

There are a surprising number of types of locks, more
than this short chapter can possibly do justice to. The
following sections discuss exclusive locks (Section 7.2.1),
reader-writer locks (Section 7.2.2), multi-role locks (Sec-
tion 7.2.3), and scoped locking (Section 7.2.4).

7.2.1 Exclusive Locks
Exclusive locks are what they say they are: Only one
thread may hold the lock at a time. The holder of such a
lock thus has exclusive access to all data protected by that
lock, hence the name.

Of course, this all assumes that this lock is held across
all accesses to data purportedly protected by the lock.
Although there are some tools that can help (see for
example Section 12.3.1), the ultimate responsibility for
ensuring that the lock is always acquired when needed
rests with the developer.

Quick Quiz 7.20: Does it ever make sense to have an
exclusive lock acquisition immediately followed by a release
of that same lock, that is, an empty critical section?

It is important to note that unconditionally acquiring
an exclusive lock has two effects: (1) Waiting for all prior
holders of that lock to release it and (2) Blocking any
other acquisition attempts until the lock is released. As a
result, at lock acquisition time, any concurrent acquisitions
of that lock must be partitioned into prior holders and
subsequent holders. Different types of exclusive locks

use different partitioning strategies [Bra11, GGL+19], for
example:

1. Strict FIFO, with acquisitions starting earlier acquir-
ing the lock earlier.

2. Approximate FIFO, with acquisitions starting suffi-
ciently earlier acquiring the lock earlier.

3. FIFO within priority level, with higher-priority
threads acquiring the lock earlier than any lower-
priority threads attempting to acquire the lock at
about the same time, but so that some FIFO ordering
applies for threads of the same priority.

4. Random, so that the new lock holder is chosen ran-
domly from all threads attempting acquisition, re-
gardless of timing.

5. Unfair, so that a given acquisition might never acquire
the lock (see Section 7.1.3).

Unfortunately, locking implementations with stronger
guarantees typically incur higher overhead, motivating the
wide variety of locking implementations in production
use. For example, real-time systems often require some
degree of FIFO ordering within priority level, and much
else besides (see Section 14.3.5.1), while non-realtime
systems subject to high contention might require only
enough ordering to avoid starvation, and finally, non-
realtime systems designed to avoid contention might not
need fairness at all.

7.2.2 Reader-Writer Locks
Reader-writer locks [CHP71] permit any number of read-
ers to hold the lock concurrently on the one hand or a
single writer to hold the lock on the other. In theory,
then, reader-writer locks should allow excellent scalability
for data that is read often and written rarely. In prac-
tice, the scalability will depend on the reader-writer lock
implementation.

The classic reader-writer lock implementation involves
a set of counters and flags that are manipulated atomically.
This type of implementation suffers from the same problem
as does exclusive locking for short critical sections: The
overhead of acquiring and releasing the lock is about
two orders of magnitude greater than the overhead of a
simple instruction. Of course, if the critical section is
long enough, the overhead of acquiring and releasing the
lock becomes negligible. However, because only one

v2024.12.27a

114 CHAPTER 7. LOCKING

thread at a time can be manipulating the lock, the required
critical-section size increases with the number of CPUs.

It is possible to design a reader-writer lock that is much
more favorable to readers through use of per-thread exclu-
sive locks [HW92]. To read, a thread acquires only its own
lock. To write, a thread acquires all locks. In the absence
of writers, each reader incurs only atomic-instruction and
memory-barrier overhead, with no cache misses, which is
quite good for a locking primitive. Unfortunately, writers
must incur cache misses as well as atomic-instruction and
memory-barrier overhead—multiplied by the number of
threads.

In short, reader-writer locks can be quite useful in a
number of situations, but each type of implementation
does have its drawbacks. The canonical use case for reader-
writer locking involves very long read-side critical sections,
preferably measured in hundreds of microseconds or even
milliseconds.

As with exclusive locks, a reader-writer lock acquisition
cannot complete until all prior conflicting holders of that
lock have released it. If a lock is read-held, then read acqui-
sitions can complete immediately, but write acquisitions
must wait until there are no longer any readers holding
the lock. If a lock is write-held, then all acquisitions must
wait until the writer releases the lock. Again as with exclu-
sive locks, different reader-writer lock implementations
provide different degrees of FIFO ordering to readers on
the one hand and to writers on the other.

But suppose a large number of readers hold the lock and
a writer is waiting to acquire the lock. Should readers be
allowed to continue to acquire the lock, possibly starving
the writer? Similarly, suppose that a writer holds the
lock and that a large number of both readers and writers
are waiting to acquire the lock. When the current writer
releases the lock, should it be given to a reader or to
another writer? If it is given to a reader, how many readers
should be allowed to acquire the lock before the next writer
is permitted to do so?

There are many possible answers to these questions,
with different levels of complexity, overhead, and fairness.
Different implementations might have different costs, for
example, some types of reader-writer locks incur extremely
large latencies when switching from read-holder to write-
holder mode. Here are a few possible approaches:

1. Reader-preference implementations unconditionally
favor readers over writers, possibly allowing write
acquisitions to be indefinitely blocked.

Table 7.1: VAX/VMS Distributed Lock Manager Policy

N
ul

l(
N

ot
H

el
d)

C
on

cu
rr

en
tR

ea
d

C
on

cu
rr

en
tW

rit
e

Pr
ot

ec
te

d
Re

ad

Pr
ot

ec
te

d
W

rit
e

Ex
cl

us
iv

e

Null (Not Held)
Concurrent Read X
Concurrent Write X X X
Protected Read X X X
Protected Write X X X X
Exclusive X X X X X

2. Batch-fair implementations ensure that when both
readers and writers are acquiring the lock, both have
reasonable access via batching. For example, the
lock might admit five readers per CPU, then two
writers, then five more readers per CPU, and so on.

3. Writer-preference implementations unconditionally
favor writers over readers, possibly allowing read
acquisitions to be indefinitely blocked.

Of course, these distinctions matter only under condi-
tions of high lock contention.

Please keep the waiting/blocking dual nature of locks
firmly in mind. This will be revisited in Chapter 9’s
discussion of scalable high-performance special-purpose
alternatives to locking.

7.2.3 Beyond Reader-Writer Locks
Reader-writer locks and exclusive locks differ in their
admission policy: Exclusive locks allow at most one
holder, while reader-writer locks permit an arbitrary num-
ber of read-holders (but only one write-holder). There is a
very large number of possible admission policies, one of
which is that of the VAX/VMS distributed lock manager
(DLM) [ST87], which is shown in Table 7.1. Blank cells
indicate compatible modes, while cells containing “X”
indicate incompatible modes.

The VAX/VMS DLM uses six modes. For purposes
of comparison, exclusive locks use two modes (not held
and held), while reader-writer locks use three modes (not
held, read held, and write held).

The first mode is null, or not held. This mode is
compatible with all other modes, which is to be expected:

v2024.12.27a

7.2. TYPES OF LOCKS 115

If a thread is not holding a lock, it should not prevent any
other thread from acquiring that lock.

The second mode is concurrent read, which is com-
patible with every other mode except for exclusive. The
concurrent-read mode might be used to accumulate ap-
proximate statistics on a data structure, while permitting
updates to proceed concurrently.

The third mode is concurrent write, which is compatible
with null, concurrent read, and concurrent write. The
concurrent-write mode might be used to update approxi-
mate statistics, while still permitting reads and concurrent
updates to proceed concurrently.

The fourth mode is protected read, which is compatible
with null, concurrent read, and protected read. The
protected-read mode might be used to obtain a consistent
snapshot of the data structure, while permitting reads but
not updates to proceed concurrently.

The fifth mode is protected write, which is compatible
with null and concurrent read. The protected-write mode
might be used to carry out updates to a data structure that
could interfere with protected readers but which could be
tolerated by concurrent readers.

The sixth and final mode is exclusive, which is compat-
ible only with null. The exclusive mode is used when it is
necessary to exclude all other accesses.

It is interesting to note that exclusive locks and reader-
writer locks can be emulated by the VAX/VMS DLM. Ex-
clusive locks would use only the null and exclusive modes,
while reader-writer locks might use the null, protected-
read, and protected-write modes.

Quick Quiz 7.21: Is there any other way for the VAX/VMS
DLM to emulate a reader-writer lock?

Although the VAX/VMS DLM policy has seen wide-
spread production use for distributed databases, it does not
appear to be used much in shared-memory applications.
One possible reason for this is that the greater commu-
nication overheads of distributed databases can hide the
greater overhead of the VAX/VMS DLM’s more-complex
admission policy.

Nevertheless, the VAX/VMS DLM is an interesting
illustration of just how flexible the concepts behind locking
can be. It also serves as a very simple introduction to
the locking schemes used by modern DBMSes, which
can have more than thirty locking modes, compared to
VAX/VMS’s six.

7.2.4 Scoped Locking
The locking primitives discussed thus far require explicit
acquisition and release primitives, for example, spin_
lock() and spin_unlock(), respectively. Another ap-
proach is to use the object-oriented resource-acquisition-
is-initialization (RAII) pattern [ES90].5 This pattern is
often applied to auto variables in languages like C++,
where the corresponding constructor is invoked upon en-
try to the object’s scope, and the corresponding destructor
is invoked upon exit from that scope. This can be applied
to locking by having the constructor acquire the lock and
the destructor free it.

This approach can be quite useful, in fact in 1990 I was
convinced that it was the only type of locking that was
needed.6 One very nice property of RAII locking is that
you don’t need to carefully release the lock on each and
every code path that exits that scope, a property that can
eliminate a troublesome set of bugs.

However, RAII locking also has a dark side. RAII
makes it quite difficult to encapsulate lock acquisition
and release, for example, in iterators. In many iterator
implementations, you would like to acquire the lock in the
iterator’s “start” function and release it in the iterator’s
“stop” function. RAII locking instead requires that the
lock acquisition and release take place in the same level
of scoping, making such encapsulation difficult or even
impossible.

Strict RAII locking also prohibits overlapping critical
sections, due to the fact that scopes must nest. This
prohibition makes it difficult or impossible to express a
number of useful constructs, for example, locking trees
that mediate between multiple concurrent attempts to
assert an event. Of an arbitrarily large group of concurrent
attempts, only one need succeed, and the best strategy
for the remaining attempts is for them to fail as quickly
and painlessly as possible. Otherwise, lock contention
becomes pathological on large systems (where “large” is
many hundreds of CPUs). Therefore, C++17 [Smi19] has
escapes from strict RAII in its unique_lock class, which
allows the scope of the critical section to be controlled to
roughly the same extent as can be achieved with explicit
lock acquisition and release primitives.

Example strict-RAII-unfriendly data structures from
Linux-kernel RCU are shown in Figure 7.10. Here, each
CPU is assigned a leaf rcu_node structure, and each rcu_

5 Though more clearly expressed at https://www.stroustrup.
com/bs_faq2.html#finally.

6 My later work with parallelism at Sequent Computer Systems
very quickly disabused me of this misguided notion.

https://www.stroustrup.com/bs_faq2.html#finally
https://www.stroustrup.com/bs_faq2.html#finally

v2024.12.27a

116 CHAPTER 7. LOCKING

Root rcu_node
Structure

Structure 0
Leaf rcu_node Leaf rcu_node

Structure N

C
P

U
 m

 *
 (

N
 −

 1
)

+
 1

C
P

U
 m

 *
 N

 −
 1

C
P

U
 m

 *
 (

N
 −

 1
)

C
P

U
 m

C
P

U
 1

C
P

U
 0

Figure 7.10: Locking Hierarchy

node structure has a pointer to its parent (named, oddly
enough, ->parent), up to the root rcu_node structure,
which has a NULL ->parent pointer. The number of child
rcu_node structures per parent can vary, but is typically
32 or 64. Each rcu_node structure also contains a lock
named ->fqslock.

The general approach is a tournament, where a given
CPU conditionally acquires its leaf rcu_node structure’s
->fqslock, and, if successful, attempt to acquire that
of the parent, then release that of the child. In addi-
tion, at each level, the CPU checks a global gp_flags
variable, and if this variable indicates that some other
CPU has asserted the event, the first CPU drops out of
the competition. This acquire-then-release sequence con-
tinues until either the gp_flags variable indicates that
someone else won the tournament, one of the attempts
to acquire an ->fqslock fails, or the root rcu_node
structure’s ->fqslock has been acquired. If the root
rcu_node structure’s ->fqslock is acquired, a function
named do_force_quiescent_state() is invoked.

Simplified code to implement this is shown in List-
ing 7.8. The purpose of this function is to mediate between
CPUs who have concurrently detected a need to invoke
the do_force_quiescent_state() function. At any
given time, it only makes sense for one instance of do_
force_quiescent_state() to be active, so if there are
multiple concurrent callers, we need at most one of them
to actually invoke do_force_quiescent_state(), and

Listing 7.8: Conditional Locking to Reduce Contention
1 void force_quiescent_state(struct rcu_node *rnp_leaf)
2 {
3 int ret;
4 struct rcu_node *rnp = rnp_leaf;
5 struct rcu_node *rnp_old = NULL;
6
7 for (; rnp != NULL; rnp = rnp->parent) {
8 ret = (READ_ONCE(gp_flags)) ||
9 !raw_spin_trylock(&rnp->fqslock);

10 if (rnp_old != NULL)
11 raw_spin_unlock(&rnp_old->fqslock);
12 if (ret)
13 return;
14 rnp_old = rnp;
15 }
16 if (!READ_ONCE(gp_flags)) {
17 WRITE_ONCE(gp_flags, 1);
18 do_force_quiescent_state();
19 WRITE_ONCE(gp_flags, 0);
20 }
21 raw_spin_unlock(&rnp_old->fqslock);
22 }

we need the rest to (as quickly and painlessly as possible)
give up and leave.

To this end, each pass through the loop spanning
lines 7–15 attempts to advance up one level in the rcu_
node hierarchy. If the gp_flags variable is already set
(line 8) or if the attempt to acquire the current rcu_node
structure’s ->fqslock is unsuccessful (line 9), then local
variable ret is set to 1. If line 10 sees that local variable
rnp_old is non-NULL, meaning that we hold rnp_old’s
->fqs_lock, line 11 releases this lock (but only after the
attempt has been made to acquire the parent rcu_node
structure’s ->fqslock). If line 12 sees that either line 8
or 9 saw a reason to give up, line 13 returns to the caller.
Otherwise, we must have acquired the current rcu_node
structure’s ->fqslock, so line 14 saves a pointer to this
structure in local variable rnp_old in preparation for the
next pass through the loop.

If control reaches line 16, we won the tournament, and
now holds the root rcu_node structure’s ->fqslock. If
line 16 still sees that the global variable gp_flags is zero,
line 17 sets gp_flags to one, line 18 invokes do_force_
quiescent_state(), and line 19 resets gp_flags back
to zero. Either way, line 21 releases the root rcu_node
structure’s ->fqslock.
Quick Quiz 7.22: The code in Listing 7.8 is ridiculously
complicated! Why not conditionally acquire a single global
lock?

Quick Quiz 7.23: Wait a minute! If we “win” the tournament
on line 16 of Listing 7.8, we get to do all the work of do_
force_quiescent_state(). Exactly how is that a win,
really?

v2024.12.27a

7.3. LOCKING IMPLEMENTATION ISSUES 117

Listing 7.9: Sample Lock Based on Atomic Exchange
1 typedef int xchglock_t;
2 #define DEFINE_XCHG_LOCK(n) xchglock_t n = 0
3
4 void xchg_lock(xchglock_t *xp)
5 {
6 while (xchg(xp, 1) == 1) {
7 while (READ_ONCE(*xp) == 1)
8 continue;
9 }

10 }
11
12 void xchg_unlock(xchglock_t *xp)
13 {
14 (void)xchg(xp, 0);
15 }

This function illustrates the not-uncommon pattern of
hierarchical locking. This pattern is difficult to implement
using strict RAII locking,7 just like the iterator encapsula-
tion noted earlier, and so explicit lock/unlock primitives
(or C++17-style unique_lock escapes) will be required
for the foreseeable future.

7.3 Locking Implementation Issues

When you translate a dream into reality, it’s never a

full implementation. It is easier to dream than to do.

Shai Agassi

Developers are almost always best-served by using what-
ever locking primitives are provided by the system, for
example, the POSIX pthread mutex locks [Ope97, But97].
Nevertheless, studying sample implementations can be
helpful, as can considering the challenges posed by ex-
treme workloads and environments.

7.3.1 Sample Exclusive-Locking Implemen-
tation Based on Atomic Exchange

This section reviews the implementation shown in List-
ing 7.9. The data structure for this lock is just an int,
as shown on line 1, but could be any integral type. The
initial value of this lock is zero, meaning “unlocked”, as
shown on line 2.

7 Which is why many RAII locking implementations provide a way
to leak the lock out of the scope that it was acquired and into the scope
in which it is to be released. However, some object must mediate the
scope leaking, which can add complexity compared to non-RAII explicit
locking primitives.

Quick Quiz 7.24: Why not rely on the C language’s default
initialization of zero instead of using the explicit initializer
shown on line 2 of Listing 7.9?

Lock acquisition is carried out by the xchg_lock()
function shown on lines 4–10. This function uses a nested
loop, with the outer loop repeatedly atomically exchanging
the value of the lock with the value one (meaning “locked”).
If the old value was already the value one (in other words,
someone else already holds the lock), then the inner loop
(lines 7–8) spins until the lock is available, at which point
the outer loop makes another attempt to acquire the lock.

Quick Quiz 7.25: Why bother with the inner loop on
lines 7–8 of Listing 7.9? Why not simply repeatedly do the
atomic exchange operation on line 6?

Lock release is carried out by the xchg_unlock()
function shown on lines 12–15. Line 14 atomically ex-
changes the value zero (“unlocked”) into the lock, thus
marking it as having been released.

Quick Quiz 7.26: Why not simply store zero into the lock
word on line 14 of Listing 7.9?

This lock is a simple example of a test-and-set
lock [SR84], but very similar mechanisms have been
used extensively as pure spinlocks in production.

7.3.2 Other Exclusive-Locking Implemen-
tations

There are a great many other possible implementations
of locking based on atomic instructions, many of which
are reviewed in the classic paper by Mellor-Crummey
and Scott [MCS91]. These implementations represent
different points in a multi-dimensional design trade-
off [GGL+19, Gui18, McK96b]. For example, the atomic-
exchange-based test-and-set lock presented in the previous
section works well when contention is low and has the
advantage of small memory footprint. It avoids giving the
lock to threads that cannot use it, but as a result can suf-
fer from unfairness or even starvation at high contention
levels.

In contrast, ticket lock [MCS91], which was once used
in the Linux kernel, avoids unfairness at high contention
levels. However, as a consequence of its strict FIFO
discipline, it can grant the lock to a thread that is currently
unable to use it, perhaps due to that thread being preempted
or interrupted. On the other hand, it is important to avoid
getting too worried about the possibility of preemption
and interruption. After all, in many cases, this preemption

v2024.12.27a

118 CHAPTER 7. LOCKING

and interruption could just as well happen just after the
lock was acquired.8

All locking implementations where waiters spin on a
single memory location, including both test-and-set locks
and ticket locks, suffer from performance problems at high
contention levels. The problem is that the thread releasing
the lock must update the value of the corresponding
memory location. At low contention, this is not a problem:
The corresponding cache line is very likely still local to
and writeable by the thread holding the lock. In contrast,
at high levels of contention, each thread attempting to
acquire the lock will have a read-only copy of the cache
line, and the lock holder will need to invalidate all such
copies before it can carry out the update that releases the
lock. In general, the more CPUs and threads there are,
the greater the overhead incurred when releasing the lock
under conditions of high contention.

This negative scalability has motivated a number of
different queued-lock implementations [And90, GT90,
MCS91, WKS94, Cra93, MLH94, TS93], some of which
are used in recent versions of the Linux kernel [Cor14b].
Queued locks avoid high cache-invalidation overhead by
assigning each thread a queue element. These queue
elements are linked together into a queue that governs the
order that the lock will be granted to the waiting threads.
The key point is that each thread spins on its own queue
element, so that the lock holder need only invalidate the
first element from the next thread’s CPU’s cache. This
arrangement greatly reduces the overhead of lock handoff
at high levels of contention.

More recent queued-lock implementations also take the
system’s architecture into account, preferentially granting
locks locally, while also taking steps to avoid starva-
tion [SSVM02, RH03, RH02, JMRR02, MCM02]. Many
of these can be thought of as analogous to the elevator
algorithms traditionally used in scheduling disk I/O. Dice
et al. discuss use of local and global locks in order to trans-
form any architecture-oblivious lock into a local/global
locking scheme that optimizes for the system’s structure
by providing (for example) per-socket locks along with a
global lock [DMS12b, DMS12c].

Unfortunately, the same scheduling logic that improves
the efficiency of queued locks at high contention also
increases their overhead at low contention. Beng-Hong
Lim and Anant Agarwal therefore combined a simple test-

8 Besides, the best way of handling high lock contention is to avoid
it in the first place! There are nevertheless some situations where high
lock contention is the lesser of the available evils, and in any case,
studying schemes that deal with high levels of contention is a good
mental exercise.

and-set lock with a queued lock, using the test-and-set lock
at low levels of contention and switching to the queued
lock at high levels of contention [LA94], thus getting
low overhead at low levels of contention and getting
fairness and high throughput at high levels of contention.
Browning et al. took a similar approach, but avoided the
use of a separate flag, so that the test-and-set fast path
uses the same sequence of instructions that would be used
in a simple test-and-set lock [BMMM05]. This approach
has been used in production.

Another issue that arises at high levels of contention
is when the lock holder is delayed, especially when the
delay is due to preemption, which can result in priority
inversion, where a low-priority thread holds a lock, but
is preempted by a medium priority CPU-bound thread,
which results in a high-priority process blocking while
attempting to acquire the lock. The result is that the
CPU-bound medium-priority process is preventing the
high-priority process from running. One solution is
priority inheritance [LR80], which has been widely used
for real-time computing [SRL90, Cor06b], despite some
lingering controversy over this practice [Yod04a, Loc02].

Another way to avoid priority inversion is to prevent pre-
emption while a lock is held. Because preventing preemp-
tion while locks are held also improves throughput, most
proprietary UNIX kernels offer some form of scheduler-
conscious synchronization mechanism [KWS97], largely
due to the efforts of a certain sizable database vendor.
These mechanisms usually take the form of a hint that
preemption should be avoided in a given region of code,
with this hint typically being placed in a machine regis-
ter. These hints frequently take the form of a bit set in
a particular machine register, which enables extremely
low per-lock-acquisition overhead for these mechanisms.
In contrast, Linux avoids these hints. Instead, the Linux
kernel community’s response to requests for scheduler-
conscious synchronization was a mechanism called fu-
texes [FRK02, Mol06, Ros06, Dre11].

Interestingly enough, atomic instructions are not strictly
needed to implement locks [Dĳ65, Lam74]. An excellent
exposition of the issues surrounding locking implementa-
tions based on simple loads and stores may be found in
Herlihy’s and Shavit’s textbook [HS08, HSLS20]. The
main point echoed here is that such implementations cur-
rently have little practical application, although a careful
study of them can be both entertaining and enlightening.
Nevertheless, with one exception described below, such
study is left as an exercise for the reader.

v2024.12.27a

7.4. LOCK-BASED EXISTENCE GUARANTEES 119

Gamsa et al. [GKAS99, Section 5.3] describe a token-
based mechanism in which a token circulates among
the CPUs. When the token reaches a given CPU, it has
exclusive access to anything protected by that token. There
are any number of schemes that may be used to implement
the token-based mechanism, for example:

1. Maintain a per-CPU flag, which is initially zero for
all but one CPU. When a CPU’s flag is non-zero, it
holds the token. When it finishes with the token, it
zeroes its flag and sets the flag of the next CPU to
one (or to any other non-zero value).

2. Maintain a per-CPU counter, which is initially set to
the corresponding CPU’s number, which we assume
to range from zero to 𝑁 − 1, where 𝑁 is the number
of CPUs in the system. When a CPU’s counter is
greater than that of the next CPU (taking counter
wrap into account), the first CPU holds the token.
When it is finished with the token, it sets the next
CPU’s counter to a value one greater than its own
counter.

Quick Quiz 7.27: How can you tell if one counter is greater
than another, while accounting for counter wrap?

Quick Quiz 7.28: Which is better, the counter approach or
the flag approach?

This lock is unusual in that a given CPU cannot nec-
essarily acquire it immediately, even if no other CPU
is using it at the moment. Instead, the CPU must wait
until the token comes around to it. This is useful in
cases where CPUs need periodic access to the critical
section, but can tolerate variances in token-circulation rate.
Gamsa et al. [GKAS99] used it to implement a variant of
read-copy update (see Section 9.5), but it could also be
used to protect periodic per-CPU operations such as flush-
ing per-CPU caches used by memory allocators [MS93],
garbage-collecting per-CPU data structures, or flushing
per-CPU data to shared storage (or to mass storage, for
that matter).

The Linux kernel now uses queued spinlocks [Cor14b],
but because of the complexity of implementations that pro-
vide good performance across the range of contention lev-
els, the path has not always been smooth [Mar18, Dea18].
As increasing numbers of people gain familiarity with
parallel hardware and parallelize increasing amounts of
code, we can continue to expect more special-purpose
locking primitives to appear, see for example Guerraoui et
al. [GGL+19, Gui18]. Nevertheless, you should carefully

Listing 7.10: Per-Element Locking Without Existence Guaran-
tees (Buggy!)

1 int delete(int key)
2 {
3 int b;
4 struct element *p;
5
6 b = hashfunction(key);
7 p = hashtable[b];
8 if (p == NULL || p->key != key)
9 return 0;

10 spin_lock(&p->lock);
11 hashtable[b] = NULL;
12 spin_unlock(&p->lock);
13 kfree(p);
14 return 1;
15 }

consider this important safety tip: Use the standard syn-
chronization primitives whenever humanly possible. The
big advantage of the standard synchronization primitives
over roll-your-own efforts is that the standard primitives
are typically much less bug-prone.9

7.4 Lock-Based Existence Guaran-
tees

Existence precedes and rules essence.

Jean-Paul Sartre

A key challenge in parallel programming is to provide
existence guarantees [GKAS99], so that attempts to access
a given object can rely on that object being in existence
throughout a given access attempt.

In some cases, existence guarantees are implicit:

1. Global variables and static local variables in the
base module will exist as long as the application is
running.

2. Global variables and static local variables in a loaded
module will exist as long as that module remains
loaded.

3. A module will remain loaded as long as at least one
of its functions has an active instance.

4. A given function instance’s on-stack variables will
exist until that instance returns.

9 And yes, I have done at least my share of roll-your-own synchro-
nization primitives. However, you will notice that my hair is much greyer
than it was before I started doing that sort of work. Coincidence? Maybe.
But are you really willing to risk your own hair turning prematurely
grey?

v2024.12.27a

120 CHAPTER 7. LOCKING

5. If you are executing within a given function or have
been called (directly or indirectly) from that function,
then the given function has an active instance.

These implicit existence guarantees are straightforward,
though bugs involving implicit existence guarantees really
can happen.

Quick Quiz 7.29: How can relying on implicit existence
guarantees result in a bug?

But the more interesting—and troublesome—guarantee
involves heap memory: A dynamically allocated data
structure will exist until it is freed. The problem to be
solved is to synchronize the freeing of the structure with
concurrent accesses to that same structure. One way to
do this is with explicit guarantees, such as locking. If a
given structure may only be freed while holding a given
lock, then holding that lock guarantees that structure’s
existence.

But this guarantee depends on the existence of the lock
itself. One straightforward way to guarantee the lock’s
existence is to place the lock in a global variable, but
global locking has the disadvantage of limiting scalability.
One way of providing scalability that improves as the size
of the data structure increases is to place a lock in each
element of the structure. Unfortunately, putting the lock
that is to protect a data element in the data element itself is
subject to subtle race conditions, as shown in Listing 7.10.

Quick Quiz 7.30: What if the element we need to delete is
not the first element of the list on line 8 of Listing 7.10?

To see one of these race conditions, consider the fol-
lowing sequence of events:

1. Thread 0 invokes delete(0), and reaches line 10 of
the listing, acquiring the lock.

2. Thread 1 concurrently invokes delete(0), reaching
line 10, but spins on the lock because Thread 0 holds
it.

3. Thread 0 executes lines 11–14, removing the element
from the hashtable, releasing the lock, and then
freeing the element.

4. Thread 0 continues execution, and allocates memory,
getting the exact block of memory that it just freed.

5. Thread 0 then initializes this block of memory as
some other type of structure.

Listing 7.11: Per-Element Locking With Lock-Based Existence
Guarantees

1 int delete(int key)
2 {
3 int b;
4 struct element *p;
5 spinlock_t *sp;
6
7 b = hashfunction(key);
8 sp = &locktable[b];
9 spin_lock(sp);

10 p = hashtable[b];
11 if (p == NULL || p->key != key) {
12 spin_unlock(sp);
13 return 0;
14 }
15 hashtable[b] = NULL;
16 spin_unlock(sp);
17 kfree(p);
18 return 1;
19 }

6. Thread 1’s spin_lock() operation fails due to the
fact that what it believes to be p->lock is no longer
a spinlock.

Because there is no existence guarantee, the identity of
the data element can change while a thread is attempting
to acquire that element’s lock on line 10!

One way to fix this example is to use a hashed set
of global locks, so that each hash bucket has its own
lock, as shown in Listing 7.11. This approach allows
acquiring the proper lock (on line 9) before gaining a
pointer to the data element (on line 10). Although this
approach works quite well for elements contained in a
single partitionable data structure such as the hash table
shown in the listing, it can be problematic if a given
data element can be a member of multiple hash tables
or given more-complex data structures such as trees or
graphs. Not only can these problems be solved, but
the solutions also form the basis of lock-based software
transactional memory implementations [ST95, DSS06].
However, Chapter 9 describes simpler—and faster—ways
of providing existence guarantees.

7.5 Locking: Hero or Villain?

You either die a hero or you live long enough to see

yourself become the villain.

Aaron Eckhart as Harvey Dent

As is often the case in real life, locking can be either
hero or villain, depending on how it is used and on the
problem at hand. In my experience, those writing whole

v2024.12.27a

7.5. LOCKING: HERO OR VILLAIN? 121

applications are happy with locking, those writing parallel
libraries are less happy, and those parallelizing existing
sequential libraries are extremely unhappy. The following
sections discuss some reasons for these differences in
viewpoints.

7.5.1 Locking For Applications: Hero!
When writing an entire application (or entire kernel),
developers have full control of the design, including the
synchronization design. Assuming that the design makes
good use of partitioning, as discussed in Chapter 6, locking
can be an extremely effective synchronization mechanism,
as demonstrated by the heavy use of locking in production-
quality parallel software.

Nevertheless, although such software usually bases
most of its synchronization design on locking, such soft-
ware also almost always makes use of other synchro-
nization mechanisms, including special counting algo-
rithms (Chapter 5), data ownership (Chapter 8), reference
counting (Section 9.2), hazard pointers (Section 9.3),
sequence locking (Section 9.4), and read-copy update
(Section 9.5). In addition, practitioners use tools for
deadlock detection [Cor06a], lock acquisition/release bal-
ancing [Cor04b], cache-miss analysis [The11], hardware-
counter-based profiling [EGMdB11, The12b], and many
more besides.

Given careful design, use of a good combination of
synchronization mechanisms, and good tooling, locking
works quite well for applications and kernels.

7.5.2 Locking For Parallel Libraries: Just
Another Tool

Unlike applications and kernels, the designer of a library
cannot know the locking design of the code that the library
will be interacting with. In fact, that code might not be
written for years to come. Library designers therefore
have less control and must exercise more care when laying
out their synchronization design.

Deadlock is of course of particular concern, and the
techniques discussed in Section 7.1.1 need to be applied.
One popular deadlock-avoidance strategy is therefore to
ensure that the library’s locks are independent subtrees of
the enclosing program’s locking hierarchy. However, this
can be harder than it looks.

One complication was discussed in Section 7.1.1.2,
namely when library functions call into application code,
with qsort()’s comparison-function argument being a
case in point. Another complication is the interaction

with signal handlers. If an application signal handler is
invoked from a signal received within the library function,
deadlock can ensue just as surely as if the library function
had called the signal handler directly. A final complication
occurs for those library functions that can be used between
a fork()/exec() pair, for example, due to use of the
system() function. In this case, if your library function
was holding a lock at the time of the fork(), then the
child process will begin life with that lock held. Because
the thread that will release the lock is running in the parent
but not the child, if the child calls your library function,
deadlock will ensue.

The following strategies may be used to avoid deadlock
problems in these cases:

1. Don’t use either callbacks or signals.

2. Don’t acquire locks from within callbacks or signal
handlers.

3. Let the caller control synchronization.

4. Parameterize the library API to delegate locking to
caller.

5. Explicitly avoid callback deadlocks.

6. Explicitly avoid signal-handler deadlocks.

7. Avoid invoking fork().

Each of these strategies is discussed in one of the
following sections.

7.5.2.1 Use Neither Callbacks Nor Signals

If a library function avoids callbacks and the application
as a whole avoids signals, then any locks acquired by that
library function will be leaves of the locking-hierarchy
tree. This arrangement avoids deadlock, as discussed in
Section 7.1.1.1. Although this strategy works extremely
well where it applies, there are some applications that
must use signal handlers, and there are some library
functions (such as the qsort() function discussed in
Section 7.1.1.2) that require callbacks.

The strategy described in the next section can often be
used in these cases.

7.5.2.2 Avoid Locking in Callbacks and Signal Han-
dlers

If neither callbacks nor signal handlers acquire locks, then
they cannot be involved in deadlock cycles, which allows

v2024.12.27a

122 CHAPTER 7. LOCKING

straightforward locking hierarchies to once again consider
library functions to be leaves on the locking-hierarchy tree.
This strategy works very well for most uses of qsort,
whose callbacks usually simply compare the two values
passed in to them. This strategy also works wonderfully
for many signal handlers, especially given that acquiring
locks from within signal handlers is generally frowned
upon [Gro01],10 but can fail if the application needs to
manipulate complex data structures from a signal handler.

Here are some ways to avoid acquiring locks in sig-
nal handlers even if complex data structures must be
manipulated:

1. Use simple data structures based on non-blocking syn-
chronization, as will be discussed in Section 14.2.1.

2. If the data structures are too complex for reasonable
use of non-blocking synchronization, create a queue
that allows non-blocking enqueue operations. In the
signal handler, instead of manipulating the complex
data structure, add an element to the queue describing
the required change. A separate thread can then
remove elements from the queue and carry out the
required changes using normal locking. There are
a number of readily available implementations of
concurrent queues [KLP12, Des09b, MS96].

This strategy should be enforced with occasional manual
or (preferably) automated inspections of callbacks and
signal handlers. When carrying out these inspections, be
wary of clever coders who might have (unwisely) created
home-brew locks from atomic operations.

7.5.2.3 Caller Controls Synchronization

Letting the caller control synchronization works extremely
well when the library functions are operating on indepen-
dent caller-visible instances of a data structure, each of
which may be synchronized separately. For example, if
the library functions operate on a search tree, and if the
application needs a large number of independent search
trees, then the application can associate a lock with each
tree. The application then acquires and releases locks as
needed, so that the library need not be aware of parallelism
at all. Instead, the application controls the parallelism,
so that locking can work very well, as was discussed in
Section 7.5.1.

However, this strategy fails if the library implements
a data structure that requires internal concurrency, for

10 But the standard’s words do not stop clever coders from creating
their own home-brew locking primitives from atomic operations.

example, a hash table or a parallel sort. In this case, the
library absolutely must control its own synchronization.

7.5.2.4 Parameterize Library Synchronization

The idea here is to add arguments to the library’s API to
specify which locks to acquire, how to acquire and release
them, or both. This strategy allows the application to
take on the global task of avoiding deadlock by specifying
which locks to acquire (by passing in pointers to the
locks in question) and how to acquire them (by passing
in pointers to lock acquisition and release functions),
but also allows a given library function to control its
own concurrency by deciding where the locks should be
acquired and released.

In particular, this strategy allows the lock acquisition
and release functions to block signals as needed without
the library code needing to be concerned with which
signals need to be blocked by which locks. The separation
of concerns used by this strategy can be quite effective,
but in some cases the strategies laid out in the following
sections can work better.

That said, passing explicit pointers to locks to external
APIs must be very carefully considered, as discussed in
Section 7.1.1.5. Although this practice is sometimes the
right thing to do, you should do yourself a favor by looking
into alternative designs first.

7.5.2.5 Explicitly Avoid Callback Deadlocks

The basic rule behind this strategy was discussed in Sec-
tion 7.1.1.2: “Release all locks before invoking unknown
code.” This is usually the best approach because it allows
the application to ignore the library’s locking hierarchy:
The library remains a leaf or isolated subtree of the appli-
cation’s overall locking hierarchy.

In cases where it is not possible to release all locks before
invoking unknown code, the layered locking hierarchies
described in Section 7.1.1.3 can work well. For example, if
the unknown code is a signal handler, this implies that the
library function block signals across all lock acquisitions,
which can be complex and slow. Therefore, in cases
where signal handlers (probably unwisely) acquire locks,
the strategies in the next section may prove helpful.

7.5.2.6 Explicitly Avoid Signal-Handler Deadlocks

Suppose that a given library function is known to acquire
locks, but does not block signals. Suppose further that it
is necessary to invoke that function both from within and

v2024.12.27a

7.5. LOCKING: HERO OR VILLAIN? 123

outside of a signal handler, and that it is not permissible
to modify this library function. Of course, if no special
action is taken, then if a signal arrives while that library
function is holding its lock, deadlock can occur when the
signal handler invokes that same library function, which
in turn attempts to re-acquire that same lock.

Such deadlocks can be avoided as follows:

1. If the application invokes the library function from
within a signal handler, then that signal must be
blocked every time that the library function is invoked
from outside of a signal handler.

2. If the application invokes the library function while
holding a lock acquired within a given signal handler,
then that signal must be blocked every time that the
library function is called outside of a signal handler.

These rules can be enforced by using tools similar to the
Linux kernel’s lockdep lock dependency checker [Cor06a].
One of the great strengths of lockdep is that it is not fooled
by human intuition [Ros11].

7.5.2.7 Library Functions Used Between fork() and
exec()

As noted earlier, if a thread executing a library function is
holding a lock at the time that some other thread invokes
fork(), the fact that the parent’s memory is copied to
create the child means that this lock will be born held
in the child’s context. The thread that will release this
lock is running in the parent, but not in the child, which
means that although the parent’s copy of this lock will
be released, the child’s copy never will be. Therefore,
any attempt on the part of the child to invoke that same
library function (thus acquiring that same lock) will result
in deadlock.

A pragmatic and straightforward way of solving this
problem is to fork() a child process while the process is
still single-threaded, and have this child process remain
single-threaded. Requests to create further child processes
can then be communicated to this initial child process,
which can safely carry out any needed fork() and exec()
system calls on behalf of its multi-threaded parent process.

Another rather less pragmatic and straightforward solu-
tion to this problem is to have the library function check
to see if the owner of the lock is still running, and if not,
“breaking” the lock by re-initializing and then acquiring it.
However, this approach has a couple of vulnerabilities:

1. The data structures protected by that lock are likely
to be in some intermediate state, so that naively

breaking the lock might result in arbitrary memory
corruption.

2. If the child creates additional threads, two threads
might break the lock concurrently, with the result
that both threads believe they own the lock. This
could again result in arbitrary memory corruption.

The pthread_atfork() function is provided to help
deal with these situations. The idea is to register a triplet of
functions, one to be called by the parent before the fork(),
one to be called by the parent after the fork(), and one
to be called by the child after the fork(). Appropriate
cleanups can then be carried out at these three points.

Be warned, however, that coding of pthread_
atfork() handlers is quite subtle in general. The cases
where pthread_atfork() works best are cases where
the data structure in question can simply be re-initialized
by the child. Which might be one reason why the POSIX
standard forbids use of any non-async-signal-safe func-
tions between the fork() and the exec(), which rules
out acquisition of locks during that time.

Other alternatives to fork()/exec() include posix_
spawn() and io_uring_spawn() [Tri22, Edg22].

7.5.2.8 Parallel Libraries: Discussion

Regardless of the strategy used, the description of the
library’s API must include a clear description of that
strategy and how the caller should interact with that
strategy. In short, constructing parallel libraries using
locking is possible, but not as easy as constructing a
parallel application.

7.5.3 Locking For Parallelizing Sequential
Libraries: Villain!

With the advent of readily available low-cost multicore
systems, a common task is parallelizing an existing library
that was designed with only single-threaded use in mind.
This all-too-common disregard for parallelism can result
in a library API that is severely flawed from a parallel-
programming viewpoint. Candidate flaws include:

1. Implicit prohibition of partitioning.

2. Callback functions requiring locking.

3. Object-oriented spaghetti code.

These flaws and the consequences for locking are dis-
cussed in the following sections.

v2024.12.27a

124 CHAPTER 7. LOCKING

7.5.3.1 Partitioning Prohibited

Suppose that you were writing a single-threaded hash-
table implementation. It is easy and fast to maintain an
exact count of the total number of items in the hash table,
and also easy and fast to return this exact count on each
addition and deletion operation. So why not?

One reason is that exact counters do not perform or
scale well on multicore systems, as was seen in Chapter 5.
As a result, the parallelized implementation of the hash
table will not perform or scale well.

So what can be done about this? One approach is to
return an approximate count, using one of the algorithms
from Chapter 5. Another approach is to drop the element
count altogether.

Either way, it will be necessary to inspect uses of the
hash table to see why the addition and deletion operations
need the exact count. Here are a few possibilities:

1. Determining when to resize the hash table. In this
case, an approximate count should work quite well. It
might also be useful to trigger the resizing operation
from the length of the longest chain, which can be
computed and maintained in a nicely partitioned
per-chain manner.

2. Producing an estimate of the time required to traverse
the entire hash table. An approximate count works
well in this case, also.

3. For diagnostic purposes, for example, to check for
items being lost when transferring them to and from
the hash table. This clearly requires an exact count.
However, given that this usage is diagnostic in na-
ture, it might suffice to maintain the lengths of the
hash chains, then to infrequently sum them up while
locking out addition and deletion operations.

It turns out that there is now a strong theoretical basis for
some of the constraints that performance and scalability
place on a parallel library’s APIs [AGH+11a, AGH+11b,
McK11b]. Anyone designing a parallel library needs to
pay close attention to those constraints.

Although it is all too easy to blame locking for what
are really problems due to a concurrency-unfriendly API,
doing so is not helpful. On the other hand, one has little
choice but to sympathize with the hapless developer who
made this choice in (say) 1985. It would have been a
rare and courageous developer to anticipate the need for
parallelism at that time, and it would have required an even
more rare combination of brilliance and luck to actually
arrive at a good parallel-friendly API.

Times change, and code must change with them. That
said, there might be a huge number of users of a popular
library, in which case an incompatible change to the API
would be quite foolish. Adding a parallel-friendly API
to complement the existing heavily used sequential-only
API is usually the best course of action.

Nevertheless, human nature being what it is, we can
expect our hapless developer to be more likely to complain
about locking than about his or her own poor (though
understandable) API design choices.

7.5.3.2 Deadlock-Prone Callbacks

Sections 7.1.1.2, 7.1.1.3, and 7.5.2 described how undisci-
plined use of callbacks can result in locking woes. These
sections also described how to design your library function
to avoid these problems, but it is unrealistic to expect a
1990s programmer with no experience in parallel program-
ming to have followed such a design. Therefore, someone
attempting to parallelize an existing callback-heavy single-
threaded library will likely have many opportunities to
curse locking’s villainy.

If there are a very large number of uses of a callback-
heavy library, it may be wise to again add a parallel-
friendly API to the library in order to allow existing
users to convert their code incrementally. Alternatively,
some advocate use of transactional memory in these cases.
While the jury is still out on transactional memory, Sec-
tion 17.2 discusses its strengths and weaknesses. It is
important to note that hardware transactional memory
(discussed in Section 17.3) cannot help here unless the
hardware transactional memory implementation provides
forward-progress guarantees, which few do. Other alter-
natives that appear to be quite practical (if less heavily
hyped) include the methods discussed in Sections 7.1.1.6
and 7.1.1.7, as well as those that will be discussed in
Chapters 8 and 9.

7.5.3.3 Object-Oriented Spaghetti Code

Object-oriented programming went mainstream sometime
in the 1980s or 1990s, and as a result there is a huge amount
of single-threaded object-oriented code in production.
Although object orientation can be a valuable software
technique, undisciplined use of objects can easily result
in object-oriented spaghetti code. In object-oriented
spaghetti code, control flits from object to object in an
essentially random manner, making the code hard to
understand and even harder, and perhaps impossible, to
accommodate a locking hierarchy.

v2024.12.27a

7.6. SUMMARY 125

Although many might argue that such code should
be cleaned up in any case, such things are much easier
to say than to do. If you are tasked with parallelizing
such a beast, you can reduce the number of opportunities
to curse locking by using the techniques described in
Sections 7.1.1.6 and 7.1.1.7, as well as those that will be
discussed in Chapters 8 and 9. This situation appears to
be the use case that inspired transactional memory, so
it might be worth a try as well. That said, the choice
of synchronization mechanism should be made in light
of the hardware habits discussed in Chapter 3. After
all, if the overhead of the synchronization mechanism
is orders of magnitude more than that of the operations
being protected, the results are not going to be pretty.

And that leads to a question well worth asking in
these situations: Should the code remain sequential? For
example, perhaps parallelism should be introduced at the
process level rather than the thread level. In general, if a
task is proving extremely hard, it is worth some time spent
thinking about not only alternative ways to accomplish
that particular task, but also alternative tasks that might
better solve the problem at hand.

7.6 Summary

Achievement unlocked.

Unknown

Locking is perhaps the most widely used and most gen-
erally useful synchronization tool. However, it works
best when designed into an application or library from
the beginning. Given the large quantity of pre-existing
single-threaded code that might need to one day run in
parallel, locking should therefore not be the only tool in
your parallel-programming toolbox. The next few chap-
ters will discuss other tools, and how they can best be
used in concert with locking and with each other.

v2024.12.27a

126 CHAPTER 7. LOCKING

v2024.12.27a

It is mine, I tell you. My own. My precious. Yes, my

precious.

Gollum in The Fellowship of the Ring, J.R.R. TolkienChapter 8

Data Ownership

One of the simplest ways to avoid the synchronization
overhead that comes with locking is to parcel the data
out among the threads (or, in the case of kernels, CPUs)
so that a given piece of data is accessed and modified
by only one of the threads. Interestingly enough, data
ownership covers each of the “big three” parallel design
techniques: It partitions over threads (or CPUs, as the case
may be), it batches all local operations, and its elimination
of synchronization operations is weakening carried to its
logical extreme. It should therefore be no surprise that
data ownership is heavily used: Even novices use it almost
instinctively. In fact, it is so heavily used that this chapter
will not introduce any new examples, but will instead refer
back to those of previous chapters.

Quick Quiz 8.1: What form of data ownership is extremely
difficult to avoid when creating shared-memory parallel pro-
grams (for example, using pthreads) in C or C++?

There are a number of approaches to data ownership.
Section 8.1 presents the logical extreme in data ownership,
where each thread has its own private address space. Sec-
tion 8.2 looks at the opposite extreme, where the data is
shared, but different threads own different access rights to
the data. Section 8.3 describes function shipping, which is
a way of allowing other threads to have indirect access to
data owned by a particular thread. Section 8.4 describes
how designated threads can be assigned ownership of
a specified function and the related data. Section 8.5
discusses improving performance by transforming algo-
rithms with shared data to instead use data ownership.
Finally, Section 8.6 lists a few software environments that
feature data ownership as a first-class citizen.

8.1 Multiple Processes

A man’s home is his castle

Ancient Laws of England

Section 4.1 introduced the following example:

1 compute_it 1 > compute_it.1.out &
2 compute_it 2 > compute_it.2.out &
3 wait
4 cat compute_it.1.out
5 cat compute_it.2.out

This example runs two instances of the compute_it
program in parallel, as separate processes that do not
share memory. Therefore, all data in a given process
is owned by that process, so that almost the entirety of
data in the above example is owned. This approach
almost entirely eliminates synchronization overhead. The
resulting combination of extreme simplicity and optimal
performance is obviously quite attractive.

Quick Quiz 8.2: What synchronization remains in the
example shown in Section 8.1?

Quick Quiz 8.3: Is there any shared data in the example
shown in Section 8.1?

This same pattern can be written in C as well as in sh,
as illustrated by Listings 4.1 and 4.2.

It bears repeating that these trivial forms of parallelism
are not in any way cheating or ducking responsibility, but
are rather simple and elegant ways to make your code
run faster. It is fast, scales well, is easy to program, easy
to maintain, and gets the job done. In addition, taking
this approach (where applicable) allows the developer
more time to focus on other things whether these things

127

v2024.12.27a

128 CHAPTER 8. DATA OWNERSHIP

might involve applying sophisticated single-threaded opti-
mizations to compute_it on the one hand, or applying
sophisticated parallel-programming patterns to portions
of the code where this approach is inapplicable. What is
not to like?

The next section discusses the use of data ownership in
shared-memory parallel programs.

8.2 Partial Data Ownership and
pthreads

Give thy mind more to what thou hast than to what

thou hast not.

Marcus Aurelius Antoninus

Concurrent counting (see Chapter 5) uses data ownership
heavily, but adds a twist. Threads are not allowed to modify
data owned by other threads, but they are permitted to
read it. In short, the use of shared memory allows more
nuanced notions of ownership and access rights.

For example, consider the per-thread statistical counter
implementation shown in Listing 5.4 on page 55. Here,
inc_count() updates only the corresponding thread’s
instance of counter, while read_count() accesses, but
does not modify, all threads’ instances of counter.

Quick Quiz 8.4: Does it ever make sense to have partial data
ownership where each thread reads only its own instance of a
per-thread variable, but writes to other threads’ instances?

Partial data ownership is also common within the Linux
kernel. For example, a given CPU might be permitted to
read a given set of its own per-CPU variables only with
interrupts disabled, another CPU might be permitted to
read that same set of the first CPU’s per-CPU variables
only when holding the corresponding per-CPU lock. Then
that given CPU would be permitted to update this set
of its own per-CPU variables if it both has interrupts
disabled and holds its per-CPU lock. This arrangement
can be thought of as a reader-writer lock that allows each
CPU very low-overhead access to its own set of per-CPU
variables. There are a great many variations on this theme.

For its own part, pure data ownership is also both
common and useful, for example, the per-thread memory-
allocator caches discussed in Section 6.4.3 starting on
page 92. In this algorithm, each thread’s cache is com-
pletely private to that thread.

8.3 Function Shipping

If the mountain will not come to Muhammad, then

Muhammad must go to the mountain.

Essays, Francis Bacon

The previous section described a weak form of data owner-
ship where threads reached out to other threads’ data. This
can be thought of as bringing the data to the functions that
need it. An alternative approach is to send the functions
to the data.

Such an approach is illustrated in Section 5.4.3 be-
ginning on page 66, in particular the flush_local_
count_sig() and flush_local_count() functions in
Listing 5.18 on page 68.

The flush_local_count_sig() function is a signal
handler that acts as the shipped function. The pthread_
kill() function in flush_local_count() sends the
signal—shipping the function—and then waits until the
shipped function executes. This shipped function has the
not-unusual added complication of needing to interact
with any concurrently executing add_count() or sub_
count() functions (see Listing 5.19 on page 68 and
Listing 5.20 on page 69).

Quick Quiz 8.5: What mechanisms other than POSIX signals
may be used for function shipping?

8.4 Designated Thread

Let a man practice the profession which he best

knows.

Cicero

The earlier sections describe ways of allowing each thread
to keep its own copy or its own portion of the data. In
contrast, this section describes a functional-decomposition
approach, where a special designated thread owns the
rights to the data that is required to do its job. The
eventually consistent counter implementation described in
Section 5.2.4 provides an example. This implementation
has a designated thread that runs the eventual() function
shown on lines 17–32 of Listing 5.5. This eventual()
thread periodically pulls the per-thread counts into the
global counter, so that accesses to the global counter will,
as the name says, eventually converge on the actual value.

v2024.12.27a

8.6. OTHER USES OF DATA OWNERSHIP 129

Quick Quiz 8.6: But none of the data in the eventual()
function shown on lines 17–32 of Listing 5.5 is actually owned
by the eventual() thread! In just what way is this data
ownership???

8.5 Privatization

There is, of course, a difference between what a man

seizes and what he really possesses.

Pearl S. Buck

One way of improving the performance and scalability of
a shared-memory parallel program is to transform it so as
to convert shared data to private data that is owned by a
particular thread.

An excellent example of this is shown in the answer
to one of the Quick Quizzes in Section 6.1.1, which
uses privatization to produce a solution to the Dining
Philosophers problem with much better performance and
scalability than that of the standard textbook solution.
The original problem has five philosophers sitting around
the table with one fork between each adjacent pair of
philosophers, which permits at most two philosophers to
eat concurrently.

We can trivially privatize this problem by providing
an additional five forks, so that each philosopher has
his or her own private pair of forks. This allows all
five philosophers to eat concurrently, and also offers a
considerable reduction in the spread of certain types of
disease.

In other cases, privatization imposes costs. For example,
consider the simple limit counter shown in Listing 5.7 on
page 59. This is an example of an algorithm where threads
can read each others’ data, but are only permitted to update
their own data. A quick review of the algorithm shows
that the only cross-thread accesses are in the summation
loop in read_count(). If this loop is eliminated, we
move to the more-efficient pure data ownership, but at the
cost of a less-accurate result from read_count().
Quick Quiz 8.7: Is it possible to obtain greater accuracy
while still maintaining full privacy of the per-thread data?

Partial privatization is also possible, with some synchro-
nization requirements, but less than in the fully shared
case. Some partial-privatization possibilities were ex-
plored in Section 4.3.4.4. Chapter 9 will introduce a
temporal component to data ownership by providing ways
of safely taking public data structures private.

In short, privatization is a powerful tool in the parallel
programmer’s toolbox, but it must nevertheless be used
with care. Just like every other synchronization primitive,
it has the potential to increase complexity while decreasing
performance and scalability.

8.6 Other Uses of Data Ownership

Everything comes to us that belongs to us if we

create the capacity to receive it.

Rabindranath Tagore

Data ownership works best when the data can be parti-
tioned so that there is little or no need for cross thread
access or update. Fortunately, this situation is reasonably
common, and in a wide variety of parallel-programming
environments.

Examples of data ownership include:

1. All message-passing environments, such as
MPI [MPI08] and BOINC [Uni08a].

2. Map-reduce [Jac08].

3. Client-server systems, including RPC, web services,
and pretty much any system with a back-end database
server.

4. Shared-nothing database systems.

5. Fork-join systems with separate per-process address
spaces.

6. Process-based parallelism, such as the Erlang lan-
guage.

7. Private variables, for example, C-language on-stack
auto variables, in threaded environments.

8. Many parallel linear-algebra algorithms, especially
those well-suited for GPGPUs.1

9. Operating-system kernels adapted for networking,
where each connection (also called flow [DKS89,
Zha89, McK90]) is assigned to a specific thread. One
recent example of this approach is the IX operating
system [BPP+16]. IX does have some shared data
structures, which use synchronization mechanisms
to be described in Section 9.5.

1 But note that a great many other classes of applications have also
been ported to GPGPUs [Mat17, AMD20, NVi17a, NVi17b].

v2024.12.27a

130 CHAPTER 8. DATA OWNERSHIP

Data ownership is perhaps the most underappreciated
synchronization mechanism in existence. When used
properly, it delivers unrivaled simplicity, performance,
and scalability. Perhaps its simplicity costs it the respect
that it deserves. Hopefully a greater appreciation for
the subtlety and power of data ownership will lead to
greater level of respect, to say nothing of leading to
greater performance and scalability coupled with reduced
complexity.

v2024.12.27a

All things come to those who wait.

Violet FaneChapter 9

Deferred Processing

The strategy of deferring work goes back before the dawn
of recorded history. It has occasionally been derided
as procrastination or even as sheer laziness. However,
in the last few decades workers have recognized this
strategy’s value in simplifying and streamlining parallel
algorithms [KL80, Mas92, Aur08]. Believe it or not,
“laziness” in parallel programming often outperforms and
out-scales industriousness! These performance and scala-
bility benefits stem from the fact that deferring work can
enable weakening of synchronization primitives, thereby
reducing synchronization overhead.

Those who are willing and able to read and understand
this chapter will uncover many mysteries, including:

1. The reference-counting trap that awaits unwary de-
velopers of concurrent code.

2. A concurrent reference counter that avoids not only
this trap, but also avoids expensive atomic read-
modify-write accesses, and in addition avoids as well
as writes of any kind to the data structure being
traversed.

3. The under-appreciated restricted form of software
transactional memory that is used heavily within the
Linux kernel.

4. A synchronization primitive that allows a concur-
rently updated linked data structure to be traversed
using exactly the same sequence of machine instruc-
tions that might be used to traverse a sequential
implementation of that same data structure.

5. A synchronization primitive whose use cases are
far more conceptually more complex than is the
primitive itself.

6. How to choose among the various deferred-
processing primitives.

General approaches of work deferral include reference
counting (Section 9.2), hazard pointers (Section 9.3), se-
quence locking (Section 9.4), and RCU (Section 9.5).
Finally, Section 9.6 describes how to choose among the
work-deferral schemes covered in this chapter and Sec-
tion 9.7 discusses updates. But first, Section 9.1 will
introduce an example algorithm that will be used to com-
pare and contrast these approaches.

9.1 Running Example

An ounce of application is worth a ton of abstraction.

Booker T. Washington

This chapter will use a simplified packet-routing algo-
rithm to demonstrate the value of these approaches and
to allow them to be compared. Routing algorithms are
used in operating-system kernels to deliver each outgoing
TCP/IP packet to the appropriate network interface. This
particular algorithm is a simplified version of the clas-
sic 1980s packet-train-optimized algorithm used in BSD
UNIX [Jac88], consisting of a simple linked list.1 Mod-
ern routing algorithms use more complex data structures,
however a simple algorithm will help highlight issues
specific to parallelism in a straightforward setting.

We further simplify the algorithm by reducing the
search key from a quadruple consisting of source and
destination IP addresses and ports all the way down to a
simple integer. The value looked up and returned will also
be a simple integer, so that the data structure is as shown
in Figure 9.1, which directs packets with address 42 to
interface 1, address 56 to interface 3, and address 17 to

1 In other words, this is not OpenBSD, NetBSD, or even FreeBSD,
but none other than Pre-BSD.

131

v2024.12.27a

132 CHAPTER 9. DEFERRED PROCESSING

route_list

->addr=42

->iface=1

->addr=56

->iface=3

->addr=17

->iface=7

Figure 9.1: Pre-BSD Packet Routing List

interface 7. This list will normally be searched frequently
and updated rarely. In Chapter 3 we learned that the best
ways to evade inconvenient laws of physics, such as the
finite speed of light and the atomic nature of matter, is to
either partition the data or to rely on read-mostly sharing.
This chapter applies read-mostly sharing techniques to
Pre-BSD packet routing.

Listing 9.1 (route_seq.c) shows a simple single-
threaded implementation corresponding to Figure 9.1.
Lines 1–5 define a route_entry structure and line 6 de-
fines the route_list header. Lines 8–20 define route_
lookup(), which sequentially searches route_list, re-
turning the corresponding ->iface, or ULONG_MAX if
there is no such route entry. Lines 22–33 define route_
add(), which allocates a route_entry structure, initial-
izes it, and adds it to the list, returning -ENOMEM in case
of memory-allocation failure. Finally, lines 35–47 define
route_del(), which removes and frees the specified
route_entry structure if it exists, or returns -ENOENT
otherwise.

This single-threaded implementation serves as a proto-
type for the various concurrent implementations in this
chapter, and also as an estimate of ideal scalability and
performance.

9.2 Reference Counting

I am never letting you go!

Unknown

Reference counting tracks the number of references to a
given object in order to prevent that object from being
prematurely freed. As such, it has a long and honorable
history of use dating back to at least an early 1960s Weizen-
baum paper [Wei63]. Weizenbaum discusses reference
counting as if it was already well-known, so it likely dates

Listing 9.1: Sequential Pre-BSD Routing Table
1 struct route_entry {
2 struct cds_list_head re_next;
3 unsigned long addr;
4 unsigned long iface;
5 };
6 CDS_LIST_HEAD(route_list);
7
8 unsigned long route_lookup(unsigned long addr)
9 {

10 struct route_entry *rep;
11 unsigned long ret;
12
13 cds_list_for_each_entry(rep, &route_list, re_next) {
14 if (rep->addr == addr) {
15 ret = rep->iface;
16 return ret;
17 }
18 }
19 return ULONG_MAX;
20 }
21
22 int route_add(unsigned long addr, unsigned long interface)
23 {
24 struct route_entry *rep;
25
26 rep = malloc(sizeof(*rep));
27 if (!rep)
28 return -ENOMEM;
29 rep->addr = addr;
30 rep->iface = interface;
31 cds_list_add(&rep->re_next, &route_list);
32 return 0;
33 }
34
35 int route_del(unsigned long addr)
36 {
37 struct route_entry *rep;
38
39 cds_list_for_each_entry(rep, &route_list, re_next) {
40 if (rep->addr == addr) {
41 cds_list_del(&rep->re_next);
42 free(rep);
43 return 0;
44 }
45 }
46 return -ENOENT;
47 }

v2024.12.27a

9.2. REFERENCE COUNTING 133

Listing 9.2: Reference-Counted Pre-BSD Routing Table Lookup
(BUGGY!!!)

1 struct route_entry {
2 atomic_t re_refcnt;
3 struct route_entry *re_next;
4 unsigned long addr;
5 unsigned long iface;
6 int re_freed;
7 };
8 struct route_entry route_list;
9 DEFINE_SPINLOCK(routelock);

10
11 static void re_free(struct route_entry *rep)
12 {
13 WRITE_ONCE(rep->re_freed, 1);
14 free(rep);
15 }
16
17 unsigned long route_lookup(unsigned long addr)
18 {
19 int old;
20 int new;
21 struct route_entry *rep;
22 struct route_entry **repp;
23 unsigned long ret;
24
25 retry:
26 repp = &route_list.re_next;
27 rep = NULL;
28 do {
29 if (rep && atomic_dec_and_test(&rep->re_refcnt))
30 re_free(rep);
31 rep = READ_ONCE(*repp);
32 if (rep == NULL)
33 return ULONG_MAX;
34 do {
35 if (READ_ONCE(rep->re_freed))
36 abort();
37 old = atomic_read(&rep->re_refcnt);
38 if (old <= 0)
39 goto retry;
40 new = old + 1;
41 } while (atomic_cmpxchg(&rep->re_refcnt,
42 old, new) != old);
43 repp = &rep->re_next;
44 } while (rep->addr != addr);
45 ret = rep->iface;
46 if (atomic_dec_and_test(&rep->re_refcnt))
47 re_free(rep);
48 return ret;
49 }

back to the 1950s or even to the 1940s. And perhaps
even further, given that people repairing large dangerous
machines have long used a mechanical reference-counting
technique implemented via padlocks. Before entering
the machine, each worker locks a padlock onto the ma-
chine’s on/off switch, thus preventing the machine from
being powered on while that worker is inside. Reference
counting is thus an excellent time-honored candidate for a
concurrent implementation of Pre-BSD routing.

To that end, Listing 9.2 shows data structures and
the route_lookup() function and Listing 9.3 shows
the route_add() and route_del() functions (all at
route_refcnt.c). Since these algorithms are quite

Listing 9.3: Reference-Counted Pre-BSD Routing Table Add/
Delete (BUGGY!!!)

1 int route_add(unsigned long addr, unsigned long interface)
2 {
3 struct route_entry *rep;
4
5 rep = malloc(sizeof(*rep));
6 if (!rep)
7 return -ENOMEM;
8 atomic_set(&rep->re_refcnt, 1);
9 rep->addr = addr;

10 rep->iface = interface;
11 spin_lock(&routelock);
12 rep->re_next = route_list.re_next;
13 rep->re_freed = 0;
14 route_list.re_next = rep;
15 spin_unlock(&routelock);
16 return 0;
17 }
18
19 int route_del(unsigned long addr)
20 {
21 struct route_entry *rep;
22 struct route_entry **repp;
23
24 spin_lock(&routelock);
25 repp = &route_list.re_next;
26 for (;;) {
27 rep = *repp;
28 if (rep == NULL)
29 break;
30 if (rep->addr == addr) {
31 *repp = rep->re_next;
32 spin_unlock(&routelock);
33 if (atomic_dec_and_test(&rep->re_refcnt))
34 re_free(rep);
35 return 0;
36 }
37 repp = &rep->re_next;
38 }
39 spin_unlock(&routelock);
40 return -ENOENT;
41 }

similar to the sequential algorithm shown in Listing 9.1,
only the differences will be discussed.

Starting with Listing 9.2, line 2 adds the actual reference
counter, line 6 adds a ->re_freed use-after-free check
field, line 9 adds the routelock that will be used to
synchronize concurrent updates, and lines 11–15 add
re_free(), which sets ->re_freed, enabling route_
lookup() to check for use-after-free bugs. In route_
lookup() itself, lines 29–30 release the reference count
of the prior element and free it if the count becomes zero,
and lines 34–42 acquire a reference on the new element,
with lines 35 and 36 performing the use-after-free check.

Quick Quiz 9.1: Why bother with a use-after-free check?

In Listing 9.3, lines 11, 15, 24, 32, and 39 introduce
locking to synchronize concurrent updates. Line 13
initializes the ->re_freed use-after-free-check field, and

v2024.12.27a

134 CHAPTER 9. DEFERRED PROCESSING

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 0 50 100 150 200 250 300 350 400 450

ideal

refcnt

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

Figure 9.2: Pre-BSD Routing Table Protected by Refer-
ence Counting

finally lines 33–34 invoke re_free() if the new value of
the reference count is zero.
Quick Quiz 9.2: Why doesn’t route_del() in Listing 9.3
use reference counts to protect the traversal to the element to
be freed?

Figure 9.2 shows the performance and scalability of
reference counting on a read-only workload with a ten-
element list running on an eight-socket 28-core-per-socket
hyperthreaded 2.1 GHz x86 system with a total of 448 hard-
ware threads (hps.2019.12.02a/lscpu.hps). The
“ideal” trace was generated by running the sequential
code shown in Listing 9.1, which works only because
this is a read-only workload. The reference-counting
performance is abysmal and its scalability even more so,
with the “refcnt” trace indistinguishable from the x-axis.
This should be no surprise in view of Chapter 3: The
reference-count acquisitions and releases have added fre-
quent shared-memory writes to an otherwise read-only
workload, thus incurring severe retribution from the laws
of physics. As well it should, given that all the wishful
thinking in the world is not going to increase the speed
of light or decrease the size of the atoms used in modern
digital electronics.

Quick Quiz 9.3: Why the break in the “ideal” line at 224
CPUs in Figure 9.2? Shouldn’t it be a straight line?

Quick Quiz 9.4: Shouldn’t the refcnt trace in Figure 9.2 be
at least a little bit off of the x-axis???

But it gets worse.
Running multiple updater threads repeatedly invoking

route_add() and route_del() will quickly encounter

the abort() statement on line 36 of Listing 9.2, which
indicates a use-after-free bug. This in turn means that
the reference counts are not only profoundly degrading
scalability and performance, but also failing to provide
the needed protection.

One sequence of events leading to the use-after-free
bug is as follows, given the list shown in Figure 9.1:

1. Thread A looks up address 42, reaching line 32 of
route_lookup() in Listing 9.2. In other words,
Thread A has a pointer to the first element, but has
not yet acquired a reference to it.

2. Thread B invokes route_del() in Listing 9.3 to
delete the route entry for address 42. It completes
successfully, and because this entry’s ->re_refcnt
field was equal to the value one, it invokes re_
free() to set the ->re_freed field and to free the
entry.

3. Thread A continues execution of route_lookup().
Its rep pointer is non-NULL, but line 35 sees that its
->re_freed field is non-zero, so line 36 invokes
abort().

The problem is that the reference count is located in
the object to be protected, but that means that there is no
protection during the instant in time when the reference
count itself is being acquired! This is the reference-
counting counterpart of a locking issue noted by Gamsa
et al. [GKAS99]. One could imagine using a global
lock or reference count to protect the per-route-entry
reference-count acquisition, but this would result in severe
contention issues. Although algorithms exist that allow
safe reference-count acquisition in a concurrent environ-
ment [Val95], they are not only extremely complex and
error-prone [MS95], but also provide terrible performance
and scalability [HMBW07].

In short, concurrency has most definitely reduced the
usefulness of reference counting! Of course, as with other
synchronization primitives, reference counts also have
well-known ease-of-use shortcomings. These can result
in memory leaks on the one hand or premature freeing on
the other.

And this is the reference-counting trap that awaits
unwary developers of concurrent code, noted back on
page 131.

Quick Quiz 9.5: If concurrency has “most definitely reduced
the usefulness of reference counting”, why are there so many
reference counters in the Linux kernel?

v2024.12.27a

9.3. HAZARD POINTERS 135

It is sometimes helpful to look at a problem in an
entirely different way in order to successfully solve it. To
this end, the next section describes what could be thought
of as an inside-out reference count that provides decent
performance and scalability.

9.3 Hazard Pointers

If in doubt, turn it inside out.

Zara Carpenter

One way of avoiding problems with concurrent reference
counting is to implement the reference counters inside out,
that is, rather than incrementing an integer stored in the
data element, instead store a pointer to that data element
in per-CPU (or per-thread) lists. Each element of these
lists is called a hazard pointer [Mic04a].2 The value of a
given data element’s “virtual reference counter” can then
be obtained by counting the number of hazard pointers
referencing that element. Therefore, if that element has
been rendered inaccessible to readers, and there are no
longer any hazard pointers referencing it, that element
may safely be freed.

Of course, this means that hazard-pointer acquisition
must be carried out quite carefully in order to avoid destruc-
tive races with concurrent deletion. One implementation
is shown in Listing 9.4, which shows hp_try_record()
on lines 1–16, hp_record() on lines 18–27, and hp_
clear() on lines 29–33 (hazptr.h).

The hp_try_record() macro on line 16 is simply a
casting wrapper for the _h_t_r_impl() function, which
attempts to store the pointer referenced by p into the hazard
pointer referenced by hp. If successful, it returns the value
of the stored pointer. If it fails due to that pointer being
NULL, it returns NULL. Finally, if it fails due to racing with
an update, it returns a special HAZPTR_POISON token.
Quick Quiz 9.6: Given that papers on hazard pointers use
the bottom bits of each pointer to mark deleted elements, what
is up with HAZPTR_POISON?

Line 6 reads the pointer to the object to be protected.
If line 8 finds that this pointer was either NULL or the
special HAZPTR_POISON deleted-object token, it returns
the pointer’s value to inform the caller of the failure.
Otherwise, line 9 stores the pointer into the specified
hazard pointer, and line 10 forces full ordering of that
store with the reload of the original pointer on line 11.

2 Also independently invented by others [HLM02].

Listing 9.4: Hazard-Pointer Recording and Clearing
1 static inline void *_h_t_r_impl(void **p,
2 hazard_pointer *hp)
3 {
4 void *tmp;
5
6 tmp = READ_ONCE(*p);
7 if (!tmp || tmp == (void *)HAZPTR_POISON)
8 return tmp;
9 WRITE_ONCE(hp->p, tmp);

10 smp_mb();
11 if (tmp == READ_ONCE(*p))
12 return tmp;
13 return (void *)HAZPTR_POISON;
14 }
15
16 #define hp_try_record(p, hp) _h_t_r_impl((void **)(p), hp)
17
18 static inline void *hp_record(void **p,
19 hazard_pointer *hp)
20 {
21 void *tmp;
22
23 do {
24 tmp = hp_try_record(p, hp);
25 } while (tmp == (void *)HAZPTR_POISON);
26 return tmp;
27 }
28
29 static inline void hp_clear(hazard_pointer *hp)
30 {
31 smp_mb();
32 WRITE_ONCE(hp->p, NULL);
33 }

(See Chapter 15 for more information on memory order-
ing.) If the value of the original pointer has not changed,
then the hazard pointer protects the pointed-to object,
and in that case, line 12 returns a pointer to that object,
which also indicates success to the caller. Otherwise,
if the pointer changed between the two READ_ONCE()
invocations, line 13 indicates failure.
Quick Quiz 9.7: Why does hp_try_record() in Listing 9.4
take a double indirection to the data element? Why not void *
instead of void **?

The hp_record() function is quite straightforward:
It repeatedly invokes hp_try_record() until the return
value is something other than HAZPTR_POISON.

Quick Quiz 9.8: Why bother with hp_try_record()?
Wouldn’t it be easier to just use the failure-immune hp_
record() function?

The hp_clear() function is even more straightforward,
with an smp_mb() to force full ordering between the
caller’s uses of the object protected by the hazard pointer
and the setting of the hazard pointer to NULL.

Once a hazard-pointer-protected object has been re-
moved from its linked data structure, so that it is now
inaccessible to future hazard-pointer readers, it is passed to

v2024.12.27a

136 CHAPTER 9. DEFERRED PROCESSING

Listing 9.5: Hazard-Pointer Scanning and Freeing
1 int compare(const void *a, const void *b)
2 {
3 return (*(hazptr_head_t **)a - *(hazptr_head_t **)b);
4 }
5
6 void hazptr_scan()
7 {
8 hazptr_head_t *cur;
9 int i;

10 hazptr_head_t *tmplist;
11 hazptr_head_t **plist = gplist;
12 unsigned long psize;
13
14 if (plist == NULL) {
15 psize = sizeof(hazptr_head_t *) * K * NR_THREADS;
16 plist = (hazptr_head_t **)malloc(psize);
17 BUG_ON(!plist);
18 gplist = plist;
19 }
20 smp_mb();
21 psize = 0;
22 for (i = 0; i < H; i++) {
23 uintptr_t hp = (uintptr_t)READ_ONCE(HP[i].p);
24
25 if (!hp)
26 continue;
27 plist[psize++] = (hazptr_head_t *)(hp & ~0x1UL);
28 }
29 smp_mb();
30 qsort(plist, psize, sizeof(hazptr_head_t *), compare);
31 tmplist = rlist;
32 rlist = NULL;
33 rcount = 0;
34 while (tmplist != NULL) {
35 cur = tmplist;
36 tmplist = tmplist->next;
37 if (bsearch(&cur, plist, psize,
38 sizeof(hazptr_head_t *), compare)) {
39 cur->next = rlist;
40 rlist = cur;
41 rcount++;
42 } else {
43 hazptr_free(cur);
44 }
45 }
46 }
47
48 void hazptr_free_later(hazptr_head_t *n)
49 {
50 n->next = rlist;
51 rlist = n;
52 rcount++;
53 if (rcount >= R) {
54 hazptr_scan();
55 }
56 }

hazptr_free_later(), which is shown on lines 48–56
of Listing 9.5 (hazptr.c). Lines 50 and 51 enqueue
the object on a per-thread list rlist and line 52 counts
the object in rcount. If line 53 sees that a sufficiently
large number of objects are now queued, line 54 invokes
hazptr_scan() to attempt to free some of them.

The hazptr_scan() function is shown on lines 6–46
of the listing. This function relies on a fixed maximum
number of threads (NR_THREADS) and a fixed maximum
number of hazard pointers per thread (K), which allows a
fixed-size array of hazard pointers to be used. Because
any thread might need to scan the hazard pointers, each
thread maintains its own array, which is referenced by the
per-thread variable gplist. If line 14 determines that this
thread has not yet allocated its gplist, lines 15–18 carry
out the allocation. The memory barrier on line 20 ensures
that all threads see the removal of all objects by this
thread before lines 22–28 scan all of the hazard pointers,
accumulating non-NULL pointers into the plist array
and counting them in psize. The memory barrier on
line 29 ensures that the reads of the hazard pointers happen
before any objects are freed. Line 30 then sorts this array
to enable use of binary search below.

Lines 31 and 32 remove all elements from this thread’s
list of to-be-freed objects, placing them on the local
tmplist and line 33 zeroes the count. Each pass through
the loop spanning lines 34–45 processes each of the to-be-
freed objects. Lines 35 and 36 remove the first object from
tmplist, and if lines 37 and 38 determine that there is a
hazard pointer protecting this object, lines 39–41 place it
back onto rlist. Otherwise, line 43 frees the object.

The Pre-BSD routing example can use hazard pointers
as shown in Listing 9.6 for data structures and route_
lookup(), and in Listing 9.7 for route_add() and
route_del() (route_hazptr.c). As with reference
counting, the hazard-pointers implementation is quite sim-
ilar to the sequential algorithm shown in Listing 9.1 on
page 132, so only differences will be discussed.

Starting with Listing 9.6, line 2 shows the ->hh field
used to queue objects pending hazard-pointer free, line 6
shows the ->re_freed field used to detect use-after-free
bugs, and line 21 invokes hp_try_record() to attempt
to acquire a hazard pointer. If the return value is NULL,
line 23 returns a not-found indication to the caller. If the
call to hp_try_record() raced with deletion, line 25
branches back to line 18’s retry to re-traverse the list
from the beginning. The do–while loop falls through
when the desired element is located, but if this element
has already been freed, line 29 terminates the program.

v2024.12.27a

9.3. HAZARD POINTERS 137

Listing 9.6: Hazard-Pointer Pre-BSD Routing Table Lookup
1 struct route_entry {
2 struct hazptr_head hh;
3 struct route_entry *re_next;
4 unsigned long addr;
5 unsigned long iface;
6 int re_freed;
7 };
8 struct route_entry route_list;
9 DEFINE_SPINLOCK(routelock);

10 hazard_pointer __thread *my_hazptr;
11
12 unsigned long route_lookup(unsigned long addr)
13 {
14 int offset = 0;
15 struct route_entry *rep;
16 struct route_entry **repp;
17
18 retry:
19 repp = &route_list.re_next;
20 do {
21 rep = hp_try_record(repp, &my_hazptr[offset]);
22 if (!rep)
23 return ULONG_MAX;
24 if ((uintptr_t)rep == HAZPTR_POISON)
25 goto retry;
26 repp = &rep->re_next;
27 } while (rep->addr != addr);
28 if (READ_ONCE(rep->re_freed))
29 abort();
30 return rep->iface;
31 }

Otherwise, the element’s ->iface field is returned to the
caller.

Note that line 21 invokes hp_try_record() rather
than the easier-to-use hp_record(), restarting the full
search upon hp_try_record() failure. And such restart-
ing is absolutely required for correctness. To see this,
consider a hazard-pointer-protected linked list containing
elements A, B, and C that is subjected to the following
sequence of events:

1. Thread 0 stores a hazard pointer to element B (having
presumably traversed to element B from element A).

2. Thread 1 removes element B from the list, which
sets the pointer from element B to element C to the
special HAZPTR_POISON value in order to mark the
deletion. Because Thread 0 has a hazard pointer to
element B, it cannot yet be freed.

3. Thread 1 removes element C from the list. Because
there are no hazard pointers referencing element C,
it is immediately freed.

4. Thread 0 attempts to acquire a hazard pointer to
now-removed element B’s successor, but hp_try_
record() returns the HAZPTR_POISON value, forc-
ing the caller to restart its traversal from the beginning
of the list.

Which is a very good thing, because B’s successor is
the now-freed element C, which means that Thread 0’s
subsequent accesses might have resulted in arbitrarily
horrible memory corruption, especially if the memory
for element C had since been re-allocated for some other
purpose. Therefore, hazard-pointer readers must typically
restart the full traversal in the face of a concurrent deletion.
Often the restart must go back to some global (and thus
immortal) pointer, but it is sometimes possible to restart at
some intermediate location if that location is guaranteed
to still be live, for example, due to the current thread
holding a lock, a reference count, etc.
Quick Quiz 9.9: Readers must “typically” restart? What are
some exceptions?

Because algorithms using hazard pointers might be
restarted at any step of their traversal through the linked
data structure, such algorithms must typically take care
to avoid making any changes to the data structure until
after they have acquired all the hazard pointers that are
required for the update in question.
Quick Quiz 9.10: But don’t these restrictions on hazard
pointers also apply to other forms of reference counting?

These hazard-pointer restrictions result in great benefits
to readers, courtesy of the fact that the hazard pointers are
stored local to each CPU or thread, which in turn allows
traversals to be carried out without any writes to the data
structures being traversed. Referring back to Figure 5.8
on page 73, hazard pointers enable the CPU caches to
do resource replication, which in turn allows weakening
of the parallel-access-control mechanism, thus boosting
performance and scalability.

Another advantage of restarting hazard pointers traver-
sals is a reduction in minimal memory footprint: Any
object not currently referenced by some hazard pointer
may be immediately freed. In contrast, Section 9.5 will
discuss a mechanism that avoids read-side retries (and
minimizes read-side overhead), but which can result in a
much larger memory footprint.

The route_add() and route_del() functions are
shown in Listing 9.7. Line 10 initializes ->re_freed,
line 31 poisons the ->re_next field of the newly removed
object, and line 33 passes that object to the hazptr_
free_later() function, which will free that object once
it is safe to do so. The spinlocks work the same as in
Listing 9.3.

Figure 9.3 shows the hazard-pointers-protected Pre-
BSD routing algorithm’s performance on the same read-
only workload as for Figure 9.2. Although hazard pointers

v2024.12.27a

138 CHAPTER 9. DEFERRED PROCESSING

Listing 9.7: Hazard-Pointer Pre-BSD Routing Table Add/Delete
1 int route_add(unsigned long addr, unsigned long interface)
2 {
3 struct route_entry *rep;
4
5 rep = malloc(sizeof(*rep));
6 if (!rep)
7 return -ENOMEM;
8 rep->addr = addr;
9 rep->iface = interface;

10 rep->re_freed = 0;
11 spin_lock(&routelock);
12 rep->re_next = route_list.re_next;
13 route_list.re_next = rep;
14 spin_unlock(&routelock);
15 return 0;
16 }
17
18 int route_del(unsigned long addr)
19 {
20 struct route_entry *rep;
21 struct route_entry **repp;
22
23 spin_lock(&routelock);
24 repp = &route_list.re_next;
25 for (;;) {
26 rep = *repp;
27 if (rep == NULL)
28 break;
29 if (rep->addr == addr) {
30 *repp = rep->re_next;
31 rep->re_next = (struct route_entry *)HAZPTR_POISON;
32 spin_unlock(&routelock);
33 hazptr_free_later(&rep->hh);
34 return 0;
35 }
36 repp = &rep->re_next;
37 }
38 spin_unlock(&routelock);
39 return -ENOENT;
40 }

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 0 50 100 150 200 250 300 350 400 450

ideal

hazptr

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

Figure 9.3: Pre-BSD Routing Table Protected by Hazard
Pointers

scale far better than does reference counting, hazard point-
ers still require readers to do writes to shared memory
(albeit with much improved locality of reference), and
also require a full memory barrier and retry check for
each object traversed. Therefore, hazard-pointers per-
formance is still far short of ideal. On the other hand,
unlike naive approaches to concurrent reference-counting,
hazard pointers not only operate correctly for workloads
involving concurrent updates, but also exhibit excellent
scalability. Additional performance comparisons with
other mechanisms may be found in Chapter 10 and in
other publications [HMBW07, McK13, Mic04a].
Quick Quiz 9.11: Figure 9.3 shows no sign of hyperthread-
induced flattening at 224 threads. Why is that?

Quick Quiz 9.12: The paper “Structured Deferral: Syn-
chronization via Procrastination” [McK13] shows that hazard
pointers have near-ideal performance. Whatever happened in
Figure 9.3???

On June 17, 2023, the ISO C++ Standards committee
voted hazard pointers into C++26 [MWM+23b]. Daniel
Anderson has produced a prototype C++ atomic shared-
pointer implementation based on hazard pointers [And23].

And hazard pointers are the concurrent reference
counter mentioned on page 131. The next section at-
tempts to improve on hazard pointers by using sequence
locks, which avoid both read-side writes and per-object
memory barriers.

9.4 Sequence Locks

It’ll be just like starting over.

John Lennon

The published sequence-lock record [Eas71, Lam77] ex-
tends back as far as that of reader-writer locking, but
sequence locks nevertheless remain in relative obscurity.
Sequence locks are used in the Linux kernel for read-
mostly data that must be seen in a consistent state by
readers. However, unlike reader-writer locking, readers
do not exclude writers. Instead, like hazard pointers,
sequence locks force readers to retry an operation if they
detect activity from a concurrent writer. As can be seen
from Figure 9.4, it is important to design code using
sequence locks so that readers very rarely need to retry.
Quick Quiz 9.13: Why isn’t this sequence-lock discussion in
Chapter 7, you know, the one on locking?

v2024.12.27a

9.4. SEQUENCE LOCKS 139

Ah, I finally got

done reading!

No, you didn't!

Start over!

Figure 9.4: Reader And Uncooperative Sequence Lock

Listing 9.8: Sequence-Locking Reader
1 do {
2 seq = read_seqbegin(&test_seqlock);
3 /* read-side access. */
4 } while (read_seqretry(&test_seqlock, seq));

Listing 9.9: Sequence-Locking Writer
1 write_seqlock(&test_seqlock);
2 /* Update */
3 write_sequnlock(&test_seqlock);

The key component of sequence locking is the sequence
number, which has an even value in the absence of up-
daters and an odd value if there is an update in progress.
Readers can then snapshot the value before and after
each access. If either snapshot has an odd value, or if
the two snapshots differ, there has been a concurrent
update, and the reader must discard the results of the
access and then retry it. Readers therefore use the read_
seqbegin() and read_seqretry() functions shown in
Listing 9.8 when accessing data protected by a sequence
lock. Writers must increment the value before and af-
ter each update, and only one writer is permitted at a
given time. Writers therefore use the write_seqlock()
and write_sequnlock() functions shown in Listing 9.9
when updating data protected by a sequence lock.

As a result, sequence-lock-protected data can have an
arbitrarily large number of concurrent readers, but only
one writer at a time. Sequence locking is used in the
Linux kernel to protect calibration quantities used for
timekeeping. It is also used in pathname traversal to
detect concurrent rename operations.

Listing 9.10: Sequence-Locking Implementation
1 typedef struct {
2 unsigned long seq;
3 spinlock_t lock;
4 } seqlock_t;
5
6 static inline void seqlock_init(seqlock_t *slp)
7 {
8 slp->seq = 0;
9 spin_lock_init(&slp->lock);

10 }
11
12 static inline unsigned long read_seqbegin(seqlock_t *slp)
13 {
14 unsigned long s;
15
16 s = READ_ONCE(slp->seq);
17 smp_mb();
18 return s & ~0x1UL;
19 }
20
21 static inline int read_seqretry(seqlock_t *slp,
22 unsigned long oldseq)
23 {
24 unsigned long s;
25
26 smp_mb();
27 s = READ_ONCE(slp->seq);
28 return s != oldseq;
29 }
30
31 static inline void write_seqlock(seqlock_t *slp)
32 {
33 spin_lock(&slp->lock);
34 WRITE_ONCE(slp->seq, READ_ONCE(slp->seq) + 1);
35 smp_mb();
36 }
37
38 static inline void write_sequnlock(seqlock_t *slp)
39 {
40 smp_mb();
41 WRITE_ONCE(slp->seq, READ_ONCE(slp->seq) + 1);
42 spin_unlock(&slp->lock);
43 }

v2024.12.27a

140 CHAPTER 9. DEFERRED PROCESSING

A simple implementation of sequence locks is shown
in Listing 9.10 (seqlock.h). The seqlock_t data struc-
ture is shown on lines 1–4, and contains the sequence
number along with a lock to serialize writers. Lines 6–10
show seqlock_init(), which, as the name indicates,
initializes a seqlock_t.

Lines 12–19 show read_seqbegin(), which begins
a sequence-lock read-side critical section. Line 16 takes
a snapshot of the sequence counter, and line 17 orders
this snapshot operation before the caller’s critical section.
Finally, line 18 returns the value of the snapshot (with the
least-significant bit cleared), which the caller will pass to
a later call to read_seqretry().

Quick Quiz 9.14: Why not have read_seqbegin() in
Listing 9.10 check whether the sequence-number value is
odd, and, if so, retry internally rather than entering a doomed
read-side critical section?

Lines 21–29 show read_seqretry(), which returns
true if there was at least one writer since the time of the
corresponding call to read_seqbegin(). Line 26 orders
the caller’s prior critical section before line 27’s fetch of
the new snapshot of the sequence counter. Line 28 checks
whether the sequence counter has changed, in other words,
whether there has been at least one writer, and returns
true if so.
Quick Quiz 9.15: Why is the smp_mb() on line 26 of
Listing 9.10 needed?

Quick Quiz 9.16: Can’t weaker memory barriers be used in
the code in Listing 9.10?

Quick Quiz 9.17: What prevents sequence-locking updaters
from starving readers?

Lines 31–36 show write_seqlock(), which simply
acquires the lock, increments the sequence number, and
executes a memory barrier to ensure that this increment is
ordered before the caller’s critical section. Lines 38–43
show write_sequnlock(), which executes a memory
barrier to ensure that the caller’s critical section is ordered
before the increment of the sequence number on line 41,
then releases the lock.
Quick Quiz 9.18: What if something else serializes writers,
so that the lock is not needed?

Quick Quiz 9.19: Why isn’t seq on line 2 of List-
ing 9.10 unsigned rather than unsigned long? After all, if
unsigned is good enough for the Linux kernel, shouldn’t it
be good enough for everyone?

Listing 9.11: Sequence-Locked Pre-BSD Routing Table Lookup
(BUGGY!!!)

1 struct route_entry {
2 struct route_entry *re_next;
3 unsigned long addr;
4 unsigned long iface;
5 int re_freed;
6 };
7 struct route_entry route_list;
8 DEFINE_SEQ_LOCK(sl);
9

10 unsigned long route_lookup(unsigned long addr)
11 {
12 struct route_entry *rep;
13 struct route_entry **repp;
14 unsigned long ret;
15 unsigned long s;
16
17 retry:
18 s = read_seqbegin(&sl);
19 repp = &route_list.re_next;
20 do {
21 rep = READ_ONCE(*repp);
22 if (rep == NULL) {
23 if (read_seqretry(&sl, s))
24 goto retry;
25 return ULONG_MAX;
26 }
27 repp = &rep->re_next;
28 } while (rep->addr != addr);
29 if (READ_ONCE(rep->re_freed))
30 abort();
31 ret = rep->iface;
32 if (read_seqretry(&sl, s))
33 goto retry;
34 return ret;
35 }

So what happens when sequence locking is applied to
the Pre-BSD routing table? Listing 9.11 shows the data
structures and route_lookup(), and Listing 9.12 shows
route_add() and route_del() (route_seqlock.c).
This implementation is once again similar to its counter-
parts in earlier sections, so only the differences will be
highlighted.

In Listing 9.11, line 5 adds ->re_freed, which is
checked on lines 29 and 30. Line 8 adds a sequence
lock, which is used by route_lookup() on lines 18, 23,
and 32, with lines 24 and 33 branching back to the retry
label on line 17. The effect is to retry any lookup that
runs concurrently with an update.

In Listing 9.12, lines 11, 14, 23, 31, and 39 acquire
and release the sequence lock, while lines 10 and 33
handle ->re_freed. This implementation is therefore
quite straightforward.

It also performs better on the read-only workload, as
can be seen in Figure 9.5, though its performance is
still far from ideal. Worse yet, it suffers use-after-free
failures. The problem is that the reader might encounter a
segmentation violation due to accessing an already-freed

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 141

Listing 9.12: Sequence-Locked Pre-BSD Routing Table Add/
Delete (BUGGY!!!)

1 int route_add(unsigned long addr, unsigned long interface)
2 {
3 struct route_entry *rep;
4
5 rep = malloc(sizeof(*rep));
6 if (!rep)
7 return -ENOMEM;
8 rep->addr = addr;
9 rep->iface = interface;

10 rep->re_freed = 0;
11 write_seqlock(&sl);
12 rep->re_next = route_list.re_next;
13 route_list.re_next = rep;
14 write_sequnlock(&sl);
15 return 0;
16 }
17
18 int route_del(unsigned long addr)
19 {
20 struct route_entry *rep;
21 struct route_entry **repp;
22
23 write_seqlock(&sl);
24 repp = &route_list.re_next;
25 for (;;) {
26 rep = *repp;
27 if (rep == NULL)
28 break;
29 if (rep->addr == addr) {
30 *repp = rep->re_next;
31 write_sequnlock(&sl);
32 smp_mb();
33 rep->re_freed = 1;
34 free(rep);
35 return 0;
36 }
37 repp = &rep->re_next;
38 }
39 write_sequnlock(&sl);
40 return -ENOENT;
41 }

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 0 50 100 150 200 250 300 350 400 450

ideal

hazptr
seqlockLo

ok
up

s
pe

r M
ill

is
ec

on
d

Number of CPUs (Threads)

Figure 9.5: Pre-BSD Routing Table Protected by Se-
quence Locking

structure before read_seqretry() has a chance to warn
of the concurrent update.

Quick Quiz 9.20: Can this bug be fixed? In other words, can
you use sequence locks as the only synchronization mechanism
protecting a linked list supporting concurrent addition, deletion,
and lookup?

As hinted on page 131, both the read-side and write-
side critical sections of a sequence lock can be thought
of as transactions, and sequence locking therefore can
be thought of as a limited form of transactional memory,
which will be discussed in Section 17.2. The limitations
of sequence locking are: (1) Sequence locking restricts
updates and (2) Sequence locking does not permit traversal
of pointers to objects that might be freed by updaters.
These limitations are of course overcome by transactional
memory, but can also be overcome by combining other
synchronization primitives with sequence locking.

Sequence locks allow writers to defer readers, but not
vice versa. This can result in unfairness and even starvation
in writer-heavy workloads.3 On the other hand, in the
absence of writers, sequence-lock readers are reasonably
fast and scale linearly. It is only human to want the best of
both worlds: Fast readers without the possibility of read-
side failure, let alone starvation. In addition, it would also
be nice to overcome sequence locking’s limitations with
pointers. The following section presents a synchronization
mechanism with exactly these properties.

9.5 Read-Copy Update (RCU)

“Free” is a very good price!

Tom Peterson

All of the mechanisms discussed in the preceding sections
used one of a number of approaches to defer specific
actions until they may be carried out safely. The reference
counters discussed in Section 9.2 use explicit counters to
defer actions that could disturb readers, which results in
read-side contention and thus poor scalability. The hazard
pointers covered by Section 9.3 uses implicit counters
in the guise of per-thread lists of pointer. This avoids
read-side contention, but requires readers to do stores
and conditional branches, as well as either full memory

3 Dmitry Vyukov describes one way to reduce (but, sadly, not elimi-
nate) reader starvation: http://www.1024cores.net/home/lock-
free-algorithms/reader-writer-problem/improved-lock-
free-seqlock.

http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/improved-lock-free-seqlock
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/improved-lock-free-seqlock
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/improved-lock-free-seqlock

v2024.12.27a

142 CHAPTER 9. DEFERRED PROCESSING

barriers in read-side primitives or real-time-unfriendly
inter-processor interrupts in update-side primitives.4 The
sequence lock presented in Section 9.4 also avoids read-
side contention, but does not protect pointer traversals and,
like hazard pointers, requires either full memory barriers
in read-side primitives, or inter-processor interrupts in
update-side primitives. These schemes’ shortcomings
raise the question of whether it is possible to do better.

This section introduces read-copy update (RCU), which
provides an API that allows readers to be associated with
regions in the source code, rather than with expensive
updates to frequently updated shared data. The remainder
of this section examines RCU from a number of different
perspectives. Section 9.5.1 provides the classic intro-
duction to RCU, Section 9.5.2 covers fundamental RCU
concepts, Section 9.5.3 presents the Linux-kernel API,
Section 9.5.4 introduces some common RCU use cases,
and finally Section 9.5.5 covers recent work related to
RCU.

Although RCU has gained a reputation for being subtle
and difficult, when used properly, it is quite straightforward.
In fact, no less an authority than Butler Lampson classifies
it as easy concurrency [AH22, Chapter 3].

9.5.1 Introduction to RCU
The approaches discussed in the preceding sections have
provided good scalability but decidedly non-ideal per-
formance for the Pre-BSD routing table. Therefore, in
the spirit of “only those who have gone too far know
how far you can go”,5 we will go all the way, looking
into algorithms in which concurrent readers might well
execute exactly the same sequence of assembly language
instructions as would a single-threaded lookup, despite the
presence of concurrent updates. Of course, this laudable
goal might raise serious implementability questions, but
we cannot possibly succeed if we don’t even try!

And should we succeed, we will have uncovered yet
another of the mysteries set forth on page 131.

9.5.1.1 Minimal Insertion and Deletion

To minimize implementability concerns, we focus on a
minimal data structure, which consists of a single global
pointer that is either NULL or references a single structure.

4 In some important special cases, this extra work can be avoided
by using link counting as exemplified by the UnboundedQueue and
ConcurrentHashMap data structures implemented in Folly open-source
library (https://github.com/facebook/folly).

5 With apologies to T. S. Eliot.

gptr

kmalloc()

->addr=?

->iface=?
gptr

initialization

gptr

smp_store_release(&gptr, p);

gptr

p

p

p

(1)

(2)

(3)

(4)

->addr=42

->iface=1

->addr=42

->iface=1

Figure 9.6: Insertion With Concurrent Readers

Minimal though it might be, this data structure is heavily
used in production [RH18]. A classic approach for inser-
tion is shown in Figure 9.6, which shows four states with
time advancing from top to bottom. The first row shows
the initial state, with gptr equal to NULL. In the second
row, we have allocated a structure which is uninitialized,
as indicated by the question marks. In the third row, we
have initialized the structure. Finally, in the fourth and
final row, we have updated gptr to reference the newly
allocated and initialized element.

We might hope that this assignment to gptr could use
a simple C-language assignment statement. Unfortunately,
Section 4.3.4.1 dashes these hopes. Therefore, the updater
cannot use a simple C-language assignment, but must in-
stead use smp_store_release() as shown in the figure,
or, as will be seen, rcu_assign_pointer().

Similarly, one might hope that readers could use a single
C-language assignment to fetch the value of gptr, and
be guaranteed to either get the old value of NULL or to
get the newly installed pointer, but either way see a valid
result. Unfortunately, Section 4.3.4.1 dashes these hopes
as well. To obtain this guarantee, readers must instead use
READ_ONCE(), or, as will be seen, rcu_dereference().

https://github.com/facebook/folly

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 143

gptr = NULL; /*almost*/

gptr = NULL; /*almost*/wait for readers???

free()

->addr=42

->iface=1

Readers?

1 Version

gptr(1)

smp_store_release(&gptr, NULL);

->addr=42

->iface=1
2 Versions

gptr(2)

Readers?

->addr=42

->iface=1

Readers?

1 Version

gptr(3)

1 Versiongptr(4)

Figure 9.7: Deletion With Concurrent Readers

However, on most modern computer systems, each of
these read-side primitives can be implemented with a
single load instruction, exactly the instruction that would
normally be used in single-threaded code.

Reviewing Figure 9.6 from the viewpoint of readers,
in the first three states all readers see gptr having the
value NULL. Upon entering the fourth state, some readers
might see gptr still having the value NULL while others
might see it referencing the newly inserted element, but
after some time, all readers will see this new element. At
all times, all readers will see gptr as containing a valid
pointer. Therefore, it really is possible to add new data to
linked data structures while allowing concurrent readers
to execute the same sequence of machine instructions
that is normally used in single-threaded code. This no-
cost approach to concurrent reading provides excellent
performance and scalability, and also is eminently suitable
for real-time use.

Insertion is of course quite useful, but sooner or later,
it will also be necessary to delete data. As can be seen in
Figure 9.7, the first step is easy. Again taking the lessons
from Section 4.3.4.1 to heart, smp_store_release() is
used to NULL the pointer, thus moving from the first row to
the second in the figure. At this point, pre-existing readers
see the old structure with ->addr of 42 and ->iface

of 1, but new readers will see a NULL pointer, that is,
concurrent readers can disagree on the state, as indicated
by the “2 Versions” in the figure.
Quick Quiz 9.21: Why does Figure 9.7 use smp_store_
release() given that it is storing a NULL pointer? Wouldn’t
WRITE_ONCE() work just as well in this case, given that there
is no structure initialization to order against the store of the
NULL pointer?

Quick Quiz 9.22: Readers running concurrently with each
other and with the procedure outlined in Figure 9.7 can disagree
on the value of gptr. Isn’t that just a wee bit problematic???

We get back to a single version simply by waiting for
all the pre-existing readers to complete, as shown in row 3.
At that point, all the pre-existing readers are done, and no
later reader has a path to the old data item, so there can
no longer be any readers referencing it. It may therefore
be safely freed, as shown on row 4.

Thus, given a way to wait for pre-existing readers to
complete, it is possible to both add data to and remove data
from a linked data structure, despite the readers executing
the same sequence of machine instructions that would
be appropriate for single-threaded execution. So perhaps
going all the way was not too far after all!

But how can we tell when all of the pre-existing readers
have in fact completed? This question is the topic of
Section 9.5.1.3. But first, the next section defines RCU’s
core API.

9.5.1.2 Core RCU API

The full Linux-kernel API is quite extensive, with more
than one hundred API members. However, this section
will confine itself to six core RCU API members, which
suffices for the upcoming sections introducing RCU and
covering its fundamentals. The full API is covered in
Section 9.5.3.

Three members of the core APIs are used by read-
ers. The rcu_read_lock() and rcu_read_unlock()
functions delimit RCU read-side critical sections. These
may be nested, so that one rcu_read_lock()–rcu_
read_unlock() pair can be enclosed within another. In
this case, the nested set of RCU read-side critical sec-
tions act as one large critical section covering the full
extent of the nested set. The third read-side API member,
rcu_dereference(), fetches an RCU-protected pointer.
Conceptually, rcu_dereference() simply loads from
memory, but we will see in Section 9.5.2.1 that rcu_
dereference() must prevent the compiler and (in one

v2024.12.27a

144 CHAPTER 9. DEFERRED PROCESSING

case) the CPU from reordering its load with later memory
operations that dereference this pointer.

Quick Quiz 9.23: What is an RCU-protected pointer?

The other three members of the core APIs are used by up-
daters. The synchronize_rcu() function implements
the “wait for readers” operation from Figure 9.7. The
call_rcu() function is the asynchronous counterpart of
synchronize_rcu() by invoking the specified function
after all pre-existing RCU readers have completed. Finally,
the rcu_assign_pointer() macro is used to update an
RCU-protected pointer. Conceptually, this is simply an
assignment statement, but we will see in Section 9.5.2.1
that rcu_assign_pointer() must prevent the compiler
and the CPU from reordering this assignment to precede
any prior assignments used to initialize the pointed-to
structure.
Quick Quiz 9.24: What does synchronize_rcu() do if it
starts at about the same time as an rcu_read_lock()?

The core RCU API is summarized in Table 9.1 for
easy reference. With that, we are ready to continue this
introduction to RCU with the key RCU operation, waiting
for readers.

9.5.1.3 Waiting for Readers

It is tempting to base the reader-waiting functionality of
synchronize_rcu() and call_rcu() on a reference
counter updated by rcu_read_lock() and rcu_read_
unlock(), but Figure 5.1 in Chapter 5 shows that con-
current reference counting results in extreme overhead.
This extreme overhead was confirmed in the specific case
of reference counters in Figure 9.2 on page 134. Hazard
pointers profoundly reduce this overhead, but, as we saw
in Figure 9.3 on page 138, not to zero. Nevertheless,
many RCU implementations use counters with carefully
controlled cache locality.

A second approach observes that memory synchro-
nization is expensive, and therefore uses registers instead,
namely each CPU’s or thread’s program counter (PC), thus
imposing no overhead on readers, at least in the absence
of concurrent updates. The updater polls each relevant
PC, and if that PC is not within read-side code, then the
corresponding CPU or thread is within a quiescent state,
in turn signaling the completion of any reader that might
have access to the newly removed data element. Once all
CPU’s or thread’s PCs have been observed to be outside
of any reader, the grace period has completed. Please
note that this approach poses some serious challenges,

including memory ordering, functions that are sometimes
invoked from readers, and ever-exciting code-motion opti-
mizations. Nevertheless, this approach is said to be used
in production [Ash15].

A third approach is to simply wait for a fixed period
of time that is long enough to comfortably exceed the
lifetime of any reasonable reader [Jac93, Joh95]. This
can work quite well in hard real-time systems [RLPB18],
but in less exotic settings, Murphy says that it is critically
important to be prepared even for unreasonably long-lived
readers. To see this, consider the consequences of failing
do so: A data item will be freed while the unreasonable
reader is still referencing it, and that item might well
be immediately reallocated, possibly even as a data item
of some other type. The unreasonable reader and the
unwitting reallocator would then be attempting to use
the same memory for two very different purposes. The
ensuing mess will be exceedingly difficult to debug.

A fourth approach is to wait forever, secure in the
knowledge that doing so will accommodate even the
most unreasonable reader. This approach is also called
“leaking memory”, and has a bad reputation due to the
fact that memory leaks often require untimely and incon-
venient reboots. Nevertheless, this is a viable strategy
when the update rate and the uptime are both sharply
bounded. For example, this approach could work well in a
high-availability cluster where systems were periodically
crashed in order to ensure that cluster really remained
highly available.6 Leaking the memory is also a viable
strategy in environments having garbage collectors, in
which case the garbage collector can be thought of as
plugging the leak [KL80]. However, if your environment
lacks a garbage collector, read on!

A fifth approach avoids the period crashes in favor
of periodically “stopping the world”, as exemplified by
the traditional stop-the-world garbage collector. This
approach was also heavily used during the decades before
ubiquitous connectivity, when it was common practice
to power systems off at the end of each working day.
However, in today’s always-connected always-on world,
stopping the world can gravely degrade response times,
which has been one motivation for the development of
concurrent garbage collectors [BCR03]. Furthermore,
although we need all pre-existing readers to complete, we
do not need them all to complete at the same time.

6 The program that forces the periodic crashing is sometimes
known as a “chaos monkey”: https://netflix.github.io/
chaosmonkey/. However, it might also be a mistake to neglect chaos
caused by systems running for too long.

https://netflix.github.io/chaosmonkey/
https://netflix.github.io/chaosmonkey/

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 145

Table 9.1: Core RCU API

Primitive Purpose

Readers rcu_read_lock() Start an RCU read-side critical section.
rcu_read_unlock() End an RCU read-side critical section.
rcu_dereference() Safely load an RCU-protected pointer.

Updaters synchronize_rcu() Wait for all pre-existing RCU read-side critical
sections to complete.

call_rcu() Invoke the specified function after all pre-existing
RCU read-side critical sections complete.

rcu_assign_pointer() Safely update an RCU-protected pointer.

This observation leads to the sixth approach, which is
stopping one CPU or thread at a time. This approach has
the advantage of not degrading reader response times at
all, let alone gravely. Furthermore, numerous applications
already have states (termed quiescent states) that can be
reached only after all pre-existing readers are done. In
transaction-processing systems, the time between a pair
of successive transactions might be a quiescent state. In
reactive systems, the state between a pair of successive
events might be a quiescent state. Within non-preemptive
operating-systems kernels, a context switch can be a
quiescent state [MS98a]. Either way, once all CPUs
and/or threads have passed through a quiescent state, the
system is said to have completed a grace period, at which
point all readers in existence at the start of that grace
period are guaranteed to have completed. As a result, it is
also guaranteed to be safe to free any removed data items
that were removed prior to the start of that grace period.7

Within a non-preemptive operating-system kernel, for
context switch to be a valid quiescent state, readers must
be prohibited from blocking while referencing a given
instance data structure obtained via the gptr pointer
shown in Figures 9.6 and 9.7. This no-blocking constraint
is consistent with similar constraints on pure spinlocks,
where a CPU is forbidden from blocking while holding
a spinlock. Without this constraint, all CPUs might be
consumed by threads spinning attempting to acquire a
spinlock held by a blocked thread. The spinning threads
will not relinquish their CPUs until they acquire the lock,
but the thread holding the lock cannot possibly release

7 It is possible to do much more with RCU than simply defer
reclamation of memory, but deferred reclamation is RCU’s most common
use case, and is therefore an excellent place to start. For an example
of the more general case of deferred execution, please see phased state
change in Section 9.5.4.3.

it until one of the spinning threads relinquishes a CPU.
This is a classic deadlock situation, and this deadlock is
avoided by forbidding blocking while holding a spinlock.

Again, this same constraint is imposed on reader threads
dereferencing gptr: Such threads are not allowed to block
until after they are done using the pointed-to data item.
Returning to the second row of Figure 9.7, where the
updater has just completed executing the smp_store_
release(), imagine that CPU 0 executes a context switch.
Because readers are not permitted to block while traversing
the linked list, we are guaranteed that all prior readers that
might have been running on CPU 0 will have completed.
Extending this line of reasoning to the other CPUs, once
each CPU has been observed executing a context switch,
we are guaranteed that all prior readers have completed,
and that there are no longer any reader threads referencing
the newly removed data element. The updater can then
safely free that data element, resulting in the state shown
at the bottom of Figure 9.7.

This approach is termed quiescent-state-based recla-
mation (QSBR) [HMB06]. A QSBR schematic is shown
in Figure 9.8, with time advancing from the top of the
figure to the bottom. The cyan-colored boxes depict RCU
read-side critical sections, each of which begins with
rcu_read_lock() and ends with rcu_read_unlock().
CPU 1 does the WRITE_ONCE() that removes the current
data item (presumably having previously read the pointer
value and availed itself of appropriate synchronization),
then waits for readers. This wait operation results in
an immediate context switch, which is a quiescent state
(denoted by the pink circle), which in turn means that all
prior reads on CPU 1 have completed. Next, CPU 2 does
a context switch, so that all readers on CPUs 1 and 2 are
now known to have completed. Finally, CPU 3 does a
context switch. At this point, all readers throughout the

v2024.12.27a

146 CHAPTER 9. DEFERRED PROCESSING

W
R
I
T
E
_
O
N
C
E
(
g
p
t
r
,

N
U
L
L
)
;

Context Switch

Reader

G
ra

c
e
 P

e
ri
o
d

CPU 1 CPU 2 CPU 3

s
y
n
c
h
r
o
n
i
z
e
_
r
c
u
(
)

f
r
e
e
(
)

Figure 9.8: QSBR: Waiting for Pre-Existing Readers

entire system are known to have completed, so the grace
period ends, permitting synchronize_rcu() to return
to its caller, in turn permitting CPU 1 to free the old data
item.
Quick Quiz 9.25: In Figure 9.8, the last of CPU 3’s readers
that could possibly have access to the old data item ended
before the grace period even started! So why would anyone
bother waiting until CPU 3’s later context switch???

9.5.1.4 Toy Implementation

Although production-quality QSBR implementations can
be quite complex, a toy non-preemptive Linux-kernel
implementation is quite simple:

1 void synchronize_rcu(void)
2 {
3 int cpu;
4
5 for_each_online_cpu(cpu)
6 sched_setaffinity(current->pid, cpumask_of(cpu));
7 }

The for_each_online_cpu() primitive iterates over
all CPUs, and the sched_setaffinity() function
causes the current thread to execute on the specified CPU,

Listing 9.13: Insertion and Deletion With Concurrent Readers
1 struct route *gptr;
2
3 int access_route(int (*f)(struct route *rp))
4 {
5 int ret = -1;
6 struct route *rp;
7
8 rcu_read_lock();
9 rp = rcu_dereference(gptr);

10 if (rp)
11 ret = f(rp);
12 rcu_read_unlock();
13 return ret;
14 }
15
16 struct route *ins_route(struct route *rp)
17 {
18 struct route *old_rp;
19
20 spin_lock(&route_lock);
21 old_rp = gptr;
22 rcu_assign_pointer(gptr, rp);
23 spin_unlock(&route_lock);
24 return old_rp;
25 }
26
27 int del_route(void)
28 {
29 struct route *old_rp;
30
31 spin_lock(&route_lock);
32 old_rp = gptr;
33 RCU_INIT_POINTER(gptr, NULL);
34 spin_unlock(&route_lock);
35 synchronize_rcu();
36 free(old_rp);
37 return !!old_rp;
38 }

which forces the destination CPU to execute a context
switch. Therefore, once the for_each_online_cpu()
has completed, each CPU has executed a context switch,
which in turn guarantees that all pre-existing reader threads
have completed.

Please note that this approach is not production qual-
ity. Correct handling of a number of corner cases
and the need for a number of powerful optimizations
mean that production-quality implementations are quite
complex. In addition, RCU implementations for pre-
emptible environments require that readers actually do
something, which in non-real-time Linux-kernel environ-
ments can be as simple as defining rcu_read_lock()
and rcu_read_unlock() as preempt_disable() and
preempt_enable(), respectively.8 However, this sim-
ple non-preemptible approach is conceptually complete,
and demonstrates that it really is possible to provide
read-side synchronization at zero cost, even in the face
of concurrent updates. In fact, Listing 9.13 shows how

8 Some toy RCU implementations that handle preempted read-side
critical sections are shown in Appendix B.

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 147

reading (access_route()), Figure 9.6’s insertion (ins_
route()) and Figure 9.7’s deletion (del_route()) can
be implemented. (A slightly more capable routing table
is shown in Section 9.5.4.1.)

Quick Quiz 9.26: What is the point of rcu_read_lock()
and rcu_read_unlock() in Listing 9.13? Why not just let
the quiescent states speak for themselves?

Quick Quiz 9.27: What is the point of rcu_dereference(),
rcu_assign_pointer() and RCU_INIT_POINTER() in
Listing 9.13? Why not just use READ_ONCE(), smp_store_
release(), and WRITE_ONCE(), respectively?

Referring back to Listing 9.13, note that route_lock is
used to synchronize between concurrent updaters invoking
ins_route() and del_route(). However, this lock
is not acquired by readers invoking access_route():
Readers are instead protected by the QSBR techniques
described in Section 9.5.1.3.

Note that ins_route() simply returns the old value of
gptr, which Figure 9.6 assumed would always be NULL.
This means that it is the caller’s responsibility to figure
out what to do with a non-NULL value, a task complicated
by the fact that readers might still be referencing it for an
indeterminate period of time. Callers might use one of
the following approaches:

1. Use synchronize_rcu() to safely free the pointed-
to structure. Although this approach is correct
from an RCU perspective, it arguably has software-
engineering leaky-API problems.

2. Trip an assertion if the returned pointer is non-NULL.

3. Pass the returned pointer to a later invocation of
ins_route() to restore the earlier value.

In contrast, del_route() uses synchronize_rcu()
and free() to safely free the newly deleted data item.

Quick Quiz 9.28: But what if the old structure needs to be
freed, but the caller of ins_route() cannot block, perhaps
due to performance considerations or perhaps because the
caller is executing within an RCU read-side critical section?

This example shows one general approach to reading
and updating RCU-protected data structures, however,
there is quite a variety of use cases, several of which are
covered in Section 9.5.4.

In summary, it is in fact possible to create concurrent
linked data structures that can be traversed by readers

executing the same sequence of machine instructions that
would be executed by single-threaded readers. The next
section summarizes RCU’s high-level properties.

9.5.1.5 RCU Properties

A key RCU property is that reads need not wait for
updates. This property enables RCU implementations
to provide low-cost or even no-cost readers, resulting in
low overhead and excellent scalability. This property
also allows RCU readers and updaters to make useful
concurrent forward progress. In contrast, conventional
synchronization primitives must enforce strict mutual
exclusion using expensive instructions, thus increasing
overhead and degrading scalability, but also typically
prohibiting readers and updaters from making useful
concurrent forward progress.

Quick Quiz 9.29: Doesn’t Section 9.4’s seqlock also per-
mit readers and updaters to make useful concurrent forward
progress?

As noted earlier, RCU delimits readers with rcu_read_
lock() and rcu_read_unlock(), and ensures that each
reader has a coherent view of each object (see Figure 9.7)
by maintaining multiple versions of objects and using
update-side primitives such as synchronize_rcu() to
ensure that objects are not freed until after the comple-
tion of all readers that might be using them. RCU uses
rcu_assign_pointer() and rcu_dereference() to
provide efficient and scalable mechanisms for publishing
and reading new versions of an object, respectively. These
mechanisms distribute the work among read and update
paths in such a way as to make read paths extremely
fast, using replication and weakening optimizations in a
manner similar to hazard pointers, but without the need
for read-side retries. In some cases, including CONFIG_
PREEMPT=n Linux kernels, RCU’s read-side primitives
have zero overhead.

But are these properties actually useful in practice?
This question is taken up by the next section.

9.5.1.6 Practical Applicability

RCU has been used in the Linux kernel since October
2002 [Tor02]. Use of the RCU API has increased substan-
tially since that time, as can be seen in Figure 9.9. RCU
has enjoyed heavy use both prior to and since its accep-
tance in the Linux kernel, as discussed in Section 9.5.5.
In short, RCU enjoys wide practical applicability.

v2024.12.27a

148 CHAPTER 9. DEFERRED PROCESSING

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 2
0

0
0

 2
0

0
5

 2
0

1
0

 2
0

1
5

 2
0

2
0

 2
0

2
5

#
 R

C
U

 A
P

I
U

s
e

s

Year

Figure 9.9: RCU Usage in the Linux Kernel

The minimal example discussed in this section is a good
introduction to RCU. However, effective use of RCU often
requires that you think differently about your problem. It
is therefore useful to examine RCU’s fundamentals, a task
taken up by the following section.

9.5.2 RCU Fundamentals
This section re-examines the ground covered in the pre-
vious section, but independent of any particular example
or use case. People who prefer to live their lives very
close to the actual code may wish to skip the underlying
fundamentals presented in this section.

RCU is made up of three fundamental mechanisms, the
first being used for insertion, the second being used for
deletion, and the third being used to allow readers to toler-
ate concurrent insertions and deletions. Section 9.5.2.1
describes the publish-subscribe mechanism used for inser-
tion, Section 9.5.2.2 describes how waiting for pre-existing
RCU readers enables deletion, and Section 9.5.2.3 dis-
cusses how maintaining multiple versions of recently up-
dated objects permits concurrent insertions and deletions.
Finally, Section 9.5.2.4 summarizes RCU fundamentals.

9.5.2.1 Publish-Subscribe Mechanism

Because RCU readers are not excluded by RCU updaters,
an RCU-protected data structure might change while a
reader accesses it. The accessed data item might be moved,
removed, or replaced. Because the data structure does

Dereference pointer

ins_route() access_route()

Allocate

Pre-initialization
garbage

Initialize

Valid route structure

Publish pointer
Subscribe to

pointer

Valid route structure
OK

Surprising, but OK

N
o

t
O

K

Figure 9.10: Publication/Subscription Constraints

not “hold still” for the reader, each reader’s access can
be thought of as subscribing to the current version of the
RCU-protected data item. For their part, updaters can be
thought of as publishing new versions.

Unfortunately, as laid out in Section 4.3.4.1 and reiter-
ated in Section 9.5.1.1, it is unwise to use plain accesses for
these publication and subscription operations. It is instead
necessary to inform both the compiler and the CPU of
the need for care, as can be seen from Figure 9.10, which
illustrates interactions between concurrent executions of
ins_route() (and its caller) and access_route() from
Listing 9.13.

The ins_route() column from Figure 9.10 shows
ins_route()’s caller allocating a new route structure,
which then contains pre-initialization garbage. The caller
then initializes the newly allocated structure, and then in-
vokes ins_route() to publish a pointer to the new route
structure. Publication does not affect the contents of the
structure, which therefore remain valid after publication.

The access_route() column from this same figure
shows the pointer being subscribed to and dereferenced.
This dereference operation absolutely must see a valid
route structure rather than pre-initialization garbage be-
cause referencing garbage could result in memory corrup-
tion, crashes, and hangs. As noted earlier, avoiding such
garbage means that the publish and subscribe operations
must inform both the compiler and the CPU of the need
to maintain the needed ordering.

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 149

Publication is carried out by rcu_assign_pointer(),
which ensures that ins_route()’s caller’s initialization
is ordered before the actual publication operation’s store
of the pointer. In addition, rcu_assign_pointer()
must be atomic in the sense that concurrent readers see
either the old value of the pointer or the new value of the
pointer, but not some mash-up of these two values. These
requirements are met by the C11 store-release operation,
and in fact in the Linux kernel, rcu_assign_pointer()
is defined in terms of smp_store_release(), which is
similar to C11 store-release.

Note that if concurrent updates are required, some sort
of synchronization mechanism will be required to medi-
ate among multiple concurrent rcu_assign_pointer()
calls on the same pointer. In the Linux kernel, locking
is the mechanism of choice, but pretty much any syn-
chronization mechanism may be used. An example of
a particularly lightweight synchronization mechanism is
Chapter 8’s data ownership: If each pointer is owned by
a particular thread, then that thread may execute rcu_
assign_pointer() on that pointer with no additional
synchronization overhead.

Quick Quiz 9.30: Wouldn’t use of data ownership for RCU
updaters mean that the updates could use exactly the same
sequence of instructions as would the corresponding single-
threaded code?

Subscription is carried out by rcu_dereference(),
which orders the subscription operation’s load from the
pointer is before the dereference. Similar to rcu_assign_
pointer(), rcu_dereference() must be atomic in the
sense that the value loaded must be that from a single store,
for example, the compiler must not tear the load.9 Unfor-
tunately, compiler support for rcu_dereference() is at
best a work in progress [MWB+17, MRP+17, BM18]. In
the meantime, the Linux kernel relies on volatile loads,
the details of the various CPU architectures, coding re-
strictions [McK14e], and, on DEC Alpha [Cor02], a
memory-barrier instruction. However, on other architec-
tures, rcu_dereference() typically emits a single load
instruction, just as would the equivalent single-threaded
code. The coding restrictions are described in more detail
in Section 15.4.2, however, the common case of field
selection (“->”) works quite well. Software that does not
require the ultimate in read-side performance can instead
use C11 acquire loads, which provide the needed ordering
and more, albeit at a cost. It is hoped that lighter-weight

9 That is, the compiler must not break the load into multiple smaller
loads, as described under “load tearing” in Section 4.3.4.1.

compiler support for rcu_dereference() will appear
in due course.

In short, use of rcu_assign_pointer() for publish-
ing pointers and use of rcu_dereference() for subscrib-
ing to them successfully avoids the “Not OK” garbage
loads depicted in Figure 9.10. These two primitives can
therefore be used to add new data to linked structures
without disrupting concurrent readers.

Quick Quiz 9.31: But suppose that updaters are adding
and removing multiple data items from a linked list while a
reader is iterating over that same list. Specifically, suppose
that a list initially contains elements A, B, and C, and that an
updater removes element A and then adds a new element D at
the end of the list. The reader might well see {A, B, C, D},
when that sequence of elements never actually ever existed! In
what alternate universe would that qualify as “not disrupting
concurrent readers”???

Adding data to a linked structure without disrupting
readers is a good thing, as are the cases where this can
be done with no added read-side cost compared to single-
threaded readers. However, in most cases it is also nec-
essary to remove data, and this is the subject of the next
section.

9.5.2.2 Wait For Pre-Existing RCU Readers

In its most basic form, RCU is a way of waiting for
things to finish. Of course, there are a great many other
ways of waiting for things to finish, including reference
counts, reader-writer locks, events, and so on. The great
advantage of RCU is that it can wait for each of (say)
20,000 different things without having to explicitly track
each and every one of them, and without having to worry
about the performance degradation, scalability limitations,
complex deadlock scenarios, and memory-leak hazards
that are inherent in schemes using explicit tracking.

In RCU’s case, each of the things waited on is called
an RCU read-side critical section. As noted in Table 9.1,
an RCU read-side critical section starts with an rcu_
read_lock() primitive, and ends with a corresponding
rcu_read_unlock() primitive. RCU read-side critical
sections can be nested, and may contain pretty much any
code, as long as that code does not contain a quiescent
state. For example, within the Linux kernel, it is illegal
to sleep within an RCU read-side critical section because
a context switch is a quiescent state.10 If you abide
by these conventions, you can use RCU to wait for any

10 However, a special form of RCU called SRCU [McK06] does
permit general sleeping in SRCU read-side critical sections.

v2024.12.27a

150 CHAPTER 9. DEFERRED PROCESSING

Given this ordering

.... RCU guarantees this ordering (r2 == 0).

(r1
 =

=
 0

) ...

rcu_read_lock();

r1 = READ_ONCE(x);

r2 = READ_ONCE(y);

WRITE_ONCE(x, 1);

P0()

P1()

rcu_read_unlock();

WRITE_ONCE(y, 1);

synchronize_rcu();

Figure 9.11: RCU Reader and Later Grace Period

pre-existing RCU read-side critical section to complete,
and synchronize_rcu() uses indirect means to do the
actual waiting [DMS+12a, McK13].

The relationship between an RCU read-side critical
section and a later RCU grace period is an if-then rela-
tionship, as illustrated by Figure 9.11. If any portion of a
given critical section precedes the beginning of a given
grace period, then RCU guarantees that all of that critical
section will precede the end of that grace period. In the
figure, P0()’s access to x precedes P1()’s access to this
same variable, and thus also precedes the grace period
generated by P1()’s call to synchronize_rcu(). It is
therefore guaranteed that P0()’s access to y will precede
P1()’s access. In this case, if r1’s final value is 0, then
r2’s final value is guaranteed to also be 0.
Quick Quiz 9.32: What other final values of r1 and r2 are
possible in Figure 9.11?

The relationship between an RCU read-side critical
section and an earlier RCU grace period is also an if-then
relationship, as illustrated by Figure 9.12. If any portion
of a given critical section follows the end of a given
grace period, then RCU guarantees that all of that critical
section will follow the beginning of that grace period.
In the figure, P0()’s access to y follows P1()’s access
to this same variable, and thus follows the grace period
generated by P1()’s call to synchronize_rcu(). It is
therefore guaranteed that P0()’s access to x will follow
P1()’s access. In this case, if r2’s final value is 1, then
r1’s final value is guaranteed to also be 1.

o
rd

e
ri

n
g
 (

r1
 =

=
 1

).

Given this ordering (r2 == 1) ...

... RCU guarantees th
is

P0()

rcu_read_lock();

r1 = READ_ONCE(x);

r2 = READ_ONCE(y);

rcu_read_unlock();

P1()

WRITE_ONCE(x, 1);

WRITE_ONCE(y, 1);

synchronize_rcu();

Figure 9.12: RCU Reader and Earlier Grace Period

... this can happen

Given this ordering

(r
1

 =
=

 1
)

..
..

(r1
 =

=
 0

)

P0()

rcu_read_lock();

r1 = READ_ONCE(x);

r2 = READ_ONCE(y);

rcu_read_unlock();

WRITE_ONCE(x, 1);

WRITE_ONCE(y, 1);

synchronize_rcu();

P1()

Figure 9.13: RCU Reader Within Grace Period

Quick Quiz 9.33: What would happen if the order of P0()’s
two accesses was reversed in Figure 9.12?

Finally, as shown in Figure 9.13, an RCU read-side
critical section can be completely overlapped by an RCU
grace period. In this case, r1’s final value is 1 and r2’s
final value is 0.

However, it cannot be the case that r1’s final value
is 0 and r2’s final value is 1. This would mean that an
RCU read-side critical section had completely overlapped
a grace period, which is forbidden (or at the very least
constitutes a bug in RCU). RCU’s wait-for-readers guar-
antee therefore has two parts: (1) If any part of a given
RCU read-side critical section precedes the beginning of a
given grace period, then the entirety of that critical section

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 151

precedes the end of that grace period. (2) If any part of a
given RCU read-side critical section follows the end of a
given grace period, then the entirety of that critical section
follows the beginning of that grace period. This definition
is sufficient for almost all RCU-based algorithms, but for
those wanting more, simple executable formal models
of RCU are available as part of Linux kernel v4.17 and
later, as discussed in Section 12.3.2. In addition, RCU’s
ordering properties are examined in much greater detail
in Section 15.5.3.
Quick Quiz 9.34: What would happen if P0()’s accesses in
Figures 9.11–9.13 were stores?

Although RCU’s wait-for-readers capability really is
sometimes used to order the assignment of values to vari-
ables as shown in Figures 9.11–9.13, it is more frequently
used to safely free data elements removed from a linked
structure, as was done in Section 9.5.1. The general
process is illustrated by the following pseudocode:

1. Make a change, for example, remove an element from
a linked list.

2. Wait for all pre-existing RCU read-side critical sec-
tions to completely finish (for example, by using
synchronize_rcu()).

3. Clean up, for example, free the element that was
replaced above.

This more abstract procedure requires a more abstract
diagram than Figures 9.11–9.13, which are specific to a
particular litmus test. After all, an RCU implementation
must work correctly regardless of the form of the RCU up-
dates and the RCU read-side critical sections. Figure 9.14
fills this need, showing the four possible scenarios, with
time advancing from top to bottom within each scenario.
Within each scenario, an RCU reader is represented by
the left-hand stack of boxes and RCU updater by the
right-hand stack.

In the first scenario, the reader starts execution before the
updater starts the removal, so it is possible that this reader
has a reference to the removed data element. Therefore,
the updater must not free this element until after the reader
completes. In the second scenario, the reader does not
start execution until after the removal has completed. The
reader cannot possibly obtain a reference to the already-
removed data element, so this element may be freed before
the reader completes. The third scenario is like the second,
but illustrates that even when the reader cannot possibly
obtain a reference to an element, it is still permissible

(1) Reader precedes free

rcu_read_lock()

rcu_read_unlock()

Remove

synchronize_rcu()

Free Old Memory

(2) Removal precedes reader

rcu_read_lock()

rcu_read_unlock()

Remove

synchronize_rcu()

Free Old Memory

(3) Reader within grace period

rcu_read_lock()

rcu_read_unlock()

(4) Grace period within reader (BUG!!!)

rcu_read_lock()

rcu_read_unlock()

Remove

synchronize_rcu()

Free Old Memory

Remove

synchronize_rcu()

Free Old Memory

BUG!!!

Figure 9.14: Summary of RCU Grace-Period Ordering
Guarantees

v2024.12.27a

152 CHAPTER 9. DEFERRED PROCESSING

to defer the freeing of that element until after the reader
completes. In the fourth and final scenario, the reader
starts execution before the updater starts removing the data
element, but this element is (incorrectly) freed before the
reader completed. A correct RCU implementation will
not allow this fourth scenario to occur. This diagram thus
illustrates RCU’s wait-for-readers functionality: Given a
grace period, each reader ends before the end of that grace
period, starts after the beginning of that grace period, or
both, in which case it is wholly contained within that grace
period.

Because RCU readers can make forward progress while
updates are in progress, different readers might disagree
about the state of the data structure, a topic taken up by
the next section.

9.5.2.3 Maintain Multiple Versions of Recently Up-
dated Objects

This section discusses how RCU accommodates
synchronization-free readers by maintaining multiple ver-
sions of data. Because these synchronization-free readers
provide very weak temporal synchronization, RCU users
compensate via spatial synchronization. Spatial synchro-
nization was discussed in Chapter 6, and is heavily used
in practice to obtain good performance and scalability.
In this section, spatial synchronization will be used to
attain a weak (but useful) form of correctness as well as
excellent performance and scalability.

Figure 9.7 in Section 9.5.1.1 showed a simple variant of
spatial synchronization, in which different readers running
concurrently with del_route() (see Listing 9.13) might
see the old route structure or an empty list, but either
way get a valid result. Of course, a closer look at Fig-
ure 9.6 shows that calls to ins_route() can also result
in concurrent readers seeing different versions: Either the
initial empty list or the newly inserted route structure.
Note that both reference counting (Section 9.2) and hazard
pointers (Section 9.3) can also cause concurrent readers
to see different versions, but RCU’s lightweight readers
make this more likely.

However, maintaining multiple weakly consistent ver-
sions can provide some surprises. For example, consider
Figure 9.15, in which a reader is traversing a linked list that
is concurrently updated.11 In the first row of the figure,
the reader is referencing data item A, and in the second
row, it advances to B, having thus far seen A followed
by B. In the third row, an updater removes element A and

11 RCU linked-list APIs may be found in Section 9.5.3.

A B C D

Reader { A }

 1.

A B C D

Reader { A, B }

2.

B C D

Reader { A, B }

3.

B C E

Reader { A, B }

4. D

B C E

Reader { A, B, C, D, E }

5. D

Figure 9.15: Multiple RCU Data-Structure Versions

in the fourth row an updater adds element E to the end of
the list. In the fifth and final row, the reader completes its
traversal, having seeing elements A through E.

Except that there was no time at which such a list
existed. This situation might be even more surprising than
that shown in Figure 9.7, in which different concurrent
readers see different versions. In contrast, in Figure 9.15
the reader sees a version that never actually existed!

One way to resolve this strange situation is via weaker
semanitics. A reader traversal must encounter any data
item that was present during the full traversal (B, C, and D),
and might or might not encounter data items that were
present for only part of the traversal (A and E). Therefore,
in this particular case, it is perfectly legitimate for the
reader traversal to encounter all five elements. If this out-
come is problematic, another way to resolve this situation
is through use of stronger synchronization mechanisms,
such as reader-writer locking, or clever use of timestamps
and versioning, as discussed in Section 9.5.4.11. Of
course, stronger mechanisms will be more expensive, but
then again the engineering life is all about choices and
tradeoffs.

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 153

Strange though this situation might seem, it is entirely
consistent with the real world. As we saw in Section 3.2,
the finite speed of light cannot be ignored within a com-
puter system, and it most certainly cannot be ignored
outside of this system. This in turn means that any data
within the system representing state in the real world
outside of the system is always and forever outdated, and
thus inconsistent with the real world. Therefore, it is
quite possible that the sequence {A, B, C, D, E} occurred
in the real world, but due to speed-of-light delays was
never represented in the computer system’s memory. In
this case, the reader’s surprising traversal would correctly
reflect reality.

As a result, algorithms operating on real-world data
must account for inconsistent data, either by tolerating
inconsistencies or by taking steps to exclude or reject them.
In many cases, these algorithms are also perfectly capable
of dealing with inconsistencies within the system.

The pre-BSD packet routing example laid out in Sec-
tion 9.1 is a case in point. The contents of a routing
list is set by routing protocols, and these protocols fea-
ture significant delays (seconds or even minutes) to avoid
routing instabilities. Therefore, once a routing update
reaches a given system, it might well have been sending
packets the wrong way for quite some time. Sending a few
more packets the wrong way for the few microseconds
during which the update is in flight is clearly not a problem
because the same higher-level protocol actions that deal
with delayed routing updates will also deal with internal
inconsistencies.

Nor is Internet routing the only situation tolerating
inconsistencies. To repeat, any algorithm in which data
within a system tracks outside-of-system state must tol-
erate inconsistencies, which includes security policies
(often set by committees of humans), storage configura-
tion, and WiFi access points, to say nothing of removable
hardware such as microphones, headsets, cameras, mice,
printers, and much else besides. Furthermore, the large
number of Linux-kernel RCU API uses shown in Fig-
ure 9.9, combined with the Linux kernel’s heavy use
of reference counting and with increasing use of hazard
pointers in other projects, demonstrates that tolerance for
such inconsistencies is more common than one might
imagine.

One root cause of this common-case tolerance of in-
consistencies is that single-item lookups are much more
common in practice than are full-data-structure traversals.
After all, full-data-structure traversals are much more
expensive than single-item lookups, so developers are

motivated to avoid such traversals. Not only are con-
current updates less likely to affect a single-item lookup
than they are a full traversal, but it is also the case that
an isolated single-item lookup has no way of detecting
such inconsistencies. As a result, in the common case,
such inconsistencies are not just tolerable, they are in fact
invisible.

In such cases, RCU readers can be considered to be fully
ordered with updaters, despite the fact that these readers
might be executing the exact same sequence of machine
instructions that would be executed by a single-threaded
program, as hinted on page 131. For example, referring
back to Listing 9.13 on page 146, suppose that each reader
thread invokes access_route() exactly once during its
lifetime, and that there is no other communication among
reader and updater threads. Then each invocation of
access_route() can be ordered after the ins_route()
invocation that produced the route structure accessed by
line 11 of the listing in access_route() and ordered
before any subsequent ins_route() or del_route()
invocation.

In summary, maintaining multiple versions is exactly
what enables the extremely low overheads of RCU readers,
and as noted earlier, many algorithms are unfazed by
multiple versions. However, there are algorithms that
absolutely cannot handle multiple versions. There are
techniques for adapting such algorithms to RCU [McK04],
for example, the use of sequence locking described in
Section 13.4.2.

Exercises These examples assumed that a mutex was
held across the entire update operation, which would mean
that there could be at most two versions of the list active
at a given time.

Quick Quiz 9.35: How would you modify the deletion
example to permit more than two versions of the list to be
active?

Quick Quiz 9.36: How many RCU versions of a given list
can be active at any given time?

Quick Quiz 9.37: How can the per-update overhead of RCU
be reduced?

9.5.2.4 Summary of RCU Fundamentals

This section has described the three fundamental compo-
nents of RCU-based algorithms:

v2024.12.27a

154 CHAPTER 9. DEFERRED PROCESSING

1. A publish-subscribe mechanism for adding new data
featuring rcu_assign_pointer() for update-side
publication and rcu_dereference() for read-side
subscription,

2. A way of waiting for pre-existing RCU readers to
finish based on readers being delimited by rcu_
read_lock() and rcu_read_unlock() on the one
hand and updaters waiting via synchronize_rcu()
or call_rcu() on the other (see Section 15.5.3 for
a formal description), and

3. A discipline of maintaining multiple versions to
permit change without harming or unduly delaying
concurrent RCU readers.

Quick Quiz 9.38: How can RCU updaters possibly delay
RCU readers, given that neither rcu_read_lock() nor rcu_
read_unlock() spin or block?

These three RCU components allow data to be updated
in the face of concurrent readers that might be executing
the same sequence of machine instructions that would
be used by a reader in a single-threaded implementation.
These RCU components can be combined in different ways
to implement a surprising variety of different types of
RCU-based algorithms, a number of which are presented
in Section 9.5.4. However, it is usually better to work at
higher levels of abstraction. To this end, the next section
describes the Linux-kernel API, which includes simple
data structures such as lists.

9.5.3 RCU Linux-Kernel API
This section looks at RCU from the viewpoint of its
Linux-kernel API.12 Section 9.5.3.2 presents RCU’s wait-
to-finish APIs, Section 9.5.3.3 presents RCU’s publish-
subscribe and version-maintenance APIs, Section 9.5.3.4
presents RCU’s list-processing APIs, Section 9.5.3.5
presents RCU’s diagnostic APIs, and Section 9.5.3.6
describes in which contexts RCU’s various APIs may
be used. Finally, Section 9.5.3.7 presents concluding
remarks.

Readers who are not excited about kernel internals
may wish to skip ahead to Section 9.5.4 on page 164,
but preferably after reviewing the next section covering
software-engineering considerations.

12 Userspace RCU’s API is documented elsewhere [MDJ13f].

9.5.3.1 RCU API and Software Engineering

Readers who have looked ahead to Tables 9.2, 9.3, 9.4,
and 9.5 might have noted that the full list of Linux-kernel
APIs sports more than 100 members. This is in sharp
(and perhaps dismaying) contrast to the mere six API
members shown in Table 9.1. This situation clearly raises
the question “Why so many???”

This question is answered more thoroughly in the fol-
lowing sections, but in the meantime the rest of this section
summarizes the motivations.

There is a wise old saying to the effect of “To err is
human.” This means that purpose of a significant fraction
of the RCU API is to provide diagnostics, most notably in
Table 9.5, but elsewhere as well.

Important causes of human error are the limits of the
human brain, for example, the limited capacity of short-
term memory. The toy examples shown in this book do
not stress these limits. This is out of necessity: Many
readers push their cognitive limits while learning new
material, so the examples need to be kept simple.

These examples therefore keep rcu_dereference()
invocations in the same function as the enclosing rcu_
read_lock() and rcu_read_unlock() calls. In con-
trast, real-world software must frequently invoke these
API members from different functions, and even from
different translation units. The Linux kernel RCU API
has therefore expanded to accommodate lockdep, which
allows rcu_dereference() and friends to complain if
it is not protected by rcu_read_lock(). Linux-kernel
RCU also checks for some double-free errors, infinite
loops in RCU read-side critical sections, and attempts
to invoke quiescent states within RCU read-side critical
sections.

Another way that real-world software accommodates
the limits of human cognition is through abstraction. The
Linux-kernel API therefore includes members that operate
on lists in addition to the pointer-oriented core API of
Table 9.1. The Linux kernel itself also provides RCU-
protected hash tables and search trees.

Operating-systems kernels such as Linux operate near
the bottom of the “iron triangle” of the software stack
shown in Figure 2.3, where performance is critically
important. There are thus specialized variants of a number
of RCU APIs for use on fastpaths, for example, as discussed
in Section 9.5.3.3, RCU_INIT_POINTER() may be used
in place of rcu_assign_pointer() in cases where the
RCU-protected pointer is being assigned to NULL or when
that pointer is not yet accessible by readers. Use of RCU_
INIT_POINTER() allows the compiler more leeway in

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 155

selecting instructions and carrying out optimizations, thus
increasing performance.

On the other hand, when used incorrectly RCU_INIT_
POINTER() can result in silent memory corruption, so
please be careful! Yes, in some cases, the kernel can
check for inappropriate use of RCU API members from
a given kernel context, but the constraints of RCU_INIT_
POINTER() use are not yet checkable.

Finally, within the Linux kernel, the aforementioned
limits of human cognition are compounded by the variety
and severity of workloads running on Linux. As of v5.16,
this has given rise to no fewer than five flavors of RCU,
each designed to provide different performance, scalability,
response-time, and energy efficiency tradeoffs to RCU
readers and writers. These RCU flavors are the subject of
the next section.

9.5.3.2 RCU has a Family of Wait-to-Finish APIs

The most straightforward answer to “what is RCU” is that
RCU is an API. For example, the RCU implementation
used in the Linux kernel is summarized by Table 9.2,
which shows the wait-for-readers portions of the RCU,
“sleepable” RCU (SRCU), Tasks RCU, and generic APIs,
respectively, and by Table 9.3, which shows the publish-
subscribe portions of the API [McK19b].13

If you are new to RCU, you might consider focusing
on just one of the columns in Table 9.2, each of which
summarizes one member of the Linux kernel’s RCU API
family. For example, if you are primarily interested in
understanding how RCU is used in the Linux kernel,
“RCU” would be the place to start, as it is used most
frequently. On the other hand, if you want to understand
RCU for its own sake, “Tasks RCU” has the simplest API.
You can always come back for the other columns later.

If you are already familiar with RCU, these tables can
serve as a useful reference.
Quick Quiz 9.39: Why do some of the cells in Table 9.2 have
exclamation marks (“!”)?

The “RCU” column corresponds to the consolidation of
the three Linux-kernel RCU implementations [McK19c,
McK19a], in which RCU read-side critical sections
start with rcu_read_lock(), rcu_read_lock_bh(),
or rcu_read_lock_sched() and end with rcu_read_
unlock(), rcu_read_unlock_bh(), or rcu_read_
unlock_sched(), respectively. Any region of code that

13 This citation covers v4.20 and later. Documetation for earlier
versions of the Linux-kernel RCU API may be found elsewhere [McK08e,
McK14f].

disables bottom halves, interrupts, or preemption also
acts as an RCU read-side critical section. RCU read-side
critical sections may be nested. The corresponding syn-
chronous update-side primitives, synchronize_rcu()
and synchronize_rcu_expedited(), along with their
synonym synchronize_net(), wait for any type of cur-
rently executing RCU read-side critical sections to com-
plete. The length of this wait is known as a “grace period”,
and synchronize_rcu_expedited() is designed to re-
duce grace-period latency at the expense of increased
CPU overhead and IPIs. The asynchronous update-side
primitive, call_rcu(), invokes a specified function with
a specified argument after a subsequent grace period.
For example, call_rcu(p,f); will result in the “RCU
callback” f(p) being invoked after a subsequent grace
period. There are situations, such as when unloading
a Linux-kernel module that uses call_rcu(), when it
is necessary to wait for all outstanding RCU callbacks
to complete [McK07e]. The rcu_barrier() primitive
does this job.

Quick Quiz 9.40: How do you prevent a huge number of
RCU read-side critical sections from indefinitely blocking a
synchronize_rcu() invocation?

Quick Quiz 9.41: The synchronize_rcu() API waits for
all pre-existing interrupt handlers to complete, right?

Quick Quiz 9.42: What is the difference between
synchronize_rcu() and rcu_barrier()?

Finally, RCU may be used to provide type-safe mem-
ory [GC96], as described in Section 9.5.4.5. In the context
of RCU, type-safe memory guarantees that a given data
element will not change type during any RCU read-side
critical section that accesses it. To make use of RCU-
based type-safe memory, pass SLAB_TYPESAFE_BY_RCU
to kmem_cache_create().

The “SRCU” column in Table 9.2 displays a special-
ized RCU API that permits general sleeping in SRCU
read-side critical sections [McK06] delimited by srcu_
read_lock() and srcu_read_unlock(). However, un-
like RCU, SRCU’s srcu_read_lock() returns a value
that must be passed into the corresponding srcu_read_
unlock(). This difference is due to the fact that the
SRCU user allocates an srcu_struct for each distinct
SRCU usage, so that there is no convenient place to store a
per-task reader-nesting count. (Keep in mind that although
the Linux kernel provides dynamically allocated per-CPU
storage, there is not yet dynamically allocated per-task
storage.)

v2024.12.27a

156 CHAPTER 9. DEFERRED PROCESSING

Table
9.2:

RC
U

W
ait-to-Finish

A
PIs

RC
U

:O
riginal

SRC
U

:Sleeping
readers

TasksRC
U

:Free
tracing

tram
polines

TasksRC
U

R
ude:Free

idle-task
tracing

tram
polines

TasksRC
U

Trace:Protectsleepable
B

PF
program

s

Initialization
and

C
leanup

DEFINE_SRCU()
DEFINE_STATIC_SRCU()
init_srcu_struct()
cleanup_srcu_struct()

R
ead-side

critical-section
m

arkers

rcu_read_lock()
!

rcu_read_unlock()
!

rcu_read_lock_bh()
rcu_read_unlock_bh()
rcu_read_lock_sched()
rcu_read_unlock_sched()
(Plusanything

disabing
bottom

halves,preem
ption,orinterrupts.)

srcu_read_lock()
srcu_read_unlock()

Voluntary
contextsw

itch
Voluntary

contextsw
itch

and
preem

pt-enable
regionsofcode

rcu_read_lock_trace()
rcu_read_unlock_trace()

U
pdate-side

prim
itives

(synchronous)
synchronize_rcu()
synchronize_net()
synchronize_rcu_expedited()

synchronize_srcu()
synchronize_srcu_expedited()

synchronize_rcu_tasks()
synchronize_rcu_tasks_rude()

synchronize_rcu_tasks_trace()

U
pdate-side

prim
itives

(asynchronous/
callback)

call_rcu()
!

call_srcu()
call_rcu_tasks()

call_rcu_tasks_rude()
call_rcu_tasks_trace()

U
pdate-side

prim
itives

(w
aitfor

callbacks)
rcu_barrier()

srcu_barrier()
rcu_barrier_tasks()

rcu_barrier_tasks_rude()
rcu_barrier_tasks_trace()

U
pdate-side

prim
itives

(initiate
/w

ait)
get_state_synchronize_rcu()
cond_synchronize_rcu()

U
pdate-side

prim
itives

(free
m

em
ory)

kfree_rcu()

Type-safe
m

em
ory

SLAB_TYPESAFE_BY_RCU
R

ead
side

constraints
N

o
blocking

(only
preem

ption)
N

o
synchronize_srcu()

w
ith

sam
e

srcu_struct
N

o
voluntary

contextsw
itch

N
eitherblocking

norpreem
ption

N
o

RC
U

taskstrace
grace

period

R
ead

side
overhead

C
PU

-localaccesses(barrier()
on

PREEMPT=n)
Sim

ple
instructions,m

em
ory

barriers
Free

C
PU

-localaccesses(free
on

PREEMPT=n)
C

PU
-localaccesses

A
synchronous

update-side
overhead

sub-m
icrosecond

sub-m
icrosecond

sub-m
icrosecond

sub-m
icrosecond

sub-m
icrosecond

G
race-period

latency
10sofm

illiseconds
M

illiseconds
Seconds

M
illiseconds

10sofm
illiseconds

Expedited
grace-period

latency
10sofm

icroseconds
M

icroseconds
N

/A
N

/A
N

/A

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 157

A given srcu_struct structure may be defined as a
global variable with DEFINE_SRCU() if the structure must
be used in multiple translation units, or with DEFINE_
STATIC_SRCU() otherwise. For example, DEFINE_
SRCU(my_srcu) would create a global variable named
my_srcu that could be used by any file in the program.
Alternatively, an srcu_struct structure may be either
an on-stack variable or a dynamically allocated region of
memory. In both of these non-global-variable cases, the
memory must be initialized using init_srcu_struct()
prior to its first use and cleaned up using cleanup_srcu_
struct() after its last use (but before the underlying
storage disappears).

However they are created, these distinct srcu_
struct structures prevent SRCU read-side criti-
cal sections from blocking unrelated synchronize_
srcu() and synchronize_srcu_expedited() invoca-
tions. Of course, use of either synchronize_srcu()
or synchronize_srcu_expedited() within an SRCU
read-side critical section can result in self-deadlock, so
should be avoided. As with RCU, SRCU’s synchronize_
srcu_expedited() decreases grace-period latency com-
pared to synchronize_srcu(), but at the expense of
increased CPU overhead.

Quick Quiz 9.43: Under what conditions can synchronize_
srcu() be safely used within an SRCU read-side critical
section?

Similar to normal RCU, self-deadlock can be avoided
using the asynchronous call_srcu() function. However,
special care must be taken when using call_srcu()
because a single task could register SRCU callbacks
very quickly. Given that SRCU allows readers to block
for arbitrary periods of time, this could consume an
arbitrarily large quantity of memory. In contrast, given the
synchronous synchronize_srcu() interface, a given
task must finish waiting for a given grace period before it
can start waiting for the next one.

Also similar to RCU, there is an srcu_barrier()
function that waits for all prior call_srcu() callbacks
to be invoked.

In other words, SRCU compensates for its extremely
weak forward-progress guarantees by permitting the de-
veloper to restrict its scope.

The “Tasks RCU” column in Table 9.2 displays a spe-
cialized RCU API that mediates freeing of the trampolines
used in Linux-kernel tracing. These trampolines are used
to transfer control from a point in the code being traced to
the code doing the actual tracing. It is of course necessary

to ensure that all code executing within a given trampoline
has finished before freeing that trampoline.

Changes to the code being traced are typically limited
to a single jump or call instruction, and thus cannot ac-
commodate the sequence of code required to implement
rcu_read_lock() and rcu_read_unlock(). Nor can
the trampoline contain these calls to rcu_read_lock()
and rcu_read_unlock(). To see this, consider a CPU
that is just about to start executing a given trampoline.
Because it has not yet executed the rcu_read_lock(),
that trampoline could be freed at any time, which would
come as a fatal surprise to this CPU. Therefore, trampo-
lines cannot be protected by synchronization primitives
executed in either the traced code or in the trampoline
itself. Which does raise the question of exactly how the
trampoline is to be protected.

The key to answering this question is to note that
trampoline code never contains code that either directly
or indirectly does a voluntary context switch. This code
might be preempted, but it will never directly or indirectly
invoke schedule(). This suggests a variant of RCU
having voluntary context switches and idle execution as
its only quiescent states. This variant is Tasks RCU.

Tasks RCU is unusual in having no read-side mark-
ing functions, which is good given that its main use
case has nowhere to put such markings. Instead, calls
to schedule() serve directly as quiescent states. Up-
dates can use synchronize_rcu_tasks() to wait for
all pre-existing trampoline execution to complete, or
they can use its asynchronous counterpart, call_rcu_
tasks(). There is also an rcu_barrier_tasks()
that waits for completion of callbacks corresponding
to all prior invocations of call_rcu_tasks(). There
is no synchronize_rcu_tasks_expedited() because
there has not yet been a request for it, though implementing
a useful variant of it would not be free of challenges.

Quick Quiz 9.44: In a kernel built with CONFIG_PREEMPT_
NONE=y, won’t synchronize_rcu() wait for all trampolines,
given that preemption is disabled and that trampolines never
directly or indirectly invoke schedule()?

The “Tasks RCU Rude” column provides a more ef-
fective variant of the toy implementation presented in
Section 9.5.1.4. This variant causes each CPU to execute
a context switch, so that any voluntary context switch or
any preemptible region of code can serve as a quiescent
state. The Tasks RCU Rude variant uses the Linux-kernel
workqueues facility to force concurrent context switches,
in contrast to the serial CPU-by-CPU approach taken by

v2024.12.27a

158 CHAPTER 9. DEFERRED PROCESSING

the toy implementation. The API mirrors that of Tasks
RCU, including the lack of explicit read-side markers.

Finally, the “Tasks RCU Trace” column provides an
RCU implementation with functionality similar to that
of SRCU, except with much faster read-side markers.14

However, this speed is a consequence of the fact that
these markers do not execute memory-barrier instructions,
which means that Tasks RCU Trace grace periods must
often send IPIs to all CPUs and must always scan the
entire task list, thus degrading real-time response and
consuming considerable CPU time. Nevertheless, in the
absence of readers, the resulting grace-period latency is
reasonably short, rivaling that of RCU.

9.5.3.3 RCU has Publish-Subscribe and Version-
Maintenance APIs

Fortunately, the RCU publish-subscribe and version-
maintenance primitives shown in Table 9.3 apply to all of
the variants of RCU discussed above. This commonality
can allow more code to be shared, and reduces API prolifer-
ation. The original purpose of the RCU publish-subscribe
APIs was to bury memory barriers into these APIs, so that
Linux kernel programmers could use RCU without need-
ing to become expert on the memory-ordering models of
each of the 20+ CPU families that Linux supports [Spr01].

These primitives operate directly on pointers, and are
useful for creating RCU-protected linked data structures,
such as RCU-protected arrays and trees. The special
case of linked lists is handled by a separate set of APIs
described in Section 9.5.3.4.

The first category publishes pointers to new data items.
The rcu_assign_pointer() primitive ensures that any
prior initialization remains ordered before the assign-
ment to the pointer on weakly ordered machines. The
rcu_replace_pointer() primitive updates the pointer
just like rcu_assign_pointer() does, but also re-
turns the previous value, just like rcu_dereference_
protected() (see below) would, including the lockdep
expression. This replacement is convenient when the
updater must both publish a new pointer and free the
structure referenced by the old pointer.

Quick Quiz 9.45: Normally, any pointer subject to rcu_
dereference() must always be updated using one of the
pointer-publish functions in Table 9.3, for example, rcu_
assign_pointer().
What is an exception to this rule?

14 And thus is unusual for the Tasks RCU family for having explicit
read-side markers!

Quick Quiz 9.46: Are there any downsides to the fact that
these traversal and update primitives can be used with any of
the RCU API family members?

The rcu_pointer_handoff() primitive simply re-
turns its sole argument, but is useful to tooling checking
for pointers being leaked from RCU read-side critical
sections. Use of rcu_pointer_handoff() indicates to
such tooling that protection of the structure in question
has been handed off from RCU to some other mechanism,
such as locking or reference counting.

The RCU_INIT_POINTER() macro can be used to
initialize RCU-protected pointers that have not yet
been exposed to readers, or alternatively, to set RCU-
protected pointers to NULL. In these restricted cases, the
memory-barrier instructions provided by rcu_assign_
pointer() are not needed. Similarly, RCU_POINTER_
INITIALIZER() provides a GCC-style structure initial-
izer to allow easy initialization of RCU-protected pointers
in structures.

The second category subscribes to pointers to data
items, or, alternatively, safely traverses RCU-protected
pointers. Again, simply loading these pointers using C-
language accesses could result in seeing pre-initialization
garbage in the pointed-to data. Similarly, loading these
pointer by any means outside of an RCU read-side crit-
ical section could result in the pointed-to object being
freed at any time. However, if the pointer is merely
to be tested and not dereferenced, the freeing of the
pointed-to object is not necessarily a problem. In this
case, rcu_access_pointer() may be used. Normally,
however, RCU read-side protection is required, and so
the rcu_dereference() primitive uses the Linux ker-
nel’s lockdep facility [Cor06a] to verify that this rcu_
dereference() invocation is under the protection of
rcu_read_lock(), srcu_read_lock(), or some other
RCU read-side marker. In contrast, the rcu_access_
pointer() primitive does not involve lockdep, and thus
will not provoke lockdep complaints when used outside
of an RCU read-side critical section.

Another situation where protection is not required
is when update-side code accesses the RCU-protected
pointer while holding the update-side lock. The rcu_
dereference_protected() API member is provided
for this situation. Its first parameter is the RCU-protected
pointer, and the second parameter takes a lockdep expres-
sion describing which locks must be held in order for the
access to be safe. Code invoked both from readers and
updaters can use rcu_dereference_check(), which
also takes a lockdep expression, but which may also be

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 159

Table 9.3: RCU Publish-Subscribe and Version Maintenance APIs

Category Primitives Overhead

Pointer publish rcu_assign_pointer() Memory barrier
rcu_replace_pointer() Memory barrier (two of them on Alpha)
rcu_pointer_handoff() Simple instructions
RCU_INIT_POINTER() Simple instructions
RCU_POINTER_INITIALIZER() Compile-time constant

Pointer subscribe (traversal) rcu_access_pointer() Simple instructions
rcu_dereference() Simple instructions (memory barrier on Alpha)
rcu_dereference_check() Simple instructions (memory barrier on Alpha)
rcu_dereference_protected() Simple instructions
rcu_dereference_raw() Simple instructions (memory barrier on Alpha)
rcu_dereference_raw_notrace() Simple instructions (memory barrier on Alpha)

next

prev

next

prev

A

next

prev

B

next

prev

C

Figure 9.16: Linux Circular Linked List (list)

A B C

Figure 9.17: Linux Linked List Abbreviated

invoked from read-side code not holding the locks. In
some cases, the lockdep expressions can be very com-
plex, for example, when using fine-grained locking, any
of a very large number of locks might be held, and it
might be quite difficult to work out which applies. In
these (hopefully rare) cases, rcu_dereference_raw()
provides protection but does not check for being invoked
within a reader or with any particular lock being held.
The rcu_dereference_raw_notrace() API member
acts similarly, but cannot be traced, and may therefore be
safely used by tracing code.

Although pretty much any linked structure can be ac-
cessed by manipulating pointers, higher-level structures
can be quite helpful. The next section therefore looks at
various sorts of RCU-protected linked lists used by the
Linux kernel.

first next

pprev

A

next

pprev

B

next

pprev

C

Figure 9.18: Linux Linear Linked List (hlist)

9.5.3.4 RCU has List-Processing APIs

Although rcu_assign_pointer() and rcu_
dereference() can in theory be used to construct any
conceivable RCU-protected data structure, in practice it is
often better to use higher-level constructs. Therefore, the
rcu_assign_pointer() and rcu_dereference()
primitives have been embedded in special RCU variants of
Linux’s list-manipulation API. Linux has four variants of
doubly linked list, the circular struct list_head and
the linear struct hlist_head/struct hlist_node,
struct hlist_nulls_head/struct hlist_nulls_
node, and struct hlist_bl_head/struct hlist_
bl_node pairs. The former is laid out as shown in
Figure 9.16, where the green (leftmost) boxes represent
the list header and the blue (rightmost three) boxes
represent the elements in the list. This notation is
cumbersome, and will therefore be abbreviated as shown
in Figure 9.17, which shows only the non-header (blue)
elements.

Linux’s hlist15 is a linear list, which means that it
needs only one pointer for the header rather than the two
required for the circular list, as shown in Figure 9.18.
Thus, use of hlist can halve the memory consumption

15 The “h” stands for hashtable, in which it reduces memory use by
half compared to Linux’s double-pointer circular linked list.

v2024.12.27a

160 CHAPTER 9. DEFERRED PROCESSING

for the hash-bucket arrays of large hash tables. As before,
this notation is cumbersome, so hlist structures will be
abbreviated in the same way list_head-style lists are, as
shown in Figure 9.17.

A variant of Linux’s hlist, named hlist_nulls,
provides multiple distinct NULL pointers, but otherwise
uses the same layout as shown in Figure 9.18. In this
variant, a ->next pointer having a zero low-order bit is
considered to be a pointer. However, if the low-order bit is
set to one, the upper bits identify the type of NULL pointer.
This type of list is used to allow lockless readers to detect
when a node has been moved from one list to another. For
example, each bucket of a hash table might use its index to
mark its NULL pointer. Should a reader encounter a NULL
pointer not matching the index of the bucket it started from,
that reader knows that an element it was traversing was
moved to some other bucket during the traversal, taking
that reader with it. The reader can use the is_a_nulls()
function (which returns true if passed an hlist_nulls
NULL pointer) to determine when it reaches the end of a list,
and the get_nulls_value() function (which returns its
argument’s NULL-pointer identifier) to fetch the type of
NULL pointer. When get_nulls_value() returns an
unexpected value, the reader can take corrective action,
for example, restarting its traversal from the beginning.

Quick Quiz 9.47: But what if an hlist_nulls reader gets
moved to some other bucket and then back again?

More information on hlist_nulls is available in
the Linux-kernel source tree, with helpful example code
provided in the rculist_nulls.rst file (rculist_
nulls.txt in older kernels).

Another variant of Linux’s hlist incorporates bit-
locking, and is named hlist_bl. This variant uses the
same layout as shown in Figure 9.18, but reserves the
low-order bit of the head pointer (“first” in the figure) to
lock the list. This approach also reduces memory usage,
as it allows what would otherwise be a separate spinlock
to be stored with the pointer itself.

The API members for these linked-list variants are
summarized in Table 9.4. More information is available in
the Documentation/RCU directory of the Linux-kernel
source tree and at Linux Weekly News [McK19b].

However, the remainder of this section expands on
the use of list_replace_rcu(), given that this API
member gave RCU its name. This API member is used to
carry out more complex updates in which an element in
the middle of the list having multiple fields is atomically
updated, so that a given reader sees either the old set of

values or the new set of values, but not a mixture of the
two sets. For example, each node of a linked list might
have integer fields ->a, ->b, and ->c, and it might be
necessary to update a given node’s fields from 5, 6, and 7
to 5, 2, and 3, respectively.

The code implementing this atomic update is straight-
forward:

15 q = kmalloc(sizeof(*p), GFP_KERNEL);
16 *q = *p;
17 q->b = 2;
18 q->c = 3;
19 list_replace_rcu(&p->list, &q->list);
20 synchronize_rcu();
21 kfree(p);

The following discussion walks through this code, using
Figure 9.19 to illustrate the state changes. The triples
in each element represent the values of fields ->a, ->b,
and ->c, respectively. The red-shaded elements might
be referenced by readers, and because readers do not
synchronize directly with updaters, readers might run
concurrently with this entire replacement process. Please
note that backwards pointers and the link from the tail to
the head are omitted for clarity.

The initial state of the list, including the pointer p, is
the same as for the deletion example, as shown on the first
row of the figure.

The following text describes how to replace the 5,6,7
element with 5,2,3 in such a way that any given reader
sees one of these two values.

Line 15 allocates a replacement element, resulting in
the state as shown in the second row of Figure 9.19. At
this point, no reader can hold a reference to the newly
allocated element (as indicated by its green shading), and
it is uninitialized (as indicated by the question marks).

Line 16 copies the old element to the new one, resulting
in the state as shown in the third row of Figure 9.19.
The newly allocated element still cannot be referenced by
readers, but it is now initialized.

Line 17 updates q->b to the value “2”, and line 18
updates q->c to the value “3”, as shown on the fourth row
of Figure 9.19. Note that the newly allocated structure is
still inaccessible to readers.

Now, line 19 does the replacement, so that the new
element is finally visible to readers, and hence is shaded
red, as shown on the fifth row of Figure 9.19. At this
point, as shown below, we have two versions of the list.
Pre-existing readers might see the 5,6,7 element (which
is therefore now shaded yellow), but new readers will
instead see the 5,2,3 element. But any given reader is

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 161

Ta
bl

e
9.

4:
RC

U
-P

ro
te

ct
ed

Li
st

A
PI

s

li
st

li
st

li
st

:C
irc

ul
ar

do
ub

ly
lin

ke
d

lis
t

hl
is

t
hl

is
t

hl
is

t:
Li

ne
ar

do
ub

ly
lin

ke
d

lis
t

hl
is

t_
nu

ll
s

hl
is

t_
nu

ll
s

hl
is

t_
nu

ll
s:

Li
ne

ar
do

ub
ly

lin
ke

d
lis

t
w

ith
m

ar
ke

d
N

U
LL

po
in

te
r,

w
ith

up
to

31
bi

ts
of

m
ar

ki
ng

hl
is

t_
bl

hl
is

t_
bl

hl
is

t_
bl

:L
in

ea
rd

ou
bl

y
lin

ke
d

lis
t

w
ith

bi
tl

oc
ki

ng

St
ru

ct
ur

es
st

ru
ct

li
st

_h
ea

d
st

ru
ct

hl
is

t_
he

ad
st

ru
ct

hl
is

t_
no

de
st

ru
ct

hl
is

t_
nu

ll
s_

he
ad

st
ru

ct
hl

is
t_

nu
ll

s_
no

de
st

ru
ct

hl
is

t_
bl

_h
ea

d
st

ru
ct

hl
is

t_
bl

_n
od

e
In

iti
al

iz
at

io
n

IN
IT

_L
IS

T_
HE

AD
_R

CU
()

Fu
ll

tr
av

er
sa

l
li

st
_f

or
_e

ac
h_

en
tr

y_
rc

u(
)

li
st

_f
or

_e
ac

h_
en

tr
y_

lo
ck

le
ss

()
hl

is
t_

fo
r_

ea
ch

_e
nt

ry
_r

cu
()

hl
is

t_
fo

r_
ea

ch
_e

nt
ry

_r
cu

_b
h(

)
hl

is
t_

fo
r_

ea
ch

_e
nt

ry
_r

cu
_n

ot
ra

ce
()

hl
is

t_
nu

ll
s_

fo
r_

ea
ch

_e
nt

ry
_r

cu
()

hl
is

t_
nu

ll
s_

fo
r_

ea
ch

_e
nt

ry
_s

af
e(

)
hl

is
t_

bl
_f

or
_e

ac
h_

en
tr

y_
rc

u(
)

R
es

um
e

tr
av

er
sa

l
li

st
_f

or
_e

ac
h_

en
tr

y_
co

nt
in

ue
_r

cu
()

li
st

_f
or

_e
ac

h_
en

tr
y_

fr
om

_r
cu

()
hl

is
t_

fo
r_

ea
ch

_e
nt

ry
_c

on
ti

nu
e_

rc
u(

)
hl

is
t_

fo
r_

ea
ch

_e
nt

ry
_c

on
ti

nu
e_

rc
u_

bh
()

hl
is

t_
fo

r_
ea

ch
_e

nt
ry

_f
ro

m_
rc

u(
)

St
ep

w
ise

tr
av

er
sa

l
li

st
_e

nt
ry

_r
cu

()
li

st
_e

nt
ry

_l
oc

kl
es

s(
)

li
st

_f
ir

st
_o

r_
nu

ll
_r

cu
()

li
st

_n
ex

t_
rc

u(
)

li
st

_n
ex

t_
or

_n
ul

l_
rc

u(
)

hl
is

t_
fi

rs
t_

rc
u(

)
hl

is
t_

ne
xt

_r
cu

()
hl

is
t_

pp
re

v_
rc

u(
)

hl
is

t_
nu

ll
s_

fi
rs

t_
rc

u(
)

hl
is

t_
nu

ll
s_

ne
xt

_r
cu

()
hl

is
t_

bl
_f

ir
st

_r
cu

()

A
dd

li
st

_a
dd

_r
cu

()
li

st
_a

dd
_t

ai
l_

rc
u(

)
hl

is
t_

ad
d_

be
fo

re
_r

cu
()

hl
is

t_
ad

d_
be

hi
nd

_r
cu

()
hl

is
t_

ad
d_

he
ad

_r
cu

()
hl

is
t_

ad
d_

ta
il

_r
cu

()

hl
is

t_
nu

ll
s_

ad
d_

he
ad

_r
cu

()
hl

is
t_

bl
_a

dd
_h

ea
d_

rc
u(

)
hl

is
t_

bl
_s

et
_f

ir
st

_r
cu

()

D
el

et
e

li
st

_d
el

_r
cu

()
hl

is
t_

de
l_

rc
u(

)
hl

is
t_

de
l_

in
it

_r
cu

()
hl

is
t_

nu
ll

s_
de

l_
rc

u(
)

hl
is

t_
nu

ll
s_

de
l_

in
it

_r
cu

()
hl

is
t_

bl
_d

el
_r

cu
()

hl
is

t_
bl

_d
el

_i
ni

t_
rc

u(
)

R
ep

la
ce

li
st

_r
ep

la
ce

_r
cu

()
hl

is
t_

re
pl

ac
e_

rc
u(

)
Sp

lic
e

li
st

_s
pl

ic
e_

in
it

_r
cu

()
li

st
_s

pl
ic

e_
ta

il
_i

ni
t_

rc
u(

)

v2024.12.27a

162 CHAPTER 9. DEFERRED PROCESSING

1,2,3 5,6,7 11,4,8

Update

5,2,3

5,6,71,2,3 11,4,8

list_replace_rcu()

5,2,3

5,6,71,2,3 11,4,8

5,2,3

5,6,71,2,3 11,4,8

kfree()

1,2,3 5,2,3 11,4,8

Copy

5,6,7

5,6,71,2,3 11,4,8

Allocate

?,?,?

5,6,71,2,3 11,4,8

synchronize_rcu()

Figure 9.19: RCU Replacement in Linked List

Table 9.5: RCU Diagnostic APIs

Category Primitives

Mark RCU pointer __rcu

Debug-object support init_rcu_head()
destroy_rcu_head()
init_rcu_head_on_stack()
destroy_rcu_head_on_stack()

Stall-warning control rcu_cpu_stall_reset()

Callback checking rcu_head_init()
rcu_head_after_call_rcu()

lockdep support rcu_read_lock_held()
rcu_read_lock_bh_held()
rcu_read_lock_sched_held()
srcu_read_lock_held()
rcu_is_watching()
RCU_LOCKDEP_WARN()
RCU_NONIDLE()
rcu_sleep_check()

guaranteed to see one set of values or the other, not a
mixture of the two.

After the synchronize_rcu() on line 20 returns, a
grace period will have elapsed, and so all reads that started
before the list_replace_rcu() will have completed.
In particular, any readers that might have been holding
references to the 5,6,7 element are guaranteed to have
exited their RCU read-side critical sections, and are thus
prohibited from continuing to hold a reference. Therefore,
there can no longer be any readers holding references to
the old element, as indicated its green shading in the sixth
row of Figure 9.19. As far as the readers are concerned,
we are back to having a single version of the list, but with
the new element in place of the old.

After the kfree() on line 21 completes, the list will
appear as shown on the final row of Figure 9.19.

Despite the fact that RCU was named after the replace-
ment case, the vast majority of RCU usage within the
Linux kernel relies on the simple independent insertion and
deletion, as was shown in Figure 9.15 in Section 9.5.2.3.

The next section looks at APIs that assist developers in
debugging their code that makes use of RCU.

9.5.3.5 RCU Has Diagnostic APIs

Table 9.5 shows RCU’s diagnostic APIs.
The __rcu tag marks an RCU-protected pointer,

for example, “struct foo __rcu *p;”. Pointers

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 163

that might be passed to rcu_dereference() can be
marked, but pointers holding values returned from rcu_
dereference() should not be. Providing these markings
on variables, structure fields, function parameters, and re-
turn values allows the Linux kernel’s sparse tool to detect
situations where RCU-protected pointers are incorrectly
accessed using plain C-language loads and stores.

Debug-object support is automatic for any rcu_head
structures that are part of a structure obtained from the
Linux kernel’s memory allocators, but those building
their own special-purpose memory allocators can use
init_rcu_head() and destroy_rcu_head() at allo-
cation and free time, respectively. Those using rcu_head
structures allocated on the function-call stack (it happens!)
may use init_rcu_head_on_stack() before first use
and destroy_rcu_head_on_stack() after last use, but
before returning from the function. Debug-object sup-
port allows detection of bugs involving passing the same
rcu_head structure to call_rcu() and friends in quick
succession, which is the call_rcu() counterpart to the
infamous double-free class of memory-allocation bugs.

Stall-warning control is provided by rcu_cpu_stall_
reset(), which allows the caller to suppress RCU CPU
stall warnings for the remainder of the current grace period.
RCU CPU stall warnings help pinpoint situations where an
RCU read-side critical section runs for an excessive length
of time, and it is useful for things like kernel debuggers to
be able to suppress them, for example, when encountering
a breakpoint.

Callback checking is provided by rcu_head_init()
and rcu_head_after_call_rcu(). The former is in-
voked on an rcu_head structure before it is passed to
call_rcu(), and then rcu_head_after_call_rcu()
will check to see if the callback has been invoked with the
specified function.

Support for lockdep [Cor06a] includes rcu_read_
lock_held(), rcu_read_lock_bh_held(), rcu_
read_lock_sched_held(), and srcu_read_lock_
held(), each of which returns true if invoked within the
corresponding type of RCU read-side critical section.

Quick Quiz 9.48: Why isn’t there a rcu_read_lock_
tasks_held() for Tasks RCU?

Because rcu_read_lock() cannot be used from the
idle loop, and because energy-efficiency concerns have
caused the idle loop to become quite ornate, rcu_is_
watching() returns true if invoked in a context where
use of rcu_read_lock() is legal. Note again that srcu_
read_lock() may be used from idle and even offline

c
a

ll_
rc

u
()

NMI

Process

IRQ

synchronize_rcu()

rc
u

_
d

e
re

fe
re

n
c
e

()
R

C
U

 L
is

t
T

ra
v
e

rs
a

l

rc
u

_
re

a
d

_
u

n
lo

c
k
()

rc
u

_
re

a
d

_
lo

c
k
()

R
C

U
 L

is
t

M
u

ta
ti
o

n

rc
u

_
a

s
s
ig

n
_

p
o

in
te

r(
)

Figure 9.20: RCU API Usage Constraints

CPUs, which means that rcu_is_watching() does not
apply to SRCU.

RCU_LOCKDEP_WARN() emits a warning if lockdep is
enabled and if its argument evaluates to true. For exam-
ple, RCU_LOCKDEP_WARN(!rcu_read_lock_held())
would emit a warning if invoked outside of an RCU
read-side critical section.

RCU_NONIDLE() may be used to force RCU to watch
when executing the statement that is passed in as the sole
argument. For example, RCU_NONIDLE(WARN_ON(!rcu_
is_watching())) would never emit a warning. How-
ever, changes in the 2020–2021 timeframe extend RCU’s
reach deeper into the idle loop, which should greatly
reduce or even eliminate the need for RCU_NONIDLE().

Finally, rcu_sleep_check() emits a warning if in-
voked within an RCU, RCU-bh, or RCU-sched read-side
critical section.

9.5.3.6 Where Can RCU’s APIs Be Used?

Figure 9.20 shows which APIs may be used in which
in-kernel environments. The RCU read-side primitives
may be used in any environment, including NMI, the RCU
mutation and asynchronous grace-period primitives may
be used in any environment other than NMI, and, finally,
the RCU synchronous grace-period primitives may be
used only in process context. The RCU list-traversal prim-
itives include list_for_each_entry_rcu(), hlist_
for_each_entry_rcu(), etc. Similarly, the RCU list-
mutation primitives include list_add_rcu(), hlist_
del_rcu(), etc.

Note that primitives from other families of RCU may
be substituted, for example, srcu_read_lock() may be

v2024.12.27a

164 CHAPTER 9. DEFERRED PROCESSING

used in any context in which rcu_read_lock() may be
used.

9.5.3.7 So, What is RCU Really?

At its core, RCU is nothing more nor less than an API
that supports publication and subscription for insertions,
waiting for all RCU readers to complete, and maintenance
of multiple versions. That said, it is possible to build
higher-level constructs on top of RCU, including the
reader-writer-locking, reference-counting, and existence-
guarantee constructs listed in Section 9.5.4. Furthermore,
I have no doubt that the Linux community will continue
to find interesting new uses for RCU, just as they do for
any of a number of synchronization primitives throughout
the kernel.

Of course, a more-complete view of RCU would also
include all of the things you can do with these APIs.

However, for many people, a complete view of RCU
must include sample RCU implementations. Appendix B
therefore presents a series of “toy” RCU implementations
of increasing complexity and capability, though others
might prefer the classic “User-Level Implementations of
Read-Copy Update” [DMS+12a]. For everyone else, the
next section gives an overview of some RCU use cases.

9.5.4 RCU Usage
This section answers the question “What is RCU?” from
the viewpoint of the uses to which RCU can be put.
Because RCU is most frequently used to replace some
existing mechanism, we look at it primarily in terms
of its relationship to such mechanisms, as listed in Ta-
ble 9.6 and as displayed in Figure 9.23. Following the
sections listed in this table, Section 9.5.4.12 provides a
summary, which is expanded on in the following sections
and elsewhere [McK21, McK22].

9.5.4.1 RCU for Pre-BSD Routing

In contrast to the later sections, this section focuses on a
very specific use case for the purpose of comparison with
other mechanisms.

Listings 9.14 and 9.15 show code for an RCU-protected
Pre-BSD routing table (route_rcu.c). The former
shows data structures and route_lookup(), and the
latter shows route_add() and route_del().

In Listing 9.14, line 2 adds the ->rh field used by
RCU reclamation, line 6 adds the ->re_freed use-after-
free-check field, lines 16, 22, and 26 add RCU read-side

Table 9.6: RCU Usage

Mechanism RCU Replaces Page

RCU for pre-BSD routing 164
Wait for pre-existing things to finish 167
Phased state change 168
Add-only list (publish/subscribe) 169
Type-safe memory 169
Existence Guarantee 170
Light-weight garbage collector 170
Delete-only list 171
Quasi reader-writer lock 171
Quasi reference count 177
Quasi multi-version concurrency control (MVCC) 179

Listing 9.14: RCU Pre-BSD Routing Table Lookup
1 struct route_entry {
2 struct rcu_head rh;
3 struct cds_list_head re_next;
4 unsigned long addr;
5 unsigned long iface;
6 int re_freed;
7 };
8 CDS_LIST_HEAD(route_list);
9 DEFINE_SPINLOCK(routelock);

10
11 unsigned long route_lookup(unsigned long addr)
12 {
13 struct route_entry *rep;
14 unsigned long ret;
15
16 rcu_read_lock();
17 cds_list_for_each_entry_rcu(rep, &route_list, re_next) {
18 if (rep->addr == addr) {
19 ret = rep->iface;
20 if (READ_ONCE(rep->re_freed))
21 abort();
22 rcu_read_unlock();
23 return ret;
24 }
25 }
26 rcu_read_unlock();
27 return ULONG_MAX;
28 }

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 165

Listing 9.15: RCU Pre-BSD Routing Table Add/Delete
1 int route_add(unsigned long addr, unsigned long interface)
2 {
3 struct route_entry *rep;
4
5 rep = malloc(sizeof(*rep));
6 if (!rep)
7 return -ENOMEM;
8 rep->addr = addr;
9 rep->iface = interface;

10 rep->re_freed = 0;
11 spin_lock(&routelock);
12 cds_list_add_rcu(&rep->re_next, &route_list);
13 spin_unlock(&routelock);
14 return 0;
15 }
16
17 static void route_cb(struct rcu_head *rhp)
18 {
19 struct route_entry *rep;
20
21 rep = container_of(rhp, struct route_entry, rh);
22 WRITE_ONCE(rep->re_freed, 1);
23 free(rep);
24 }
25
26 int route_del(unsigned long addr)
27 {
28 struct route_entry *rep;
29
30 spin_lock(&routelock);
31 cds_list_for_each_entry(rep, &route_list, re_next) {
32 if (rep->addr == addr) {
33 cds_list_del_rcu(&rep->re_next);
34 spin_unlock(&routelock);
35 call_rcu(&rep->rh, route_cb);
36 return 0;
37 }
38 }
39 spin_unlock(&routelock);
40 return -ENOENT;
41 }

protection, and lines 20 and 21 add the use-after-free check.
In Listing 9.15, lines 11, 13, 30, 34, and 39 add update-side
locking, lines 12 and 33 add RCU update-side protection,
line 35 causes route_cb() to be invoked after a grace
period elapses, and lines 17–24 define route_cb(). This
is minimal added code for a working concurrent imple-
mentation.

Figure 9.21 shows the performance on the read-only
workload. RCU scales quite well, and offers nearly ideal
performance. However, this data was generated using the
RCU_SIGNAL flavor of userspace RCU [Des09b, MDJ13f],
for which rcu_read_lock() and rcu_read_unlock()
generate a small amount of code. What happens for the
QSBR flavor of RCU, which generates no code at all
for rcu_read_lock() and rcu_read_unlock()? (See
Section 9.5.1, and especially Figure 9.8, for a discussion
of RCU QSBR.)

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 0 50 100 150 200 250 300 350 400 450

ideal

hazptr
seqlock

RCU

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

Figure 9.21: Pre-BSD Routing Table Protected by RCU

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 0 50 100 150 200 250 300 350 400 450

ideal

hazptr
seqlock

RCU

RCU-QSBR

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

Figure 9.22: Pre-BSD Routing Table Protected by RCU
QSBR

The answer to this is shown in Figure 9.22, which shows
that RCU QSBR’s performance and scalability actually
exceeds that of the ideal synchronization-free workload.

Quick Quiz 9.49: Wait, what??? How can RCU QSBR
possibly be better than ideal? Just what rubbish definition of
ideal would fail to be the best of all possible results???

Quick Quiz 9.50: Given RCU QSBR’s read-side performance,
why bother with any other flavor of userspace RCU?

Although Pre-BSD routing is an excellent RCU use
case, it is worthwhile looking at the relationships betweeen
the wider spectrum of use cases shown in Figure 9.23.
This task is taken up by the following sections.

While reading these sections, please ask yourself which
of these use cases best describes Pre-BSD routing.

v2024.12.27a

166 CHAPTER 9. DEFERRED PROCESSING

Publish/Subscribe

rcu_assign_pointer() &

For Linked Structure

rcu_dereference()

Wait for Pre-Existing Things to Finish

rcu_read_lock() & rcu_read_unlock()
vs. synchronize_rcu()

Phased State Change

+ Checked state variable

Add-Only
List

Type-Safe Memory

+ Deferred slab reclamation
+ Slab allocator

Existence Guarantee

+ Deferred reclamation
+ Heap allocator

Delete-Only List

- Publish/subscribe

Light-Weight Garbage Collector for

+ NBS

Non-Blocking Synchronization (NBS)

+ Readers include some sort of snapshot operation

Quasi Multi-Version Consistency Control

+ Constraints on readers and writers:
+ (1) single object, (2) sequence locks, (3) version number(s),
+ (4) Issaquah challenge, and/or (5) many other approaches

+ Readers as individual or bulk unconditional references

Quasi Reference Count

+ Optional bridging to per-object lock or reference

+ Readers as read-held reader-writer lock

Quasi Reader-Writer Lock

+ Spatial as well as temporal synchronization
+ Optional read-to-write upgrade
+ Optional bridging to per-object lock or reference
+ Optionally ignore deleted objects

Figure 9.23: Relationships Between RCU Use Cases

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 167

9.5.4.2 Wait for Pre-Existing Things to Finish

As noted in Section 9.5.2 an important component of
RCU is a way of waiting for RCU readers to finish. One
of RCU’s great strength is that it allows you to wait for
each of thousands of different things to finish without
having to explicitly track each and every one of them, and
without incurring the performance degradation, scalability
limitations, complex deadlock scenarios, and memory-
leak hazards that are inherent in schemes that use explicit
tracking.

In this section, we will show how synchronize_
sched()’s read-side counterparts (which include anything
that disables preemption, along with hardware operations
and primitives that disable interrupts) permit you to in-
teraction with non-maskable interrupt (NMI) handlers,
which is quite difficult using locking. This approach has
been called “Pure RCU” [McK04], and it is used in a few
places in the Linux kernel.

The basic form of such “Pure RCU” designs is as
follows:

1. Make a change, for example, to the way that the OS
reacts to an NMI.

2. Wait for all pre-existing read-side critical sections
to completely finish (for example, by using the
synchronize_sched() primitive).16 The key ob-
servation here is that subsequent RCU read-side crit-
ical sections are guaranteed to see whatever change
was made.

3. Clean up, for example, return status indicating that
the change was successfully made.

The remainder of this section presents example code
adapted from the Linux kernel. In this example, the nmi_
stop() function in the now-defunct oprofile facility uses
synchronize_sched() to ensure that all in-flight NMI
notifications have completed before freeing the associated
resources. A simplified version of this code is shown in
Listing 9.16.

Lines 1–4 define a profile_buffer structure, con-
taining a size and an indefinite array of entries. Line 5
defines a pointer to a profile buffer, which is presumably
initialized elsewhere to point to a dynamically allocated
region of memory.

Lines 7–16 define the nmi_profile() function, which
is called from within an NMI handler. As such, it cannot

16 In Linux kernel v5.1 and later, synchronize_sched() has been
subsumed into synchronize_rcu().

Listing 9.16: Using RCU to Wait for NMIs to Finish
1 struct profile_buffer {
2 long size;
3 atomic_t entry[0];
4 };
5 static struct profile_buffer *buf = NULL;
6
7 void nmi_profile(unsigned long pcvalue)
8 {
9 struct profile_buffer *p = rcu_dereference(buf);

10
11 if (p == NULL)
12 return;
13 if (pcvalue >= p->size)
14 return;
15 atomic_inc(&p->entry[pcvalue]);
16 }
17
18 void nmi_stop(void)
19 {
20 struct profile_buffer *p = buf;
21
22 if (p == NULL)
23 return;
24 rcu_assign_pointer(buf, NULL);
25 synchronize_sched();
26 kfree(p);
27 }

be preempted, nor can it be interrupted by a normal
interrupt handler, however, it is still subject to delays
due to cache misses, ECC errors, and cycle stealing by
other hardware threads within the same core. Line 9
gets a local pointer to the profile buffer using the rcu_
dereference() primitive to ensure memory ordering on
DEC Alpha, and lines 11 and 12 exit from this function
if there is no profile buffer currently allocated, while
lines 13 and 14 exit from this function if the pcvalue
argument is out of range. Otherwise, line 15 increments
the profile-buffer entry indexed by the pcvalue argument.
Note that storing the size with the buffer guarantees that
the range check matches the buffer, even if a large buffer
is suddenly replaced by a smaller one.

Lines 18–27 define the nmi_stop() function, where
the caller is responsible for mutual exclusion (for example,
holding the correct lock). Line 20 fetches a pointer to the
profile buffer, and lines 22 and 23 exit the function if there
is no buffer. Otherwise, line 24 NULLs out the profile-buffer
pointer (using the rcu_assign_pointer() primitive to
maintain memory ordering on weakly ordered machines),
and line 25 waits for an RCU Sched grace period to elapse,
in particular, waiting for all non-preemptible regions
of code, including NMI handlers, to complete. Once
execution continues at line 26, we are guaranteed that any
instance of nmi_profile() that obtained a pointer to
the old buffer has returned. It is therefore safe to free the
buffer, in this case using the kfree() primitive.

v2024.12.27a

168 CHAPTER 9. DEFERRED PROCESSING

Time

Common-Case
Operations

Maintenance
Operations

Carefully Maintenance

Either Prepare

Either Clean up

Quickly

Quickly

Figure 9.24: Phased State Change for Maintenance Oper-
ation

Quick Quiz 9.51: Suppose that the nmi_profile() function
was preemptible. What would need to change to make this
example work correctly?

In short, RCU makes it easy to dynamically switch
among profile buffers (you just try doing this efficiently
with atomic operations, or at all with locking!). This is a
rare use of RCU in its pure form. RCU is normally used
at higher levels of abstraction, as will be shown in the
following sections.

9.5.4.3 Phased State Change

Figure 9.24 shows a timeline for an example phased state
change to efficiently handle maintenance operations. If
there is no maintenance operation in progress, common-
case operations must proceed quickly, for example, with-
out acquiring a reader-writer lock. However, if there
is a maintenance operation in progress, the common-
case operations must be undertaken carefully, taking into
account added complexities due to their running con-
currently with that maintenance operation. This means
that common-case operations will incur higher overhead
during maintenance operations, which is one reason that
maintenance operations are normally scheduled to take
place during times of low load.

In the figure, these apparently conflicting requirements
are resolved by having a prepare phase prior to the mainte-
nance operation and a cleanup phase after it, during which
the common-case operations can proceed either quickly
or carefully.

Listing 9.17: Phased State Change for Maintenance Operations
1 bool be_careful;
2
3 void cco(void)
4 {
5 rcu_read_lock();
6 if (READ_ONCE(be_careful))
7 cco_carefully();
8 else
9 cco_quickly();

10 rcu_read_unlock();
11 }
12
13 void maint(void)
14 {
15 WRITE_ONCE(be_careful, true);
16 synchronize_rcu();
17 do_maint();
18 synchronize_rcu();
19 WRITE_ONCE(be_careful, false);
20 }

Example pseudo-code for this phased state change is
shown in Listing 9.17. The common-case operations are
carried out by cco() within an RCU read-side critical
section extending from line 5 to line 10. Here, line 6 checks
a global be_careful flag, invoking cco_carefully()
or cco_quickly(), as indicated.

This allows the maint() function to set the be_
careful flag on line 15 and wait for an RCU grace
period on line 16. When control reaches line 17, all
cco() functions that saw a false value of be_careful
(and thus which might invoke the cco_quickly() func-
tion) will have completed their operations, so that all
currently executing cco() functions will be invoking
cco_carefully(). This means that it is safe for the
do_maint() function to be invoked. Line 18 then waits
for all cco() functions that might have run concurrently
with do_maint() to complete, and finally line 19 sets the
be_careful flag back to false.

Quick Quiz 9.52: What is the point of the second call to
synchronize_rcu() in function maint() in Listing 9.17?
Isn’t it OK for any cco() invocations in the clean-up phase to
invoke either cco_carefully() or cco_quickly()?

Quick Quiz 9.53: How can you be sure that the code shown
in maint() in Listing 9.17 really works?

Phased state change allows frequent operations to use
light-weight checks, without the need for expensive lock ac-
quisitions or atomic read-modify-write operations, and is
used in the Linux kernel in the guise of rcu_sync [NZ13]
to implement a variant of reader-writer semaphores with
lightweight readers. Phased state change adds only a
checked state variable to the wait-to-finish use case (Sec-

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 169

tion 9.5.4.2), thus also residing at a rather low level of
abstraction.

9.5.4.4 Add-Only List

Add-only data structures, exemplified by the add-only list,
can be used for a surprisingly common set of use cases,
perhaps most commonly the logging of changes. Add-
only data structures are a pure use of RCU’s underlying
publish/subscribe mechanism.

An add-only variant of a pre-BSD routing table can be
derived from Listings 9.14 and 9.15. Because there is no
deletion, the route_del() and route_cb() functions
may be dispensed with, along with the ->rh and ->re_
freed fields of the route_entry structure, the rcu_
read_lock(), the rcu_read_unlock() invocations in
the route_lookup() function, and all uses of the ->re_
freed field in all remaining functions.

Of course, if there are many concurrent invocations of
the route_add() function, there will be heavy contention
on routelock, and if lockless techniques are used, heavy
memory contention on routelist. The usual way to
avoid this contention is to use a concurrency-friendly data
structure such as a hash table (see Chapter 10). Alter-
natively, per-CPU data structures might be periodically
merged into a single global data structure.

On the other hand, if there is never any deletion, ex-
tended time periods featuring many concurrent invocations
of route_add() will eventually consume all available
memory. Therefore, most RCU-protected data structures
also implement deletion.

9.5.4.5 Type-Safe Memory

A number of lockless algorithms do not require that a given
data element keep the same identity through a given RCU
read-side critical section referencing it—but only if that
data element retains the same type. In other words, these
lockless algorithms can tolerate a given data element being
freed and reallocated as the same type of structure while
they are referencing it, but must prohibit a change in type.
This guarantee, called “type-safe memory” in academic
literature [GC96], is weaker than the existence guarantees
discussed in Section 9.5.4.6, and is therefore quite a bit
harder to work with. Type-safe memory algorithms in the
Linux kernel make use of slab caches, specially marking
these caches with SLAB_TYPESAFE_BY_RCU so that RCU
is used when returning a freed-up slab to system memory.
This use of RCU guarantees that any in-use element of
such a slab will remain in that slab, thus retaining its type,

for the duration of any pre-existing RCU read-side critical
sections.
Quick Quiz 9.54: But what if there is an arbitrarily long series
of RCU read-side critical sections in multiple threads, so that
at any point in time there is at least one thread in the system
executing in an RCU read-side critical section? Wouldn’t
that prevent any data from a SLAB_TYPESAFE_BY_RCU slab
ever being returned to the system, possibly resulting in OOM
events?

It is important to note that SLAB_TYPESAFE_BY_RCU
will in no way prevent kmem_cache_alloc() from im-
mediately reallocating memory that was just now freed
via kmem_cache_free()! In fact, the SLAB_TYPESAFE_
BY_RCU-protected data structure just returned by rcu_
dereference() might be freed and reallocated an arbi-
trarily large number of times, even when under the protec-
tion of rcu_read_lock(). Instead, SLAB_TYPESAFE_
BY_RCU operates by preventing kmem_cache_free()
from returning a completely freed-up slab of data struc-
tures to the system until after an RCU grace period elapses.
In short, although a given RCU read-side critical section
might see a given SLAB_TYPESAFE_BY_RCU data element
being freed and reallocated arbitrarily often, the element’s
type is guaranteed not to change until that critical section
has completed.

These algorithms therefore typically use a validation
step that checks to make sure that the newly referenced data
structure really is the one that was requested [LS86, Sec-
tion 2.5]. These validation checks require that portions of
the data structure remain untouched by the free-reallocate
process. Such validation checks are usually very hard to
get right, and can hide subtle and difficult bugs.

Therefore, although type-safety-based lockless algo-
rithms can be extremely helpful in a very few difficult
situations, you should instead use existence guarantees
where possible. Simpler is after all almost always better!
On the other hand, type-safety-based lockless algorithms
can provide improved cache locality, and thus improved
performance. This improved cache locality is provided by
the fact that such algorithms can immediately reallocate
a newly freed block of memory. In contrast, algorithms
based on existence guarantees must wait for all pre-existing
readers before reallocating memory, by which time that
memory may have been ejected from CPU caches.

As can be seen in Figure 9.23, RCU’s type-safe-memory
use case combines both the wait-to-finish and publish-
subscribe components, but in the Linux kernel also in-
cludes the slab allocator’s deferred reclamation specified
by the SLAB_TYPESAFE_BY_RCU flag.

v2024.12.27a

170 CHAPTER 9. DEFERRED PROCESSING

Listing 9.18: Existence Guarantees Enable Per-Element Locking
1 int delete(int key)
2 {
3 struct element *p;
4 int b;
5
6 b = hashfunction(key);
7 rcu_read_lock();
8 p = rcu_dereference(hashtable[b]);
9 if (p == NULL || p->key != key) {

10 rcu_read_unlock();
11 return 0;
12 }
13 spin_lock(&p->lock);
14 if (hashtable[b] == p && p->key == key) {
15 rcu_read_unlock();
16 rcu_assign_pointer(hashtable[b], NULL);
17 spin_unlock(&p->lock);
18 synchronize_rcu();
19 kfree(p);
20 return 1;
21 }
22 spin_unlock(&p->lock);
23 rcu_read_unlock();
24 return 0;
25 }

9.5.4.6 Existence Guarantee

Gamsa et al. [GKAS99] discuss existence guarantees and
describe how a mechanism resembling RCU can be used
to provide these existence guarantees (see Section 5 on
page 7 of the PDF), and Section 7.4 discusses how to
guarantee existence via locking, along with the ensuing
disadvantages of doing so. The effect is that if any RCU-
protected data element is accessed within an RCU read-
side critical section, that data element is guaranteed to
remain in existence for the duration of that RCU read-side
critical section.

Listing 9.18 demonstrates how RCU-based existence
guarantees can enable per-element locking via a function
that deletes an element from a hash table. Line 6 computes
a hash function, and line 7 enters an RCU read-side critical
section. If line 9 finds that the corresponding bucket of
the hash table is empty or that the element present is not
the one we wish to delete, then line 10 exits the RCU
read-side critical section and line 11 indicates failure.

Quick Quiz 9.55: What if the element we need to delete is
not the first element of the list on line 9 of Listing 9.18?

Otherwise, line 13 acquires the update-side spinlock,
and line 14 then checks that the element is still the one
that we want. If so, line 15 leaves the RCU read-side
critical section, line 16 removes it from the table, line 17
releases the lock, line 18 waits for all pre-existing RCU
read-side critical sections to complete, line 19 frees the
newly removed element, and line 20 indicates success. If

the element is no longer the one we want, line 22 releases
the lock, line 23 leaves the RCU read-side critical section,
and line 24 indicates failure to delete the specified key.
Quick Quiz 9.56: Why is it OK to exit the RCU read-side
critical section on line 15 of Listing 9.18 before releasing the
lock on line 17?

Quick Quiz 9.57: Why not exit the RCU read-side critical
section on line 23 of Listing 9.18 before releasing the lock on
line 22?

Quick Quiz 9.58: The RCU-based algorithm shown in
Listing 9.18 locks very similar to that in Listing 7.11, so why
should the RCU-based approach be any better?

Alert readers will recognize this as only a slight varia-
tion on the original wait-to-finish theme (Section 9.5.4.2),
adding publish/subscribe, linked structures, a heap allo-
cator (typically), and deferred reclamation, as shown in
Figure 9.23. They might also note the deadlock-immunity
advantages over the lock-based existence guarantees dis-
cussed in Section 7.4.

9.5.4.7 Light-Weight Garbage Collector

A not-uncommon exclamation made by people first learn-
ing about RCU is “RCU is sort of like a garbage collec-
tor!” [Kli23]. This exclamation has a large grain of truth,
especially when using RCU to implement non-blocking
algorithms that rely on garbage collection, but it can
sometimes be misleading.

Perhaps the best way to think of the relationship be-
tween RCU and automatic garbage collectors (GCs) is
that RCU resembles a GC in that the timing of collection
is automatically determined, but that RCU differs from a
GC in that: (1) The programmer must manually indicate
when a given data structure is eligible to be collected
and (2) The programmer must manually mark the RCU
read-side critical sections where references might be held.

Despite these differences, the resemblance does go
quite deep. In fact, the first RCU-like mechanism I am
aware of used a reference-count-based garbage collector
to handle the grace periods [KL80], and the connection
between RCU and garbage collection has been noted more
recently [SWS16].

The light-weight garbage collector use case is very
similar to the existence-guarantee use case, adding only
the desired non-blocking algorithm to the mix. This light-
weight garbage collector use case can also be used in
conjunction with the existence guarantees described in
the next section.

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 171

9.5.4.8 Delete-Only List

The delete-only list is the less-popular counterpart to the
add-only list covered in Section 9.5.4.4, and can be thought
of as the existence-guarantee use case, but without the
publish/subscribe component, as shown in Figure 9.23. A
delete-only list can be used when the universe of possible
members of the list is known at initialization, and where
members can be removed. For example, elements of the
list might represent hardware elements of the system that
are subject to failure, but cannot be repaired or replaced
without a reboot.

An delete-only variant of a pre-BSD routing table
can be derived from Listings 9.14 and 9.15. Because
there is no addition, the route_add() function may be
dispensed with, or, alternatively, its use might be restricted
to initialization time. In theory, the route_lookup()
function can use a non-RCU iterator, though in the Linux
kernel this will result in complaints from debug code. In
addition, the incremental cost of an RCU iterator is usually
negligible.

As a result, delete-only situations typically use algo-
rithms and data structures that are designed for addition
as well as deletion.

9.5.4.9 Quasi Reader-Writer Lock

Perhaps the most common use of RCU within the Linux
kernel is as a replacement for reader-writer locking in
read-intensive situations. Nevertheless, this use of RCU
was not immediately apparent to me at the outset. In
fact, I chose to implement a lightweight reader-writer
lock [HW92]17 before implementing a general-purpose
RCU implementation back in the early 1990s. Each and
every one of the uses I envisioned for the lightweight
reader-writer lock was instead implemented using RCU.
In fact, it was more than three years before the lightweight
reader-writer lock saw its first use. Boy, did I feel foolish!

The key similarity between RCU and reader-writer
locking is that both have read-side critical sections that
can execute concurrently. In fact, in some cases, it is
possible to mechanically substitute RCU API members
for the corresponding reader-writer lock API members.
But first, why bother?

Advantages of RCU include performance, deadlock
immunity, and realtime latency. There are, of course,
limitations to RCU, including the fact that readers and
updaters run concurrently, that low-priority RCU readers

17 Similar to brlock in the 2.4 Linux kernel and to lglock in more
recent Linux kernels.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

RCU

rwlock

N
an

os
ec

on
ds

 p
er

 o
pe

ra
tio

n

Number of CPUs (Threads)

Figure 9.25: Performance Advantage of RCU Over
Reader-Writer Locking

can block high-priority threads waiting for a grace period
to elapse, and that grace-period latencies can extend for
many milliseconds. These advantages and limitations are
discussed in the following paragraphs.

Performance The read-side performance advantages of
Linux-kernel RCU over reader-writer locking are shown in
Figure 9.25, which was generated on a 448-CPU 2.10 GHz
Intel x86 system.

Quick Quiz 9.59: WTF? How the heck do you expect me to
believe that RCU can have less than a 300-picosecond overhead
when the clock period at 2.10 GHz is almost 500 picoseconds?

Quick Quiz 9.60: Didn’t an earlier edition of this book show
RCU read-side overhead way down in the sub-picosecond
range? What happened???

Quick Quiz 9.61: Why is there such large variation for the
RCU trace in Figure 9.25?

Note that reader-writer locking is more than an order
of magnitude slower than RCU on a single CPU, and is
more than four orders of magnitude slower on 192 CPUs.
In contrast, RCU scales quite well. In both cases, the
error bars cover the full range of the measurements from
30 runs, with the line being the median.

A more moderate view may be obtained from a CONFIG_
PREEMPT kernel, though RCU still beats reader-writer
locking by between a factor of seven on a single CPU and
by three orders of magnitude on 192 CPUs, as shown in
Figure 9.26, which was generated on the same 448-CPU

v2024.12.27a

172 CHAPTER 9. DEFERRED PROCESSING

 1

 10

 100

 1000

 10000

 1 10 100

RCU

rwlock

N
an

os
ec

on
ds

 p
er

 o
pe

ra
tio

n

Number of CPUs (Threads)

Figure 9.26: Performance Advantage of Preemptible
RCU Over Reader-Writer Locking

 100

 1000

 10000

 100000

 100 1000 10000

RCU

rwlock 100 CPUs

10 CPUs

1 CPU

N
an

os
ec

on
ds

 p
er

 o
pe

ra
tio

n

Critical-Section Duration (nanoseconds)

Figure 9.27: Comparison of RCU to Reader-Writer Lock-
ing as Function of Critical-Section Duration, 192
CPUs

2.10 GHz x86 system. Note the high variability of reader-
writer locking at larger numbers of CPUs. The error bars
span the full range of data.

Quick Quiz 9.62: Given that the system had no fewer than
448 hardware threads, why only 192 CPUs?

Of course, the low performance of reader-writer locking
in Figures 9.25 and 9.26 is exaggerated by the unrealistic
zero-length critical sections. The performance advantages
of RCU decrease as the overhead of the critical sections
increase, as shown in Figure 9.27, which was run on
the same system as the previous plots. Here, the y-
axis represents the sum of the overhead of the read-side
primitives and that of the critical section and the x-axis

represents the critical-section overhead in nanoseconds.
But please note the logscale y axis, which means that
the small separations between the traces still represent
significant differences. This figure shows non-preemptible
RCU, but given that preemptible RCU’s read-side overhead
is only about three nanoseconds, its plot would be nearly
identical to Figure 9.27.

Quick Quiz 9.63: Why the larger error ranges for the
submicrosecond durations in Figure 9.27?

There are three traces for reader-writer locking, with the
upper trace being for 100 CPUs, the next for 10 CPUs, and
the lowest for 1 CPU. The greater the number of CPUs
and the shorter the critical sections, the greater is RCU’s
performance advantage. These performance advantages
are underscored by the fact that 100-CPU systems are no
longer uncommon and that a number of system calls (and
thus any RCU read-side critical sections that they contain)
complete within microseconds.

In addition, as is discussed in the next paragraph, RCU
read-side primitives are almost entirely deadlock-immune.

Deadlock Immunity Although RCU offers significant
performance advantages for read-mostly workloads, one of
the primary reasons for creating RCU in the first place was
in fact its immunity to read-side deadlocks. This immunity
stems from the fact that RCU read-side primitives do not
block, spin, or even do backwards branches, so that their
execution time is deterministic. It is therefore impossible
for them to participate in a deadlock cycle.

Quick Quiz 9.64: Is there an exception to this deadlock
immunity, and if so, what sequence of events could lead to
deadlock?

An interesting consequence of RCU’s read-side dead-
lock immunity is that it is possible to unconditionally
upgrade an RCU reader to an RCU updater. Attempting
to do such an upgrade with reader-writer locking results
in deadlock. A sample code fragment that does an RCU
read-to-update upgrade follows:

1 rcu_read_lock();
2 list_for_each_entry_rcu(p, &head, list_field) {
3 do_something_with(p);
4 if (need_update(p)) {
5 spin_lock(my_lock);
6 do_update(p);
7 spin_unlock(&my_lock);
8 }
9 }

10 rcu_read_unlock();

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 173

Note that do_update() is executed under the protec-
tion of the lock and under RCU read-side protection.

Another interesting consequence of RCU’s deadlock
immunity is its immunity to a large class of priority
inversion problems. For example, low-priority RCU
readers cannot prevent a high-priority RCU updater from
acquiring the update-side lock. Similarly, a low-priority
RCU updater cannot prevent high-priority RCU readers
from entering an RCU read-side critical section.

Quick Quiz 9.65: Immunity to both deadlock and priority
inversion??? Sounds too good to be true. Why should I believe
that this is even possible?

Realtime Latency Because RCU read-side primitives
neither spin nor block, they offer excellent realtime laten-
cies. In addition, as noted earlier, this means that they are
immune to priority inversion involving the RCU read-side
primitives and locks.

However, RCU is susceptible to more subtle priority-
inversion scenarios, for example, a high-priority process
blocked waiting for an RCU grace period to elapse can be
blocked by low-priority RCU readers in -rt kernels. This
can be solved by using RCU priority boosting [McK07d,
GMTW08].

However, use of RCU priority boosting requires that
rcu_read_unlock() do deboosting, which entails ac-
quiring scheduler locks. Some care is therefore required
within the scheduler and RCU to avoid deadlocks, which as
of the v5.15 Linux kernel requires RCU to avoid invoking
the scheduler while holding any of RCU’s locks.

This in turn means that rcu_read_unlock() is not
always lockless when RCU priority boosting is enabled.
However, rcu_read_unlock() will still be lockless if
its critical section was not priority-boosted. Furthermore,
critical sections will not be priority boosted unless they
are preempted, or, in -rt kernels, they acquire non-raw
spinlocks. This means that rcu_read_unlock() will
normally be lockless from the perspective of the highest
priority task running on any given CPU.

RCU Readers and Updaters Run Concurrently Be-
cause RCU readers never spin nor block, and because
updaters are not subject to any sort of rollback or abort
semantics, RCU readers and updaters really can run con-
currently. This means that RCU readers might access stale
data, and might even see inconsistencies, either of which
can render conversion from reader-writer locking to RCU
non-trivial.

RCU reader

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU readerRCU reader

RCU reader

RCU reader

spin rwlock writer

RCU updater

spin

spin

spin

Update Received

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU reader

RCU reader

Time

Figure 9.28: Response Time of RCU vs. Reader-Writer
Locking

However, in a surprisingly large number of situations,
inconsistencies and stale data are not problems. The
classic example is the networking routing table. Because
routing updates can take considerable time to reach a given
system (seconds or even minutes), the system will have
been sending packets the wrong way for quite some time
when the update arrives. It is usually not a problem to con-
tinue sending updates the wrong way for a few additional
milliseconds. Furthermore, because RCU updaters can
make changes without waiting for RCU readers to finish,
the RCU readers might well see the change more quickly
than would batch-fair reader-writer-locking readers, as
shown in Figure 9.28. This faster RCU response time has
since been corroborated (if perhaps a bit unrealistically)
by Markov-model analysis [RCY23, Figures 3 and 5].

Quick Quiz 9.66: But how many other algorithms really
tolerate stale and inconsistent data?

Once the update is received, the rwlock writer cannot
proceed until the last reader completes, and subsequent
readers cannot proceed until the writer completes. How-
ever, these subsequent readers are guaranteed to see the
new value, as indicated by the green shading of the right-
most boxes. In contrast, RCU readers and updaters do
not block each other, which permits the RCU readers to
see the updated values sooner. Of course, because their
execution overlaps that of the RCU updater, all of the RCU
readers might well see updated values, including the three
readers that started before the update. Nevertheless only
the green-shaded rightmost RCU readers are guaranteed
to see the updated values.

Reader-writer locking and RCU simply provide different
guarantees. With reader-writer locking, any reader that

v2024.12.27a

174 CHAPTER 9. DEFERRED PROCESSING

begins after the writer begins is guaranteed to see new
values, and any reader that attempts to begin while the
writer is spinning might or might not see new values,
depending on the reader/writer preference of the rwlock
implementation in question. In contrast, with RCU, any
reader that begins after the updater completes is guaranteed
to see new values, and any reader that completes after
the updater begins might or might not see new values,
depending on timing.

The key point here is that, although reader-writer lock-
ing does indeed guarantee consistency within the confines
of the computer system, there are situations where this
consistency comes at the price of increased inconsistency
with the outside world, courtesy of the finite speed of light
and the non-zero size of atoms. In other words, reader-
writer locking obtains internal consistency at the price of
silently stale data with respect to the outside world.

Note that if a value is computed while read-holding
a reader-writer lock, and then that value is used after
that lock is released, then this reader-writer-locking use
case is using stale data. After all, the quantities that this
value is based on could change at any time after that
lock is released. This sort of reader-writer-locking use
case is often easy to convert to RCU, as will be shown in
Listings 9.19, 9.20, and 9.21 and the accompanying text.

Low-Priority RCU Readers Can Block High-Pri-
ority Reclaimers In Realtime RCU [GMTW08] or
SRCU [McK06], a preempted reader will prevent a grace
period from completing, even if a high-priority task is
blocked waiting for that grace period to complete. Real-
time RCU can avoid this problem by substituting call_
rcu() for synchronize_rcu() or by using RCU priority
boosting [McK07d, GMTW08]. It might someday be nec-
essary to augment SRCU and RCU Tasks Trace with
priority boosting, but not before a clear real-world need is
demonstrated.
Quick Quiz 9.67: If Tasks RCU Trace might someday be
priority boosted, why not also Tasks RCU and Tasks RCU
Rude?

RCU Grace Periods Extend for Many Milliseconds
With the exception of userspace RCU [Des09b, MDJ13f],
expedited grace periods, and several of the “toy”
RCU implementations described in Appendix B, RCU
grace periods extend milliseconds. Although there
are a number of techniques to render such long de-
lays harmless, including use of the asynchronous in-
terfaces (call_rcu() and call_rcu_bh()) or of the

polling interfaces (get_state_synchronize_rcu(),
start_poll_synchronize_rcu(), and poll_state_
synchronize_rcu()), this situation is a major reason
for the rule of thumb that RCU be used in read-mostly
situations.

As noted in Section 9.5.3, within the Linux kernel,
shorter grace periods may be obtained via expedited grace
periods, for example, by invoking synchronize_rcu_
expedited() instead of synchronize_rcu(). Expe-
dited grace periods can reduce delays to as little as a few
tens of microseconds, albeit at the expense of higher CPU
utilization and IPIs. The added IPIs can be especially
unwelcome in some real-time workloads.

Code: Reader-Writer Locking vs. RCU In the best
case, the conversion from reader-writer locking to RCU is
quite simple, as shown in Listings 9.19, 9.20, and 9.21,
all taken from Wikipedia [MPA+06].

However, the transformation is not always this straight-
forward. This is because neither the spin_lock() nor the
synchronize_rcu() in Listing 9.21 exclude the read-
ers in Listing 9.20. First, the spin_lock() does not
interact in any way with rcu_read_lock() and rcu_
read_unlock(), thus not excluding them. Second, al-
though both write_lock() and synchronize_rcu()
wait for pre-existing readers, only write_lock() pre-
vents subsequent readers from commencing.18 Thus,
synchronize_rcu() cannot exclude readers. Neverthe-
less, a great many situations using reader-writer locking
can be converted to RCU.

More-elaborate cases of replacing reader-writer locking
with RCU may be found elsewhere [Bro15a, Bro15b].

Semantics: Reader-Writer Locking vs. RCU Expand-
ing on the previous section, reader-writer locking seman-
tics can be roughly and informally summarized by the
following three temporal constraints:

1. Write-side acquisitions wait for any read-holders to
release the lock.

2. Writer-side acquisitions wait for any write-holder to
release the lock.

3. Read-side acquisitions wait for any write-holder to
release the lock.

RCU dispenses entirely with constraint #3 and weakens
the other two as follows:

18 Kudos to whoever pointed this out to Paul.

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 175

Listing 9.19: Converting Reader-Writer Locking to RCU: Data
1 struct el { 1 struct el {
2 struct list_head lp; 2 struct list_head lp;
3 long key; 3 long key;
4 spinlock_t mutex; 4 spinlock_t mutex;
5 int data; 5 int data;
6 /* Other data fields */ 6 /* Other data fields */
7 }; 7 };
8 DEFINE_RWLOCK(listmutex); 8 DEFINE_SPINLOCK(listmutex);
9 LIST_HEAD(head); 9 LIST_HEAD(head);

Listing 9.20: Converting Reader-Writer Locking to RCU: Search
1 int search(long key, int *result) 1 int search(long key, int *result)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 read_lock(&listmutex); 5 rcu_read_lock();
6 list_for_each_entry(p, &head, lp) { 6 list_for_each_entry_rcu(p, &head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 *result = p->data; 8 *result = p->data;
9 read_unlock(&listmutex); 9 rcu_read_unlock();

10 return 1; 10 return 1;
11 } 11 }
12 } 12 }
13 read_unlock(&listmutex); 13 rcu_read_unlock();
14 return 0; 14 return 0;
15 } 15 }

Listing 9.21: Converting Reader-Writer Locking to RCU: Deletion
1 int delete(long key) 1 int delete(long key)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 write_lock(&listmutex); 5 spin_lock(&listmutex);
6 list_for_each_entry(p, &head, lp) { 6 list_for_each_entry(p, &head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 list_del(&p->lp); 8 list_del_rcu(&p->lp);
9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);

10 synchronize_rcu();
10 kfree(p); 11 kfree(p);
11 return 1; 12 return 1;
12 } 13 }
13 } 14 }
14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
15 return 0; 16 return 0;
16 } 17 }

v2024.12.27a

176 CHAPTER 9. DEFERRED PROCESSING

Listing 9.22: RCU Singleton Get
1 struct myconfig {
2 int a;
3 int b;
4 } *curconfig;
5
6 int get_config(int *cur_a, int *cur_b)
7 {
8 struct myconfig *mcp;
9

10 rcu_read_lock();
11 mcp = rcu_dereference(curconfig);
12 if (!mcp) {
13 rcu_read_unlock();
14 return 0;
15 }
16 *cur_a = mcp->a;
17 *cur_b = mcp->b;
18 rcu_read_unlock();
19 return 1;
20 }

1. Writers wait for any pre-existing read-holders before
progressing to the destructive phase of their update
(usually the freeing of memory).

2. Writers synchronize with each other as needed.

It is of course this weakening that permits RCU imple-
mentations to attain excellent performance and scalability.
It also allows RCU to implement the aforementioned un-
conditional read-to-write upgrade that is so attractive and
so deadlock-prone in reader-writer locking. Code using
RCU can compensate for this weakening in a surprisingly
large number of ways, but most commonly by imposing
spatial constraints:

1. New data is placed in newly allocated memory.

2. Old data is freed, but only after:

(a) That data has been unlinked so as to be inac-
cessible to later readers, and

(b) A subsequent RCU grace period has elapsed.

Of course, there are some reader-writer-locking use
cases for which RCU’s weakened semantics are inap-
propriate, but experience in the Linux kernel indicates
that more than 80% of reader-writer locks can in fact be
replaced by RCU. For example, a common reader-writer-
locking use case computes some value while holding the
lock and then uses that value after releasing that lock.
This use case results in stale data, and therefore often
accommodates RCU’s weaker semantics.

This interaction of temporal and spatial constraints is
illustrated by the RCU singleton data structure illustrated
in Figures 9.6 and 9.7. This structure is defined on

Listing 9.23: RCU Singleton Set
1 void set_config(int cur_a, int cur_b)
2 {
3 struct myconfig *mcp;
4
5 mcp = malloc(sizeof(*mcp));
6 BUG_ON(!mcp);
7 mcp->a = cur_a;
8 mcp->b = cur_b;
9 mcp = xchg(&curconfig, mcp);

10 if (mcp) {
11 synchronize_rcu();
12 free(mcp);
13 }
14 }

lines 1–4 of Listing 9.22, and contains two integer fields,
->a and ->b (singleton.c). The current instance of this
structure is referenced by the curconfig pointer defined
on line 4.

The fields of the current structure are passed back
through the cur_a and cur_b parameters to the get_
config() function defined on lines 6–20. These two
fields can be slightly out of date, but they absolutely
must be consistent with each other. The get_config()
function provides this consistency within the RCU read-
side critical section starting on line 10 and ending on
either line 13 or line 18, which provides the needed
temporal synchronization. Line 11 fetches the pointer to
the current myconfig structure. This structure will be
used regardless of any concurrent changes due to calls to
the set_config() function, thus providing the needed
spatial synchronization. If line 12 determines that the
curconfig pointer was NULL, line 14 returns failure.
Otherwise, lines 16 and 17 copy out the ->a and ->b
fields and line 19 returns success. These ->a and ->b
fields are from the same myconfig structure, and the
RCU read-side critical section prevents this structure from
being freed, thus guaranteeing that these two fields are
consistent with each other.

The structure is updated by the set_config() function
shown in Listing 9.23. Lines 5–8 allocate and initialize
a new myconfig structure. Line 9 atomically exchanges
a pointer to this new structure with the pointer to the old
structure in curconfig, while also providing full mem-
ory ordering both before and after the xchg() operation,
thus providing the needed updater/reader spatial synchro-
nization on the one hand and the needed updater/updater
synchronization on the other. If line 10 determines that the
pointer to the old structure was in fact non-NULL, line 11
waits for a grace period (thus providing the needed read-
er/updater temporal synchronization) and line 12 frees

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 177

the old structure, safe in the knowledge that there are no
longer any readers still referencing it.

Figure 9.29 shows an abbreviated representation of
get_config() on the left and right and a similarly ab-
breviated representation of set_config() in the middle.
Time advances from top to bottom, and the address space
of the objects referenced by curconfig advances from
left to right. The boxes with comma-separated numbers
each represent a myconfig structure, with the constraint
that ->b is the square of ->a. Each blue dash-dotted
arrow represents an interaction with the old structure (on
the left, containing “5,25”) and each green dashed arrow
represents an interaction with the new structure (on the
right, containing “9,81”).

The black dotted arrows represent temporal relation-
ships between RCU readers on the left and right and
the RCU grace period at center, with each arrow point-
ing from an older event to a newer event. The call to
synchronize_rcu() followed the leftmost rcu_read_
lock(), and therefore that synchronize_rcu() invoca-
tion must not return until after the corresponding rcu_
read_unlock(). In contrast, the call to synchronize_
rcu() precedes the rightmost rcu_read_lock(), which
allows the return from that same synchronize_rcu() to
ignore the corresponding rcu_read_unlock(). These
temporal relationships prevent the myconfig structures
from being freed while RCU readers are still accessing
them.

The two horizontal grey dashed lines represent the
period of time during which different readers get different
results, however, each reader will see one and only one
of the two objects. All readers that end before the first
horizontal line will see the leftmost myconfig structure,
and all readers that start after the second horizontal line
will see the rightmost structure. Between the two lines,
that is, during the grace period, different readers might
see different objects, but as long as each reader loads
the curconfig pointer only once, each reader will see a
consistent view of its myconfig structure.
Quick Quiz 9.68: But doesn’t the RCU grace period start
sometime after the call to synchronize_rcu() rather than
in the middle of that xchg() statement?

In short, when operating on a suitable linked data
structure, RCU combines temporal and spatial synchro-
nization in order to approximate reader-writer locking,
with RCU read-side critical sections acting as the reader-
writer-locking reader, as shown in Figures 9.23 and 9.29.
RCU’s temporal synchronization is provided by the read-
side markers, for example, rcu_read_lock() and rcu_

read_unlock(), as well as the update-side grace-period
primitives, for example, synchronize_rcu() or call_
rcu(). The spatial synchronization is provided by
the read-side rcu_dereference() family of primitives,
each of which subscribes to a version published by rcu_
assign_pointer().19 RCU’s combining of temporal
and spatial synchronization contrasts to the schemes pre-
sented in Sections 6.3.2, 6.3.3, and 7.1.4, in which tempo-
ral and spatial synchronization are provided separately by
locking and by static data-structure layout, respectively.
Quick Quiz 9.69: Is RCU the only synchronization mecha-
nism that combines temporal and spatial synchronization in
this way?

9.5.4.10 Quasi Reference Count

Because grace periods are not allowed to complete while
there is an RCU read-side critical section in progress,
the RCU read-side primitives may be used as a restricted
reference-counting mechanism. For example, consider
the following code fragment:

1 rcu_read_lock(); /* acquire reference. */
2 p = rcu_dereference(head);
3 /* do something with p. */
4 rcu_read_unlock(); /* release reference. */

The combination of the rcu_read_lock() and rcu_
dereference() primitives can be thought of as acquir-
ing a reference to p, because a grace period starting
after the rcu_dereference() assignment to p cannot
possibly end until after we reach the matching rcu_read_
unlock(). This reference-counting scheme is restricted
in that it is forbidden to wait for RCU grace periods within
RCU read-side critical sections, and also forbidden to
hand off an RCU read-side critical section’s references
from one task to another.

Regardless of these restrictions, the following code can
safely delete p:

1 spin_lock(&mylock);
2 p = head;
3 rcu_assign_pointer(head, NULL);
4 spin_unlock(&mylock);
5 /* Wait for all references to be released. */
6 synchronize_rcu();
7 kfree(p);

The assignment to head prevents any future references
to p from being acquired, and the synchronize_rcu()
waits for any previously acquired references to be released.

19 Preferably with both rcu_dereference() and rcu_assign_
pointer() being embedded in higher-level APIs.

v2024.12.27a

178 CHAPTER 9. DEFERRED PROCESSING

rcu_read_lock();
mcp = ...
*cur_a = mcp->a; (5)

*cur_b = mcp->b; (25)
rcu_read_unlock();

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...

kfree(mcp);

rcu_read_lock();
mcp = ...

*cur_a = mcp->a; (9)
*cur_b = mcp->b; (81)
rcu_read_unlock();

5,5,25 5,9,815,curconfig

Address Space

Time

R
e
a
d
e
rs

G
ra

ce
Pe

ri
o
d

R
e
a
d
e
rs

Figure 9.29: RCU Spatial/Temporal Synchronization

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

RCU

refcnt

N
an

os
ec

on
ds

 p
er

 o
pe

ra
tio

n

Number of CPUs (Threads)

Figure 9.30: Performance of RCU vs. Reference Counting

Quick Quiz 9.70: But wait! This is exactly the same code
that might be used when thinking of RCU as a replacement for
reader-writer locking! What gives?

Of course, RCU can also be combined with traditional
reference counting, as discussed in Section 13.2.

But why bother? Again, part of the answer is perfor-
mance, as shown in Figures 9.30 and 9.31, again show-
ing data taken on a 448-CPU 2.1 GHz Intel x86 system
for non-preemptible and preemptible Linux-kernel RCU,
respectively. Non-preemptible RCU’s advantage over
reference counting ranges from more than an order of
magnitude at one CPU up to about four orders of magni-
tude at 192 CPUs. Preemptible RCU’s advantage ranges

 1

 10

 100

 1000

 10000

 1 10 100

RCU

refcnt
N

an
os

ec
on

ds
 p

er
 o

pe
ra

tio
n

Number of CPUs (Threads)

Figure 9.31: Performance of Preemptible RCU vs. Refer-
ence Counting

from about a factor of three at one CPU up to about three
orders of magnitude at 192 CPUs.

However, as with reader-writer locking, the performance
advantages of RCU are most pronounced for short-duration
critical sections and for large numbers of CPUs, as shown
in Figure 9.32 for the same system. In addition, as with
reader-writer locking, many system calls (and thus any
RCU read-side critical sections that they contain) complete
in a few microseconds.

Although traditional reference counters are usually asso-
ciated with a specific data structure, or perhaps a specific
group of data structures, this approach does have some
disadvantages. For example, maintaining a single global

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 179

 100

 1000

 10000

 100000

 100 1000 10000

RCU

refcnt 100 CPUs

10 CPUs

1 CPU

N
an

os
ec

on
ds

 p
er

 o
pe

ra
tio

n

Critical-Section Duration (nanoseconds)

Figure 9.32: Response Time of RCU vs. Reference
Counting, 192 CPUs

reference counter for a large variety of data structures
typically results in bouncing the cache line containing the
reference count. As we saw in Figures 9.30–9.32, such
cache-line bouncing can severely degrade performance.

In contrast, RCU’s lightweight rcu_read_lock(),
rcu_dereference(), and rcu_read_unlock() read-
side primitives permit extremely frequent read-side usage
with negligible performance degradation. Except that the
calls to rcu_dereference() are not doing anything spe-
cific to acquire a reference to the pointed-to object. The
heavy lifting is instead done by the rcu_read_lock()
and rcu_read_unlock() primitives and their interac-
tions with RCU grace periods.

And ignoring those calls to rcu_dereference() per-
mits RCU to be thought of as a “bulk reference-counting”
mechanism, where each call to rcu_read_lock() ob-
tains a reference on each and every RCU-protected object,
and with little or no overhead. However, the restrictions
that go with RCU can be quite onerous. For example, in
many cases, the Linux-kernel prohibition against sleeping
while in an RCU read-side critical section would defeat
the entire purpose. Such cases might be better served by
the hazard pointers mechanism described in Section 9.3.
Cases where code rarely sleeps have been handled by using
RCU as a reference count in the common non-sleeping
case and by bridging to an explicit reference counter when
sleeping is necessary.

Alternatively, situations where a reference must be held
by a single task across a section of code that sleeps may
be accommodated with Sleepable RCU (SRCU) [McK06].
This fails to cover the not-uncommon situation where
a reference is “passed” from one task to another, for

example, when a reference is acquired when starting an
I/O and released in the corresponding completion interrupt
handler. Again, such cases might be better handled by
explicit reference counters or by hazard pointers.

Of course, SRCU brings restrictions of its own, namely
that the return value from srcu_read_lock() be passed
into the corresponding srcu_read_unlock(), and that
no SRCU primitives be invoked from hardware interrupt
handlers or from non-maskable interrupt (NMI) handlers.
The jury is still out as to how much of a problem is
presented by this restriction, and as to how it can best be
handled.

However, in the common case where references are
held within the confines of a single CPU or task, RCU
can be used as high-performance and highly scalable
reference-counting mechanism.

As shown in Figure 9.23, quasi reference counts add
RCU readers as individual or bulk reference counts, pos-
sibly also bridging to reference counters in corner cases.

9.5.4.11 Quasi Multi-Version Concurrency Control

RCU can also be thought of as a simplified multi-version
concurrency control (MVCC) mechanism with weak con-
sistency criteria. The multi-version aspects were touched
upon in Section 9.5.2.3. However, in its native form,
RCU provides version consistency only within a given
RCU-protected data element.

Nevertheless, there are situations where consistency
and fresh data are required across multiple data elements.
Fortunately, there are a number of approaches that avoid
inconsistency and stale data, including the following:

1. Enclose RCU readers within sequence-locking read-
ers, forcing the RCU readers to be retried should
an update occur, as described in Section 13.4.2 and
Section 13.4.3.

2. Place the data that must be consistent into a single
element of a linked data structure, and refrain from
updating those fields within any element visible to
RCU readers. RCU readers gaining a reference to any
such element are then guaranteed to see consistent
values. See Section 13.5.4 for additional details.

3. Use a per-element lock that guards a “deleted” flag
to allow RCU readers to reject stale data [McK04,
ACMS03].

4. Provide an existence flag that is referenced by all data
elements whose update is to appear atomic to RCU

v2024.12.27a

180 CHAPTER 9. DEFERRED PROCESSING

readers [McK14d, McK14a, McK15b, McK16b,
McK16a].

5. Use one of a wide range of counter-based meth-
ods [McK08a, McK10, MW11, McK14b, MSFM15,
KMK+19]. In these approaches, updaters maintain
a version number and maintain links to old versions
of a given piece of data. Readers take a snapshot
of the current version number, and, if necessary, tra-
verse the links to find a version consistent with that
snapshot.

In short, when using RCU to approximate multi-version
concurrency control, you only pay for the level of consis-
tency that you actually need.

As shown in Figure 9.23, quasi multi-version concur-
rency control is based on existence guarantees, adding
read-side snapshot operations and constraints on readers
and writers, the exact form of the constraint being dictated
by the consistency requirements, as summarized above.

9.5.4.12 RCU Usage Summary

At its core, RCU is nothing more nor less than an API that
provides:

1. A publish-subscribe mechanism for adding new data,

2. A way of waiting for pre-existing RCU readers to
finish, and

3. A discipline of maintaining multiple versions to
permit change without harming or unduly delaying
concurrent RCU readers.

That said, it is possible to build higher-level constructs
on top of RCU, including the various use cases described
in the earlier sections. Furthermore, I have no doubt that
new use cases will continue to be found for RCU, as well
as for any of a number of other synchronization primitives.
And so it is that RCU’s use cases are conceptually more
complex than is RCU itself, as hinted on page 131.
Quick Quiz 9.71: Which of these use cases best describes
the Pre-BSD routing example in Section 9.5.4.1?

In the meantime, Figure 9.33 shows some rough rules
of thumb on where RCU is most helpful.

As shown in the blue box in the upper-right corner of
the figure, RCU works best if you have read-mostly data
where stale and inconsistent data is permissible (but see
below for more information on stale and inconsistent data).
The canonical example of this case in the Linux kernel is

Need Fully Fresh and Consistent Data

R
ead-M

ostly, S
tale

&
 Inconsistent D

ata O
K

(R
C

U
 W

orks G
reat!!!)

(R
C

U
 W

orks W
ell)

R
ead-M

ostly,

N
eed C

onsistent D
ata

R
ead-W

rite,

N
eed C

onsistent D
ata

(R
C

U
 M

ight B
e O

K
...)

W
rite-M

ostly,

N
eed C

onsistent D
ata

(R
C

U
 N

ot B
est)*

1
0
0
%

 W
ri
te

s

1
0
0
%

 R
e
a
d
s

Stale and Inconsistent Data OK

Pre-BSD Routing Table

* 1. RCU provides ABA protection for update-friendly synchronization mechanisms
* 2. RCU provides bounded wait-free read-side primitives for real-time use

Figure 9.33: RCU Areas of Applicability

routing tables. Because it may have taken many seconds
or even minutes for the routing updates to propagate
across the Internet, the system has been sending packets
the wrong way for quite some time. Having some small
probability of continuing to send some of them the wrong
way for a few more milliseconds is almost never a problem.

If you have a read-mostly workload where consistent
data is required, RCU works well, as shown by the green
“read-mostly, need consistent data” box. One example of
this case is the Linux kernel’s mapping from user-level
System-V semaphore IDs to the corresponding in-kernel
data structures. Semaphores tend to be used far more
frequently than they are created and destroyed, so this
mapping is read-mostly. However, it would be erroneous
to perform a semaphore operation on a semaphore that
has already been deleted. This need for consistency is
handled by using the lock in the in-kernel semaphore data
structure, along with a “deleted” flag that is set when
deleting a semaphore. If a user ID maps to an in-kernel
data structure with the “deleted” flag set, the data structure
is ignored, so that the user ID is flagged as invalid.

Although this requires that the readers acquire a lock
for the data structure representing the semaphore itself, it
allows them to dispense with locking for the mapping data
structure. The readers therefore locklessly traverse the
tree used to map from ID to data structure, which in turn
greatly improves performance, scalability, and real-time
response.

As indicated by the yellow “read-write” box, RCU can
also be useful for read-write workloads where consistent
data is required, although usually in conjunction with a
number of other synchronization primitives. For example,
the directory-entry cache in recent Linux kernels uses

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 181

RCU in conjunction with sequence locks, per-CPU locks,
and per-data-structure locks to allow lockless traversal of
pathnames in the common case. Although RCU can be
very beneficial in this read-write case, the corresponding
code is often more complex than that of the read-mostly
cases.

Finally, as indicated by the red box in the lower-left
corner of the figure, update-mostly workloads requiring
consistent data are rarely good places to use RCU, though
there are some exceptions [DMS+12a]. For example,
as noted in Section 9.5.4.5, within the Linux kernel,
the SLAB_TYPESAFE_BY_RCU slab-allocator flag provides
type-safe memory to RCU readers, which can greatly
simplify non-blocking synchronization and other lockless
algorithms. In addition, if the rare readers are on critical
code paths on real-time systems, use of RCU for those
readers might provide real-time response benefits that
more than make up for the increased update-side overhead,
as discussed in Section 14.3.6.5.

In short, RCU is an API that includes a publish-
subscribe mechanism for adding new data, a way of
waiting for pre-existing RCU readers to finish, and a disci-
pline of maintaining multiple versions to allow updates
to avoid harming or unduly delaying concurrent RCU
readers. This RCU API is best suited for read-mostly
situations, especially if stale and inconsistent data can be
tolerated by the application.

9.5.5 RCU Related Work

The first known mention of anything resembling RCU
took the form of a bug report from Donald Knuth [Knu73,
page 413 of Fundamental Algorithms] against Joseph
Weizenbaum’s SLIP list-processing facility for FOR-
TRAN [Wei63]. Knuth was justified in reporting the
bug, as SLIP had no notion of any sort of grace-period
guarantee.

The first known non-bug-report mention of anything
resembling RCU appeared in Kung’s and Lehman’s land-
mark paper [KL80]. There was some additional use of
this technique in academia [ML82, ML84, Lis88, Pug90,
And91, PAB+95, CAK+96, RSB+97, GKAS99], but much
of the work in this area was instead carried out by prac-
titioners [RTY+87, HOS89, Jac93, Joh95, SM95, SM97,
SM98, MS98a].

Quick Quiz 9.72: Garbage collectors? Passive serialization?
System reference points? Quiescent states? Aging? Genera-
tions? Why on earth couldn’t the knuckleheads working on

these early papers bring themselves to agree on a common
terminology???

By the year 2000, the initiative had passed to open-
source projects, most notably the Linux kernel com-
munity [Rus00a, Rus00b, MS01, MAK+01, MSA+02,
ACMS03].20 RCU was accepted into the Linux kernel in
late 2002, with many subsequent improvements for scala-
bility, robustness, real-time response, energy efficiency,
and specialized use cases. As of 2023, Linux-kernel RCU
is still under active development.

Quick Quiz 9.73: Why didn’t Kung’s and Lehman’s paper
result in immediate use of RCU?

However, in the mid 2010s, there was a welcome up-
surge in RCU research and development across a number
of communities and institutions [Kaa15]. Section 9.5.5.1
describes uses of RCU, Section 9.5.5.2 describes RCU im-
plementations (as well as work that both creates and uses
an implementation), and finally, Section 9.5.5.3 describes
verification and validation of RCU and its uses.

9.5.5.1 RCU Uses

Phil Howard and Jon Walpole of Portland State Univer-
sity (PSU) have applied RCU to red-black trees [How12,
HW11] combined with updates synchronized using soft-
ware transactional memory. Josh Triplett and Jon
Walpole (again of PSU) applied RCU to resizable hash
tables [Tri12, TMW11, Cor14c, Cor14d]. Other RCU-
protected resizable hash tables have been created by Her-
bert Xu [Xu10] and by Mathieu Desnoyers [MDJ13c].

Austin Clements, Frans Kaashoek, and Nickolai Zel-
dovich of MIT created an RCU-optimized balanced bi-
nary tree (Bonsai) [CKZ12], and applied this tree to the
Linux kernel’s VM subsystem in order to reduce read-side
contention on the Linux kernel’s mmap_sem. This work
resulted in order-of-magnitude speedups and scalability up
to at least 80 CPUs for a microbenchmark featuring large
numbers of minor page faults. This is similar to a patch de-
veloped earlier by Peter Zĳlstra [Zĳ14], and both were lim-
ited by the fact that, at the time, filesystem data structures
were not safe for RCU readers. Clements et al. avoided
this limitation by optimizing the page-fault path for anony-
mous pages only. More recently, filesystem data structures
have been made safe for RCU readers [Cor10a, Cor11],
so perhaps this work can be implemented for all page
types, not just anonymous pages—Peter Zĳlstra has, in

20 A list of citations with well over 200 entries may be found in
bib/RCU.bib in the LATEX source for this book.

v2024.12.27a

182 CHAPTER 9. DEFERRED PROCESSING

fact, recently prototyped exactly this, and Laurent Dufour
Michel Lespinasse have continued work along these lines.
For their part, Matthew Wilcox and Liam Howlett are
working towards use of RCU to enable fine-grained lock-
ing of and lockless access to other memory-management
data structures.

Yandong Mao and Robert Morris of MIT and Ed-
die Kohler of Harvard University created another RCU-
protected tree named Masstree [MKM12] that combines
ideas from B+ trees and tries. Although this tree is about
2.5x slower than an RCU-protected hash table, it supports
operations on key ranges, unlike hash tables. In addition,
Masstree supports efficient storage of objects with long
shared key prefixes and, furthermore, provides persistence
via logging to mass storage.

The paper notes that Masstree’s performance rivals
that of memcached, even given that Masstree is persis-
tently storing updates and memcached is not. The paper
also compares Masstree’s performance to the persistent
datastores MongoDB, VoltDB, and Redis, reporting sig-
nificant performance advantages for Masstree, in some
cases exceeding two orders of magnitude. Another pa-
per [TZK+13], by Stephen Tu, Wenting Zheng, Barbara
Liskov, and Samuel Madden of MIT and Kohler, applies
Masstree to an in-memory database named Silo, achiev-
ing 700K transactions per second (42M transactions per
minute) on a well-known transaction-processing bench-
mark. Interestingly enough, Silo guarantees linearizability
without incurring the overhead of grace periods while
holding locks.

Maya Arbel and Hagit Attiya of Technion took a more
rigorous approach [AA14] to an RCU-protected search
tree that, like Masstree, allows concurrent updates. This
paper includes a proof of correctness, including proof
that all operations on this tree are linearizable. Unfor-
tunately, this implementation achieves linearizability by
incurring the full latency of grace-period waits while
holding locks, which degrades scalability of update-only
workloads. One way around this problem is to abandon
linearizability [HKLP12, McK14d], however, Arbel and
Attiya instead created an RCU variant that reduces low-
end grace-period latency. Of course, nothing comes for
free, and this RCU variant appears to hit a scalability
limit at about 32 CPUs. Although there is much to be
said for dropping linearizability, thus gaining both perfor-
mance and scalability, it is very good to see academics
experimenting with alternative RCU implementations.

9.5.5.2 RCU Implementations

Timothy Harris created a time-based user-space
RCU [Har01] that improves on those created previously
by Jacobson [Jac93] and John [Joh95]. These prior two
time-based approaches each assume a sharp upper bound
on reader duration, which can work correctly in hard
real-time systems. In non-real-time systems, this type
of approach is subject to failure when readers are inter-
rupted, preempted, or otherwise delayed. However, the
fact that such a failure-prone implementation would be
independently invented twice shows the depth of the need
for RCU-like mechanisms. Timothy Harris improves
upon these two earlier efforts by requiring each reader to
take a snapshot of a global timebase before starting its
read-side traversal. Freeing a reader-visible object is then
deferred until all processes’ reader snapshots indicate a
time following that of the removal of that object. However,
global timebases can be expensive and inaccurate on some
systems.

Keir Fraser created a user-space RCU named EBR
for use in non-blocking synchronization and software
transactional memory [Fra03, Fra04, FH07]. This work
improves on that of Timothy Harris by replacing the global
clock with a software counter, thus eliminating much of
the expense and all of the inaccuracy associated with
commodity-system global clocks of that time. Interest-
ingly enough, this work cites Linux-kernel RCU on the
one hand, but also inspired the name QSBR for the original
non-preemptible Linux-kernel RCU implementation.

Mathieu Desnoyers created a user-space RCU for use in
tracing [Des09b, Des09a, DMS+12a, MDJ13f, MDJ13c,
MDJ13b, MDJ13d, MDJ13e, MDJ13h, MDJT13b,
MDJ13g, MDJ13a, MDJT13a], which has seen use in
a number of projects [BD13].

Researchers at Charles University in Prague have
also been working on RCU implementations, including
dissertations by Andrej Podzimek [Pod10] and Adam
Hraska [Hra13].

Yujie Liu (Lehigh University), Victor Luchangco (Or-
acle Labs), and Michael Spear (also Lehigh) [LLS13]
pressed scalable non-zero indicators (SNZI) [ELLM07]
into service as a grace-period mechanism. The intended
use is to implement software transactional memory (see
Section 17.2), which imposes linearizability requirements,
which in turn seems to limit scalability.

RCU-like mechanisms are also finding their way into
Java. Sivaramakrishnan et al. [SZJ12] use an RCU-like
mechanism to eliminate the read barriers that are otherwise

v2024.12.27a

9.5. READ-COPY UPDATE (RCU) 183

required when interacting with Java’s garbage collector,
resulting in significant performance improvements.

Ran Liu, Heng Zhang, and Haibo Chen of Shanghai
Jiao Tong University created a specialized variant of RCU
that they used for an optimized “passive reader-writer
lock” [LZC14], similar to those created by Gautham
Shenoy [She06] and Srivatsa Bhat [Bha14]. The Liu
et al. paper is interesting from a number of perspec-
tives [McK14g].

Mike Ash posted [Ash15] a description of an RCU-like
primitive in Apple’s Objective-C runtime. This approach
identifies read-side critical sections via designated code
ranges, thus qualifying as another method of achieving
zero read-side overhead, albeit one that poses some in-
teresting practical challenges for large read-side critical
sections that span multiple functions.

Pedro Ramalhete and Andreia Correia [RC15] pro-
duced “Poor Man’s RCU”, which, despite using a pair of
reader-writer locks, manages to provide lock-free forward-
progress guarantees to readers [MP15a].

Maya Arbel and Adam Morrison [AM15] produced
“Predicate RCU”, which works hard to reduce grace-period
duration in order to efficiently support algorithms that
hold update-side locks across grace periods. This results
in reduced batching of updates into grace periods and
reduced scalability, but does succeed in providing short
grace periods.
Quick Quiz 9.74: Why not just drop the lock before waiting
for the grace period, or using something like call_rcu()
instead of waiting for a grace period?

Alexander Matveev (MIT), Nir Shavit (MIT and Tel-
Aviv University), Pascal Felber (University of Neuchâ-
tel), and Patrick Marlier (also University of Neuchâ-
tel) [MSFM15] produced an RCU-like mechanism that
can be thought of as software transactional memory that
explicitly marks read-only transactions. Their use cases
require holding locks across grace periods, which lim-
its scalability [MP15a, MP15b]. This appears to be the
first academic RCU-related work to make good use of the
rcutorture test suite, and also the first to have submitted
a performance improvement to Linux-kernel RCU, which
was accepted into v4.4.

Alexander Matveev’s RLU was followed up by MV-
RLU from Jaeho Kim et al. [KMK+19]. This work im-
proves scalability over RLU by permitting multiple concur-
rent updates, by avoiding holding locks across grace peri-
ods, and by using asynchronous grace periods, for example,
call_rcu() instead of synchronize_rcu(). This pa-
per also made some interesting performance-evaluation

choices that are discussed further in Section 17.2.3.3 on
page 395.

Adam Belay et al. created an RCU implementation that
guards the data structures used by TCP/IP’s address-
resolution protocol (ARP) in their IX operating sys-
tem [BPP+16].

Geoff Romer and Andrew Hunter (both at Google)
proposed a cell-based API for RCU protection of singleton
data structures for inclusion in the C++ standard [RH18].

Dimitrios Siakavaras et al. have applied HTM and RCU
to search trees [SNGK17, SBN+20], Christina Giannoula
et al. have used HTM and RCU to color graphs [GGK18],
and SeongJae Park et al. have used HTM and RCU to
optimize high-contention locking on NUMA systems.

Alex Kogan et al. applied RCU to the construction of
range locking for scalable address spaces [KDI20].

On June 17, 2023, the ISO C++ Standards committee
voted RCU into C++26 [MWM+23a].

Production uses of RCU are listed in Section 9.6.3.3.

9.5.5.3 RCU Validation

In early 2017, it is commonly recognized that almost
any bug is a potential security exploit, so validation and
verification are first-class concerns.

Researchers at Stony Brook University have produced an
RCU-aware data-race detector [Dug10, Sey12, SRK+11].
Alexey Gotsman of IMDEA, Noam Rinetzky of Tel Aviv
University, and Hongseok Yang of the University of Oxford
have published a paper [GRY12] expressing the formal
semantics of RCU in terms of separation logic, and have
continued with other aspects of concurrency.

Joseph Tassarotti (Carnegie-Mellon University), Derek
Dreyer (Max Planck Institute for Software Systems), and
Viktor Vafeiadis (also MPI-SWS) [TDV15] produced a
manual formal proof of correctness of the quiescent-
state-based reclamation (QSBR) variant of userspace
RCU [Des09b, DMS+12a]. Lihao Liang (University of
Oxford), Paul E. McKenney (IBM), Daniel Kroening,
and Tom Melham (both also Oxford) [LMKM16] used
the C bounded model checker (CBMC) [CKL04] to pro-
duce a mechanical proof of correctness of a significant
portion of Linux-kernel Tree RCU. Lance Roy [Roy17]
used CBMC to produce a similar proof of correctness
for a significant portion of Linux-kernel sleepable RCU
(SRCU) [McK06]. Finally, Michalis Kokologiannakis and
Konstantinos Sagonas (National Technical University of
Athens) [KS17a, KS19] used the Nighugg tool [LSLK14]
to produce a mechanical proof of correctness of a some-
what larger portion of Linux-kernel Tree RCU.

v2024.12.27a

184 CHAPTER 9. DEFERRED PROCESSING

None of these efforts located any bugs other than bugs
injected into RCU specifically to test the verification
tools. In contrast, Alex Groce (Oregon State University),
Iftekhar Ahmed, Carlos Jensen (both also OSU), and Paul
E. McKenney (IBM) [GAJM15] automatically mutated
Linux-kernel RCU’s source code to test the coverage of
the rcutorture test suite. The effort found several holes
in this suite’s coverage, one of which was hiding a real
bug (since fixed) in Tiny RCU.

With some luck, all of this validation work will eventu-
ally result in more and better tools for validating concurrent
code.

9.6 Which to Choose?

Choose always the way that seems the best, however

rough it may be; custom will soon render it easy and

agreeable.

Pythagoras

Section 9.6.1 provides a high-level overview and then Sec-
tion 9.6.2 provides a more detailed view of the differences
between the deferred-processing techniques presented
in this chapter. This discussion assumes a linked data
structure that is large enough that readers do not hold ref-
erences from one traversal to another, and where elements
might be added to and removed from the structure at any
location and at any time. Section 9.6.3 then points out a
few publicly visible production uses of hazard pointers,
sequence locking, and RCU. This discussion should help
you to make an informed choice between these techniques.

9.6.1 Which to Choose? (Overview)
Table 9.7 shows a few high-level properties that distinguish
the deferred-reclamation techniques from one another.

The “Readers” row summarizes the results presented in
Figure 9.22, which shows that all but reference counting
enjoy reasonably fast and scalable readers.

The “Memory Overhead” row evaluates each tech-
nique’s need for external storage with which to record
reader protection. RCU relies on quiescent states, and
thus needs no storage to represent readers, whether within
or outside of the object. Reference counting can use a
single integer within each object in the structure, and no
additional storage is required. Hazard pointers require
external-to-object pointers be provisioned, and that there
be sufficient pointers for each CPU or thread to track all

the objects being referenced at any given time. Given that
most hazard-pointer-based traversals require only a few
hazard pointers, this is not normally a problem in practice.
Of course, sequence locks provides no pointer-traversal
protection, which is why it is normally used on static data.
Quick Quiz 9.75: Why can’t users dynamically allocate the
hazard pointers as they are needed?

The “Duration of Protection” describes constraints (if
any) on how long a period of time a user may protect a
given object. Reference counting and hazard pointers can
both protect objects for extended time periods with no
untoward side effects, but maintaining an RCU reference
to even one object prevents all other RCU from being freed.
RCU readers must therefore be relatively short in order
to avoid running the system out of memory, with special-
purpose implementations such as SRCU, Tasks RCU, and
Tasks Trace RCU being exceptions to this rule. Again,
sequence locks provide no pointer-traversal protection,
which is why it is normally used on static data.

The “Need for Traversal Retries” row tells whether a
new reference to a given object may be acquired uncon-
ditionally, as it can with RCU, or whether the reference
acquisition can fail, resulting in a retry operation, which
is the case for reference counting, hazard pointers, and
sequence locks. In the case of reference counting and
hazard pointers, retries are only required if an attempt to
acquire a reference to a given object while that object is in
the process of being deleted, a topic covered in more detail
in the next section. Sequence locking must of course retry
its critical section should it run concurrently with any
update.
Quick Quiz 9.76: But don’t Linux-kernel kref reference
counters allow guaranteed unconditional reference acquisition?

The “Reclamation Timing” gives the minimum delay
from the time that the last reader finishes with a removed
object to the time that this removed object may be freed.
Reference counting is the only technique capable of freeing
immediately after the last reader finishes. This advantage
is of course the flip side of the big reference-counting
disadvantage, that its readers are slow and unscalable.
In theory, hazard pointers could also reclaim immedi-
ately, but in practice production-quality hazard-pointers
implementations use batching to amortize the overhead of
scanning the hazard pointers over many updates, and this
batching incurs further delays. RCU must wait for all pre-
existing readers to complete, regardless of whether or not
those readers are in any way related to the newly removed

v2024.12.27a

9.6. WHICH TO CHOOSE? 185

Table 9.7: Which Deferred Technique to Choose? (Overview)

Property Reference Counting Hazard Pointers Sequence Locks RCU

Readers Slow and unscalable Fast and scalable Fast and scalable Fast and scalable
Memory Overhead Counter per object Pointer per

reader per object
No protection None

Duration of Protection Can be long Can be long No protection User must bound
duration

Need for Traversal
Retries

If object deleted If object deleted If any update Never

Reclamation Timing Immediate Batching delays N/A Pre-existing readers
done plus batching
delays

object, and then, as with hazard pointers, production-
quality RCU implementations incur additional delays due
to batching.

Of course, different rows will have different levels of
importance in different situations. For example, if your
current code is having read-side scalability problems with
hazard pointers, then it does not matter that hazard pointers
can require retrying reference acquisition because your
current code already handles this. Similarly, if response-
time considerations already limit the duration of reader
traversals, as is often the case in kernels and low-level
applications, then it does not matter that RCU has duration-
limit requirements because your code already meets them.
In the same vein, if readers must already write to the
objects that they are traversing, the read-side overhead of
reference counters might not be so important. Of course, if
the data to be protected is in statically allocated variables,
then sequence locking’s inability to protect pointers is
irrelevant.

Finally, there is some work on dynamically switching
between hazard pointers and RCU based on dynamic
sampling of delays [BGHZ16]. This defers the choice be-
tween hazard pointers and RCU to runtime, and delegates
responsibility for the decision to the software.

Nevertheless, this table should be of great help when
choosing between these techniques. But those wishing
more detail should continue on to the next section.

9.6.2 Which to Choose? (Details)
Table 9.8 provides more-detailed rules of thumb that
can help you choose among the four deferred-processing
techniques presented in this chapter.

As shown in the “Existence Guarantee” row, if you
need existence guarantees for linked data elements, you
must use reference counting, hazard pointers, or RCU. Se-

quence locks do not provide existence guarantees, instead
providing detection of updates, retrying any read-side
critical sections that do encounter an update.

Of course, as shown in the “Updates and Readers
Progress Concurrently” row, this detection of updates
implies that sequence locking does not permit updaters
and readers to make forward progress concurrently. After
all, preventing such forward progress is the whole point
of using sequence locking in the first place! This situation
points the way to using sequence locking in conjunction
with reference counting, hazard pointers, or RCU in order
to provide both existence guarantees and update detection.
In fact, the Linux kernel combines RCU and sequence
locking in this manner during pathname lookup.

The “Contention Among Readers”, “Reader Per-
Critical-Section Overhead”, and “Reader Per-Object Tra-
versal Overhead” rows give a rough sense of the read-side
overhead of these techniques. The overhead of reference
counting can be quite large, with contention among read-
ers along with a fully ordered read-modify-write atomic
operation required for each and every object traversed.
Hazard pointers incur the overhead of a memory barrier for
each data element traversed, and sequence locks incur the
overhead of a pair of memory barriers for each attempt to
execute the critical section. The overhead of RCU imple-
mentations vary from nothing to that of a pair of memory
barriers for each read-side critical section, thus providing
RCU with the best performance, particularly for read-side
critical sections that traverse many data elements. Of
course, the read-side overhead of all deferred-processing
variants can be reduced by batching, so that each read-side
operation covers more data.

Quick Quiz 9.77: But didn’t the answer to one of the quick
quizzes in Section 9.3 say that pairwise asymmetric barriers

v2024.12.27a

186 CHAPTER 9. DEFERRED PROCESSING

Table 9.8: Which Deferred Technique to Choose? (Details)

Property Reference Counting Hazard
Pointers

Sequence
Locks

RCU

Existence Guarantees Complex Yes No Yes
Updates and Readers
Progress Concurrently

Yes Yes No Yes

Contention Among
Readers

High None None None

Reader Per-Critical-
Section Overhead

N/A N/A Two
smp_mb()

Ranges from none
to two smp_mb()

Reader Per-Object
Traversal Overhead

Read-modify-write atomic
operations, memory-barrier
instructions, and cache
misses

smp_mb()* None, but
unsafe

None (volatile
accesses)

Reader Forward Progress
Guarantee

Lock free Lock free Blocking Bounded wait free

Reader Reference
Acquisition

Can fail (conditional) Can fail
(conditional)

Unsafe Cannot fail
(unconditional)

Memory Footprint Bounded Bounded Bounded Unbounded
Reclamation Forward
Progress

Lock free Lock free N/A Blocking

Automatic Reclamation Yes Use Case N/A Use Case
Lines of Code 94 79 79 73

* This smp_mb() can be downgraded to a compiler barrier() by using the Linux-kernel membarrier()
system call.

could eliminate the read-side smp_mb() from hazard pointers?

The “Reader Forward Progress Guarantee” row shows
that only RCU has a bounded wait-free forward-progress
guarantee, which means that it can carry out a finite
traversal by executing a bounded number of instructions.

The “Reader Reference Acquisition” row indicates that
only RCU is capable of unconditionally acquiring refer-
ences. The entry for sequence locks is “Unsafe” because,
again, sequence locks detect updates rather than acquiring
references. Reference counting and hazard pointers both
require that traversals be restarted from the beginning if a
given acquisition fails. To see this, consider a linked list
containing objects A, B, C, and D, in that order, and the
following series of events:

1. A reader acquires a reference to object B.

2. An updater removes object B, but refrains from
freeing it because the reader holds a reference. The
list now contains objects A, C, and D, and object B’s
->next pointer is set to HAZPTR_POISON.

3. The updater removes object C, so that the list now
contains objects A and D. Because there is no
reference to object C, it is immediately freed.

4. The reader tries to advance to the successor of the
object following the now-removed object B, but the
poisoned ->next pointer prevents this. Which is
a good thing, because object B’s ->next pointer
would otherwise point to the freelist.

5. The reader must therefore restart its traversal from
the head of the list.

Thus, when failing to acquire a reference, a hazard-
pointer or reference-counter traversal must restart that
traversal from the beginning. In the case of nested linked
data structures, for example, a tree containing linked
lists, the traversal must be restarted from the outermost
data structure. This situation gives RCU a significant
ease-of-use advantage.

However, RCU’s ease-of-use advantage does not come
for free, as can be seen in the “Memory Footprint” row.
RCU’s support of unconditional reference acquisition
means that it must avoid freeing any object reachable by a

v2024.12.27a

9.6. WHICH TO CHOOSE? 187

given RCU reader until that reader completes. RCU there-
fore has an unbounded memory footprint, at least unless
updates are throttled. In contrast, reference counting and
hazard pointers need to retain only those data elements
actually referenced by concurrent readers.

This tension between memory footprint and acquisition
failures is sometimes resolved within the Linux kernel by
combining use of RCU and reference counters. RCU is
used for short-lived references, which means that RCU
read-side critical sections can be short. These short
RCU read-side critical sections in turn mean that the
corresponding RCU grace periods can also be short, which
limits the memory footprint. For the few data elements that
need longer-lived references, reference counting is used.
This means that the complexity of reference-acquisition
failure only needs to be dealt with for those few data
elements: The bulk of the reference acquisitions are
unconditional, courtesy of RCU. See Section 13.2 for
more information on combining reference counting with
other synchronization mechanisms.

The “Reclamation Forward Progress” row shows
that hazard pointers can provide non-blocking up-
dates [Mic04a, HLM02]. Reference counting might or
might not, depending on the implementation. However,
sequence locking cannot provide non-blocking updates,
courtesy of its update-side lock. RCU updaters must
wait on readers, which also rules out fully non-blocking
updates. However, there are situations in which the only
blocking operation is a wait to free memory, which re-
sults in a situation that, for many purposes, is as good as
non-blocking [DMS+12a].

As shown in the “Automatic Reclamation” row, only
reference counting can automate freeing of memory, and
even then only for non-cyclic data structures. Certain use
cases for hazard pointers and RCU can provide automatic
reclamation using link counts, which can be thought of
as reference counts, but applying only to incoming links
from other parts of the data structure [Mic18].

Finally, the “Lines of Code” row shows the size of
the Pre-BSD Routing Table implementations, giving a
rough idea of relative ease of use. That said, it is im-
portant to note that the reference-counting and sequence-
locking implementations are buggy, and that a correct
reference-counting implementation is considerably more
complex [Val95, MS95]. For its part, a correct sequence-
locking implementation requires the addition of some
other synchronization mechanism, for example, hazard
pointers or RCU, so that sequence locking detects con-

current updates and the other mechanism provides safe
reference acquisition.

As more experience is gained using these techniques,
both separately and in combination, the rules of thumb
laid out in this section will need to be refined. However,
this section does reflect the current state of the art.

9.6.3 Which to Choose? (Production Use)
This section points out a few publicly visible production
uses of hazard pointers, sequence locking, and RCU. Ref-
erence counting is omitted, not because it is unimportant,
but rather because it is not only used pervasively, but heav-
ily documented in textbooks going back a half century.
One of the hoped-for benefits of listing production uses of
these other techniques is to provide examples to study—or
to find bugs in, as the case may be.21

9.6.3.1 Production Uses of Hazard Pointers

In 2010, Keith Bostic added a variant of hazard pointers
to WiredTiger [Bos10]. MongoDB 3.0, released in 2015,
included WiredTiger and thus hazard pointers.

In 2011, Samy Al Bahra added hazard pointers to the
Concurrency Kit library [Bah11b].

In 2014, Maxim Khizhinsky added hazard pointers to
libcds [Khi14].

In 2015, David Gwynne introduced shared reference
pointers, a form of hazard pointers, to OpenBSD [Gwy15].

In 2017–2018, the Rust-language arc-swap [Van18]
and conc [cut17] crates rolled their own implementations
of hazard pointers.

In 2018, Maged Michael added hazard pointers to
Facebook’s Folly library [Mic18], where it is used heavily.

9.6.3.2 Production Uses of Sequence Locking

The Linux kernel added sequence locking to v2.5.60
in 2003 [Cor03], having been generalized from an ad-
hoc technique used in x86’s implementation of the
gettimeofday() system call.

In 2011, Samy Al Bahra added sequence locking to the
Concurrency Kit library [Bah11c].

Paolo Bonzini added a simple sequence-lock to the
QEMU emulator in 2013 [Bon13].

21 Kudos to Mathias Stearn, Matt Wilson, David Goldblatt, Live-
Journal user fanf, Nadav Har’El, Avi Kivity, Dmitry Vyukov, Raul
Guitterez S., Twitter user @peo3, Paolo Bonzini, and Thomas Monjalon
for locating a great many of these use cases.

v2024.12.27a

188 CHAPTER 9. DEFERRED PROCESSING

Alexis Menard abstracted a sequence-lock implementa-
tion in Chromium in 2016 [Men16].

A simple sequence locking implementation was added
to jemalloc() in 2018 [Gol18a]. The eigen library
also has a special-purpose queue that is managed by a
mechanism resembling sequence locking.

9.6.3.3 Production Uses of RCU

IBM’s VM/XA is adopted passive serialization, a mecha-
nism similar to RCU, some time in the 1980s [HOS89].

DYNIX/ptx adopted RCU in 1993 [MS98a, SM95].
The Linux kernel adopted Dipankar Sarma’s implemen-

tation of RCU in 2002 [Tor02].
The userspace RCU project started in 2009 [Des09b].
The Knot DNS project started using the userspace RCU

library in 2010 [Slo10]. That same year, the OSv kernel
added an RCU implementation [Kiv13], later adding an
RCU-protected linked list [Kiv14b] and an RCU-protected
hash table [Kiv14a].

In 2011, Samy Al Bahra added epochs (a form
of RCU [Fra04, FH07]) to the Concurrency Kit li-
brary [Bah11a].

NetBSD began using the aforementioned passive se-
rialization with v6.0 in 2012 [The12a]. Among other
things, passive serialization is used in NetBSD packet
filter (NPF) [Ras14].

Paolo Bonzini added RCU support to the QEMU em-
ulator in 2015 via a friendly fork of the userspace RCU
library [BD13, Bon15].

In 2015, Maxim Khizhinsky added RCU to
libcds [Khi15].

Mindaugas Rasiukevicius implemented libqsbr in 2016,
which features QSBR and epoch-based reclamation
(EBR) [Ras16], both of which are types of implemen-
tations of RCU.

Sheth et al. [SWS16] demonstrated the value of lever-
aging Go’s garbage collector to provide RCU-like func-
tionality, and the Go programming language provides a
Value type that can provide this functionality.22

Matt Klein describes an RCU-like mechanism that is
used in the Envoy Proxy [Kle17].

Honnappa Nagarahalli added an RCU library to the
Data Plane Development Kit (DPDK) in 2018 [Nag18].

Stjepan Glavina merged an epoch-based RCU imple-
mentation into the crossbeam set of concurrency-support
“crates” for the Rust language [Gla18].

22 See https://golang.org/pkg/sync/atomic/#Value, par-
ticularly the “Example (ReadMostly)”.

Jason Donenfeld produced an RCU implementations
as part of his port of WireGuard to Windows NT ker-
nel [Don21].

Finally, any garbage-collected concurrent language (not
just Go!) gets the update side of an RCU implementation
at zero incremental cost.

9.6.3.4 Summary of Production Uses

Perhaps the time will come when sequence locking, hazard
pointers, and RCU are all as heavily used and as well
known as are reference counters. Until that time comes,
the current production uses of these mechanisms should
help guide the choice of mechanism as well as showing
how best to apply each of them. And with that, we have
uncovered the last of the mysteries put forth on page 131.

The next section discusses updates, a ticklish issue for
many of the read-mostly mechanisms described in this
chapter.

9.7 What About Updates?

The only thing constant in life is change.

François de la Rochefoucauld

The deferred-processing techniques called out in this chap-
ter are most directly applicable to read-mostly situations,
which begs the question “But what about updates?” After
all, increasing the performance and scalability of readers
is all well and good, but it is only natural to also want
great performance and scalability for writers.

We have already seen one situation featuring high per-
formance and scalability for writers, namely the counting
algorithms surveyed in Chapter 5. These algorithms fea-
tured partially partitioned data structures so that updates
can operate locally, while the more-expensive reads must
sum across the entire data structure. Silas Boyd-Wickhizer
has generalized this notion to produce OpLog, which he
has applied to Linux-kernel pathname lookup, VM reverse
mappings, and the stat() system call [BW14].

Another approach, called “Disruptor”, is designed for
applications that process high-volume streams of input
data. The approach is to rely on single-producer-single-
consumer FIFO queues, minimizing the need for synchro-
nization [Sut13]. For Java applications, Disruptor also
has the virtue of minimizing use of the garbage collector.

https://golang.org/pkg/sync/atomic/#Value

v2024.12.27a

9.7. WHAT ABOUT UPDATES? 189

And of course, where feasible, fully partitioned or
“sharded” systems provide excellent performance and scal-
ability, as noted in Chapter 6.

The next chapter will look at updates in the context of
several types of data structures.

v2024.12.27a

190 CHAPTER 9. DEFERRED PROCESSING

v2024.12.27a

Bad programmers worry about the code. Good

programmers worry about data structures and their

relationships.

Linus TorvaldsChapter 10

Data Structures

Serious discussions of algorithms include time complexity
of their data structures [CLRS01]. However, for parallel
programs, the time complexity includes concurrency ef-
fects because these effects can be overwhelmingly large, as
shown in Chapter 3. In other words, a good programmer’s
data-structure relationships include those aspects related
to concurrency.

This chapter will expose a number of complications:

1. Data structures designed in full accordance with
the good advice given in Chapter 6 can nonetheless
abjectly fail to scale on some types of systems.

2. Data structures designed in full accordance with the
good advice given in both Chapter 6 and Chapter 9
can still abjectly fail to scale on some types of systems.

3. Even read-only synchronization-free data-structure
traversal can fail to scale on some types of systems.

4. Data-structure traversals avoiding the aforementioned
complications can still be impeded by concurrent
updates.

This chapter will investigate these complications and
demostrate some ways of unraveling them.

Section 10.1 presents the motivating application for
this chapter’s data structures. Chapter 6 showed how par-
titioning improves scalability, so Section 10.2 discusses
partitionable data structures. Chapter 9 described how
deferring some actions can greatly improve both perfor-
mance and scalability, a topic taken up by Section 10.3.
Section 10.4 looks at a non-partitionable data structure,
splitting it into read-mostly and partitionable portions,
which improves both performance and scalability. Be-
cause this chapter cannot delve into the details of every
concurrent data structure, Section 10.5 surveys a few of the

important ones. Finally, Section 10.6 presents a summary
of this chapter.

10.1 Motivating Application

The art of doing mathematics consists in finding that

special case which contains all the germs of

generality.

David Hilbert

We will use the Schrödinger’s Zoo application to evaluate
performance [McK13]. Schrödinger has a zoo containing
a large number of animals, and he would like to track them
using an in-memory database with each animal in the zoo
represented by a data item in this database. Each animal
has a unique name that is used as a key, with a variety of
data tracked for each animal.

Births, captures, and purchases result in insertions,
while deaths, releases, and sales result in deletions. Be-
cause Schrödinger’s zoo contains a large quantity of short-
lived animals, including mice and insects, the database
must handle high update rates. Those interested in Schrö-
dinger’s animals can query them, and Schrödinger has
noted suspiciously query rates for his cat, so much so that
he suspects that his mice might be checking up on their
nemesis. Whatever their source, Schrödinger’s application
must handle high query rates to a single data element.

As we will see, this simple application can pose a
challenge to traditional concurrent data structures.

191

v2024.12.27a

192 CHAPTER 10. DATA STRUCTURES

10.2 Partitionable Data Structures

Finding a way to live the simple life today is the

most complicated task.

Henry A. Courtney, updated

There are a huge number of data structures in use today, so
much so that there are multiple textbooks covering them.
This section focuses on a single data structure, namely
the hash table. This focused approach allows a much
deeper investigation of how concurrency interacts with
data structures, and also focuses on a data structure that
is heavily used in practice. Section 10.2.1 overviews the
design, and Section 10.2.2 presents the implementation.
Finally, Section 10.2.3 discusses the resulting performance
and scalability.

10.2.1 Hash-Table Design
Chapter 6 emphasized the need to apply partitioning in
order to attain respectable performance and scalability,
so partitionability must be a first-class criterion when
selecting data structures. This criterion is well satisfied by
that workhorse of parallelism, the hash table. Hash tables
are conceptually simple, consisting of an array of hash
buckets. A hash function maps from a given element’s
key to the hash bucket that this element will be stored
in. Each hash bucket therefore heads up a linked list of
elements, called a hash chain. When properly configured,
these hash chains will be quite short, permitting a hash
table to access its elements extremely efficiently.

Quick Quiz 10.1: But chained hash tables are but one type
of many. Why the focus on chained hash tables?

In addition, each bucket has its own lock, so that
elements in different buckets of the hash table may be
added, deleted, and looked up completely independently.
A large hash table with a large number of buckets (and
thus locks), with each bucket containing a small number
of elements should therefore provide excellent scalability.

10.2.2 Hash-Table Implementation
Listing 10.1 (hash_bkt.c) shows a set of data struc-
tures used in a simple fixed-sized hash table using chain-
ing and per-hash-bucket locking, and Figure 10.1 dia-
grams how they fit together. Note that the cds_ func-
tions and data structures may be found in the userspace
RCU library [Des09b, MDJ13d, MDJ13e, MDJ13a]. The

Listing 10.1: Hash-Table Data Structures
1 struct ht_elem {
2 struct cds_list_head hte_next;
3 unsigned long hte_hash;
4 };
5
6 struct ht_bucket {
7 struct cds_list_head htb_head;
8 spinlock_t htb_lock;
9 };

10
11 struct hashtab {
12 unsigned long ht_nbuckets;
13 int (*ht_cmp)(struct ht_elem *htep, void *key);
14 struct ht_bucket ht_bkt[0];
15 };

struct hashtab

−>hte_hash
−>hte_next

struct ht_elem

−>htb_lock
−>htb_head

−>ht_bkt[3]

−>htb_lock
−>htb_head

−>ht_bkt[2]

−>htb_lock
−>htb_head

−>ht_bkt[1]

−>htb_lock
−>htb_head

−>ht_bkt[0]

−>hte_hash
−>hte_next

struct ht_elem

−>hte_hash
−>hte_next

struct ht_elem

−>ht_cmp

−>ht_nbuckets = 4

Figure 10.1: Hash-Table Data-Structure Diagram

hashtab structure (lines 11–15 in Listing 10.1) contains
four ht_bucket structures (lines 6–9 in Listing 10.1),
with the ->ht_nbuckets field controlling the number of
buckets and the ->ht_cmp field holding the pointer to
key-comparison function. Each such bucket contains a
list header ->htb_head and a lock ->htb_lock. The
list headers chain ht_elem structures (lines 1–4 in List-
ing 10.1) through their ->hte_next fields, and each ht_
elem structure also caches the corresponding element’s
hash value in the ->hte_hash field. The ht_elem struc-
ture is included in a larger structure which might contain
a complex key. Figure 10.1 shows bucket 0 containing
two elements and bucket 2 containing one.

Listing 10.2 shows mapping and locking functions.
Lines 1 and 2 show the macro HASH2BKT(), which maps
from a hash value to the corresponding ht_bucket struc-
ture. This macro uses a simple modulus: If more aggres-
sive hashing is required, the caller needs to implement
it when mapping from key to hash value. The remain-

v2024.12.27a

10.2. PARTITIONABLE DATA STRUCTURES 193

Listing 10.2: Hash-Table Mapping and Locking
1 #define HASH2BKT(htp, h) \
2 (&(htp)->ht_bkt[h % (htp)->ht_nbuckets])
3
4 static void hashtab_lock(struct hashtab *htp,
5 unsigned long hash)
6 {
7 spin_lock(&HASH2BKT(htp, hash)->htb_lock);
8 }
9

10 static void hashtab_unlock(struct hashtab *htp,
11 unsigned long hash)
12 {
13 spin_unlock(&HASH2BKT(htp, hash)->htb_lock);
14 }

Listing 10.3: Hash-Table Lookup
1 struct ht_elem *
2 hashtab_lookup(struct hashtab *htp, unsigned long hash,
3 void *key)
4 {
5 struct ht_bucket *htb;
6 struct ht_elem *htep;
7
8 htb = HASH2BKT(htp, hash);
9 cds_list_for_each_entry(htep, &htb->htb_head, hte_next) {

10 if (htep->hte_hash != hash)
11 continue;
12 if (htp->ht_cmp(htep, key))
13 return htep;
14 }
15 return NULL;
16 }

ing two functions acquire and release the ->htb_lock
corresponding to the specified hash value.

Listing 10.3 shows hashtab_lookup(), which returns
a pointer to the element with the specified hash and key,
or NULL if that element does not exist. This function
takes both a hash value and a pointer to the key because
this allows users of this function to use arbitrary keys
and arbitrary hash functions. Line 8 maps from the hash
value to a pointer to the corresponding hash bucket. Each
pass through the loop spanning lines 9–14 examines one
element of the bucket’s hash chain. Line 10 checks to
see if the hash values match, and if not, line 11 proceeds
to the next element. Line 12 checks to see if the actual
key matches, and if so, line 13 returns a pointer to the
matching element. If no element matches, line 15 returns
NULL.

Quick Quiz 10.2: But isn’t the double comparison on
lines 10–13 in Listing 10.3 inefficient in the case where the
key fits into an unsigned long?

Listing 10.4 shows the hashtab_add() and hashtab_
del() functions that add and delete elements from the
hash table, respectively.

Listing 10.4: Hash-Table Modification
1 void hashtab_add(struct hashtab *htp, unsigned long hash,
2 struct ht_elem *htep)
3 {
4 htep->hte_hash = hash;
5 cds_list_add(&htep->hte_next,
6 &HASH2BKT(htp, hash)->htb_head);
7 }
8
9 void hashtab_del(struct ht_elem *htep)

10 {
11 cds_list_del_init(&htep->hte_next);
12 }

Listing 10.5: Hash-Table Allocation and Free
1 struct hashtab *
2 hashtab_alloc(unsigned long nbuckets,
3 int (*cmp)(struct ht_elem *htep, void *key))
4 {
5 struct hashtab *htp;
6 int i;
7
8 htp = malloc(sizeof(*htp) +
9 nbuckets * sizeof(struct ht_bucket));

10 if (htp == NULL)
11 return NULL;
12 htp->ht_nbuckets = nbuckets;
13 htp->ht_cmp = cmp;
14 for (i = 0; i < nbuckets; i++) {
15 CDS_INIT_LIST_HEAD(&htp->ht_bkt[i].htb_head);
16 spin_lock_init(&htp->ht_bkt[i].htb_lock);
17 }
18 return htp;
19 }
20
21 void hashtab_free(struct hashtab *htp)
22 {
23 free(htp);
24 }

The hashtab_add() function simply sets the element’s
hash value on line 4, then adds it to the corresponding
bucket on lines 5 and 6. The hashtab_del() function
simply removes the specified element from whatever hash
chain it is on, courtesy of the doubly linked nature of
the hash-chain lists. Before calling either of these two
functions, the caller is required to ensure that no other
thread is accessing or modifying this same bucket, for
example, by invoking hashtab_lock() beforehand.

Listing 10.5 shows hashtab_alloc() and hashtab_
free(), which do hash-table allocation and freeing, re-
spectively. Allocation begins on lines 8–9 with allocation
of the underlying memory. If line 10 detects that memory
has been exhausted, line 11 returns NULL to the caller. Oth-
erwise, lines 12 and 13 initialize the number of buckets
and the pointer to key-comparison function, and the loop
spanning lines 14–17 initializes the buckets themselves,
including the chain list header on line 15 and the lock on
line 16. Finally, line 18 returns a pointer to the newly

v2024.12.27a

194 CHAPTER 10. DATA STRUCTURES

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 5 10 15 20 25

ideal

bucket

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

Figure 10.2: Read-Only Hash-Table Performance For
Schrödinger’s Zoo

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200 250 300 350 400 450

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

Figure 10.3: Read-Only Hash-Table Performance For
Schrödinger’s Zoo, 448 CPUs

allocated hash table. The hashtab_free() function on
lines 21–24 is straightforward.

10.2.3 Hash-Table Performance
The performance results for a single 28-core socket of a
2.1 GHz Intel Xeon system using a bucket-locked hash
table with 262,144 buckets are shown in Figure 10.2. The
performance does scale nearly linearly, but falls far short
ideal, even at only 28 CPUs. Part of this shortfall is
due to the fact that lock acquisitions and releases incur
communications cache misses only on two or more CPUs.

And things only get worse with more CPUs, as can
be seen in Figure 10.3. We do not need to show ideal
performance: The performance for 29 CPUs and beyond

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200 250 300 350 400 450

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

Figure 10.4: Read-Only Hash-Table Performance For
Schrödinger’s Zoo, Varying Buckets

is abysmal. This clearly underscores the dangers of ex-
trapolating performance from a modest number of CPUs.

Of course, one possible reason for the collapse in
performance might be that more hash buckets are needed.
We can test this by increasing the number of hash buckets.

Quick Quiz 10.3: Instead of simply increasing the number of
hash buckets, wouldn’t it be better to cache-align the existing
hash buckets?

However, as can be seen in Figure 10.4, changing the
number of buckets has almost no effect: Scalability is
still abysmal. In particular, we still see a sharp dropoff at
29 CPUs and beyond, clearly demonstrating the complica-
tion put forward by item 1 of the list of complications on
page 191. Clearly, something else is going on.

The problem is that this is a multi-socket system, with
CPUs 0–27 and 224–251 mapped to the first socket as
shown in Table 10.1. Test runs confined to the first
28 CPUs therefore perform quite well, but tests that in-
volve socket 0’s CPUs 0–27 as well as socket 1’s CPU 28
incur the overhead of passing data across socket bound-
aries. This can severely degrade performance, as was
discussed in Section 3.2.1. In short, large multi-socket
systems require good locality of reference in addition to
full partitioning. The remainder of this chapter will dis-
cuss ways of providing good locality of reference within
the hash table itself, but in the meantime please note that
one other way to provide good locality of reference would
be to place large data elements in the hash table. For
example, Schrödinger might attain excellent cache locality
by placing photographs or even videos of his animals in
each element of the hash table. But for those needing hash
tables containing small data elements, please read on!

v2024.12.27a

10.3. READ-MOSTLY DATA STRUCTURES 195

Table 10.1: NUMA Topology of System Under Test

Hyperthread
Socket 0 1

0 0–27 224–251
1 28–55 252–279
2 56–83 280–307
3 84–111 308–335
4 112–139 336–363
5 140–167 364–391
6 168–195 392–419
7 196–223 420–447

Quick Quiz 10.4: Given the negative scalability of the
Schrödinger’s Zoo application across sockets, why not just run
multiple copies of the application, with each copy having a
subset of the animals and confined to run on a single socket?

One key property of these Schrödinger’s-zoo experi-
ments is they are all read-only. This makes the perfor-
mance degradation due to lock-acquisition-induced cache
misses all the more painful. Even though we are not
updating the underlying hash table itself, we are still
paying the price for writing to memory. Of course, if
the hash table was never going to be updated, we could
dispense entirely with mutual exclusion. This approach
is quite straightforward and is left as an exercise for the
reader. But even with the occasional update, avoiding
writes avoids cache misses, and allows the read-mostly
data to be replicated across all the caches, which in turn
promotes locality of reference.

The next section therefore examines optimizations that
can be carried out in read-mostly cases where updates are
rare, but could happen at any time.

10.3 Read-Mostly Data Structures

Adapt the remedy to the disease.

Chinese proverb

Although partitioned data structures can offer excellent
scalability, NUMA effects can result in severe degradations
of both performance and scalability. In addition, the need
for read-side synchronization can degrade performance
in read-mostly situations. However, we can achieve both

Listing 10.6: RCU-Protected Hash-Table Read-Side Concur-
rency Control

1 static void hashtab_lock_lookup(struct hashtab *htp,
2 unsigned long hash)
3 {
4 rcu_read_lock();
5 }
6
7 static void hashtab_unlock_lookup(struct hashtab *htp,
8 unsigned long hash)
9 {

10 rcu_read_unlock();
11 }

performance and scalability by using RCU, which was
introduced in Section 9.5. Similar results can be achieved
using hazard pointers (hazptr.c) [Mic04a], which will
be included in the performance results shown in this
section [McK13].

10.3.1 RCU-Protected Hash Table Imple-
mentation

For an RCU-protected hash table with per-bucket lock-
ing, updaters use locking as shown in Section 10.2,
but readers use RCU. The data structures remain
as shown in Listing 10.1, and the HASH2BKT(),
hashtab_lock(), and hashtab_unlock() functions
remain as shown in Listing 10.2. However, readers
use the lighter-weight concurrency-control embodied
by hashtab_lock_lookup() and hashtab_unlock_
lookup() shown in Listing 10.6.

Listing 10.7 shows hashtab_lookup() for the RCU-
protected per-bucket-locked hash table. This is identical
to that in Listing 10.3 except that cds_list_for_each_
entry() is replaced by cds_list_for_each_entry_
rcu(). Both of these primitives traverse the hash chain ref-
erenced by htb->htb_head but cds_list_for_each_
entry_rcu() also correctly enforces memory ordering
in case of concurrent insertion. This is an important
difference between these two hash-table implementations:
Unlike the pure per-bucket-locked implementation, the
RCU protected implementation allows lookups to run con-
currently with insertions and deletions, and RCU-aware
primitives like cds_list_for_each_entry_rcu() are
required to correctly handle this added concurrency. Note
also that hashtab_lookup()’s caller must be within an
RCU read-side critical section, for example, the caller
must invoke hashtab_lock_lookup() before invoking
hashtab_lookup() (and of course invoke hashtab_
unlock_lookup() some time afterwards).

v2024.12.27a

196 CHAPTER 10. DATA STRUCTURES

Listing 10.7: RCU-Protected Hash-Table Lookup
1 struct ht_elem *hashtab_lookup(struct hashtab *htp,
2 unsigned long hash,
3 void *key)
4 {
5 struct ht_bucket *htb;
6 struct ht_elem *htep;
7
8 htb = HASH2BKT(htp, hash);
9 cds_list_for_each_entry_rcu(htep,

10 &htb->htb_head,
11 hte_next) {
12 if (htep->hte_hash != hash)
13 continue;
14 if (htp->ht_cmp(htep, key))
15 return htep;
16 }
17 return NULL;
18 }

Listing 10.8: RCU-Protected Hash-Table Modification
1 void hashtab_add(struct hashtab *htp,
2 unsigned long hash,
3 struct ht_elem *htep)
4 {
5 htep->hte_hash = hash;
6 cds_list_add_rcu(&htep->hte_next,
7 &HASH2BKT(htp, hash)->htb_head);
8 }
9

10 void hashtab_del(struct ht_elem *htep)
11 {
12 cds_list_del_rcu(&htep->hte_next);
13 }

Quick Quiz 10.5: But if elements in a hash table can be
removed concurrently with lookups, doesn’t that mean that
a lookup could return a reference to a data element that was
removed immediately after it was looked up?

Listing 10.8 shows hashtab_add() and hashtab_
del(), both of which are quite similar to their counterparts
in the non-RCU hash table shown in Listing 10.4. The
hashtab_add() function uses cds_list_add_rcu()
instead of cds_list_add() in order to ensure proper
ordering when an element is added to the hash table at
the same time that it is being looked up. The hashtab_
del() function uses cds_list_del_rcu() instead of
cds_list_del_init() to allow for the case where an
element is looked up just before it is deleted. Unlike
cds_list_del_init(), cds_list_del_rcu() leaves
the forward pointer intact, so that hashtab_lookup()
can traverse to the newly deleted element’s successor.

Of course, after invoking hashtab_del(), the caller
must wait for an RCU grace period (e.g., by invok-
ing synchronize_rcu()) before freeing or otherwise
reusing the memory for the newly deleted element.

10.3.2 RCU-Protected Hash Table Valida-
tion

Although the topic of validation is covered in detail in
Chapter 11, the fact is that a hash table with lockless RCU-
protected lookups needs special attention to validation
sooner rather than later.

The test suite (“hashtorture.h”) contains a
smoketest() function that verifies that a specific se-
ries of single-threaded additions, deletions, and lookups
give the expected results.

Concurrent test runs put each updater thread in control
of its portion of the elements, which allows assertions
checking for the following issues:

1. A just-now-to-be-added element already being in the
table according to hastab_lookup().

2. A just-now-to-be-added element being marked as
being in the table by its ->in_table flag.

3. A just-now-to-be-deleted element not being in the
table according to hastab_lookup().

4. A just-now-to-be-deleted element being marked as
not being in the table by its ->in_table flag.

In addition, concurrent test runs run lookups concur-
rently with updates in order to catch all manner of data-
structure corruption problems. Some runs also continually
resize the hash table concurrently with both lookups and
updates to verify correct behavior, and also to verify that
resizes do not unduly delay either readers or updaters.

Finally, the concurrent tests output statistics that can
be used to track down performance and scalabilty issues,
which provides the raw data used by Section 10.3.3.
Quick Quiz 10.6: The hashtorture.h file contains more
than 1,000 lines! Is that a comprehensive test or what???

All code requires significant validation effort, and high-
performance concurrent code requires more validation
than most.

10.3.3 RCU-Protected Hash Table Perfor-
mance

Figure 10.5 shows the read-only performance of RCU-
protected and hazard-pointer-protected hash tables against
the previous section’s per-bucket-locked implementation.
As you can see, both RCU and hazard pointers perform and
scale much better than per-bucket locking because read-
only replication avoids NUMA effects. The difference

v2024.12.27a

10.3. READ-MOSTLY DATA STRUCTURES 197

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1 10 100

global

bucket

RCU

hazptrideal

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

Figure 10.5: Read-Only RCU-Protected Hash-Table Per-
formance For Schrödinger’s Zoo

 0
 2x106
 4x106
 6x106
 8x106
 1x107

 1.2x107
 1.4x107
 1.6x107
 1.8x107

 2x107
 2.2x107

 0 50 100 150 200 250 300 350 400 450

RCU

hazptr

ideal

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

Figure 10.6: Read-Only RCU-Protected Hash-Table Per-
formance For Schrödinger’s Zoo, Linear Scale

increases with larger numbers of threads. Results from
a globally locked implementation are also shown, and
as expected the results are even worse than those of the
per-bucket-locked implementation. RCU does slightly
better than hazard pointers.

Figure 10.6 shows the same data on a linear scale. This
drops the global-locking trace into the x-axis, but allows
the non-ideal performance of RCU and hazard pointers to
be more readily discerned. Both show a change in slope
at 224 CPUs, and this is due to hardware multithreading.
At 224 and fewer CPUs, each thread has a core to itself.
In this regime, RCU does better than does hazard pointers
because the latter’s read-side memory barriers result in
dead time within the core. In short, RCU is better able to

 0
 2x106
 4x106
 6x106
 8x106
 1x107

 1.2x107
 1.4x107
 1.6x107
 1.8x107

 2x107
 2.2x107

 0 50 100 150 200 250 300 350 400 450

QSBR,RCU

hazptr

ideal

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

Figure 10.7: Read-Only RCU-Protected Hash-Table Per-
formance For Schrödinger’s Zoo including QSBR,
Linear Scale

utilize a core from a single hardware thread than is hazard
pointers.

This situation changes above 224 CPUs. Because RCU
is using more than half of each core’s resources from a
single hardware thread, RCU gains relatively little benefit
from the second hardware thread in each core. The slope
of the hazard-pointers trace also decreases at 224 CPUs,
but less dramatically, because the second hardware thread
is able to fill in the time that the first hardware thread is
stalled due to memory-barrier latency. As we will see
in later sections, this second-hardware-thread advantage
depends on the workload.

But why is RCU’s performance a factor of five less
than ideal? One possibility is that the per-thread coun-
ters manipulated by rcu_read_lock() and rcu_read_
unlock() are slowing things down. Figure 10.7 therefore
adds the results for the QSBR variant of RCU, whose
read-side primitives do nothing. And although QSBR
does perform slightly better than does RCU, it is still about
a factor of five short of ideal.

Figure 10.8 adds completely unsynchronized results,
which works because this is a read-only benchmark with
nothing to synchronize. Even with no synchronization
whatsoever, performance still falls far short of ideal, thus
demonstrating items 2 and 3 of the list of complications
on page 191.

The problem is that this system has sockets with 28 cores,
which have the modest cache sizes shown in Table 3.2
on page 25. Each hash bucket (struct ht_bucket)
occupies 56 bytes and each element (struct zoo_he)
occupies 72 bytes for the RCU and QSBR runs. The

v2024.12.27a

198 CHAPTER 10. DATA STRUCTURES

 0
 2x106
 4x106
 6x106
 8x106
 1x107

 1.2x107
 1.4x107
 1.6x107
 1.8x107

 2x107
 2.2x107

 0 50 100 150 200 250 300 350 400 450

unsync,QSBR,RCU

hazptr

ideal

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs (Threads)

Figure 10.8: Read-Only RCU-Protected Hash-Table Per-
formance For Schrödinger’s Zoo including QSBR
and Unsynchronized, Linear Scale

benchmark generating Figure 10.8 used 262,144 buckets
and up to 262,144 elements, for a total of 33,554,448 bytes,
which not only overflows the 1,048,576-byte L2 caches
by more than a factor of thirty, but is also uncomfortably
close to the L3 cache size of 40,370,176 bytes, especially
given that this cache has only 11 ways. This means that
L2 cache collisions will be the rule and also that L3 cache
collisions will not be uncommon, so that the resulting
cache misses will degrade performance. In this case, the
bottleneck is not in the CPU, but rather in the memory
system.

Additional evidence for this memory-system bottleneck
may be found by examining the unsynchronized code. This
code does not need locks, so each hash bucket occupies
only 16 bytes compared to the 56 bytes for RCU and
QSBR. Similarly, each hash-table element occupies only
56 bytes compared to the 72 bytes for RCU and QSBR.
So it is unsurprising that the single-CPU unsynchronized
run performs up to about half again faster than that of
either QSBR or RCU.

Quick Quiz 10.7: How can we be so sure that the hash-
table size is at fault here, especially given that Figure 10.4
on page 194 shows that varying hash-table size has almost
no effect? Might the problem instead be something like false
sharing?

What if the memory footprint is reduced still further?
Figure E.5 on page 532 shows that RCU attains very nearly
ideal performance on the much smaller data structure
represented by the pre-BSD routing table.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1 10

global

bucket

hazptr

RCU

C
at

 L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs Looking Up The Cat

Figure 10.9: Read-Side Cat-Only RCU-Protected Hash-
Table Performance For Schrödinger’s Zoo at 64 CPUs

Quick Quiz 10.8: The memory system is a serious bottleneck
on this big system. Why bother putting 448 CPUs on a
system without giving them enough memory bandwidth to do
something useful???

As noted earlier, Schrödinger is surprised by the popu-
larity of his cat [Sch35], but recognizes the need to reflect
this popularity in his design. Figure 10.9 shows the results
of 64-CPU runs, varying the number of CPUs that are
doing nothing but looking up the cat. Both RCU and
hazard pointers respond well to this challenge, but bucket
locking scales negatively, eventually performing as badly
as global locking. This should not be a surprise because
if all CPUs are doing nothing but looking up the cat, the
lock corresponding to the cat’s bucket is for all intents and
purposes a global lock.

This cat-only benchmark illustrates one potential prob-
lem with fully partitioned sharding approaches. Only the
CPUs associated with the cat’s partition is able to access
the cat, limiting the cat-only throughput. Of course, a
great many applications have good load-spreading proper-
ties, and for these applications sharding works quite well.
However, sharding does not handle “hot spots” very well,
with the hot spot exemplified by Schrödinger’s cat being
but one case in point.

If we were only ever going to read the data, we would
not need any concurrency control to begin with. Fig-
ure 10.10 therefore shows the effect of updates on readers.
At the extreme left-hand side of this graph, all but one
of the CPUs are doing lookups, while to the right all
448 CPUs are doing updates. For all four implementa-
tions, the number of lookups per millisecond decreases
as the number of updating CPUs increases, of course

v2024.12.27a

10.3. READ-MOSTLY DATA STRUCTURES 199

 100

 1000

 10000

 100000

 1x106

 1x107

 1 10 100

global

bucket

hazptr

RCU

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs Doing Updates

Figure 10.10: Read-Side RCU-Protected Hash-Table
Performance For Schrödinger’s Zoo in the Presence
of Updates

 10

 100

 1000

 10000

 100000

 1x106

 1 10 100

global

bucket

RCU

hazptr

U
pd

at
es

 p
er

 M
ill

is
ec

on
d

Number of CPUs Doing Updates

Figure 10.11: Update-Side RCU-Protected Hash-Table
Performance For Schrödinger’s Zoo

reaching zero lookups per millisecond when all 448 CPUs
are updating. Both hazard pointers and RCU do well
compared to per-bucket locking because their readers
do not increase update-side lock contention. RCU does
well relative to hazard pointers as the number of updaters
increases due to the latter’s read-side memory barriers,
which incur greater overhead, especially in the presence
of updates, and particularly when execution involves more
than one socket. It therefore seems likely that modern
hardware heavily optimizes memory-barrier execution,
greatly reducing memory-barrier overhead in the read-only
case.

Where Figure 10.10 showed the effect of increasing
update rates on lookups, Figure 10.11 shows the effect of

increasing update rates on the updates themselves. Again,
at the left-hand side of the figure all but one of the CPUs
are doing lookups and at the right-hand side of the figure
all 448 CPUs are doing updates. Hazard pointers and
RCU start off with a significant advantage because, unlike
bucket locking, readers do not exclude updaters. However,
as the number of updating CPUs increases, the update-side
deferred-execution overhead starts to make its presence
known, first for RCU and then for hazard pointers. Of
course, all three of these implementations beat global
locking, and by more than an order of magnitude.

It is quite possible that the differences in lookup per-
formance observed in Figure 10.10 are affected by the
differences in update rates. One way to check this is to
artificially throttle the update rates of per-bucket locking
and hazard pointers to match that of RCU. Doing so
does not significantly improve the lookup performance
of per-bucket locking, nor does it close the gap between
hazard pointers and RCU. However, removing the read-
side memory barriers from hazard pointers (thus resulting
in an unsafe implementation) does nearly close the gap
between hazard pointers and RCU. Although this unsafe
hazard-pointer implementation will usually be reliable
enough for benchmarking purposes, it is absolutely not
recommended for production use.

Quick Quiz 10.9: The dangers of extrapolating from 28 CPUs
to 448 CPUs was made quite clear in Section 10.2.3. Would
extrapolating up from 448 CPUs be any safer?

And this situation demonstrates item 4 in the list com-
plications on page 191.

10.3.4 RCU-Protected Hash Table Discus-
sion

One consequence of the RCU and hazard-pointer im-
plementations is that a pair of concurrent readers might
disagree on the state of the cat. For example, one of the
readers might have fetched the pointer to the cat’s data
structure just before it was removed, while another reader
might have fetched this same pointer just afterwards. The
first reader would then believe that the cat was alive, while
the second reader would believe that the cat was dead.

This situation is completely fitting for Schrödinger’s
cat, but it turns out that it is quite reasonable for normal
non-quantum cats as well. After all, it is impossible to
determine exactly when an animal is born or dies.

To see this, let’s suppose that we detect a cat’s death
by heartbeat. This raise the question of exactly how long

v2024.12.27a

200 CHAPTER 10. DATA STRUCTURES

Figure 10.12: Even Veterinarians Disagree!

we should wait after the last heartbeat before declaring
death. It is clearly ridiculous to wait only one millisecond,
because then a healthy living cat would have to be declared
dead—and then resurrected—more than once per second.
It is equally ridiculous to wait a full month, because by
that time the poor cat’s death would be unmistakeably
apparent to olfactory sensors.

Because an animal’s heart can stop for some seconds
and then start up again, there is a tradeoff between timely
recognition of death and probability of false alarms. It is
quite possible that a pair of veterinarians might disagree
on the time to wait between the last heartbeat and the
declaration of death. For example, one veterinarian might
declare death thirty seconds after the last heartbeat, while
another might insist on waiting a full minute. In this case,
the two veterinarians would disagree on the state of the
cat for the second period of thirty seconds following the
last heartbeat, as fancifully depicted in Figure 10.12.

Heisenberg taught us to live with this sort of uncer-
tainty [Hei27], which is a good thing because computing
hardware and software acts similarly. For example, how
do you know that a piece of computing hardware has
failed? Often because it does not respond in a timely
fashion. Just like the cat’s heartbeat, this results in a
window of uncertainty as to whether or not the hardware
has really failed, as opposed to just being slow.

Furthermore, most computing systems are intended
to interact with the outside world. Consistency with
the outside world is therefore of paramount importance.
However, as we saw in Figure 9.28 on page 173, increased
internal consistency can come at the expense of degraded
external consistency. Techniques such as RCU and hazard

Figure 10.13: Partitioning Problems

pointers give up some degree of internal consistency to
attain improved external consistency.

In short, internal consistency is not necessarily a natural
part of all problem domains, and often incurs great expense
in terms of performance, scalability, consistency with the
outside world [HKLP12, HHK+13, Rin13], or all of the
above.

10.4 Non-Partitionable Data Struc-
tures

Don’t be afraid to take a big step if one is indicated.

You can’t cross a chasm in two small steps.

David Lloyd George

Fixed-size hash tables are perfectly partitionable, but resiz-
able hash tables pose partitioning challenges when grow-
ing or shrinking, as fancifully depicted in Figure 10.13.
However, it turns out that it is possible to construct high-
performance scalable RCU-protected hash tables, as de-
scribed in the following sections.

10.4.1 Resizable Hash Table Design
In happy contrast to the situation in the early 2000s, there
are now several different types of scalable RCU-protected
hash tables. The first (and simplest) was developed for
the Linux kernel by Herbert Xu [Xu10], and is described
in the following sections. Two others are covered briefly
in Section 10.4.4.

v2024.12.27a

10.4. NON-PARTITIONABLE DATA STRUCTURES 201

Links 0

Links 1

A

Links 0

Links 1

B

Links 0

Links 1

C

Links 0

Links 1

D

Bucket 0 Bucket 1

Figure 10.14: Growing a Two-List Hash Table, State (a)

Links 0

Links 1

A

Links 0

Links 1

B

Links 0

Links 1

C

Links 0

Links 1

D

Bucket 0 Bucket 1

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Figure 10.15: Growing a Two-List Hash Table, State (b)

The key insight behind the first hash-table implemen-
tation is that each data element can have two sets of
list pointers, with one set currently being used by RCU
readers (as well as by non-RCU updaters) and the other
being used to construct a new resized hash table. This
approach allows lookups, insertions, and deletions to all
run concurrently with a resize operation (as well as with
each other).

The resize operation proceeds as shown in Fig-
ures 10.14–10.17, with the initial two-bucket state shown
in Figure 10.14 and with time advancing from figure to
figure. The initial state uses the zero-index links to chain
the elements into hash buckets. A four-bucket array is
allocated, and the one-index links are used to chain the
elements into these four new hash buckets. This results in
state (b) shown in Figure 10.15, with readers still using
the original two-bucket array.

The new four-bucket array is exposed to readers and then
a grace-period operation waits for all readers, resulting in
state (c), shown in Figure 10.16. In this state, all readers
are using the new four-bucket array, which means that
the old two-bucket array may now be freed, resulting in
state (d), shown in Figure 10.17.

This design leads to a relatively straightforward imple-
mentation, which is the subject of the next section.

Links 0

Links 1

A

Links 0

Links 1

B

Links 0

Links 1

C

Links 0

Links 1

D

Bucket 0 Bucket 1

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Figure 10.16: Growing a Two-List Hash Table, State (c)

Links 0

Links 1

A

Links 0

Links 1

B

Links 0

Links 1

C

Links 0

Links 1

D

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Figure 10.17: Growing a Two-List Hash Table, State (d)

10.4.2 Resizable Hash Table Implementa-
tion

Resizing is accomplished by the classic approach of in-
serting a level of indirection, in this case, the ht structure
shown on lines 11–20 of Listing 10.9 (hash_resize.c).
The hashtab structure shown on lines 27–30 contains
only a pointer to the current ht structure along with a
spinlock that is used to serialize concurrent attempts to
resize the hash table. If we were to use a traditional lock-
or atomic-operation-based implementation, this hashtab
structure could become a severe bottleneck from both
performance and scalability viewpoints. However, be-
cause resize operations should be relatively infrequent,
we should be able to make good use of RCU.

The ht structure represents a specific size of the hash
table, as specified by the ->ht_nbuckets field on line 12.
The size is stored in the same structure containing the
array of buckets (->ht_bkt[] on line 19) in order to avoid
mismatches between the size and the array. The ->ht_
resize_cur field on line 13 is equal to −1 unless a resize
operation is in progress, in which case it indicates the
index of the bucket whose elements are being inserted into
the new hash table, which is referenced by the ->ht_new
field on line 14. If there is no resize operation in progress,
->ht_new is NULL. Thus, a resize operation proceeds by

v2024.12.27a

202 CHAPTER 10. DATA STRUCTURES

Listing 10.9: Resizable Hash-Table Data Structures
1 struct ht_elem {
2 struct rcu_head rh;
3 struct cds_list_head hte_next[2];
4 };
5
6 struct ht_bucket {
7 struct cds_list_head htb_head;
8 spinlock_t htb_lock;
9 };

10
11 struct ht {
12 long ht_nbuckets;
13 long ht_resize_cur;
14 struct ht *ht_new;
15 int ht_idx;
16 int (*ht_cmp)(struct ht_elem *htep, void *key);
17 unsigned long (*ht_gethash)(void *key);
18 void *(*ht_getkey)(struct ht_elem *htep);
19 struct ht_bucket ht_bkt[0];
20 };
21
22 struct ht_lock_state {
23 struct ht_bucket *hbp[2];
24 int hls_idx[2];
25 };
26
27 struct hashtab {
28 struct ht *ht_cur;
29 spinlock_t ht_lock;
30 };

allocating a new ht structure and referencing it via the
->ht_new pointer, then advancing ->ht_resize_cur
through the old table’s buckets. When all the elements
have been added to the new table, the new table is linked
into the hashtab structure’s ->ht_cur field. Once all old
readers have completed, the old hash table’s ht structure
may be freed.

The ->ht_idx field on line 15 indicates which of the
two sets of list pointers are being used by this instantiation
of the hash table, and is used to index the ->hte_next[]
array in the ht_elem structure on line 3.

The ->ht_cmp(), ->ht_gethash(), and ->ht_
getkey() fields on lines 16–18 collectively define the
per-element key and the hash function. The ->ht_cmp()
function compares a specified key with that of the specified
element, the ->ht_gethash() calculates the specified
key’s hash, and ->ht_getkey() extracts the key from
the enclosing data element.

The ht_lock_state shown on lines 22–25 is used
to communicate lock state from a new hashtab_
lock_mod() to hashtab_add(), hashtab_del(), and
hashtab_unlock_mod(). This state prevents the algo-
rithm from being redirected to the wrong bucket during
concurrent resize operations.

The ht_bucket structure is the same as before, and
the ht_elem structure differs from that of previous imple-

Listing 10.10: Resizable Hash-Table Bucket Selection
1 static struct ht_bucket *
2 ht_get_bucket(struct ht *htp, void *key,
3 long *b, unsigned long *h)
4 {
5 unsigned long hash = htp->ht_gethash(key);
6
7 *b = hash % htp->ht_nbuckets;
8 if (h)
9 *h = hash;

10 return &htp->ht_bkt[*b];
11 }
12
13 static struct ht_elem *
14 ht_search_bucket(struct ht *htp, void *key)
15 {
16 long b;
17 struct ht_elem *htep;
18 struct ht_bucket *htbp;
19
20 htbp = ht_get_bucket(htp, key, &b, NULL);
21 cds_list_for_each_entry_rcu(htep,
22 &htbp->htb_head,
23 hte_next[htp->ht_idx]) {
24 if (htp->ht_cmp(htep, key))
25 return htep;
26 }
27 return NULL;
28 }

mentations only in providing a two-element array of list
pointer sets in place of the prior single set of list pointers.

In a fixed-sized hash table, bucket selection is quite
straightforward: Simply transform the hash value to the
corresponding bucket index. In contrast, when resizing,
updaters must also determine which of the old and new
sets of buckets to select from. If the bucket that would be
selected from the old table has already been distributed
into the new table, then the bucket should be selected from
the new table as well as from the old table. Conversely,
if the bucket that would be selected from the old table
has not yet been distributed, then the bucket should be
selected from the old table.

Bucket selection is shown in Listing 10.10, which shows
ht_get_bucket() on lines 1–11 and ht_search_
bucket() on lines 13–28. The ht_get_bucket() func-
tion returns a reference to the bucket corresponding to the
specified key in the specified hash table, without making
any allowances for resizing. It also stores the bucket index
corresponding to the key into the location referenced by
parameter b on line 7, and the corresponding hash value
corresponding to the key into the location referenced by
parameter h (if non-NULL) on line 9. Line 10 then returns
a reference to the corresponding bucket.

The ht_search_bucket() function searches for the
specified key within the specified hash-table version.
Line 20 obtains a reference to the bucket correspond-
ing to the specified key. The loop spanning lines 21–26

v2024.12.27a

10.4. NON-PARTITIONABLE DATA STRUCTURES 203

Listing 10.11: Resizable Hash-Table Update-Side Concurrency
Control

1 static void
2 hashtab_lock_mod(struct hashtab *htp_master, void *key,
3 struct ht_lock_state *lsp)
4 {
5 long b;
6 unsigned long h;
7 struct ht *htp;
8 struct ht_bucket *htbp;
9

10 rcu_read_lock();
11 htp = rcu_dereference(htp_master->ht_cur);
12 htbp = ht_get_bucket(htp, key, &b, &h);
13 spin_lock(&htbp->htb_lock);
14 lsp->hbp[0] = htbp;
15 lsp->hls_idx[0] = htp->ht_idx;
16 if (b > READ_ONCE(htp->ht_resize_cur)) {
17 lsp->hbp[1] = NULL;
18 return;
19 }
20 htp = rcu_dereference(htp->ht_new);
21 htbp = ht_get_bucket(htp, key, &b, &h);
22 spin_lock(&htbp->htb_lock);
23 lsp->hbp[1] = htbp;
24 lsp->hls_idx[1] = htp->ht_idx;
25 }
26
27 static void
28 hashtab_unlock_mod(struct ht_lock_state *lsp)
29 {
30 spin_unlock(&lsp->hbp[0]->htb_lock);
31 if (lsp->hbp[1])
32 spin_unlock(&lsp->hbp[1]->htb_lock);
33 rcu_read_unlock();
34 }

searches that bucket, so that if line 24 detects a match,
line 25 returns a pointer to the enclosing data element.
Otherwise, if there is no match, line 27 returns NULL to
indicate failure.

Quick Quiz 10.10: How does the code in Listing 10.10 protect
against the resizing process progressing past the selected
bucket?

This implementation of ht_get_bucket() and ht_
search_bucket() permits lookups and modifications to
run concurrently with a resize operation.

Read-side concurrency control is provided by RCU
as was shown in Listing 10.6, but the update-side con-
currency-control functions hashtab_lock_mod() and
hashtab_unlock_mod() must now deal with the pos-
sibility of a concurrent resize operation as shown in
Listing 10.11.

The hashtab_lock_mod() spans lines 1–25 in the
listing. Line 10 enters an RCU read-side critical section
to prevent the data structures from being freed during
the traversal, line 11 acquires a reference to the current
hash table, and then line 12 obtains a reference to the
bucket in this hash table corresponding to the key. Line 13

acquires that bucket’s lock, which will prevent any con-
current resizing operation from distributing that bucket,
though of course it will have no effect if that bucket has
already been distributed. Lines 14–15 store the bucket
pointer and pointer-set index into their respective fields in
the ht_lock_state structure, which communicates the
information to hashtab_add(), hashtab_del(), and
hashtab_unlock_mod(). Line 16 then checks to see
if a concurrent resize operation has already distributed
this bucket across the new hash table, and if not, line 17
indicates that there is no already-resized hash bucket and
line 18 returns with the selected hash bucket’s lock held
(thus preventing a concurrent resize operation from dis-
tributing this bucket) and also within an RCU read-side
critical section. Deadlock is avoided because the old
table’s locks are always acquired before those of the new
table, and because the use of RCU prevents more than two
versions from existing at a given time, thus preventing a
deadlock cycle.

Otherwise, a concurrent resize operation has already
distributed this bucket, so line 20 proceeds to the new hash
table, line 21 selects the bucket corresponding to the key,
and line 22 acquires the bucket’s lock. Lines 23–24 store
the new-table bucket pointer and pointer-set index into
their respective fields in the ht_lock_state structure,
which again communicates this information to hashtab_
add(), hashtab_del(), and hashtab_unlock_mod().
Because this bucket has already been resized and because
hashtab_add() and hashtab_del() affect both the
old and the new ht_bucket structures, two locks are
held, one on each of the two buckets. Additionally, both
elements of each array in ht_lock_state structure are
used, with the [0] element pertaining to the old ht_
bucket structure and the [1] element pertaining to the
new structure. Once again, hashtab_lock_mod() exits
within an RCU read-side critical section.

The hashtab_unlock_mod() function releases the
lock(s) acquired by hashtab_lock_mod(). Line 30
releases the lock on the old ht_bucket structure. In
the unlikely event that line 31 determines that a resize
operation is in progress, line 32 releases the lock on the
new ht_bucket structure. Either way, line 33 exits the
RCU read-side critical section.
Quick Quiz 10.11: Suppose that one thread is inserting an
element into the hash table during a resize operation. What
prevents this insertion from being lost due to a subsequent
resize operation completing before the insertion does?

Now that we have bucket selection and concurrency
control in place, we are ready to search and update our re-

v2024.12.27a

204 CHAPTER 10. DATA STRUCTURES

Listing 10.12: Resizable Hash-Table Access Functions
1 struct ht_elem *
2 hashtab_lookup(struct hashtab *htp_master, void *key)
3 {
4 struct ht *htp;
5 struct ht_elem *htep;
6
7 htp = rcu_dereference(htp_master->ht_cur);
8 htep = ht_search_bucket(htp, key);
9 return htep;

10 }
11
12 void hashtab_add(struct ht_elem *htep,
13 struct ht_lock_state *lsp)
14 {
15 struct ht_bucket *htbp = lsp->hbp[0];
16 int i = lsp->hls_idx[0];
17
18 cds_list_add_rcu(&htep->hte_next[i], &htbp->htb_head);
19 if ((htbp = lsp->hbp[1])) {
20 cds_list_add_rcu(&htep->hte_next[!i], &htbp->htb_head);
21 }
22 }
23
24 void hashtab_del(struct ht_elem *htep,
25 struct ht_lock_state *lsp)
26 {
27 int i = lsp->hls_idx[0];
28
29 cds_list_del_rcu(&htep->hte_next[i]);
30 if (lsp->hbp[1])
31 cds_list_del_rcu(&htep->hte_next[!i]);
32 }

sizable hash table. The hashtab_lookup(), hashtab_
add(), and hashtab_del() functions are shown in List-
ing 10.12.

The hashtab_lookup() function on lines 1–10 of the
listing does hash lookups. Line 7 fetches the current hash
table and line 8 searches the bucket corresponding to the
specified key. Line 9 returns a pointer to the searched-for
element or NULL when the search fails. The caller must
be within an RCU read-side critical section.

Quick Quiz 10.12: The hashtab_lookup() function in
Listing 10.12 ignores concurrent resize operations. Doesn’t this
mean that readers might miss an element that was previously
added during a resize operation?

The hashtab_add() function on lines 12–22 of the
listing adds new data elements to the hash table. Line 15
picks up the current ht_bucket structure into which the
new element is to be added, and line 16 picks up the
index of the pointer pair. Line 18 adds the new element
to the current hash bucket. If line 19 determines that
this bucket has been distributed to a new version of the
hash table, then line 20 also adds the new element to the
corresponding new bucket. The caller is required to handle
concurrency, for example, by invoking hashtab_lock_

mod() before the call to hashtab_add() and invoking
hashtab_unlock_mod() afterwards.

The hashtab_del() function on lines 24–32 of the
listing removes an existing element from the hash table.
Line 27 picks up the index of the pointer pair and line 29
removes the specified element from the current table. If
line 30 determines that this bucket has been distributed to
a new version of the hash table, then line 31 also removes
the specified element from the corresponding new bucket.
As with hashtab_add(), the caller is responsible for
concurrency control and this concurrency control suffices
for synchronizing with a concurrent resize operation.

Quick Quiz 10.13: The hashtab_add() and hashtab_
del() functions in Listing 10.12 can update two hash buckets
while a resize operation is progressing. This might cause
poor performance if the frequency of resize operation is not
negligible. Isn’t it possible to reduce the cost of updates in
such cases?

The actual resizing itself is carried out by hashtab_
resize(), shown in Listing 10.13 on page 205. Line 16
conditionally acquires the top-level ->ht_lock, and if this
acquisition fails, line 17 returns -EBUSY to indicate that
a resize is already in progress. Otherwise, line 18 picks
up a reference to the current hash table, and lines 19–22
allocate a new hash table of the desired size. If a new
set of hash/key functions have been specified, these are
used for the new table, otherwise those of the old table are
preserved. If line 23 detects memory-allocation failure,
line 24 releases ->ht_lock and line 25 returns a failure
indication.

Line 27 picks up the current table’s index and line 28
stores its inverse to the new hash table, thus ensuring that
the two hash tables avoid overwriting each other’s linked
lists. Line 29 then starts the bucket-distribution process by
installing a reference to the new table into the ->ht_new
field of the old table. Line 30 ensures that all readers who
are not aware of the new table complete before the resize
operation continues.

Each pass through the loop spanning lines 31–42 dis-
tributes the contents of one of the old hash table’s buckets
into the new hash table. Line 32 picks up a reference to
the old table’s current bucket and line 33 acquires that
bucket’s spinlock.

Quick Quiz 10.14: In the hashtab_resize() function in
Listing 10.13, what guarantees that the update to ->ht_new on
line 29 will be seen as happening before the update to ->ht_
resize_cur on line 40 from the perspective of hashtab_
add() and hashtab_del()? In other words, what prevents

v2024.12.27a

10.4. NON-PARTITIONABLE DATA STRUCTURES 205

Listing 10.13: Resizable Hash-Table Resizing
1 int hashtab_resize(struct hashtab *htp_master,
2 unsigned long nbuckets,
3 int (*cmp)(struct ht_elem *htep, void *key),
4 unsigned long (*gethash)(void *key),
5 void *(*getkey)(struct ht_elem *htep))
6 {
7 struct ht *htp;
8 struct ht *htp_new;
9 int i;

10 int idx;
11 struct ht_elem *htep;
12 struct ht_bucket *htbp;
13 struct ht_bucket *htbp_new;
14 long b;
15
16 if (!spin_trylock(&htp_master->ht_lock))
17 return -EBUSY;
18 htp = htp_master->ht_cur;
19 htp_new = ht_alloc(nbuckets,
20 cmp ? cmp : htp->ht_cmp,
21 gethash ? gethash : htp->ht_gethash,
22 getkey ? getkey : htp->ht_getkey);
23 if (htp_new == NULL) {
24 spin_unlock(&htp_master->ht_lock);
25 return -ENOMEM;
26 }
27 idx = htp->ht_idx;
28 htp_new->ht_idx = !idx;
29 rcu_assign_pointer(htp->ht_new, htp_new);
30 synchronize_rcu();
31 for (i = 0; i < htp->ht_nbuckets; i++) {
32 htbp = &htp->ht_bkt[i];
33 spin_lock(&htbp->htb_lock);
34 cds_list_for_each_entry(htep, &htbp->htb_head, hte_next[idx]) {
35 htbp_new = ht_get_bucket(htp_new, htp_new->ht_getkey(htep), &b, NULL);
36 spin_lock(&htbp_new->htb_lock);
37 cds_list_add_rcu(&htep->hte_next[!idx], &htbp_new->htb_head);
38 spin_unlock(&htbp_new->htb_lock);
39 }
40 WRITE_ONCE(htp->ht_resize_cur, i);
41 spin_unlock(&htbp->htb_lock);
42 }
43 rcu_assign_pointer(htp_master->ht_cur, htp_new);
44 synchronize_rcu();
45 spin_unlock(&htp_master->ht_lock);
46 free(htp);
47 return 0;
48 }

v2024.12.27a

206 CHAPTER 10. DATA STRUCTURES

 1000

 10000

 100000

 1x106

 1x107

 1 10 100

262,144

2,097,152Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

Figure 10.18: Overhead of Resizing Hash Tables Between
262,144 and 524,288 Buckets vs. Total Number of
Elements

hashtab_add() and hashtab_del() from dereferencing a
NULL pointer loaded from ->ht_new?

Each pass through the loop spanning lines 34–39 adds
one data element from the current old-table bucket to the
corresponding new-table bucket, holding the new-table
bucket’s lock during the add operation. Line 40 updates
->ht_resize_cur to indicate that this bucket has been
distributed. Finally, line 41 releases the old-table bucket
lock.

Execution reaches line 43 once all old-table buckets
have been distributed across the new table. Line 43 installs
the newly created table as the current one, and line 44
waits for all old readers (who might still be referencing
the old table) to complete. Then line 45 releases the
resize-serialization lock, line 46 frees the old hash table,
and finally line 47 returns success.

Quick Quiz 10.15: Why is there a WRITE_ONCE() on line 40
in Listing 10.13?

10.4.3 Resizable Hash Table Discussion
Figure 10.18 compares resizing hash tables to their fixed-
sized counterparts for 262,144 and 2,097,152 elements
in the hash table. The figure shows three traces for each
element count, one for a fixed-size 262,144-bucket hash
table, another for a fixed-size 524,288-bucket hash table,
and a third for a resizable hash table that shifts back

and forth between 262,144 and 524,288 buckets, with a
one-millisecond pause between each resize operation.

The uppermost three traces are for the 262,144-element
hash table.1 The dashed trace corresponds to the two
fixed-size hash tables, and the solid trace to the resizable
hash table. In this case, the short hash chains cause normal
lookup overhead to be so low that the overhead of resizing
dominates over most of the range. In particular, the entire
hash table fits into L3 cache.

The lower three traces are for the 2,097,152-element
hash table. The upper dashed trace corresponds to the
262,144-bucket fixed-size hash table, the solid trace in
the middle for low CPU counts and at the bottom for high
CPU counts to the resizable hash table, and the other trace
to the 524,288-bucket fixed-size hash table. The fact that
there are now an average of eight elements per bucket can
only be expected to produce a sharp decrease in perfor-
mance, as in fact is shown in the graph. But worse yet,
the hash-table elements occupy 128 MB, which overflows
each socket’s 39 MB L3 cache, with performance conse-
quences analogous to those described in Section 3.2.2.
The resulting cache overflow means that the memory sys-
tem is involved even for a read-only benchmark, and as
you can see from the sublinear portions of the lower three
traces, the memory system can be a serious bottleneck.

Quick Quiz 10.16: How much of the difference in per-
formance between the large and small hash tables shown in
Figure 10.18 was due to long hash chains and how much was
due to memory-system bottlenecks?

Referring to the last column of Table 3.1, we recall
that the first 28 CPUs are in the first socket, on a one-
CPU-per-core basis, which explains the sharp decrease in
performance of the resizable hash table beyond 28 CPUs.
Sharp though this decrease is, please recall that it is due
to constant resizing back and forth. It would clearly be
better to resize once to 524,288 buckets, or, even better,
do a single eight-fold resize to 2,097,152 elements, thus
dropping the average number of elements per bucket down
to the level enjoyed by the runs producing the upper three
traces.

The key point from this data is that the RCU-protected
resizable hash table performs and scales almost as well as
does its fixed-size counterpart. The performance during
an actual resize operation of course suffers somewhat
due to the cache misses causes by the updates to each
element’s pointers, and this effect is most pronounced

1 You see only two traces? The dashed one is composed of two
traces that differ only slightly, hence the irregular-looking dash pattern.

v2024.12.27a

10.4. NON-PARTITIONABLE DATA STRUCTURES 207

when the memory system becomes a bottleneck. This
indicates that hash tables should be resized by substantial
amounts, and that hysteresis should be applied to prevent
performance degradation due to too-frequent resize op-
erations. In memory-rich environments, hash-table sizes
should furthermore be increased much more aggressively
than they are decreased.

Another key point is that although the hashtab struc-
ture is non-partitionable, it is also read-mostly, which
suggests the use of RCU. Given that the performance and
scalability of this resizable hash table is very nearly that of
RCU-protected fixed-sized hash tables, we must conclude
that this approach was quite successful.

Finally, it is important to note that insertions, deletions,
and lookups can proceed concurrently with a resize op-
eration. This concurrency is critically important when
resizing large hash tables, especially for applications that
must meet severe response-time constraints.

Of course, the ht_elem structure’s pair of pointer sets
does impose some memory overhead, which is taken up
in the next section.

10.4.4 Other Resizable Hash Tables
One shortcoming of the resizable hash table described
earlier in this section is memory consumption. Each
data element has two pairs of linked-list pointers rather
than just one. Is it possible to create an RCU-protected
resizable hash table that makes do with just one pair?

It turns out that the answer is “yes”. Josh Triplett
et al. [TMW11] produced a relativistic hash table that
incrementally splits and combines corresponding hash
chains so that readers always see valid hash chains at all
points during the resizing operation. This incremental
splitting and combining relies on the fact that it is harmless
for a reader to see a data element that should be in some
other hash chain: When this happens, the reader will
simply ignore the extraneous data element due to key
mismatches.

The process of shrinking a relativistic hash table by
a factor of two is shown in Figure 10.19, in this case
shrinking a two-bucket hash table into a one-bucket hash
table, otherwise known as a linear list. This process works
by coalescing pairs of buckets in the old larger hash table
into single buckets in the new smaller hash table. For this
process to work correctly, we clearly need to constrain the
hash functions for the two tables. One such constraint is
to use the same underlying hash function for both tables,
but to throw out the low-order bit when shrinking from
large to small. For example, the old two-bucket hash table

(a)
even

odd 1

0 2

3

(b)
even

odd 1

0 2

3

all

all

(c)
even

odd 1

0 2

3

all

(d)
even

odd 1

0 2

3

all

(e)
even

odd 1

0 2

3

all(f) 1 0 23

Figure 10.19: Shrinking a Relativistic Hash Table

would use the two top bits of the value, while the new
one-bucket hash table could use the top bit of the value.
In this way, a given pair of adjacent even and odd buckets
in the old large hash table can be coalesced into a single
bucket in the new small hash table, while still having a
single hash value cover all of the elements in that single
bucket.

The initial state is shown at the top of the figure, with
time advancing from top to bottom, starting with initial
state (a). The shrinking process begins by allocating the
new smaller array of buckets, and having each bucket of
this new smaller array reference the first element of one
of the buckets of the corresponding pair in the old large
hash table, resulting in state (b).

Then the two hash chains are linked together, resulting
in state (c). In this state, readers looking up an even-
numbered element see no change, and readers looking
up elements 1 and 3 likewise see no change. However,
readers looking up some other odd number will also
traverse elements 0 and 2. This is harmless because any

v2024.12.27a

208 CHAPTER 10. DATA STRUCTURES

(g)
even

odd 1

0 2

3

(b)

even

odd

(c)

(d)

(e)

(a) all 0 2 31

all 0 2 31

even

odd

all 0 2 31

even

odd

all 0 2 31

even

odd

0 2 31

(f)
even

odd

0 2 31

Figure 10.20: Growing a Relativistic Hash Table

odd number will compare not-equal to these two elements.
There is some performance loss, but on the other hand,
this is exactly the same performance loss that will be
experienced once the new small hash table is fully in
place.

Next, the new small hash table is made accessible to
readers, resulting in state (d). Note that older readers
might still be traversing the old large hash table, so in this
state both hash tables are in use.

The next step is to wait for all pre-existing readers to
complete, resulting in state (e). In this state, all readers
are using the new small hash table, so that the old large
hash table’s buckets may be freed, resulting in the final
state (f).

Growing a relativistic hash table reverses the shrinking
process, but requires more grace-period steps, as shown

in Figure 10.20. The initial state (a) is at the top of this
figure, with time advancing from top to bottom.

We start by allocating the new large two-bucket hash
table, resulting in state (b). Note that each of these new
buckets references the first element destined for that bucket.
These new buckets are published to readers, resulting in
state (c). After a grace-period operation, all readers are
using the new large hash table, resulting in state (d). In
this state, only those readers traversing the even-values
hash bucket traverse element 0, which is therefore now
colored white.

At this point, the old small hash buckets may be freed,
although many implementations use these old buckets
to track progress “unzipping” the list of items into their
respective new buckets. The last even-numbered element
in the first consecutive run of such elements now has
its pointer-to-next updated to reference the following
even-numbered element. After a subsequent grace-period
operation, the result is state (e). The vertical arrow
indicates the next element to be unzipped, and element 1
is now colored black to indicate that only those readers
traversing the odd-values hash bucket may reach it.

Next, the last odd-numbered element in the first con-
secutive run of such elements now has its pointer-to-next
updated to reference the following odd-numbered ele-
ment. After a subsequent grace-period operation, the
result is state (f). A final unzipping operation (including
a grace-period operation) results in the final state (g).

In short, the relativistic hash table reduces the number
of per-element list pointers at the expense of additional
grace periods incurred during resizing. These additional
grace periods are usually not a problem because insertions,
deletions, and lookups may proceed concurrently with a
resize operation.

However, when a hash table is growing quickly, the
large numbers of grace periods might delay the beginning
of the next resize operation. One way to reduce the number
of grace periods is to unzip all the buckets concurrently,
so that the number of grace periods will be limited by the
largest number of elements in a single bucket instead of
by the total number of elements in the hash table. Another
approach, also by Josh Triplett, is to maintain a separate
pointer to the element currently being moved from the
old bucket to the new bucket. Readers then check the
old bucket, the separate pointer, and the new bucket in
order. This requires read-side memory ordering, which
slows readers, but it greatly reduces the required number
of resize-time grace periods. This approach is used within
the Linux kernel.

v2024.12.27a

10.6. SUMMARY 209

It turns out that it is possible to reduce the per-element
memory overhead from a pair of pointers to a single
pointer, while still retaining O (1) deletions. This is
accomplished by augmenting split-order list [SS06] with
RCU protection [Des09b, MDJ13c]. The data elements
in the hash table are arranged into a single sorted linked
list, with each hash bucket referencing the first element
in that bucket. Elements are deleted by setting low-order
bits in their pointer-to-next fields, and these elements are
removed from the list by later traversals that encounter
them.

This RCU-protected split-order list is complex, but of-
fers lock-free progress guarantees for all insertion, deletion,
and lookup operations. Such guarantees can be important
in real-time applications. However, one downside is that
the keys must be bit-reversed during lookup, which slows
down readers. But for those for whom this slowdown is
not a problem, an implementation is available from recent
versions of the userspace RCU library [Des09b].

10.5 Other Data Structures

All life is an experiment. The more experiments you

make the better.

Ralph Waldo Emerson

The preceding sections have focused on data structures that
enhance concurrency due to partitionability (Section 10.2),
efficient handling of read-mostly access patterns (Sec-
tion 10.3), or application of read-mostly techniques to
avoid non-partitionability (Section 10.4). This section
gives a brief review of other data structures.

One of the hash table’s greatest advantages for parallel
use is that it is fully partitionable, at least while not being
resized. One way of preserving the partitionability and
the size independence is to use a radix tree, which is also
called a trie. Tries partition the search key, using each
successive key partition to traverse the next level of the
trie. As such, a trie can be thought of as a set of nested
hash tables, thus providing the required partitionability.
One disadvantage of tries is that a sparse key space can
result in inefficient use of memory. There are a number of
compression techniques that may be used to work around
this disadvantage, including hashing the key value to a
smaller keyspace before the traversal [ON07]. Radix
trees are heavily used in practice, including in the Linux
kernel [Pig06].

One important special case of both a hash table and a
trie is what is perhaps the oldest of data structures, the
array and its multi-dimensional counterpart, the matrix.
The fully partitionable nature of matrices is exploited
heavily in concurrent numerical algorithms.

Self-balancing trees are heavily used in sequential code,
with AVL trees and red-black trees being perhaps the
most well-known examples [CLRS01]. Early attempts to
parallelize AVL trees were complex and not necessarily
all that efficient [Ell80], however, more recent work on
red-black trees provides better performance and scalability
by using RCU for readers and hashed arrays of locks2 to
protect reads and updates, respectively [HW11, HW14]. It
turns out that red-black trees rebalance aggressively, which
works well for sequential programs, but not necessarily
so well for parallel use. Recent work has therefore made
use of RCU-protected “bonsai trees” that rebalance less
aggressively [CKZ12], trading off optimal tree depth to
gain more efficient concurrent updates.

Concurrent skip lists lend themselves well to RCU
readers, and in fact represents an early academic use of a
technique resembling RCU [Pug90].

Concurrent double-ended queues were discussed in
Section 6.1.2, and concurrent stacks and queues have
a long history [Tre86], though not normally the most
impressive performance or scalability. They are neverthe-
less a common feature of concurrent libraries [MDJ13d].
Researchers have recently proposed relaxing the or-
dering constraints of stacks and queues [Sha11], with
some work indicating that relaxed-ordered queues actu-
ally have better ordering properties than do strict FIFO
queues [HKLP12, KLP12, HHK+13].

It seems likely that continued work with concurrent data
structures will produce novel algorithms with surprising
properties.

10.6 Summary

There’s only one thing more painful than learning

from experience, and that is not learning from

experience.

Archibald MacLeish

This chapter has focused primarily on hash tables, includ-
ing resizable hash tables, which are not fully partitionable.

2 In the guise of swissTM [DFGG11], which is a variant of software
transactional memory in which the developer flags non-shared accesses.

v2024.12.27a

210 CHAPTER 10. DATA STRUCTURES

Section 10.5 gave a quick overview of a few non-hash-
table data structures. Nevertheless, this exposition of
hash tables is an excellent introduction to the many is-
sues surrounding high-performance scalable data access,
including:

1. Fully partitioned data structures work well on small
systems, for example, single-socket systems.

2. Larger systems require locality of reference as well
as full partitioning.

3. Read-mostly techniques, such as hazard pointers
and RCU, provide good locality of reference for
read-mostly workloads, and thus provide excellent
performance and scalability even on larger systems.

4. Read-mostly techniques also work well on some
types of non-partitionable data structures, such as
resizable hash tables.

5. Large data structures can overflow CPU caches, re-
ducing performance and scalability.

6. Additional performance and scalability can be ob-
tained by specializing the data structure to a specific
workload, for example, by replacing a general key
with a 32-bit integer.

7. Although requirements for portability and for extreme
performance often conflict, there are some data-
structure-layout techniques that can strike a good
balance between these two sets of requirements.

That said, performance and scalability are of little use
without reliability, so the next chapter covers validation.

v2024.12.27a

If it is not tested, it doesn’t work.

UnknownChapter 11

Validation

I have had a few parallel programs work the first time,
but that is only because I have written an extremely large
number parallel programs over the past few decades. And
I have had far more parallel programs that fooled me into
thinking that they were working correctly the first time
than actually were working the first time.

I thus need to validate my parallel programs. The basic
trick behind validation, is to realize that the computer
knows what is wrong. It is therefore your job to force
it to tell you. This chapter can therefore be thought of
as a short course in machine interrogation. But you can
leave the good-cop/bad-cop routine at home. This chapter
covers much more sophisticated and effective methods,
especially given that most computers couldn’t tell a good
cop from a bad cop, at least as far as we know.

A longer course may be found in many recent books
on validation, as well as at least one older but valuable
one [Mye79]. Validation is an extremely important topic
that cuts across all forms of software, and is worth intensive
study in its own right. However, this book is primarily
about concurrency, so this chapter will do little more than
scratch the surface of this critically important topic.

Section 11.1 introduces the philosophy of debugging.
Section 11.2 discusses tracing, Section 11.3 discusses
assertions, and Section 11.4 discusses static analysis.
Section 11.5 describes some unconventional approaches
to code review that can be helpful when the fabled 10,000
eyes happen not to be looking at your code. Section 11.6
overviews the use of probability for validating parallel
software. Because performance and scalability are first-
class requirements for parallel programming, Section 11.7
covers these topics. Finally, Section 11.8 gives a fanciful
summary and a short list of statistical traps to avoid.

But never forget that the three best debugging tools
are a thorough understanding of the requirements, a solid
design, and a good night’s sleep!

11.1 Introduction

Debugging is like being the detective in a crime

movie where you are also the murderer.

Filipe Fortes

Section 11.1.1 discusses the sources of bugs, and Sec-
tion 11.1.2 overviews the mindset required when validating
software. Section 11.1.3 discusses when you should start
validation, and Section 11.1.4 describes the surprisingly
effective open-source regimen of code review and com-
munity testing.

11.1.1 Where Do Bugs Come From?
Bugs come from developers. The basic problem is that
the human brain did not evolve with computer software in
mind. Instead, the human brain evolved in concert with
other human brains and with animal brains. Because of this
history, the following three characteristics of computers
often come as a shock to human intuition:

1. Computers lack common sense, despite huge sacri-
fices at the altar of artificial intelligence.

2. Computers fail to understand user intent, or more
formally, computers generally lack a theory of mind.

3. Computers cannot do anything useful with a frag-
mentary plan, instead requiring that every detail of
all possible scenarios be spelled out in full.

The first two points should be uncontroversial, as they
are illustrated by any number of failed products, perhaps
most famously Clippy and Microsoft Bob. By attempting
to relate to users as people, these two products raised
common-sense and theory-of-mind expectations that they

211

v2024.12.27a

212 CHAPTER 11. VALIDATION

proved incapable of meeting. Perhaps the set of software
assistants are now available on smartphones will fare
better, but as of 2021 reviews are mixed. That said, the
developers working on them by all accounts still develop
the old way: The assistants might well benefit end users,
but not so much their own developers.

This human love of fragmentary plans deserves more
explanation, especially given that it is a classic two-edged
sword. This love of fragmentary plans is apparently due
to the assumption that the person carrying out the plan
will have (1) common sense and (2) a good understanding
of the intent and requirements driving the plan. This latter
assumption is especially likely to hold in the common
case where the person doing the planning and the person
carrying out the plan are one and the same: In this
case, the plan will be revised almost subconsciously as
obstacles arise, especially when that person has the a good
understanding of the problem at hand. In fact, the love
of fragmentary plans has served human beings well, in
part because it is better to take random actions that have
a some chance of locating food than to starve to death
while attempting to plan the unplannable. However, the
usefulness of fragmentary plans in the everyday life of
which we are all experts is no guarantee of their future
usefulness in stored-program computers.

Furthermore, the need to follow fragmentary plans has
had important effects on the human psyche, due to the
fact that throughout much of human history, life was often
difficult and dangerous. It should come as no surprise that
executing a fragmentary plan that has a high probability
of a violent encounter with sharp teeth and claws requires
almost insane levels of optimism—a level of optimism that
actually is present in most human beings. These insane
levels of optimism extend to self-assessments of program-
ming ability, as evidenced by the effectiveness of (and the
controversy over) code-interviewing techniques [Bra07].
In fact, the clinical term for a human being with less-than-
insane levels of optimism is “clinically depressed”. Such
people usually have extreme difficulty functioning in their
daily lives, underscoring the perhaps counter-intuitive im-
portance of insane levels of optimism to a normal, healthy
life. Furtheremore, if you are not insanely optimistic, you
are less likely to start a difficult but worthwhile project.1

Quick Quiz 11.1: When in computing is it necessary to
follow a fragmentary plan?

1 There are some famous exceptions to this rule of thumb. Some
people take on difficult or risky projects in order to at least a temporarily
escape from their depression. Others have nothing to lose: The project
is literally a matter of life or death.

An important special case is the project that, while
valuable, is not valuable enough to justify the time required
to implement it. This special case is quite common, and
one early symptom is the unwillingness of the decision-
makers to invest enough to actually implement the project.
A natural reaction is for the developers to produce an
unrealistically optimistic estimate in order to be permitted
to start the project. If the organization is strong enough
and its decision-makers ineffective enough, the project
might succeed despite the resulting schedule slips and
budget overruns. However, if the organization is not
strong enough and if the decision-makers fail to cancel the
project as soon as it becomes clear that the estimates are
garbage, then the project might well kill the organization.
This might result in another organization picking up the
project and either completing it, canceling it, or being
killed by it. A given project might well succeed only
after killing several organizations. One can only hope
that the organization that eventually makes a success of
a serial-organization-killer project maintains a suitable
level of humility, lest it be killed by its next such project.

Quick Quiz 11.2: Who cares about the organization? After
all, it is the project that is important!

Important though insane levels of optimism might
be, they are a key source of bugs (and perhaps failure
of organizations). The question is therefore “How to
maintain the optimism required to start a large project
while at the same time injecting enough reality to keep
the bugs down to a dull roar?” The next section examines
this conundrum.

11.1.2 Required Mindset
When carrying out any validation effort, keep the following
definitions firmly in mind:

1. The only bug-free programs are trivial programs.

2. A reliable program has no known bugs.

From these definitions, it logically follows that any
reliable non-trivial program contains at least one bug that
you do not know about. Therefore, any validation effort
undertaken on a non-trivial program that fails to find any
bugs is itself a failure. Validation is therefore an exercise
in destruction. This means that if you are the type of
person who enjoys breaking things, validation is just job
for you.

v2024.12.27a

11.1. INTRODUCTION 213

Quick Quiz 11.3: Suppose that you are writing a script that
processes the output of the time command, which looks as
follows:

real 0m0.132s
user 0m0.040s
sys 0m0.008s

The script is required to check its input for errors, and to give
appropriate diagnostics if fed erroneous time output. What
test inputs should you provide to this program to test it for use
with time output generated by single-threaded programs?

But perhaps you are a super-programmer whose code
is always perfect the first time every time. If so, congratu-
lations! Feel free to skip this chapter, but I do hope that
you will forgive my skepticism. You see, I have too many
people who claimed to be able to write perfect code the
first time, which is not too surprising given the previous
discussion of optimism and over-confidence. And even
if you really are a super-programmer, you just might find
yourself debugging lesser mortals’ work.

One approach for the rest of us is to alternate between
our normal state of insane optimism (Sure, I can program
that!) and severe pessimism (It seems to work, but I just
know that there have to be more bugs hiding in there
somewhere!). It helps if you enjoy breaking things. If
you don’t, or if your joy in breaking things is limited to
breaking other people’s things, find someone who does
love breaking your code and have them help you break it.

Another helpful frame of mind is to hate it when other
people find bugs in your code. This hatred can help
motivate you to torture your code beyond all reason in
order to increase the probability that you will be the one to
find the bugs. Just make sure to suspend this hatred long
enough to sincerely thank anyone who does find a bug
in your code! After all, by so doing, they saved you the
trouble of tracking it down, and possibly at great personal
expense dredging through your code.

Yet another helpful frame of mind is studied skepticism.
You see, believing that you understand the code means
you can learn absolutely nothing about it. Ah, but you
know that you completely understand the code because
you wrote or reviewed it? Sorry, but the presence of
bugs suggests that your understanding is at least partially
fallacious. One cure is to write down what you know to
be true and double-check this knowledge, as discussed in
Sections 11.2–11.5. Objective reality always overrides
whatever you might think you know.

One final frame of mind is to consider the possibility
that someone’s life depends on your code being correct.

Figure 11.1: Validation and the Geneva Convention

Figure 11.2: Rationalizing Validation

One way of looking at this is that consistently making
good things happen requires a lot of focus on a lot of bad
things that might happen, with an eye towards preventing
or otherwise handling those bad things.2 The prospect of
these bad things might also motivate you to torture your
code into revealing the whereabouts of its bugs.

This wide variety of frames of mind opens the door to
the possibility of multiple people with different frames of
mind contributing to the project, with varying levels of
optimism. This can work well, if properly organized.

2 For more on this philosophy, see the chapter entitled “The Power
of Negative Thinking” from Chris Hadfield’s excellent book entitled
“An Astronaut’s Guide to Life on Earth.”

v2024.12.27a

214 CHAPTER 11. VALIDATION

Some people might see vigorous validation as a form
of torture, as depicted in Figure 11.1.3 Such people might
do well to remind themselves that, Tux cartoons aside,
they are really torturing an inanimate object, as shown in
Figure 11.2. Rest assured that those who fail to torture
their code are doomed to be tortured by it!

However, this leaves open the question of exactly when
during the project lifetime validation should start, a topic
taken up by the next section.

11.1.3 When Should Validation Start?
Validation should start exactly when the project starts.

To see this, consider that tracking down a bug is much
harder in a large program than in a small one. Therefore,
to minimize the time and effort required to track down
bugs, you should test small units of code. Although you
won’t find all the bugs this way, you will find a substantial
fraction, and it will be much easier to find and fix the
ones you do find. Testing at this level can also alert you
to larger flaws in your overall design, minimizing the time
you waste writing code that is broken by design.

But why wait until you have code before validating your
design?4 Hopefully reading Chapters 3 and 4 provided you
with the information required to avoid some regrettably
common design flaws, but discussing your design with a
colleague or even simply writing it down can help flush
out additional flaws.

However, it is all too often the case that waiting to
start validation until you have a design is waiting too long.
Mightn’t your natural level of optimism caused you to start
the design before you fully understood the requirements?
The answer to this question will almost always be “yes”.
One good way to avoid flawed requirements is to get to
know your users. To really serve them well, you will have
to live among them.

Quick Quiz 11.4: You are asking me to do all this validation
BS before I even start coding??? That sounds like a great way
to never get started!!!

First-of-a-kind projects often use different methodolo-
gies such as rapid prototyping or agile. Here, the main
goal of early prototypes are not to create correct imple-
mentations, but rather to learn the project’s requirements.
But this does not mean that you omit validation; it instead
means that you approach it differently.

3 The cynics among us might question whether these people are
afraid that validation will find bugs that they will then be required to fix.

4 The old saying “First we must code, then we have incentive to
think” notwithstanding.

One such approach takes a Darwinian view, with the
validation suite eliminating code that is not fit to solve
the problem at hand. From this viewpoint, a vigorous
validation suite is essential to the fitness of your software.
However, taking this approach to its logical conclusion is
quite humbling, as it requires us developers to admit that
our carefully crafted changes to the codebase are, from a
Darwinian standpoint, random mutations. On the other
hand, this conclusion is supported by long experience
indicating that seven percent of fixes introduce at least
one bug [BJ12].

How vigorous should your validation suite be? If the
bugs it finds aren’t threatening the very foundations of
your software design, then it is not yet vigorous enough.
After all, your design is just as prone to bugs as is your
code, and the earlier you find and fix the bugs in your
design, the less time you will waste coding those design
bugs.

Quick Quiz 11.5: Are you actually suggesting that it is
possible to test correctness into software??? Everyone knows
that is impossible!!!

It is worth reiterating that this advice applies to first-
of-a-kind projects. If you are instead doing a project in a
well-explored area, you would be quite foolish to refuse
to learn from previous experience. But you should still
start validating right at the beginning of the project, but
hopefully guided by others’ hard-won knowledge of both
requirements and pitfalls.

An equally important question is “When should valida-
tion stop?” The best answer is “Some time after the last
change.” Every change has the potential to create a bug,
and thus every change must be validated. Furthermore,
validation development should continue through the full
lifetime of the project. After all, the Darwinian perspec-
tive above implies that bugs are adapting to your validation
suite. Therefore, unless you continually improve your
validation suite, your project will naturally accumulate
hordes of validation-suite-immune bugs.

But life is a tradeoff, and every bit of time invested in
validation suites as a bit of time that cannot be invested
in directly improving the project itself. These sorts of
choices are never easy, and it can be just as damaging to
overinvest in validation as it can be to underinvest. But
this is just one more indication that life is not easy.

Now that we have established that you should start
validation when you start the project (if not earlier!), and
that both validation and validation development should
continue throughout the lifetime of that project, the fol-

v2024.12.27a

11.2. TRACING 215

lowing sections cover a number of validation techniques
and methods that have proven their worth.

11.1.4 The Open Source Way
The open-source programming methodology has proven
quite effective, and includes a regimen of intense code
review and testing.

I can personally attest to the effectiveness of the open-
source community’s intense code review. One of my
first patches to the Linux kernel involved a distributed
filesystem where one node might write to a given file
that another node has mapped into memory. In this case,
it is necessary to invalidate the affected pages from the
mapping in order to allow the filesystem to maintain
coherence during the write operation. I coded up a first
attempt at a patch, and, in keeping with the open-source
maxim “post early, post often”, I posted the patch. I then
considered how I was going to test it.

But before I could even decide on an overall test strategy,
I got a reply to my posting pointing out a few bugs. I fixed
the bugs and reposted the patch, and returned to thinking
out my test strategy. However, before I had a chance to
write any test code, I received a reply to my reposted patch,
pointing out more bugs. This process repeated itself many
times, and I am not sure that I ever got a chance to actually
test the patch.

This experience brought home the truth of the open-
source saying: Given enough eyeballs, all bugs are shal-
low [Ray99].

However, when you post some code or a given patch, it
is worth asking a few questions:

1. How many of those eyeballs are actually going to
look at your code?

2. How many will be experienced and clever enough to
actually find your bugs?

3. Exactly when are they going to look?

I was lucky: There was someone out there who wanted
the functionality provided by my patch, who had long
experience with distributed filesystems, and who looked
at my patch almost immediately. If no one had looked at
my patch, there would have been no review, and therefore
none of those bugs would have been located. If the people
looking at my patch had lacked experience with distributed
filesystems, it is unlikely that they would have found all
the bugs. Had they waited months or even years to look, I

likely would have forgotten how the patch was supposed
to work, making it much more difficult to fix them.

However, we must not forget the second tenet of the
open-source development, namely intensive testing. For
example, a great many people test the Linux kernel. Some
test patches as they are submitted, perhaps even yours.
Others test the -next tree, which is helpful, but there is
likely to be several weeks or even months delay between
the time that you write the patch and the time that it
appears in the -next tree, by which time the patch will not
be quite as fresh in your mind. Still others test maintainer
trees, which often have a similar time delay.

Quite a few people don’t test code until it is committed
to mainline, or the master source tree (Linus’s tree in the
case of the Linux kernel). If your maintainer won’t accept
your patch until it has been tested, this presents you with a
deadlock situation: Your patch won’t be accepted until it
is tested, but it won’t be tested until it is accepted. Never-
theless, people who test mainline code are still relatively
aggressive, given that many people and organizations do
not test code until it has been pulled into a Linux distro.

And even if someone does test your patch, there is
no guarantee that they will be running the hardware and
software configuration and workload required to locate
your bugs.

Therefore, even when writing code for an open-source
project, you need to be prepared to develop and run your
own test suite. Test development is an underappreciated
and very valuable skill, so be sure to take full advantage
of any existing test suites available to you. Important as
test development is, we must leave further discussion of it
to books dedicated to that topic. The following sections
therefore discuss locating bugs in your code given that
you already have a good test suite.

11.2 Tracing

The machine knows what is wrong. Make it tell you.

Unknown

When all else fails, add a printk()! Or a printf(), if
you are working with user-mode C-language applications.

The rationale is simple: If you cannot figure out how
execution reached a given point in the code, sprinkle print
statements earlier in the code to work out what happened.
You can get a similar effect, and with more convenience
and flexibility, by using a debugger such as gdb (for
user applications) or kgdb (for debugging Linux kernels).

v2024.12.27a

216 CHAPTER 11. VALIDATION

Much more sophisticated tools exist, with some of the
more recent offering the ability to rewind backwards in
time from the point of failure.

These brute-force testing tools are all valuable, espe-
cially now that typical systems have more than 64K of
memory and CPUs running faster than 4 MHz. Much has
been written about these tools, so this chapter will add
only a little more.

However, these tools all have a serious shortcoming
when you need a fastpath to tell you what is going wrong,
namely, these tools often have excessive overheads. There
are special tracing technologies for this purpose, which
typically leverage data ownership techniques (see Chap-
ter 8) to minimize the overhead of runtime data collec-
tion. One example within the Linux kernel is “trace
events” [Ros10b, Ros10c, Ros10d, Ros10a], which uses
per-CPU buffers to allow data to be collected with ex-
tremely low overhead. Even so, enabling tracing can
sometimes change timing enough to hide bugs, resulting
in heisenbugs, which are discussed in Section 11.6 and
especially Section 11.6.4. In the kernel, BPF can do
data reduction in the kernel, reducing the overhead of
transmitting the needed information from the kernel to
userspace [Gre19]. In userspace code, there is a huge
number of tools that can help you. One good starting
point is Brendan Gregg’s blog.5

Even if you avoid heisenbugs, other pitfalls await you.
For example, although the machine really does know all,
what it knows is almost always way more than your head
can hold. For this reason, high-quality test suites normally
come with sophisticated scripts to analyze the voluminous
output. But beware—scripts will only notice what you
tell them to. My rcutorture scripts are a case in point:
Early versions of those scripts were quite satisfied with a
test run in which RCU grace periods stalled indefinitely.
This of course resulted in the scripts being modified to
detect RCU grace-period stalls, but this does not change
the fact that the scripts will only detect problems that I
make them detect. But note well that unless you have
a solid design, you won’t know what your script should
check for!

Another problem with tracing and especially with
printk() calls is that their overhead can rule out produc-
tion use. In such cases, assertions can be helpful.

5 http://www.brendangregg.com/blog/

11.3 Assertions

No man really becomes a fool until he stops asking

questions.

Charles P. Steinmetz

Assertions are usually implemented in the following man-
ner:
1 if (something_bad_is_happening())
2 complain();

This pattern is often encapsulated into C-preprocessor
macros or language intrinsics, for example, in the
Linux kernel, this might be represented as WARN_
ON(something_bad_is_happening()). Of course, if
something_bad_is_happening() quite frequently, the
resulting output might obscure reports of other prob-
lems, in which case WARN_ON_ONCE(something_bad_
is_happening()) might be more appropriate.
Quick Quiz 11.6: How can you implement WARN_ON_
ONCE()?

In parallel code, one bad something that might hap-
pen is that a function expecting to be called under a
particular lock might be called without that lock being
held. Such functions sometimes have header comments
stating something like “The caller must hold foo_lock
when calling this function”, but such a comment does no
good unless someone actually reads it. An executable
statement carries far more weight. The Linux kernel’s
lockdep facility [Cor06a, Ros11] therefore provides a
lockdep_assert_held() function that checks whether
the specified lock is held. Of course, lockdep incurs
significant overhead, and thus might not be helpful in
production.

An especially bad parallel-code something is unex-
pected concurrent access to data. The kernel concurrency
sanitizer (KCSAN) [Cor19] uses existing markings such
as READ_ONCE() and WRITE_ONCE() to determine which
concurrent accesses deserve warning messages. KCSAN
has a significant false-positive rate, especially from the
viewpoint of developers thinking in terms of C as assembly
language with additional syntax. KCSAN therefore pro-
vides a data_race() construct to forgive known-benign
data races, and also the ASSERT_EXCLUSIVE_ACCESS()
and ASSERT_EXCLUSIVE_WRITER() assertions to explic-
itly check for data races [EMV+20a, EMV+20b].

So what can be done in cases where checking is neces-
sary, but where the overhead of runtime checking cannot

http://www.brendangregg.com/blog/

v2024.12.27a

11.5. CODE REVIEW 217

be tolerated? One approach is static analysis, which is
discussed in the next section.

11.4 Static Analysis

A lot of automation isn’t a replacement of humans

but of mind-numbing behavior.

Summarized from Stewart Butterfield

Static analysis is a validation technique where one program
takes a second program as input, reporting errors and vul-
nerabilities located in this second program. Interestingly
enough, almost all programs are statically analyzed by
their compilers or interpreters. These tools are far from
perfect, but their ability to locate errors has improved
immensely over the past few decades, in part because they
now have much more than 64K bytes of memory in which
to carry out their analyses.

The original UNIX lint tool [Joh77] was quite useful,
though much of its functionality has since been incorpo-
rated into C compilers. There are nevertheless lint-like
tools in use to this day. The sparse static analyzer [Cor04b]
finds higher-level issues in the Linux kernel, including:

1. Misuse of pointers to user-space structures.

2. Assignments from too-long constants.

3. Empty switch statements.

4. Mismatched lock acquisition and release primitives.

5. Misuse of per-CPU primitives.

6. Use of RCU primitives on non-RCU pointers and
vice versa.

There is a coccinelle tool that can be thought of as a
C-syntax-aware search-and-replace facility. There is also
a large body of scripts that use this tool to locate and fix
some classes of Linux-kernel bugs [PTS+11].

Although it is likely that compilers will continue to
increase their static-analysis capabilities, coccinelle and
the sparse static analyzer demonstrate the benefits of static
analysis outside of the compiler, particularly for finding
application-specific bugs. Sections 12.4–12.5 describe
more sophisticated forms of static analysis.

11.5 Code Review

If a man speaks of my virtues, he steals from me; if

he speaks of my vices, then he is my teacher.

Chinese proverb

Code review is a special case of static analysis with human
beings doing the analysis. Human beings are of course
subject to inattention, fatigue, and errors, which under-
scores the importance of static analysis and testing. Done
properly, these two activities can automate at least some
aspects of code review. However, it does not appear that
testing and static analysis will be able to completely re-
place manual review any time soon. This section therefore
covers inspection, walkthroughs, and self-inspection.

11.5.1 Inspection

Traditionally, formal code inspections take place in face-
to-face meetings with formally defined roles: Moderator,
developer, and one or two other participants. The devel-
oper reads through the code, explaining what it is doing
and why it works. The one or two other participants ask
questions and raise issues, hopefully exposing the author’s
invalid assumptions, while the moderator’s job is to re-
solve any resulting conflicts and take notes. This process
can be extremely effective at locating bugs, particularly if
all of the participants are familiar with the code at hand.

However, this face-to-face formal procedure does not
necessarily work well in the global Linux kernel com-
munity. Instead, individuals review code separately and
provide comments via email or IRC. The note-taking
is provided by email archives or IRC logs, and modera-
tors volunteer their services as required by the occasional
flamewar. This process also works reasonably well, par-
ticularly if all of the participants are familiar with the
code at hand. In fact, one advantage of the Linux kernel
community approach over traditional formal inspections
is the greater probability of contributions from people not
familiar with the code, who might not be blinded by the
author’s invalid assumptions, and who might also test the
code.

Quick Quiz 11.7: Just what invalid assumptions are you
accusing Linux kernel hackers of harboring???

It is quite likely that the Linux kernel community’s
review process is ripe for improvement:

v2024.12.27a

218 CHAPTER 11. VALIDATION

1. There is sometimes a shortage of people with the
time and expertise required to carry out an effective
review.

2. Even though all review discussions are archived, they
are often “lost” in the sense that insights are forgotten
and people fail to look up the discussions. This can
result in re-insertion of the same old bugs.

3. It is sometimes difficult to resolve flamewars when
they do break out, especially when the combatants
have disjoint goals, experience, and vocabulary.

Perhaps some of the needed improvements will be
provided by continuous-integration-style testing, but there
are many bugs more easily found by review than by testing.
When reviewing, therefore, it is worthwhile to look at
relevant documentation in commit logs, bug reports, and
LWN articles. This documentation can help you quickly
build up the required expertise.

11.5.2 Walkthroughs
A traditional code walkthrough is similar to a formal
inspection, except that the group “plays computer” with the
code, driven by specific test cases. A typical walkthrough
team has a moderator, a secretary (who records bugs
found), a testing expert (who generates the test cases)
and perhaps one to two others. These can be extremely
effective, albeit also extremely time-consuming.

It has been some decades since I have participated in
a formal walkthrough, and I suspect that a present-day
walkthrough would use single-stepping debuggers. One
could imagine a particularly sadistic procedure as follows:

1. The tester presents the test case.

2. The moderator starts the code under a debugger,
using the specified test case as input.

3. Before each statement is executed, the developer is
required to predict the outcome of the statement and
explain why this outcome is correct.

4. If the outcome differs from that predicted by the
developer, this is taken as a potential bug.

5. In parallel code, a “concurrency shark” asks what
code might execute concurrently with this code, and
why such concurrency is harmless.

Sadistic, certainly. Effective? Maybe. If the partic-
ipants have a good understanding of the requirements,
software tools, data structures, and algorithms, then walk-
throughs can be extremely effective. If not, walkthroughs
are often a waste of time.

11.5.3 Self-Inspection
Although developers are usually not all that effective at
inspecting their own code, there are a number of situations
where there is no reasonable alternative. For example, the
developer might be the only person authorized to look
at the code, other qualified developers might all be too
busy, or the code in question might be sufficiently bizarre
that the developer is unable to convince anyone else to
take it seriously until after demonstrating a prototype. In
these cases, the following procedure can be quite helpful,
especially for complex parallel code:

1. Write design document with requirements, diagrams
for data structures, and rationale for design choices.

2. Consult with experts, updating the design document
as needed.

3. Write the code in pen on paper, correcting errors as
you go. Resist the temptation to refer to pre-existing
nearly identical code sequences, instead, copy them.

4. At each step, articulate and question your assump-
tions, inserting assertions or constructing tests to
check them.

5. If there were errors, copy the code in pen on fresh
paper, correcting errors as you go. Repeat until the
last two copies are identical.

6. Produce proofs of correctness for any non-obvious
code.

7. Use a source-code control system. Commit early;
commit often.

8. Test the code fragments from the bottom up.

9. When all the code is integrated (but preferably before),
do full-up functional and stress testing.

10. Once the code passes all tests, write code-level doc-
umentation, perhaps as an extension to the design
document discussed above. Fix both the code and
the test code as needed.

v2024.12.27a

11.6. PROBABILITY AND HEISENBUGS 219

When I follow this procedure for new RCU code, there
are normally only a few bugs left at the end. With a few
prominent (and embarrassing) exceptions [McK11a], I
usually manage to locate these bugs before others do. That
said, this is getting more difficult over time as the number
and variety of Linux-kernel users increases.

Quick Quiz 11.8: Why would anyone bother copying ex-
isting code in pen on paper??? Doesn’t that just increase the
probability of transcription errors?

Quick Quiz 11.9: This procedure is ridiculously over-
engineered! How can you expect to get a reasonable amount
of software written doing it this way???

Quick Quiz 11.10: What do you do if, after all the pen-on-
paper copying, you find a bug while typing in the resulting
code?

The above procedure works well for new code, but
what if you need to inspect code that you have already
written? You can of course apply the above procedure
for old code in the special case where you wrote one to
throw away [FPB79], but the following approach can also
be helpful in less desperate circumstances:

1. Using your favorite documentation tool (LATEX,
HTML, OpenOffice, or straight ASCII), describe
the high-level design of the code in question. Use
lots of diagrams to illustrate the data structures and
how these structures are updated.

2. Make a copy of the code, stripping away all com-
ments.

3. Document what the code does statement by statement.

4. Fix bugs as you find them.

This works because describing the code in detail is
an excellent way to spot bugs [Mye79]. This second
procedure is also a good way to get your head around
someone else’s code, although the first step often suffices.

Although review and inspection by others is probably
more efficient and effective, the above procedures can be
quite helpful in cases where for whatever reason it is not
feasible to involve others.

At this point, you might be wondering how to write par-
allel code without having to do all this boring paperwork.
Here are some time-tested ways of accomplishing this:

1. Write a sequential program that scales through use
of available parallel library functions.

2. Write sequential plug-ins for a parallel framework,
such as map-reduce, BOINC, or a web-application
server.

3. Fully partition your problems, then implement se-
quential program(s) that run in parallel without com-
munication.

4. Stick to one of the application areas (such as linear
algebra) where tools can automatically decompose
and parallelize the problem.

5. Make extremely disciplined use of parallel-
programming primitives, so that the resulting code
is easily seen to be correct. But beware: It is always
tempting to break the rules “just a little bit” to gain
better performance or scalability. Breaking the rules
often results in general breakage. That is, unless you
carefully do the paperwork described in this section.

But the sad fact is that even if you do the paperwork
or use one of the above ways to more-or-less safely avoid
paperwork, there will be bugs. If nothing else, more users
and a greater variety of users will expose more bugs more
quickly, especially if those users are doing things that the
original developers did not consider. The next section
describes how to handle the probabilistic bugs that occur
all too commonly when validating parallel software.
Quick Quiz 11.11: Wait! Why on earth would an abstract
piece of software fail only sometimes???

11.6 Probability and Heisenbugs

With both heisenbugs and impressionist art, the

closer you get, the less you see.

Unknown

So your parallel program fails sometimes. But you used
techniques from the earlier sections to locate the problem
and now have a fix in place! Congratulations!!!

Now the question is just how much testing is required
in order to be certain that you actually fixed the bug, as
opposed to just reducing the probability of it occurring on
the one hand, having fixed only one of several related bugs
on the other hand, or made some ineffectual unrelated
change on yet a third hand. In short, what is the answer to
the eternal question posed by Figure 11.3?

Unfortunately, the honest answer is that an infinite
amount of testing is required to attain absolute certainty.

v2024.12.27a

220 CHAPTER 11. VALIDATION

Ha. You just got lucky

Hooray! I passed

the stress test!

Figure 11.3: Passed on Merits? Or Dumb Luck?

Quick Quiz 11.12: Suppose that you had a very large number
of systems at your disposal. For example, at current cloud
prices, you can purchase a huge amount of CPU time at low
cost. Why not use this approach to get close enough to certainty
for all practical purposes?

But suppose that we are willing to give up absolute
certainty in favor of high probability. Then we can bring
powerful statistical tools to bear on this problem. However,
this section will focus on simple statistical tools. These
tools are extremely helpful, but please note that reading
this section is not a substitute for statistics classes.6

For our start with simple statistical tools, we need to
decide whether we are doing discrete or continuous testing.
Discrete testing features well-defined individual test runs.
For example, a boot-up test of a Linux kernel patch is an
example of a discrete test: The kernel either comes up or it
does not. Although you might spend an hour boot-testing
your kernel, the number of times you attempted to boot
the kernel and the number of times the boot-up succeeded
would often be of more interest than the length of time
you spent testing. Functional tests tend to be discrete.

On the other hand, if my patch involved RCU, I would
probably run rcutorture, which is a kernel module
that, strangely enough, tests RCU. Unlike booting the
kernel, where the appearance of a login prompt signals the
successful end of a discrete test, rcutorture will happily
continue torturing RCU until either the kernel crashes or

6 Which I most highly recommend. The few statistics courses I have
taken have provided value far beyond that of the time I spent on them.

until you tell it to stop. The duration of the rcutorture
test is usually of more interest than the number of times
you started and stopped it. Therefore, rcutorture is an
example of a continuous test, a category that includes
many stress tests.

Statistics for discrete tests are simpler and more famil-
iar than those for continuous tests, and furthermore the
statistics for discrete tests can often be pressed into service
for continuous tests, though with some loss of accuracy.
We therefore start with discrete tests.

11.6.1 Statistics for Discrete Testing
Suppose a bug has a 10 % chance of occurring in a given
run and that we do five runs. How do we compute the
probability of at least one run failing? Here is one way:

1. Compute the probability of a given run succeeding,
which is 90 %.

2. Compute the probability of all five runs succeeding,
which is 0.9 raised to the fifth power, or about 59 %.

3. Because either all five runs succeed, or at least one
fails, subtract the 59 % expected success rate from
100 %, yielding a 41 % expected failure rate.

For those preferring formulas, call the probability of
a single failure 𝑓 . The probability of a single success
is then 1 − 𝑓 and the probability that all of 𝑛 tests will
succeed is 𝑆𝑛:

𝑆𝑛 = (1 − 𝑓)𝑛 (11.1)

The probability of failure is 1 − 𝑆𝑛, or:

𝐹𝑛 = 1 − (1 − 𝑓)𝑛 (11.2)

Quick Quiz 11.13: Say what??? When I plug the earlier five-
test 10 %-failure-rate example into the formula, I get 59,050 %
and that just doesn’t make sense!!!

So suppose that a given test has been failing 10 % of
the time. How many times do you have to run the test to
be 99 % sure that your supposed fix actually helped?

Another way to ask this question is “How many times
would we need to run the test to cause the probability of
failure to rise above 99 %?” After all, if we were to run
the test enough times that the probability of seeing at least
one failure becomes 99 %, if there are no failures, there is
only 1 % probability of this “success” being due to dumb
luck. And if we plug 𝑓 = 0.1 into Eq. 11.2 and vary 𝑛,

v2024.12.27a

11.6. PROBABILITY AND HEISENBUGS 221

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f R
un

s
fo

r 9
9%

 C
on

fid
en

ce

Per-Run Failure Probability

Figure 11.4: Number of Tests Required for 99 Percent
Confidence Given Failure Rate

we find that 43 runs gives us a 98.92 % chance of at least
one test failing given the original 10 % per-test failure
rate, while 44 runs gives us a 99.03 % chance of at least
one test failing. So if we run the test on our fix 44 times
and see no failures, there is a 99 % probability that our fix
really did help.

But repeatedly plugging numbers into Eq. 11.2 can get
tedious, so let’s solve for 𝑛:

𝐹𝑛 = 1 − (1 − 𝑓)𝑛 (11.3)
1 − 𝐹𝑛 = (1 − 𝑓)𝑛 (11.4)

log (1 − 𝐹𝑛) = 𝑛 log (1 − 𝑓) (11.5)

Finally the number of tests required is given by:

𝑛 =
log (1 − 𝐹𝑛)
log (1 − 𝑓) (11.6)

Plugging 𝑓 = 0.1 and 𝐹𝑛 = 0.99 into Eq. 11.6 gives
43.7, meaning that we need 44 consecutive successful test
runs to be 99 % certain that our fix was a real improvement.
This matches the number obtained by the previous method,
which is reassuring.
Quick Quiz 11.14: In Eq. 11.6, are the logarithms base-10,
base-2, or base-e?

Figure 11.4 shows a plot of this function. Not surpris-
ingly, the less frequently each test run fails, the more test
runs are required to be 99 % confident that the bug has
been fixed. If the bug caused the test to fail only 1 % of
the time, then a mind-boggling 458 test runs are required.
As the failure probability decreases, the number of test

runs required increases, going to infinity as the failure
probability goes to zero.

The moral of this story is that when you have found a
rarely occurring bug, your testing job will be much easier
if you can come up with a carefully targeted test with a
much higher failure rate. For example, if your targeted test
raised the failure rate from 1 % to 30 %, then the number
of runs required for 99 % confidence would drop from
458 to a more tractable 13.

But these thirteen test runs would only give you 99 %
confidence that your fix had produced “some improve-
ment”. Suppose you instead want to have 99 % confidence
that your fix reduced the failure rate by an order of magni-
tude. How many failure-free test runs are required?

An order of magnitude improvement from a 30 % failure
rate would be a 3 % failure rate. Plugging these numbers
into Eq. 11.6 yields:

𝑛 =
log (1 − 0.99)
log (1 − 0.03) = 151.2 (11.7)

So our order of magnitude improvement requires
roughly an order of magnitude more testing. Certainty
is impossible, and high probabilities are quite expensive.
This is why making tests run more quickly and making
failures more probable are essential skills in the devel-
opment of highly reliable software. These skills will be
covered in Section 11.6.4.

11.6.2 Statistics Abuse for Discrete Testing

But suppose that you have a continuous test that fails about
three times every ten hours, and that you fix the bug that
you believe was causing the failure. How long do you
have to run this test without failure to be 99 % certain that
you reduced the probability of failure?

Without doing excessive violence to statistics, we could
simply redefine a one-hour run to be a discrete test that
has a 30 % probability of failure. Then the results of in
the previous section tell us that if the test runs for 13 hours
without failure, there is a 99 % probability that our fix
actually improved the program’s reliability.

A dogmatic statistician might not approve of this ap-
proach, but the sad fact is that the errors introduced by this
sort of statistical abuse are usually quite small compared
to the errors in your failure-rate estimates. Nevertheless,
the next section takes a more rigorous approach.

v2024.12.27a

222 CHAPTER 11. VALIDATION

11.6.3 Statistics for Continuous Testing
The fundamental formula for failure probabilities is the
Poisson distribution:

𝐹𝑚 =
𝜆𝑚

𝑚!
e−𝜆 (11.8)

Here 𝐹𝑚 is the probability of 𝑚 failures in the test and
𝜆 is the expected failure rate per unit time. A rigorous
derivation may be found in any advanced probability
textbook, for example, Feller’s classic “An Introduction to
Probability Theory and Its Applications” [Fel50], while a
more intuitive derivation may be found in the first edition
of this book [McK14c, Equations 11.8–11.26].

Let’s try reworking the example from Section 11.6.2
using the Poisson distribution. Recall that this example
involved a test with a 30 % failure rate per hour, and that
the question was how long the test would need to run
error-free on a alleged fix to be 99 % certain that the fix
actually reduced the failure rate. In this case, 𝑚 is zero,
so that Eq. 11.8 reduces to:

𝐹0 = e−𝜆 (11.9)

Solving this requires setting 𝐹0 to 0.01 and solving for
𝜆, resulting in:

𝜆 = − ln 0.01 = 4.6 (11.10)

Because we get 0.3 failures per hour, the number of
hours required is 4.6/0.3 = 14.3, which is within 10 % of
the 13 hours calculated using the method in Section 11.6.2.
Given that you normally won’t know your failure rate to
anywhere near 10 %, the simpler method described in
Section 11.6.2 is almost always good and sufficient.

More generally, if we have 𝑛 failures per unit time, and
we want to be 𝑃% certain that a fix reduced the failure
rate, we can use the following formula:

𝑇 = −1
𝑛

ln
100 − 𝑃

100
(11.11)

Quick Quiz 11.15: Suppose that a bug causes a test failure
three times per hour on average. How long must the test run
error-free to provide 99.9 % confidence that the fix significantly
reduced the probability of failure?

As before, the less frequently the bug occurs and the
greater the required level of confidence, the longer the
required error-free test run.

Suppose that a given test fails about once every hour,
but after a bug fix, a 24-hour test run fails only twice.

Assuming that the failure leading to the bug is a random
occurrence, what is the probability that the small number
of failures in the second run was due to random chance?
In other words, how confident should we be that the fix
actually had some effect on the bug? This probability may
be calculated by summing Eq. 11.8 as follows:

𝐹0 + 𝐹1 + · · · + 𝐹𝑚−1 + 𝐹𝑚 =

𝑚∑︁
𝑖=0

𝜆𝑖

𝑖!
e−𝜆 (11.12)

This is the Poisson cumulative distribution function,
which can be written more compactly as:

𝐹𝑖≤𝑚 =

𝑚∑︁
𝑖=0

𝜆𝑖

𝑖!
e−𝜆 (11.13)

Here𝑚 is the actual number of errors in the long test run
with the alleged fix applied (in this case, two errors) and 𝜆

is expected number of errors in the long test run prior to
applying the fix (in this case, 24 errors). Plugging 𝑚 = 2
and 𝜆 = 24 into this expression gives the probability of
two or fewer failures as about 1.2 × 10−8, in other words,
we have a high level of confidence that the fix actually had
some relationship to the bug.7

Quick Quiz 11.16: Doing the summation of all the factorials
and exponentials is a real pain. Isn’t there an easier way?

Quick Quiz 11.17: But wait!!! Given that there has to be
some number of failures (including the possibility of zero
failures), shouldn’t Eq. 11.13 approach the value 1 as 𝑚 goes
to infinity?

The Poisson distribution is a powerful tool for analyzing
test results, but the fact is that in this last example there
were still two remaining test failures in a 24-hour test run.
Such a low failure rate results in very long test runs. The
next section discusses counter-intuitive ways of improving
this situation.

11.6.4 Hunting Heisenbugs
This line of thought also helps explain heisenbugs: Adding
tracing and assertions can easily reduce the probability of a
bug appearing, which is why extremely lightweight tracing
and assertion mechanism are so critically important.

The term “heisenbug” was inspired by the Heisenberg
Uncertainty Principle from quantum physics, which states

7 Of course, this result in no way excuses you from finding and
fixing the bug(s) resulting in the remaining two failures!

v2024.12.27a

11.6. PROBABILITY AND HEISENBUGS 223

that it is impossible to exactly quantify a given particle’s
position and velocity at any given point in time [Hei27].
Any attempt to more accurately measure that particle’s
position will result in increased uncertainty of its velocity
and vice versa. Similarly, attempts to track down the
heisenbug causes its symptoms to radically change or
even disappear completely.8 Of course, adding debug-
ging overhead can and sometimes does make bugs more
probable. But developers are more likely to remember
the frustration of a disappearing heisenbug than the joy
inspired by the bug becoming more easily reproduced!

If the field of physics inspired the name of this problem,
it is only fair that the field of physics should inspire
the solution. Fortunately, particle physics is up to the
task: Why not create an anti-heisenbug to annihilate the
heisenbug? Or, perhaps more accurately, to annihilate the
heisen-ness of the heisenbug? Although producing an
anti-heisenbug for a given heisenbug is more an art than a
science, the following sections describe a number of ways
to do just that:

1. Add delay to race-prone regions (Section 11.6.4.1).

2. Increase workload intensity (Section 11.6.4.2).

3. Isolate suspicious subsystems (Section 11.6.4.3).

4. Make rare events less rare (Section 11.6.4.4).

5. Count near misses (Section 11.6.4.5).

6. Proactive hunting techniques (Section 11.6.4.6).

These are followed by discussion in Section 11.6.4.7.

11.6.4.1 Add Delay

Consider the count-lossy code in Section 5.1. Adding
printf() statements will likely greatly reduce or even
eliminate the lost counts. However, converting the load-
add-store sequence to a load-add-delay-store sequence
will greatly increase the incidence of lost counts (try it!).
Once you spot a bug involving a race condition, it is
frequently possible to create an anti-heisenbug by adding
delay in this manner.

Of course, this begs the question of how to find the
race condition in the first place. Although very lucky
developers might accidentally create delay-based anti-
heisenbugs when adding debug code, this is in general a

8 The term “heisenbug” is a misnomer, as most heisenbugs are fully
explained by the observer effect from classical physics. Nevertheless,
the name has stuck.

dark art. Nevertheless, there are a number of things you
can do to find your race conditions.

One approach is to recognize that race conditions of-
ten end up corrupting some of the data involved in the
race. It is therefore good practice to double-check the
synchronization of any corrupted data. Even if you cannot
immediately recognize the race condition, adding delay be-
fore and after accesses to the corrupted data might change
the failure rate. By adding and removing the delays in an
organized fashion (e.g., binary search), you might learn
more about the workings of the race condition.

Quick Quiz 11.18: How is this approach supposed to help
if the corruption affected some unrelated pointer, which then
caused the corruption???

Another important approach is to vary the software and
hardware configuration and look for statistically significant
differences in failure rate. For example, back in the 1990s,
it was common practice to test on systems having CPUs
running at different clock rates, which tended to make
some types of race conditions more probable. One way
of getting a similar effect today is to test on multi-socket
systems, thus incurring the large delays described in
Section 3.2.

However you choose to add delays, you can then look
more intensively at the code implicated by those delays
that make the greatest difference in failure rate. It might
be helpful to test that code in isolation, for example.

One important aspect of software configuration is the
history of changes, which is why git bisect is so useful.
Bisection of the change history can provide very valuable
clues as to the nature of the heisenbug, in this case
presumably by locating a commit that shows a change in
the software’s response to the addition or removal of a
given delay.

Quick Quiz 11.19: But I did the bisection, and ended up
with a huge commit. What do I do now?

Once you locate the suspicious section of code, you can
then introduce delays to attempt to increase the probability
of failure. As we have seen, increasing the probability of
failure makes it much easier to gain high confidence in
the corresponding fix.

However, it is sometimes quite difficult to track down
the problem using normal debugging techniques. The
following sections present some other alternatives.

v2024.12.27a

224 CHAPTER 11. VALIDATION

11.6.4.2 Increase Workload Intensity

It is often the case that a given test suite places relatively
low stress on a given subsystem, so that a small change
in timing can cause a heisenbug to disappear. One way
to create an anti-heisenbug for this case is to increase the
workload intensity, which has a good chance of increasing
the bug’s probability. If the probability is increased suffi-
ciently, it may be possible to add lightweight diagnostics
such as tracing without causing the bug to vanish.

How can you increase the workload intensity? This
depends on the program, but here are some things to try:

1. Add more CPUs.

2. If the program uses networking, add more network
adapters and more or faster remote systems.

3. If the program is doing heavy I/O when the problem
occurs, either (1) add more storage devices, (2) use
faster storage devices, for example, substitute SSDs
for disks, or (3) use a RAM-based filesystem to
substitute main memory for mass storage.

4. Change the size of the problem, for example, if
doing a parallel matrix multiply, change the size of
the matrix. Larger problems may introduce more
complexity, but smaller problems often increase the
level of contention. If you aren’t sure whether you
should go large or go small, just try both.

However, it is often the case that the bug is in a specific
subsystem, and the structure of the program limits the
amount of stress that can be applied to that subsystem.
The next section addresses this situation.

11.6.4.3 Isolate Suspicious Subsystems

If the program is structured such that it is difficult or
impossible to apply much stress to a subsystem that is
under suspicion, a useful anti-heisenbug is a stress test
that tests that subsystem in isolation. The Linux kernel’s
rcutorture module takes exactly this approach with
RCU: Applying more stress to RCU than is feasible in
a production environment increases the probability that
RCU bugs will be found during testing rather than in
production.9

In fact, when creating a parallel program, it is wise
to stress-test the components separately. Creating such
component-level stress tests can seem like a waste of time,

9 Though sadly not increased to probability one.

but a little bit of component-level testing can save a huge
amount of system-level debugging.

11.6.4.4 Make Rare Events Less Rare

Heisenbugs are sometimes due to rare events, such as
memory-allocation failure, conditional-lock-acquisition
failure, CPU-hotplug operations, timeouts, packet losses,
large-scale changes in state, and so on. The corresponding
anti-heisenbug is thus simply to make these rare events
happen much more frequently. For example, the TREE03
rcutorture scenario waits only 200 milliseconds between
CPU-hotplug operations. For another example, most of the
rcutorture scenarios emulate RCU callback flooding every
minute. For a final example, a memory-management stress
test for x86 CPUs might do well to frequently transition
an aligned 2 MB block of memory back and forth between
2 MB and 4 KB pages.

Another way to construct an anti-heisenbug for this
class of heisenbug is to introduce spurious failures. For
example, instead of invoking malloc() directly, invoke
a wrapper function that uses a random number to decide
whether to return NULL unconditionally on the one hand,
or to actually invoke malloc() and return the resulting
pointer on the other. Inducing spurious failures is an
excellent way to bake robustness into sequential programs
as well as parallel programs.

Quick Quiz 11.20: Why don’t conditional-locking primitives
provide this spurious-failure functionality?

11.6.4.5 Count Near Misses

Bugs are often all-or-nothing things, so that a bug either
happens or not, with nothing in between. However, it is
sometimes possible to define a near miss where the bug
does not result in a failure, but has likely manifested. For
example, suppose your code is making a robot walk. The
robot’s falling down constitutes a bug in your program,
but stumbling and recovering might constitute a near miss.
If the robot falls over only once per hour, but stumbles
every few minutes, you might be able to speed up your
debugging progress by counting the number of stumbles
in addition to the number of falls.

In concurrent programs, timestamping can sometimes
be used to detect near misses. For example, locking
primitives incur significant delays, so if there is a too-
short delay between a pair of operations that are supposed

v2024.12.27a

11.6. PROBABILITY AND HEISENBUGS 225

call_rcu()

Grace-Period Start

Grace-Period End

Callback Invocation

R
e
a
d
e
r

N
e
a
r

M
is

s

R
e
a
d
e
r

E
rr

o
r

Ti
m

e

Figure 11.5: RCU Errors and Near Misses

to be protected by different acquisitions of the same lock,
this too-short delay might be counted as a near miss.10

For example, a low-probability bug in RCU priority
boosting occurred roughly once every hundred hours of fo-
cused rcutorture testing. Because it would take almost
500 hours of failure-free testing to be 99 % certain that
the bug’s probability had been significantly reduced, the
git bisect process to find the failure would be painfully
slow—or would require an extremely large test farm. For-
tunately, the RCU operation being tested included not only
a wait for an RCU grace period, but also a previous wait
for the grace period to start and a subsequent wait for an
RCU callback to be invoked after completion of the RCU
grace period. This distinction between an rcutorture
error and near miss is shown in Figure 11.5. To qualify
as a full-fledged error, an RCU read-side critical section
must extend from the call_rcu() that initiated a grace
period, through the remainder of the previous grace pe-
riod, through the entirety of the grace period initiated
by the call_rcu() (denoted by the region between the
jagged lines), and through the delay from the end of that
grace period to the callback invocation, as indicated by
the “Error” arrow. However, the formal definition of RCU
prohibits RCU read-side critical sections from extending
across a single grace period, as indicated by the “Near
Miss” arrow. This suggests using near misses as the
error condition, however, this can be problematic because
different CPUs can have different opinions as to exactly
where a given grace period starts and ends, as indicated

10 Of course, in this case, you might be better off using whatever
lock_held() primitive is available in your environment. If there isn’t
a lock_held() primitive, create one!

by the jagged lines.11 Using the near misses as the error
condition could therefore result in false positives, which
need to be avoided in the automated rcutorture testing.

By sheer dumb luck, rcutorture happens to include
some statistics that are sensitive to the near-miss version
of the grace period. As noted above, these statistics are
subject to false positives due to their unsynchronized
access to RCU’s state variables, but these false positives
turn out to be extremely rare on strongly ordered systems
such as the IBM mainframe and x86, occurring less than
once per thousand hours of testing.

These near misses occurred roughly once per hour,
about two orders of magnitude more frequently than the
actual errors. Use of these near misses allowed the bug’s
root cause to be identified in less than a week and a high
degree of confidence in the fix to be built in less than a
day. In contrast, excluding the near misses in favor of
the real errors would have required months of debug and
validation time.

To sum up near-miss counting, the general approach
is to replace counting of infrequent failures with more-
frequent near misses that are believed to be correlated with
those failures. These near-misses can be considered an
anti-heisenbug to the real failure’s heisenbug because the
near-misses, being more frequent, are likely to be more
robust in the face of changes to your code, for example,
the changes you make to add debugging code.

11.6.4.6 Proactive Hunting Techniques

Most of the anti-heisenbug techniques discussed in the
precending sections are backwards looking. After all, prior
experience is the best guide to knowing which regions
of code are prone to race conditions, what aspects of the
workload can most profitably be increased in intensity,
which subsystems are deserving of suspicion, which rare
events are important, and what near misses are good
proxies for actual failures.

What can you do to get ahead of the game?
Getting ahead of the anti-heisenbug game is even more

of an art than constructing an anti-heisenbug for a specific
situation, but here are some techniques that can be helpful:

1. Add delay to sections of concurrent code that required
the most analysis, that needed formal verification, or
that deviated the most from common concurrency
practice.

11 In real life, these lines can be much more jagged because idle
CPUs can be completely unaware of a great many recent grace periods.

v2024.12.27a

226 CHAPTER 11. VALIDATION

2. Analyze trends in workload intensity, and use the re-
sults to guide increasing the intensity of your testing.

3. Be most suspicious of new code, especially if it is
your new code.

4. Instrument your workload, looking for complex oper-
ations that occur frequently enough to be an uptime
problem but rarely enough to avoid much exposure
in your current testing.

5. Look for near misses in failure-recovery code and on
slowpaths.

Finally, and most importantly, pay special attention to
code that people are the most proud of. After all, people
are most likely to be proud of code that is unusual, which
means that its bugs (and the bugs in the code that it uses)
are likely to escape your usual testing efforts.

11.6.4.7 Heisenbug Discussion

The alert reader might have noticed that this section was
fuzzy and qualitative, in stark contrast to the precise
mathematics of Sections 11.6.1, 11.6.2, and 11.6.3. If you
love precision and mathematics, you may be disappointed
to learn that the situations to which this section applies
are far more common than those to which the preceding
sections apply.

In fact, the common case is that although you might
have reason to believe that your code has bugs, you have
no idea what those bugs are, what causes them, how
likely they are to appear, or what conditions affect their
probability of appearance. In this all-too-common case,
statistics cannot help you.12 That is to say, statistics cannot
help you directly. But statistics can be of great indirect
help—if you have the humility required to admit that you
make mistakes, that you can reduce the probability of
these mistakes (for example, by getting enough sleep), and
that the number and type of mistakes you made in the past
is indicative of the number and type of mistakes that you
are likely to make in the future. For example, I have a
deplorable tendency to forget to write a small but critical
portion of the initialization code, and frequently get most
or even all of a parallel program correct—except for a
stupid omission in initialization. Once I was willing to
admit to myself that I am prone to this type of mistake, it
was easier (but not easy!) to force myself to double-check

12 Although if you know what your program is supposed to do and
if your program is small enough (both less likely that you might think),
then the formal-verification tools described in Chapter 12 can be helpful.

my initialization code. Doing this allowed me to find
numerous bugs ahead of time.

When your quick bug hunt morphs into a long-term
quest, it is important to log everything you have tried and
what happened. In the common case where the software
is changing during the course of your quest, make sure
to record the exact version of the software to which each
log entry applies. From time to time, reread the entire log
in order to make connections between clues encountered
at different times. Such rereading is especially important
upon encountering a surprising test result, for example, I
reread my log upon realizing that what I thought was a
failure of the hypervisor to schedule a vCPU was instead
an interrupt storm preventing that vCPU from making
forward progress on the interrupted code. If the code you
are debugging is new to you, this log is also an excellent
place to document the relationships between code and data
structures. Keeping a log when you are furiously chasing
a difficult bug might seem like needless paperwork, but it
has on many occasions saved me from debugging around
and around in circles, which can waste far more time than
keeping a log ever could.

Using Taleb’s nomenclature [Tal07], a white swan
is a bug that we can reproduce. We can run a large
number of tests, use ordinary statistics to estimate the
bug’s probability, and use ordinary statistics again to
estimate our confidence in a proposed fix. An unsuspected
bug is a black swan. We know nothing about it, we have
no tests that have yet caused it to happen, and statistics
is of no help. Studying our own behavior, especially the
number and types of mistakes we make, can turn black
swans into grey swans. We might not know exactly what
the bugs are, but we have some idea of their number and
maybe also of their type. Ordinary statistics is still of no
help (at least not until we are able to reproduce one of
the bugs), but robust13 testing methods can be of great
help. The goal, therefore, is to use experience and good
validation practices to turn the black swans grey, focused
testing and analysis to turn the grey swans white, and
ordinary methods to fix the white swans.

That said, thus far, we have focused solely on bugs in the
parallel program’s functionality. However, performance is
a first-class requirement for a parallel program. Otherwise,
why not write a sequential program? To repurpose Kipling,
our goal when writing parallel code is to fill the unforgiving
second with sixty minutes worth of distance run. The next
section therefore discusses a number of performance bugs
that would be happy to thwart this Kiplingesque goal.

13 That is to say brutal.

v2024.12.27a

11.7. PERFORMANCE ESTIMATION 227

11.7 Performance Estimation

There are lies, damn lies, statistics, and benchmarks.

Unknown

Parallel programs usually have performance and scalability
requirements, after all, if performance is not an issue, why
not use a sequential program? Ultimate performance
and linear scalability might not be necessary, but there is
little use for a parallel program that runs slower than its
optimal sequential counterpart. And there really are cases
where every microsecond matters and every nanosecond
is needed. Therefore, for parallel programs, insufficient
performance is just as much a bug as is incorrectness.

Quick Quiz 11.21: That is ridiculous!!! After all, isn’t
getting the correct answer later than one would like better than
getting an incorrect answer???

Quick Quiz 11.22: But if you are going to put in all the hard
work of parallelizing an application, why not do it right? Why
settle for anything less than optimal performance and linear
scalability?

Validating a parallel program must therfore include
validating its performance. But validating performance
means having a workload to run and performance criteria
with which to evaluate the program at hand. These needs
are often met by performance benchmarks, which are
discussed in the next section.

11.7.1 Benchmarking
Frequent abuse aside, benchmarks are both useful and
heavily used, so it is not helpful to be too dismissive of
them. Benchmarks span the range from ad hoc test jigs
to international standards, but regardless of their level of
formality, benchmarks serve four major purposes:

1. Providing a fair framework for comparing competing
implementations.

2. Focusing competitive energy on improving imple-
mentations in ways that matter to users.

3. Serving as example uses of the implementations
being benchmarked.

4. Serving as a marketing tool to highlight your software
against your competitors’ offerings.

Of course, the only completely fair framework is the in-
tended application itself. So why would anyone who cared
about fairness in benchmarking bother creating imperfect
benchmarks rather than simply using the application itself
as the benchmark?

Running the actual application is in fact the best ap-
proach where it is practical. Unfortunately, it is often
impractical for the following reasons:

1. The application might be proprietary, and you might
not have the right to run the intended application.

2. The application might require more hardware than
you have access to.

3. The application might use data that you cannot access,
for example, due to privacy regulations.

4. The application might take longer than is convenient
to reproduce a performance or scalability problem.14

Creating a benchmark that approximates the application
can help overcome these obstacles. A carefully construc-
ted benchmark can help promote performance, scalability,
energy efficiency, and much else besides. However, be
careful to avoid investing too much into the benchmarking
effort. It is after all important to invest at least a little into
the application itself [Gra91].

11.7.2 Profiling
In many cases, a fairly small portion of your software
is responsible for the majority of the performance and
scalability shortfall. However, developers are notoriously
unable to identify the actual bottlenecks by inspection.
For example, in the case of a kernel buffer allocator,
all attention focused on a search of a dense array which
turned out to represent only a few percent of the allocator’s
execution time. An execution profile collected via a
logic analyzer focused attention on the cache misses
that were actually responsible for the majority of the
problem [MS93].

An old-school but quite effective method of tracking
down performance and scalability bugs is to run your
program under a debugger, then periodically interrupt it,
recording the stacks of all threads at each interruption.
The theory here is that if something is slowing down your
program, it has to be visible in your threads’ executions.

That said, there are a number of tools that will usually
do a much better job of helping you to focus your attention

14 Microbenchmarks can help, but please see Section 11.7.4.

v2024.12.27a

228 CHAPTER 11. VALIDATION

where it will do the most good. Two popular choices
are gprof and perf. To use perf on a single-process
program, prefix your command with perf record, then
after the command completes, type perf report. There
is a lot of work on tools for performance debugging
of multi-threaded programs, which should make this
important job easier. Again, one good starting point
is Brendan Gregg’s blog.15

11.7.3 Differential Profiling
Scalability problems will not necessarily be apparent
unless you are running on very large systems. However,
it is sometimes possible to detect impending scalability
problems even when running on much smaller systems.
One technique for doing this is called differential profiling.

The idea is to run your workload under two different
sets of conditions. For example, you might run it on two
CPUs, then run it again on four CPUs. You might instead
vary the load placed on the system, the number of network
adapters, the number of mass-storage devices, and so on.
You then collect profiles of the two runs, and mathemati-
cally combine corresponding profile measurements. For
example, if your main concern is scalability, you might
take the ratio of corresponding measurements, and then
sort the ratios into descending numerical order. The prime
scalability suspects will then be sorted to the top of the
list [McK95, McK99].

Some tools such as perf have built-in differential-
profiling support.

11.7.4 Microbenchmarking
Microbenchmarking can be useful when deciding which
algorithms or data structures are worth incorporating into
a larger body of software for deeper evaluation.

One common approach to microbenchmarking is to
measure the time, run some number of iterations of the
code under test, then measure the time again. The dif-
ference between the two times divided by the number of
iterations gives the measured time required to execute the
code under test.

Unfortunately, this approach to measurement allows
any number of errors to creep in, including:

1. The measurement will include some of the overhead
of the time measurement. This source of error can
be reduced to an arbitrarily small value by increasing
the number of iterations.

15 http://www.brendangregg.com/blog/

2. The first few iterations of the test might incur cache
misses or (worse yet) page faults that might inflate
the measured value. This source of error can also be
reduced by increasing the number of iterations, or
it can often be eliminated entirely by running a few
warm-up iterations before starting the measurement
period. Most systems have ways of detecting whether
a given process incurred a page fault, and you should
make use of this to reject runs whose performance
has been thus impeded.

3. Some types of interference, for example, random
memory errors, are so rare that they can be dealt
with by running a number of sets of iterations of the
test. If the level of interference was statistically sig-
nificant, any performance outliers could be rejected
statistically.

4. Any iteration of the test might be interfered with
by other activity on the system. Sources of inter-
ference include other applications, system utilities
and daemons, device interrupts, firmware interrupts
(including system management interrupts, or SMIs),
virtualization, memory errors, and much else besides.
Assuming that these sources of interference occur
randomly, their effect can be minimized by reducing
the number of iterations.

5. Thermal throttling can understate scalability because
increasing CPU activity increases heat generation,
and on systems without adequate cooling (most of
them!), this can result in the CPU frequency decreas-
ing as the number of CPUs increases.16 Of course, if
you are testing an application to evaluate its expected
behavior when run in production, such thermal throt-
tling is simply a fact of life. Otherwise, if you are
interested in theoretical scalability, use a system with
adequate cooling or reduce the CPU clock rate to a
level that the cooling system can handle.

The first and fourth sources of interference provide
conflicting advice, which is one sign that we are living in
the real world.
Quick Quiz 11.23: But what about other sources of error,
for example, due to interactions between caches and memory
layout?

The following sections discuss ways of dealing with
these measurement errors, with Section 11.7.5 covering
isolation techniques that may be used to prevent some

16 Systems with adequate cooling tend to look like gaming systems.

http://www.brendangregg.com/blog/

v2024.12.27a

11.7. PERFORMANCE ESTIMATION 229

forms of interference, and with Section 11.7.6 covering
methods for detecting interference so as to reject mea-
surement data that might have been corrupted by that
interference.

11.7.5 Isolation
The Linux kernel provides a number of ways to isolate a
group of CPUs from outside interference.

First, let’s look at interference by other processes,
threads, and tasks. The POSIX sched_setaffinity()
system call may be used to move most tasks off of a
given set of CPUs and to confine your tests to that same
group. The Linux-specific user-level taskset command
may be used for the same purpose, though both sched_
setaffinity() and taskset require elevated permis-
sions. Linux-specific control groups (cgroups) may be
used for this same purpose. This approach can be quite
effective at reducing interference, and is sufficient in many
cases. However, it does have limitations, for example, it
cannot do anything about the per-CPU kernel threads that
are often used for housekeeping tasks.

One way to avoid interference from per-CPU kernel
threads is to run your test at a high real-time priority, for
example, by using the POSIX sched_setscheduler()
system call. However, note that if you do this, you are im-
plicitly taking on responsibility for avoiding infinite loops,
because otherwise your test can prevent part of the kernel
from functioning. This is an example of the Spiderman
Principle: “With great power comes great responsibility.”
And although the default real-time throttling settings often
address such problems, they might do so by causing your
real-time threads to miss their deadlines.

These approaches can greatly reduce, and perhaps even
eliminate, interference from processes, threads, and tasks.
However, it does nothing to prevent interference from
device interrupts, at least in the absence of threaded
interrupts. Linux allows some control of threaded in-
terrupts via the /proc/irq directory, which contains
numerical directories, one per interrupt vector. Each
numerical directory contains smp_affinity and smp_
affinity_list. Given sufficient permissions, you can
write a value to these files to restrict interrupts to the
specified set of CPUs. For example, either “echo 3
> /proc/irq/23/smp_affinity” or “echo 0-1 >
/proc/irq/23/smp_affinity_list” would confine
interrupts on vector 23 to CPUs 0 and 1, at least given suffi-
cient privileges. You can use “cat /proc/interrupts”
to obtain a list of the interrupt vectors on your system,

how many are handled by each CPU, and what devices
use each interrupt vector.

Running a similar command for all interrupt vectors on
your system would confine interrupts to CPUs 0 and 1,
leaving the remaining CPUs free of interference. Or
mostly free of interference, anyway. It turns out that
the scheduling-clock interrupt fires on each CPU that is
running in user mode.17 In addition you must take care to
ensure that the set of CPUs that you confine the interrupts
to is capable of handling the load.

But this only handles processes and interrupts running
in the same operating-system instance as the test. Suppose
that you are running the test in a guest OS that is itself
running on a hypervisor, for example, Linux running
KVM? Although you can in theory apply the same
techniques at the hypervisor level that you can at the
guest-OS level, it is quite common for hypervisor-level
operations to be restricted to authorized personnel. In
addition, none of these techniques work against firmware-
level interference.
Quick Quiz 11.24: Wouldn’t the techniques suggested to
isolate the code under test also affect that code’s performance,
particularly if it is running within a larger application?

Of course, if it is in fact the interference that is producing
the behavior of interest, you will instead need to promote
interference, in which case being unable to prevent it is
not a problem. But if you really do need interference-free
measurements, then instead of preventing the interference,
you might need to detect the interference as described in
the next section.

11.7.6 Detecting Interference
If you cannot prevent interference, perhaps you can detect
it and reject results from any affected test runs. Sec-
tion 11.7.6.1 describes methods of rejection involving ad-
ditional measurements, while Section 11.7.6.2 describes
statistics-based rejection.

11.7.6.1 Detecting Interference Via Measurement

Many systems, including Linux, provide means for deter-
mining after the fact whether some forms of interference
have occurred. For example, process-based interference
results in context switches, which, on Linux-based sys-
tems, are visible in /proc/<PID>/sched via the nr_

17 Frederic Weisbecker leads up a NO_HZ_FULL adaptive-ticks project
that allows scheduling-clock interrupts to be disabled on CPUs that have
only one runnable task. As of 2021, this is largely complete.

v2024.12.27a

230 CHAPTER 11. VALIDATION

Listing 11.1: Using getrusage() to Detect Context Switches
1 #include <sys/time.h>
2 #include <sys/resource.h>
3
4 /* Return 0 if test results should be rejected. */
5 int runtest(void)
6 {
7 struct rusage ru1;
8 struct rusage ru2;
9

10 if (getrusage(RUSAGE_SELF, &ru1) != 0) {
11 perror("getrusage");
12 abort();
13 }
14 /* run test here. */
15 if (getrusage(RUSAGE_SELF, &ru2 != 0) {
16 perror("getrusage");
17 abort();
18 }
19 return (ru1.ru_nvcsw == ru2.ru_nvcsw &&
20 ru1.runivcsw == ru2.runivcsw);
21 }

switches field. Similarly, interrupt-based interference
can be detected via the /proc/interrupts file.

Opening and reading files is not the way to low overhead,
and it is possible to get the count of context switches for a
given thread by using the getrusage() system call, as
shown in Listing 11.1. This same system call can be used
to detect minor page faults (ru_minflt) and major page
faults (ru_majflt).

Unfortunately, detecting memory errors and firmware
interference is quite system-specific, as is the detection of
interference due to virtualization. Although avoidance is
better than detection, and detection is better than statistics,
there are times when one must avail oneself of statistics, a
topic addressed in the next section.

11.7.6.2 Detecting Interference Via Statistics

Any statistical analysis will be based on assumptions about
the data, and performance microbenchmarks often support
the following assumptions:

1. Smaller measurements are more likely to be accurate
than larger measurements.

2. The measurement uncertainty of good data is known.

3. A reasonable fraction of the test runs will result in
good data.

The fact that smaller measurements are more likely
to be accurate than larger measurements suggests that
sorting the measurements in increasing order is likely to be
productive.18 The fact that the measurement uncertainty

18 To paraphrase the old saying, “Sort first and ask questions later.”

is known allows us to accept measurements within this
uncertainty of each other: If the effects of interference are
large compared to this uncertainty, this will ease rejection
of bad data. Finally, the fact that some fraction (for
example, one third) can be assumed to be good allows
us to blindly accept the first portion of the sorted list,
and this data can then be used to gain an estimate of the
natural variation of the measured data, over and above the
assumed measurement error.

The approach is to take the specified number of leading
elements from the beginning of the sorted list, and use
these to estimate a typical inter-element delta, which in
turn may be multiplied by the number of elements in the
list to obtain an upper bound on permissible values. The
algorithm then repeatedly considers the next element of
the list. If it falls below the upper bound, and if the distance
between the next element and the previous element is not
too much greater than the average inter-element distance
for the portion of the list accepted thus far, then the next
element is accepted and the process repeats. Otherwise,
the remainder of the list is rejected.

Listing 11.2 shows a simple sh/awk script implementing
this notion. Input consists of an x-value followed by an
arbitrarily long list of y-values, and output consists of one
line for each input line, with fields as follows:

1. The x-value.

2. The average of the selected data.

3. The minimum of the selected data.

4. The maximum of the selected data.

5. The number of selected data items.

6. The number of input data items.

This script takes three optional arguments as follows:

--divisor: Number of segments to divide the list into,
for example, a divisor of four means that the first
quarter of the data elements will be assumed to be
good. This defaults to three.

--relerr: Relative measurement error. The script as-
sumes that values that differ by less than this error
are for all intents and purposes equal. This defaults
to 0.01, which is equivalent to 1 %.

--trendbreak: Ratio of inter-element spacing constitut-
ing a break in the trend of the data. For example,
if the average spacing in the data accepted so far is

v2024.12.27a

11.7. PERFORMANCE ESTIMATION 231

Listing 11.2: Statistical Elimination of Interference
1 div=3
2 rel=0.01
3 tre=10
4 while test $# -gt 0
5 do
6 case "$1" in
7 --divisor)
8 shift
9 div=$1

10 ;;
11 --relerr)
12 shift
13 rel=$1
14 ;;
15 --trendbreak)
16 shift
17 tre=$1
18 ;;
19 esac
20 shift
21 done
22
23 awk -v divisor=$div -v relerr=$rel -v trendbreak=$tre '{
24 for (i = 2; i <= NF; i++)
25 d[i - 1] = $i;
26 asort(d);
27 i = int((NF + divisor - 1) / divisor);
28 delta = d[i] - d[1];
29 maxdelta = delta * divisor;
30 maxdelta1 = delta + d[i] * relerr;
31 if (maxdelta1 > maxdelta)
32 maxdelta = maxdelta1;
33 for (j = i + 1; j < NF; j++) {
34 if (j <= 2)
35 maxdiff = d[NF - 1] - d[1];
36 else
37 maxdiff = trendbreak * (d[j - 1] - d[1]) / (j - 2);
38 if (d[j] - d[1] > maxdelta && d[j] - d[j - 1] > maxdiff)
39 break;
40 }
41 n = sum = 0;
42 for (k = 1; k < j; k++) {
43 sum += d[k];
44 n++;
45 }
46 min = d[1];
47 max = d[j - 1];
48 avg = sum / n;
49 print $1, avg, min, max, n, NF - 1;
50 }'

1.5, then if the trend-break ratio is 2.0, then if the
next data value differs from the last one by more than
3.0, this constitutes a break in the trend. (Unless of
course, the relative error is greater than 3.0, in which
case the “break” will be ignored.)

Lines 1–3 of Listing 11.2 set the default values for
the parameters, and lines 4–21 parse any command-line
overriding of these parameters. The awk invocation on
line 23 sets the values of the divisor, relerr, and
trendbreak variables to their sh counterparts. In the
usual awk manner, lines 24–50 are executed on each input
line. The loop spanning lines 24 and 25 copies the input
y-values to the d array, which line 26 sorts into increasing
order. Line 27 computes the number of trustworthy y-
values by applying divisor and rounding up.

Lines 28–32 compute the maxdelta lower bound on
the upper bound of y-values. To this end, line 29 multiplies
the difference in values over the trusted region of data
by the divisor, which projects the difference in values
across the trusted region across the entire set of y-values.
However, this value might well be much smaller than
the relative error, so line 30 computes the absolute error
(d[i] * relerr) and adds that to the difference delta
across the trusted portion of the data. Lines 31 and 32
then compute the maximum of these two values.

Each pass through the loop spanning lines 33–40 at-
tempts to add another data value to the set of good data.
Lines 34–39 compute the trend-break delta, with line 34
disabling this limit if we don’t yet have enough val-
ues to compute a trend, and with line 37 multiplying
trendbreak by the average difference between pairs of
data values in the good set. If line 38 determines that the
candidate data value would exceed the lower bound on the
upper bound (maxdelta) and that the difference between
the candidate data value and its predecessor exceeds the
trend-break difference (maxdiff), then line 39 exits the
loop: We have the full good set of data.

Lines 41–49 then compute and print statistics.

Quick Quiz 11.25: This approach is just plain weird! Why
not use means and standard deviations, like we were taught in
our statistics classes?

Quick Quiz 11.26: But what if all the y-values in the trusted
group of data are exactly zero? Won’t that cause the script to
reject any non-zero value?

Although statistical interference detection can be quite
useful, it should be used only as a last resort. It is far better
to avoid interference in the first place (Section 11.7.5),

v2024.12.27a

232 CHAPTER 11. VALIDATION

Figure 11.6: Choose Validation Methods Wisely

or, failing that, detecting interference via measurement
(Section 11.7.6.1).

11.8 Summary

To err is human! Stop being human‼!

Ed Nofziger

Although validation never will be an exact science, much
can be gained by taking an organized approach to it, as
an organized approach will help you choose the right
validation tools for your job, avoiding situations like the
one fancifully depicted in Figure 11.6.

A key choice is that of statistics. Although the methods
described in this chapter work very well most of the time,
they do have their limitations, courtesy of the Halting
Problem [Tur37, Pul00]. Fortunately for us, there is a
huge number of special cases in which we can not only
work out whether a program will halt, but also estimate how
long it will run before halting, as discussed in Section 11.7.
Furthermore, in cases where a given program might or
might not work correctly, we can often establish estimates
for what fraction of the time it will work correctly, as
discussed in Section 11.6.

Nevertheless, unthinking reliance on these estimates
is brave to the point of foolhardiness. After all, we are
summarizing a huge mass of complexity in code and data
structures down to a single solitary number. Even though
we can get away with such bravery a surprisingly large
fraction of the time, abstracting all that code and data
away will occasionally cause severe problems.

One possible problem is variability, where repeated
runs give wildly different results. This problem is often
addressed using standard deviation, however, using two
numbers to summarize the behavior of a large and complex
program is about as brave as using only one number. In

computer programming, the surprising thing is that use
of the mean or the mean and standard deviation are often
sufficient. Nevertheless, there are no guarantees.

One cause of variation is confounding factors. For
example, the CPU time consumed by a linked-list search
will depend on the length of the list. Averaging together
runs with wildly different list lengths will probably not be
useful, and adding a standard deviation to the mean will
not be much better. The right thing to do would be control
for list length, either by holding the length constant or to
measure CPU time as a function of list length.

Of course, this advice assumes that you are aware
of the confounding factors, and Murphy says that you
will not be. I have been involved in projects that had
confounding factors as diverse as air conditioners (which
drew considerable power at startup, thus causing the
voltage supplied to the computer to momentarily drop too
low, sometimes resulting in failure), cache state (resulting
in odd variations in performance), I/O errors (including
disk errors, packet loss, and duplicate Ethernet MAC
addresses), and even porpoises (which could not resist
playing with an array of transponders, which could be
otherwise used for high-precision acoustic positioning
and navigation). And this is but one reason why a good
night’s sleep is such an effective debugging tool.

In short, validation always will require some measure
of the behavior of the system. To be at all useful, this
measure must be a severe summarization of the system,
which in turn means that it can be misleading. So as the
saying goes, “Be careful. It is a real world out there.”

But what if you are working on the Linux kernel, which
as of 2017 was estimated to have more than 20 billion
instances running throughout the world? In that case,
a bug that occurs once every million years on a single
system will be encountered more than 50 times per day
across the installed base. A test with a 50 % chance of
encountering this bug in a one-hour run would need to
increase that bug’s probability of occurrence by more than
ten orders of magnitude, which poses a severe challenge
to today’s testing methodologies. One important tool
that can sometimes be applied with good effect to such
situations is formal verification, the subject of the next
chapter, and, more speculatively, Section 17.4.

The topic of choosing a validation plan, be it testing,
formal verification, or both, is taken up by Section 12.7.

v2024.12.27a

Beware of bugs in the above code; I have only proved

it correct, not tried it.

Donald KnuthChapter 12

Formal Verification

Parallel algorithms can be hard to write, and even harder
to debug. Testing, though essential, is insufficient, as fatal
race conditions can have extremely low probabilities of
occurrence. Proofs of correctness can be valuable, but in
the end are just as prone to human error as is the original
algorithm. In addition, a proof of correctness cannot be
expected to find errors in your assumptions, shortcomings
in the requirements, misunderstandings of the underlying
software or hardware primitives, or errors that you did
not think to construct a proof for. This means that formal
methods can never replace testing. Nevertheless, formal
methods can be a valuable addition to your validation
toolbox.

It would be very helpful to have a tool that could some-
how locate all race conditions. A number of such tools
exist, for example, Section 12.1 provides an introduction
to the general-purpose state-space search tools Promela
and Spin, Section 12.2 similarly introduces the special-
purpose ppcmem tool, Section 12.3 looks at an example
axiomatic approach, Section 12.4 briefly overviews SAT
solvers, Section 12.5 briefly overviews stateless model
checkers, Section 12.6 sums up use of formal-verification
tools for verifying parallel algorithms, and finally Sec-
tion 12.7 discusses how to decide how much and what
type of validation to apply to a given software project.

12.1 State-Space Search

Follow every byway / Every path you know.

Climb Every Mountain, Rodgers & Hammerstein

This section features the general-purpose Promela and
Spin tools, which may be used to carry out a full state-
space search of many types of multi-threaded code. They
are used to verifying data communication protocols. Sec-

tion 12.1.1 introduces Promela and Spin, including a
couple of warm-up exercises verifying both non-atomic
and atomic increment. Section 12.1.2 describes use of
Promela, including example command lines and a com-
parison of Promela syntax to that of C. Section 12.1.3
shows how Promela may be used to verify locking, Sec-
tion 12.1.4 uses Promela to verify an unusual implemen-
tation of RCU named “QRCU”, and finally Section 12.1.5
applies Promela to early versions of RCU’s dyntick-idle
implementation.

12.1.1 Promela and Spin

Promela is a language designed to help verify protocols,
but which can also be used to verify small parallel al-
gorithms. You recode your algorithm and correctness
constraints in the C-like language Promela, and then use
Spin to translate it into a C program that you can compile
and run. The resulting program carries out a full state-
space search of your algorithm, either verifying or finding
counter-examples for assertions that you can associate
with in your Promela program.

This full-state search can be extremely powerful, but
can also be a two-edged sword. If your algorithm is too
complex or your Promela implementation is careless, there
might be more states than fit in memory. Furthermore,
even given sufficient memory, the state-space search might
well run for longer than the expected lifetime of the
universe. Therefore, use this tool for compact but complex
parallel algorithms. Attempts to naively apply it to even
moderate-scale algorithms (let alone the full Linux kernel)
will end badly.

Promela and Spin may be downloaded from https:
//spinroot.com/spin/whatispin.html.

The above site also gives links to Gerard Holzmann’s
excellent book [Hol03] on Promela and Spin, as well as

233

https://spinroot.com/spin/whatispin.html
https://spinroot.com/spin/whatispin.html

v2024.12.27a

234 CHAPTER 12. FORMAL VERIFICATION

Listing 12.1: Promela Code for Non-Atomic Increment
1 #define NUMPROCS 2
2
3 byte counter = 0;
4 byte progress[NUMPROCS];
5
6 proctype incrementer(byte me)
7 {
8 int temp;
9

10 temp = counter;
11 counter = temp + 1;
12 progress[me] = 1;
13 }
14
15 init {
16 int i = 0;
17 int sum = 0;
18
19 atomic {
20 i = 0;
21 do
22 :: i < NUMPROCS ->
23 progress[i] = 0;
24 run incrementer(i);
25 i++;
26 :: i >= NUMPROCS -> break;
27 od;
28 }
29 atomic {
30 i = 0;
31 sum = 0;
32 do
33 :: i < NUMPROCS ->
34 sum = sum + progress[i];
35 i++
36 :: i >= NUMPROCS -> break;
37 od;
38 assert(sum < NUMPROCS || counter == NUMPROCS);
39 }
40 }

searchable online references starting at: https://www.
spinroot.com/spin/Man/index.html.

The remainder of this section describes how to use
Promela to debug parallel algorithms, starting with simple
examples and progressing to more complex uses.

12.1.1.1 Warm-Up: Non-Atomic Increment

Listing 12.1 demonstrates the textbook race condition
resulting from non-atomic increment. Line 1 defines
the number of processes to run (we will vary this to see
the effect on state space), line 3 defines the counter, and
line 4 is used to implement the assertion that appears on
lines 29–39.

Lines 6–13 define a process that increments the counter
non-atomically. The argument me is the process number,
set by the initialization block later in the code. Because
simple Promela statements are each assumed atomic,
we must break the increment into the two statements
on lines 10–11. The assignment on line 12 marks the

process’s completion. Because the Spin system will fully
search the state space, including all possible sequences of
states, there is no need for the loop that would be used for
conventional stress testing.

Lines 15–40 are the initialization block, which is ex-
ecuted first. Lines 19–28 actually do the initialization,
while lines 29–39 perform the assertion. Both are atomic
blocks in order to avoid unnecessarily increasing the state
space: Because they are not part of the algorithm proper,
we lose no verification coverage by making them atomic.

The do-od construct on lines 21–27 implements a
Promela loop, which can be thought of as a C for
(;;) loop containing a switch statement that allows
expressions in case labels. The condition blocks (prefixed
by ::) are scanned non-deterministically, though in this
case only one of the conditions can possibly hold at a
given time. The first block of the do-od from lines 22–25
initializes the i-th incrementer’s progress cell, runs the i-th
incrementer’s process, and then increments the variable i.
The second block of the do-od on line 26 exits the loop
once these processes have been started.

The atomic block on lines 29–39 also contains a similar
do-od loop that sums up the progress counters. The
assert() statement on line 38 verifies that if all processes
have been completed, then all counts have been correctly
recorded.

You can build and run this program as follows:

spin -a increment.spin # Translate the model to C
cc -DSAFETY -o pan pan.c # Compile the model
./pan # Run the model

This will produce output as shown in Listing 12.2.
The first line tells us that our assertion was violated (as
expected given the non-atomic increment!). The second
line that a trail file was written describing how the
assertion was violated. The “Warning” line reiterates that
all was not well with our model. The second paragraph
describes the type of state-search being carried out, in
this case for assertion violations and invalid end states.
The third paragraph gives state-size statistics: This small
model had only 45 states. The final line shows memory
usage.

The trail file may be rendered human-readable as
follows:

spin -t -p increment.spin

This gives the output shown in Listing 12.3. As can
be seen, the first portion of the init block created both
incrementer processes, both of which first fetched the

https://www.spinroot.com/spin/Man/index.html
https://www.spinroot.com/spin/Man/index.html

v2024.12.27a

12.1. STATE-SPACE SEARCH 235

Listing 12.2: Non-Atomic Increment Spin Output
pan:1: assertion violated

((sum<2)||(counter==2)) (at depth 22)
pan: wrote increment.spin.trail

(Spin Version 6.4.8 -- 2 March 2018)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 48 byte, depth reached 24, errors: 1
45 states, stored
13 states, matched
58 transitions (= stored+matched)
53 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.003 equivalent memory usage for states

(stored*(State-vector + overhead))
0.290 actual memory usage for states

128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)

128.730 total actual memory usage

Table 12.1: Memory Usage of Increment Model

incrementers # states total memory usage (MB)

1 11 128.7
2 52 128.7
3 372 128.7
4 3,496 128.9
5 40,221 131.7
6 545,720 174.0
7 8,521,446 881.9

counter, then both incremented and stored it, losing a
count. The assertion then triggered, after which the global
state is displayed.

12.1.1.2 Warm-Up: Atomic Increment

It is easy to fix this example by placing the body of the
incrementer processes in an atomic block as shown in
Listing 12.4. One could also have simply replaced the pair
of statements with counter = counter + 1, because
Promela statements are atomic. Either way, running this
modified model gives us an error-free traversal of the state
space, as shown in Listing 12.5.

Table 12.1 shows the number of states and memory con-
sumed as a function of number of incrementers modeled
(by redefining NUMPROCS):

Running unnecessarily large models is thus subtly dis-
couraged, although 882 MB is well within the limits of
modern desktop and laptop machines.

With this example under our belt, let’s take a closer
look at the commands used to analyze Promela models
and then look at more elaborate examples.

12.1.2 How to Use Promela
Given a source file qrcu.spin, one can use the following
commands:

spin -a qrcu.spin
Create a file pan.c that fully searches the state
machine.

cc -DSAFETY [-DCOLLAPSE] [-DMA=N] -o pan
pan.c
Compile the generated state-machine search.
The -DSAFETY generates optimizations that are
appropriate if you have only assertions (and perhaps
never statements). If you have liveness, fairness, or
forward-progress checks, you may need to compile
without -DSAFETY. If you leave off -DSAFETY when
you could have used it, the program will let you
know.

The optimizations produced by -DSAFETY greatly
speed things up, so you should use it when you
can. An example situation where you cannot use
-DSAFETY is when checking for livelocks (AKA
“non-progress cycles”) via -DNP.

The optional -DCOLLAPSE generates code for a state
vector compression mode.

Another optional flag -DMA=N generates code for a
slow but aggressive state-space memory compression
mode.

./pan [-mN] [-wN]
This actually searches the state space. The number
of states can reach into the tens of millions with very
small state machines, so you will need a machine
with large memory. For example, qrcu.spin with
3 updaters and 2 readers required 10.5 GB of memory
even with the -DCOLLAPSE flag.

If you see a message from ./pan saying: “error:
max search depth too small”, you need to in-
crease the maximum depth by a -mN option for a
complete search. The default is -m10000.

v2024.12.27a

236 CHAPTER 12. FORMAL VERIFICATION

Listing 12.3: Non-Atomic Increment Error Trail
using statement merging

1: proc 0 (:init::1) increment.spin:21 (state 1) [i = 0]
2: proc 0 (:init::1) increment.spin:23 (state 2) [((i<2))]
2: proc 0 (:init::1) increment.spin:24 (state 3) [progress[i] = 0]

Starting incrementer with pid 1
3: proc 0 (:init::1) increment.spin:25 (state 4) [(run incrementer(i))]
4: proc 0 (:init::1) increment.spin:26 (state 5) [i = (i+1)]
5: proc 0 (:init::1) increment.spin:23 (state 2) [((i<2))]
5: proc 0 (:init::1) increment.spin:24 (state 3) [progress[i] = 0]

Starting incrementer with pid 2
6: proc 0 (:init::1) increment.spin:25 (state 4) [(run incrementer(i))]
7: proc 0 (:init::1) increment.spin:26 (state 5) [i = (i+1)]
8: proc 0 (:init::1) increment.spin:27 (state 6) [((i>=2))]
9: proc 0 (:init::1) increment.spin:22 (state 10) [break]

10: proc 2 (incrementer:1) increment.spin:11 (state 1) [temp = counter]
11: proc 1 (incrementer:1) increment.spin:11 (state 1) [temp = counter]
12: proc 2 (incrementer:1) increment.spin:12 (state 2) [counter = (temp+1)]
13: proc 2 (incrementer:1) increment.spin:13 (state 3) [progress[me] = 1]
14: proc 2 terminates
15: proc 1 (incrementer:1) increment.spin:12 (state 2) [counter = (temp+1)]
16: proc 1 (incrementer:1) increment.spin:13 (state 3) [progress[me] = 1]
17: proc 1 terminates
18: proc 0 (:init::1) increment.spin:31 (state 12) [i = 0]
18: proc 0 (:init::1) increment.spin:32 (state 13) [sum = 0]
19: proc 0 (:init::1) increment.spin:34 (state 14) [((i<2))]
19: proc 0 (:init::1) increment.spin:35 (state 15) [sum = (sum+progress[i])]
19: proc 0 (:init::1) increment.spin:36 (state 16) [i = (i+1)]
20: proc 0 (:init::1) increment.spin:34 (state 14) [((i<2))]
20: proc 0 (:init::1) increment.spin:35 (state 15) [sum = (sum+progress[i])]
20: proc 0 (:init::1) increment.spin:36 (state 16) [i = (i+1)]
21: proc 0 (:init::1) increment.spin:37 (state 17) [((i>=2))]
22: proc 0 (:init::1) increment.spin:33 (state 21) [break]

spin: increment.spin:39, Error: assertion violated
spin: text of failed assertion: assert(((sum<2)||(counter==2)))
23: proc 0 (:init::1) increment.spin:39 (state 22) [assert(((sum<2)||(counter==2)))]

spin: trail ends after 23 steps
#processes: 1

counter = 1
progress[0] = 1
progress[1] = 1

23: proc 0 (:init::1) increment.spin:41 (state 24) <valid end state>
3 processes created

v2024.12.27a

12.1. STATE-SPACE SEARCH 237

Listing 12.4: Promela Code for Atomic Increment
1 proctype incrementer(byte me)
2 {
3 int temp;
4
5 atomic {
6 temp = counter;
7 counter = temp + 1;
8 }
9 progress[me] = 1;

10 }

Listing 12.5: Atomic Increment Spin Output
(Spin Version 6.4.8 -- 2 March 2018)

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 48 byte, depth reached 22, errors: 0
52 states, stored
21 states, matched
73 transitions (= stored+matched)
68 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.004 equivalent memory usage for states

(stored*(State-vector + overhead))
0.290 actual memory usage for states

128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)

128.730 total actual memory usage

unreached in proctype incrementer
(0 of 5 states)

unreached in init
(0 of 24 states)

The -wN option specifies the hashtable size. The
default for full state-space search is -w24.1

If you aren’t sure whether your machine has enough
memory, run top in one window and ./pan in
another. Keep the focus on the ./pan window so
that you can quickly kill execution if need be. As
soon as CPU time drops much below 100 %, kill
./pan. If you have removed focus from the window
running ./pan, you may wait a long time for the
windowing system to grab enough memory to do
anything for you.
Another option to avoid memory exhaustion is the
-DMEMLIM=N compiler flag. -DMEMLIM=2000 would
set the maximum of 2 GB.

1 As of Spin Version 6.4.6 and 6.4.8. In the online manual of Spin
dated 10 July 2011, the default for exhaustive search mode is said to be
-w19, which does not meet the actual behavior.

Don’t forget to capture the output, especially if you
are working on a remote machine.
If your model includes forward-progress checks, you
will likely need to enable “weak fairness” via the -f
command-line argument to ./pan. If your forward-
progress checks involve accept labels, you will also
need the -a argument.

spin -t -p qrcu.spin
Given trail file output by a run that encountered
an error, output the sequence of steps leading to that
error. The -g flag will also include the values of
changed global variables, and the -l flag will also
include the values of changed local variables.

12.1.2.1 Promela Peculiarities

Although all computer languages have underlying similar-
ities, Promela will provide some surprises to people used
to coding in C, C++, or Java.

1. In C, “;” terminates statements. In Promela it sep-
arates them. Fortunately, more recent versions of
Spin have become much more forgiving of “extra”
semicolons.

2. Promela’s looping construct, the do statement, takes
conditions. This do statement closely resembles a
looping if-then-else statement.

3. In C’s switch statement, if there is no matching
case, the whole statement is skipped. In Promela’s
equivalent, confusingly called if, if there is no
matching guard expression, you get an error without
a recognizable corresponding error message. So, if
the error output indicates an innocent line of code,
check to see if you left out a condition from an if or
do statement.

4. When creating stress tests in C, one usually races
suspect operations against each other repeatedly. In
Promela, one instead sets up a single race, because
Promela will search out all the possible outcomes
from that single race. Sometimes you do need to
loop in Promela, for example, if multiple operations
overlap, but doing so greatly increases the size of
your state space.

5. In C, the easiest thing to do is to maintain a loop
counter to track progress and terminate the loop.
In Promela, loop counters must be avoided like the

v2024.12.27a

238 CHAPTER 12. FORMAL VERIFICATION

plague because they cause the state space to explode.
On the other hand, there is no penalty for infinite
loops in Promela as long as none of the variables
monotonically increase or decrease—Promela will
figure out how many passes through the loop really
matter, and automatically prune execution beyond
that point.

6. In C torture-test code, it is often wise to keep per-
task control variables. They are cheap to read, and
greatly aid in debugging the test code. In Promela,
per-task control variables should be used only when
there is no other alternative. To see this, consider
a 5-task verification with one bit each to indicate
completion. This gives 32 states. In contrast, a
simple counter would have only six states, more
than a five-fold reduction. That factor of five might
not seem like a problem, at least not until you are
struggling with a verification program possessing
more than 150 million states consuming more than
10 GB of memory!

7. One of the most challenging things both in C torture-
test code and in Promela is formulating good asser-
tions. Promela also allows never claims that act like
an assertion replicated between every line of code.

8. Dividing and conquering is extremely helpful in
Promela in keeping the state space under control.
Splitting a large model into two roughly equal halves
will result in the state space of each half being roughly
the square root of the whole. For example, a million-
state combined model might reduce to a pair of
thousand-state models. Not only will Promela handle
the two smaller models much more quickly with
much less memory, but the two smaller algorithms
are easier for people to understand.

12.1.2.2 Promela Coding Tricks

Promela was designed to analyze protocols, so using it on
parallel programs is a bit abusive. The following tricks
can help you to abuse Promela safely:

1. Memory reordering. Suppose you have a pair of
statements copying globals x and y to locals r1 and
r2, where ordering matters (e.g., unprotected by
locks), but where you have no memory barriers. This
can be modeled in Promela as follows:

Listing 12.6: Complex Promela Assertion
1 i = 0;
2 sum = 0;
3 do
4 :: i < N_QRCU_READERS ->
5 sum = sum + (readerstart[i] == 1 &&
6 readerprogress[i] == 1);
7 i++
8 :: i >= N_QRCU_READERS ->
9 assert(sum == 0);

10 break
11 od

1 if
2 :: 1 -> r1 = x;
3 r2 = y
4 :: 1 -> r2 = y;
5 r1 = x
6 fi

The two branches of the if statement will be selected
nondeterministically, since they both are available.
Because the full state space is searched, both choices
will eventually be made in all cases.
Of course, this trick will cause your state space to
explode if used too heavily. In addition, it requires
you to anticipate possible reorderings.

2. State reduction. If you have complex assertions,
evaluate them under atomic. After all, they are not
part of the algorithm. One example of a complex
assertion (to be discussed in more detail later) is as
shown in Listing 12.6.
There is no reason to evaluate this assertion non-
atomically, since it is not actually part of the algo-
rithm. Because each statement contributes to state,
we can reduce the number of useless states by enclos-
ing it in an atomic block as shown in Listing 12.7.

3. Promela does not provide functions. You must in-
stead use C preprocessor macros. However, you must
use them carefully in order to avoid combinatorial
explosion.

Now we are ready for further examples.

12.1.3 Promela Example: Locking
Since locks are generally useful, spin_lock() and spin_
unlock() macros are provided in lock.h, which may
be included from multiple Promela models, as shown
in Listing 12.8. The spin_lock() macro contains an
infinite do-od loop spanning lines 2–11, courtesy of the

v2024.12.27a

12.1. STATE-SPACE SEARCH 239

Listing 12.7: Atomic Block for Complex Promela Assertion
1 atomic {
2 i = 0;
3 sum = 0;
4 do
5 :: i < N_QRCU_READERS ->
6 sum = sum + (readerstart[i] == 1 &&
7 readerprogress[i] == 1);
8 i++
9 :: i >= N_QRCU_READERS ->

10 assert(sum == 0);
11 break
12 od
13 }

Listing 12.8: Promela Code for Spinlock
1 #define spin_lock(mutex) \
2 do \
3 :: 1 -> atomic { \
4 if \
5 :: mutex == 0 -> \
6 mutex = 1; \
7 break \
8 :: else -> skip \
9 fi \

10 } \
11 od
12
13 #define spin_unlock(mutex) \
14 mutex = 0

single guard expression of “1” on line 3. The body of
this loop is a single atomic block that contains an if-fi
statement. The if-fi construct is similar to the do-od
construct, except that it takes a single pass rather than
looping. If the lock is not held on line 5, then line 6
acquires it and line 7 breaks out of the enclosing do-od
loop (and also exits the atomic block). On the other hand,
if the lock is already held on line 8, we do nothing (skip),
and fall out of the if-fi and the atomic block so as to
take another pass through the outer loop, repeating until
the lock is available.

The spin_unlock() macro simply marks the lock as
no longer held.

Note that memory barriers are not needed because
Promela assumes full ordering. In any given Promela
state, all processes agree on both the current state and the
order of state changes that caused us to arrive at the current
state. This is analogous to the “sequentially consistent”
memory model used by a few computer systems (such as
1990s MIPS and PA-RISC). As noted earlier, and as will
be seen in a later example, weak memory ordering must
be explicitly coded.

These macros are tested by the Promela code shown in
Listing 12.9. This code is similar to that used to test the
increments, with the number of locking processes defined
by the N_LOCKERS macro definition on line 3. The mutex

Listing 12.9: Promela Code to Test Spinlocks
1 #include "lock.h"
2
3 #define N_LOCKERS 3
4
5 bit mutex = 0;
6 bit havelock[N_LOCKERS];
7 int sum;
8
9 proctype locker(byte me)

10 {
11 do
12 :: 1 ->
13 spin_lock(mutex);
14 havelock[me] = 1;
15 havelock[me] = 0;
16 spin_unlock(mutex)
17 od
18 }
19
20 init {
21 int i = 0;
22 int j;
23
24 end: do
25 :: i < N_LOCKERS ->
26 havelock[i] = 0;
27 run locker(i);
28 i++
29 :: i >= N_LOCKERS ->
30 sum = 0;
31 j = 0;
32 atomic {
33 do
34 :: j < N_LOCKERS ->
35 sum = sum + havelock[j];
36 j = j + 1
37 :: j >= N_LOCKERS ->
38 break
39 od
40 }
41 assert(sum <= 1);
42 break
43 od
44 }

v2024.12.27a

240 CHAPTER 12. FORMAL VERIFICATION

Listing 12.10: Output for Spinlock Test
(Spin Version 6.4.8 -- 2 March 2018)

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 52 byte, depth reached 360, errors: 0
576 states, stored
929 states, matched

1505 transitions (= stored+matched)
368 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.044 equivalent memory usage for states

(stored*(State-vector + overhead))
0.288 actual memory usage for states

128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)

128.730 total actual memory usage

unreached in proctype locker
lock.spin:19, state 20, "-end-"
(1 of 20 states)

unreached in init
(0 of 22 states)

itself is defined on line 5, an array to track the lock owner
on line 6, and line 7 is used by assertion code to verify
that only one process holds the lock.

The locker process is on lines 9–18, and simply loops
forever acquiring the lock on line 13, claiming it on line 14,
unclaiming it on line 15, and releasing it on line 16.

The init block on lines 20–44 initializes the current
locker’s havelock array entry on line 26, starts the current
locker on line 27, and advances to the next locker on
line 28. Once all locker processes are spawned, the
do-od loop moves to line 29, which checks the assertion.
Lines 30 and 31 initialize the control variables, lines 32–40
atomically sum the havelock array entries, line 41 is the
assertion, and line 42 exits the loop.

We can run this model by placing the two code fragments
of Listings 12.8 and 12.9 into files named lock.h and
lock.spin, respectively, and then running the following
commands:

spin -a lock.spin
cc -DSAFETY -o pan pan.c
./pan

The output will look something like that shown in
Listing 12.10. As expected, this run has no assertion
failures (“errors: 0”).
Quick Quiz 12.1: Why is there an unreached statement in
locker? After all, isn’t this a full state-space search?

Quick Quiz 12.2: What are some Promela code-style issues
with this example?

12.1.4 Promela Example: QRCU
This final example demonstrates a real-world use of
Promela on Oleg Nesterov’s QRCU [Nes06a, Nes06b], but
modified to speed up the synchronize_qrcu() fastpath.

But first, what is QRCU?
QRCU is a variant of SRCU [McK06] that trades some-

what higher read overhead (atomic increment and decre-
ment on a global variable) for extremely low grace-period
latencies. If there are no readers, the grace period will
be detected in less than a microsecond, compared to the
multi-millisecond grace-period latencies of most other
RCU implementations.

1. There is a qrcu_struct that defines a QRCU do-
main. Like SRCU (and unlike other variants of RCU)
QRCU’s action is not global, but instead focused on
the specified qrcu_struct.

2. There are qrcu_read_lock() and qrcu_read_
unlock() primitives that delimit QRCU read-side
critical sections. The corresponding qrcu_struct
must be passed into these primitives, and the return
value from qrcu_read_lock() must be passed to
qrcu_read_unlock().
For example:

idx = qrcu_read_lock(&my_qrcu_struct);
/* read-side critical section. */
qrcu_read_unlock(&my_qrcu_struct, idx);

3. There is a synchronize_qrcu() primitive that
blocks until all pre-existing QRCU read-side critical
sections complete, but, like SRCU’s synchronize_
srcu(), QRCU’s synchronize_qrcu() need wait
only for those read-side critical sections that are using
the same qrcu_struct.
For example, synchronize_qrcu(&your_qrcu_
struct) would not need to wait on the earlier
QRCU read-side critical section. In contrast,
synchronize_qrcu(&my_qrcu_struct) would
need to wait, since it shares the same qrcu_struct.

A Linux-kernel patch for QRCU has been pro-
duced [McK07c], but is unlikely to ever be included
in the Linux kernel.

v2024.12.27a

12.1. STATE-SPACE SEARCH 241

Listing 12.11: QRCU Global Variables
1 #include "lock.h"
2
3 #define N_QRCU_READERS 2
4 #define N_QRCU_UPDATERS 2
5
6 bit idx = 0;
7 byte ctr[2];
8 byte readerprogress[N_QRCU_READERS];
9 bit mutex = 0;

Listing 12.12: QRCU Reader Process
1 proctype qrcu_reader(byte me)
2 {
3 int myidx;
4
5 do
6 :: 1 ->
7 myidx = idx;
8 atomic {
9 if

10 :: ctr[myidx] > 0 ->
11 ctr[myidx]++;
12 break
13 :: else -> skip
14 fi
15 }
16 od;
17 readerprogress[me] = 1;
18 readerprogress[me] = 2;
19 atomic { ctr[myidx]-- }
20 }

Returning to the Promela code for QRCU, the global
variables are as shown in Listing 12.11. This example
uses locking and includes lock.h. Both the number of
readers and writers can be varied using the two #define
statements, giving us not one but two ways to create
combinatorial explosion. The idx variable controls which
of the two elements of the ctr array will be used by
readers, and the readerprogress variable allows an
assertion to determine when all the readers are finished
(since a QRCU update cannot be permitted to complete
until all pre-existing readers have completed their QRCU
read-side critical sections). The readerprogress array
elements have values as follows, indicating the state of the
corresponding reader:

0: Not yet started.
1: Within QRCU read-side critical section.
2: Finished with QRCU read-side critical section.

Finally, the mutex variable is used to serialize updaters’
slowpaths.

QRCU readers are modeled by the qrcu_reader()
process shown in Listing 12.12. A do-od loop spans
lines 5–16, with a single guard of “1” on line 6 that makes
it an infinite loop. Line 7 captures the current value of

Listing 12.13: QRCU Unordered Summation
1 #define sum_unordered \
2 atomic { \
3 do \
4 :: 1 -> \
5 sum = ctr[0]; \
6 i = 1; \
7 break \
8 :: 1 -> \
9 sum = ctr[1]; \

10 i = 0; \
11 break \
12 od; \
13 } \
14 sum = sum + ctr[i]

the global index, and lines 8–15 atomically increment it
(and break from the infinite loop) if its value was non-zero
(atomic_inc_not_zero()). Line 17 marks entry into
the RCU read-side critical section, and line 18 marks
exit from this critical section, both lines for the benefit
of the assert() statement that we shall encounter later.
Line 19 atomically decrements the same counter that we
incremented, thereby exiting the RCU read-side critical
section.

The C-preprocessor macro shown in Listing 12.13
sums the pair of counters so as to emulate weak memory
ordering. Lines 2–13 fetch one of the counters, and
line 14 fetches the other of the pair and sums them. The
atomic block consists of a single do-od statement. This
do-od statement (spanning lines 3–12) is unusual in that it
contains two unconditional branches with guards on lines 4
and 8, which causes Promela to non-deterministically
choose one of the two (but again, the full state-space
search causes Promela to eventually make all possible
choices in each applicable situation). The first branch
fetches the zero-th counter and sets i to 1 (so that line 14
will fetch the first counter), while the second branch does
the opposite, fetching the first counter and setting i to 0
(so that line 14 will fetch the second counter).

Quick Quiz 12.3: Is there a more straightforward way to
code the do-od statement?

With the sum_unordered macro in place, we can now
proceed to the update-side process shown in Listing 12.14.
The update-side process repeats indefinitely, with the
corresponding do-od loop ranging over lines 7–57.
Each pass through the loop first snapshots the global
readerprogress array into the local readerstart ar-
ray on lines 12–21. This snapshot will be used for the
assertion on line 53. Line 23 invokes sum_unordered,
and then lines 24–27 re-invoke sum_unordered if the
fastpath is potentially usable.

v2024.12.27a

242 CHAPTER 12. FORMAL VERIFICATION

Listing 12.14: QRCU Updater Process
1 proctype qrcu_updater(byte me)
2 {
3 int i;
4 byte readerstart[N_QRCU_READERS];
5 int sum;
6
7 do
8 :: 1 ->
9

10 /* Snapshot reader state. */
11
12 atomic {
13 i = 0;
14 do
15 :: i < N_QRCU_READERS ->
16 readerstart[i] = readerprogress[i];
17 i++
18 :: i >= N_QRCU_READERS ->
19 break
20 od
21 }
22
23 sum_unordered;
24 if
25 :: sum <= 1 -> sum_unordered
26 :: else -> skip
27 fi;
28 if
29 :: sum > 1 ->
30 spin_lock(mutex);
31 atomic { ctr[!idx]++ }
32 idx = !idx;
33 atomic { ctr[!idx]-- }
34 do
35 :: ctr[!idx] > 0 -> skip
36 :: ctr[!idx] == 0 -> break
37 od;
38 spin_unlock(mutex);
39 :: else -> skip
40 fi;
41
42 /* Verify reader progress. */
43
44 atomic {
45 i = 0;
46 sum = 0;
47 do
48 :: i < N_QRCU_READERS ->
49 sum = sum + (readerstart[i] == 1 &&
50 readerprogress[i] == 1);
51 i++
52 :: i >= N_QRCU_READERS ->
53 assert(sum == 0);
54 break
55 od
56 }
57 od
58 }

Listing 12.15: QRCU Initialization Process
1 init {
2 int i;
3
4 atomic {
5 ctr[idx] = 1;
6 ctr[!idx] = 0;
7 i = 0;
8 do
9 :: i < N_QRCU_READERS ->

10 readerprogress[i] = 0;
11 run qrcu_reader(i);
12 i++
13 :: i >= N_QRCU_READERS -> break
14 od;
15 i = 0;
16 do
17 :: i < N_QRCU_UPDATERS ->
18 run qrcu_updater(i);
19 i++
20 :: i >= N_QRCU_UPDATERS -> break
21 od
22 }
23 }

Lines 28–40 execute the slowpath code if need be, with
lines 30 and 38 acquiring and releasing the update-side
lock, lines 31–33 flipping the index, and lines 34–37
waiting for all pre-existing readers to complete.

Lines 44–56 then compare the current values in
the readerprogress array to those collected in the
readerstart array, forcing an assertion failure should
any readers that started before this update still be in
progress.

Quick Quiz 12.4: Why are there atomic blocks at lines 12–21
and lines 44–56, when the operations within those atomic
blocks have no atomic implementation on any current produc-
tion microprocessor?

Quick Quiz 12.5: Is the re-summing of the counters on
lines 24–27 really necessary?

All that remains is the initialization block shown in List-
ing 12.15. This block simply initializes the counter pair
on lines 5–6, spawns the reader processes on lines 7–14,
and spawns the updater processes on lines 15–21. This is
all done within an atomic block to reduce state space.

12.1.4.1 Running the QRCU Example

To run the QRCU example, combine the code fragments
in the previous section into a single file named qrcu.
spin, and place the definitions for spin_lock() and
spin_unlock() into a file named lock.h. Then use the
following commands to build and run the QRCU model:

v2024.12.27a

12.1. STATE-SPACE SEARCH 243

Table 12.2: Memory Usage of QRCU Model

updaters readers # states depth memory (MB)a

1 1 376 95 128.7
1 2 6,177 218 128.9
1 3 99,728 385 132.6
2 1 29,399 859 129.8
2 2 1,071,181 2,352 169.6
2 3 33,866,736 12,857 1,540.8
3 1 2,749,453 53,809 236.6
3 2 186,202,860 328,014 10,483.7

a Obtained with the compiler flag -DCOLLAPSE specified.

spin -a qrcu.spin
cc -DSAFETY [-DCOLLAPSE] -o pan pan.c
./pan [-mN]

The output shows that this model passes all of the
cases shown in Table 12.2. It would be nice to run three
readers and three updaters, however, simple extrapolation
indicates that this will require about half a terabyte of
memory. What to do?

It turns out that ./pan gives advice when it runs out
of memory, for example, when attempting to run three
readers and three updaters:

hint: to reduce memory, recompile with
-DCOLLAPSE # good, fast compression, or
-DMA=96 # better/slower compression, or
-DHC # hash-compaction, approximation
-DBITSTATE # supertrace, approximation

Let’s try the suggested compiler flag -DMA=N, which
generates code for aggressive compression of the state
space at the cost of greatly increased search overhead. The
required commands are as follows:

spin -a qrcu.spin
cc -DSAFETY -DMA=96 -O2 -o pan pan.c
./pan -m20000000

Here, the depth limit of 20,000,000 is an order of mag-
nitude larger than the expected depth deduced from simple
extrapolation. Although this increases up-front memory
usage, it avoids wasting a long run due to incomplete
search resulting from a too-tight depth limit. This run
took a little more than 3 days on a POWER9 server. The
result is shown in Listing 12.16. This Spin run completed
successfully with a total memory usage of only 6.5 GB,
which is almost two orders of magnitude lower than the
-DCOLLAPSE usage of about half a terabyte.

Listing 12.16: 3 Readers 3 Updaters QRCU Spin Output with
-DMA=96

(Spin Version 6.4.6 -- 2 December 2016)
+ Partial Order Reduction
+ Graph Encoding (-DMA=96)

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 96 byte, depth reached 2055621, errors: 0
MA stats: -DMA=84 is sufficient
Minimized Automaton: 56420520 nodes and 1.75128e+08 edges
9.6647071e+09 states, stored
9.7503813e+09 states, matched
1.9415088e+10 transitions (= stored+matched)
7.2047951e+09 atomic steps

Stats on memory usage (in Megabytes):
1142905.887 equivalent memory usage for states

(stored*(State-vector + overhead))
5448.879 actual memory usage for states

(compression: 0.48%)
1068.115 memory used for DFS stack (-m20000000)

1.619 memory lost to fragmentation
6515.375 total actual memory usage

unreached in proctype qrcu_reader
(0 of 18 states)

unreached in proctype qrcu_updater
qrcu.spin:102, state 82, "-end-"
(1 of 82 states)

unreached in init
(0 of 23 states)

pan: elapsed time 2.72e+05 seconds
pan: rate 35500.523 states/second

Quick Quiz 12.6: A compression rate of 0.48 % corresponds
to a 200-to-1 decrease in memory occupied by the states! Is
the state-space search really exhaustive???

For reference, Table 12.3 summarizes the Spin results
with -DCOLLAPSE and -DMA=N compiler flags. The mem-
ory usage is obtained with minimal sufficient search depths
and -DMA=N parameters shown in the table. Hashtable
sizes for -DCOLLAPSE runs are tweaked by the -wN option
of ./pan to avoid using too much memory hashing small
state spaces. Hence the memory usage is smaller than
what is shown in Table 12.2, where the hashtable size
starts from the default of -w24. The runtime is from a
POWER9 server, which shows that -DMA=N suffers up to
about an order of magnitude higher CPU overhead than
does -DCOLLAPSE, but on the other hand reduces memory
overhead by well over an order of magnitude.

So far so good. But adding a few more updaters or
readers would exhaust memory, even with -DMA=N.2 So
what to do? Here are some possible approaches:

2 Alternatively, the CPU consumption would become excessive.

v2024.12.27a

244 CHAPTER 12. FORMAL VERIFICATION

Table 12.3: QRCU Spin Result Summary

-DCOLLAPSE -DMA=N

updaters readers # states depth reached -wN memory (MB) runtime (s) N memory (MB) runtime (s)

1 1 376 95 12 0.10 0.00 40 0.29 0.00
1 2 6,177 218 12 0.39 0.01 47 0.59 0.02
1 3 99,728 385 16 4.60 0.14 54 3.04 0.45
2 1 29,399 859 16 2.30 0.03 55 0.70 0.13
2 2 1,071,181 2,352 20 49.24 1.45 62 7.77 5.76
2 3 33,866,736 12,857 24 1,540.70 62.5 69 111.66 326
3 1 2,749,453 53,809 21 125.25 4.01 70 11.41 19.5
3 2 186,202,860 328,014 28 10,482.51 390 77 222.26 2,560
3 3 9,664,707,100 2,055,621 84 5,557.02 266,000

1. See whether a smaller number of readers and updaters
suffice to prove the general case.

2. Manually construct a proof of correctness.

3. Use a more capable tool.

4. Divide and conquer.

The following sections discuss each of these approaches.

12.1.4.2 How Many Readers and Updaters Are Really
Needed?

One approach is to look carefully at the Promela code for
qrcu_updater() and notice that the only global state
change is happening under the lock. Therefore, only one
updater at a time can possibly be modifying state visible
to either readers or other updaters. This means that any
sequences of state changes can be carried out serially by
a single updater due to the fact that Promela does a full
state-space search. Therefore, at most two updaters are
required: One to change state and a second to become
confused.

The situation with the readers is less clear-cut, as each
reader does only a single read-side critical section then
terminates. It is possible to argue that the useful number
of readers is limited, due to the fact that the fastpath must
see at most a zero and a one in the counters. This is a
fruitful avenue of investigation, in fact, it leads to the full
proof of correctness described in the next section.

12.1.4.3 Alternative Approach: Proof of Correctness

An informal proof [McK07c] follows:

1. For synchronize_qrcu() to exit too early, then by
definition there must have been at least one reader
present during synchronize_qrcu()’s full execu-
tion.

2. The counter corresponding to this reader will have
been at least 1 during this time interval.

3. The synchronize_qrcu() code forces at least one
of the counters to be at least 1 at all times.

4. The above two items imply that if the counter corre-
sponding to this reader is exactly one, then the other
counter must be greater than or equal to one. Sim-
ilarly, if the other counter is equal to zero, then the
counter corresponding to the reader must be greater
than or equal to two.

5. Therefore, at any given point in time, either one of
the counters will be at least 2, or both of the counters
will be at least one.

6. However, the synchronize_qrcu() fastpath code
can read only one of the counters at a given time. It
is therefore possible for the fastpath code to fetch the
first counter while zero, but to race with a counter
flip so that the second counter is seen as one.

7. There can be at most one reader persisting through
such a race condition, as otherwise the sum would
be two or greater, which would cause the updater to
take the slowpath.

8. But if the race occurs on the fastpath’s first read of
the counters, and then again on its second read, there
have to have been two counter flips.

v2024.12.27a

12.1. STATE-SPACE SEARCH 245

9. Because a given updater flips the counter only once,
and because the update-side lock prevents a pair of
updaters from concurrently flipping the counters, the
only way that the fastpath code can race with a flip
twice is if the first updater completes.

10. But the first updater will not complete until after all
pre-existing readers have completed.

11. Therefore, if the fastpath races with a counter flip
twice in succession, all pre-existing readers must
have completed, so that it is safe to take the fastpath.

Of course, not all parallel algorithms have such simple
proofs. In such cases, it may be necessary to enlist more
capable tools.

12.1.4.4 Alternative Approach: More Capable Tools

Although Promela and Spin are quite useful, much more
capable tools are available, particularly for verifying hard-
ware. This means that if it is possible to translate your
algorithm to the hardware-design VHDL language, as it
often will be for low-level parallel algorithms, then it is
possible to apply these tools to your code (for example, this
was done for the first realtime RCU algorithm). However,
such tools can be quite expensive.

Although the advent of commodity multiprocessing
might eventually result in powerful free-software model-
checkers featuring fancy state-space-reduction capabilities,
this does not help much in the here and now.

As an aside, there are Spin features that support ap-
proximate searches that require fixed amounts of memory,
however, I have never been able to bring myself to trust
approximations when verifying parallel algorithms.

Another approach might be to divide and conquer.

12.1.4.5 Alternative Approach: Divide and Conquer

It is often possible to break down a larger parallel algorithm
into smaller pieces, which can then be proven separately.
For example, a 10-billion-state model might be broken
into a pair of 100,000-state models. Taking this approach
not only makes it easier for tools such as Promela to verify
your algorithms, it can also make your algorithms easier
to understand.

12.1.4.6 Is QRCU Really Correct?

Is QRCU really correct? We have a Promela-based me-
chanical proof and a by-hand proof that both say that

it is. However, a paper by Alglave et al. [AKT13] says
otherwise (see Section 5.1 of the paper at the bottom of
page 12). Which is it?

It turns out that both are correct! When QRCU was
added to a suite of formal-verification benchmarks, its
memory barriers were omitted, thus resulting in a buggy
version of QRCU. So the real news here is that a number
of formal-verification tools incorrectly proved this buggy
QRCU correct. And this is why formal-verification tools
themselves should be tested using bug-injected versions
of the code being verified. If a given tool cannot find the
injected bugs, then that tool is clearly untrustworthy.

Quick Quiz 12.7: But different formal-verification tools
are often designed to locate particular classes of bugs. For
example, very few formal-verification tools will find an error
in the specification. So isn’t this “clearly untrustworthy”
judgment a bit harsh?

Therefore, if you do intend to use QRCU, please take
care. Its proofs of correctness might or might not them-
selves be correct. Which is one reason why formal verifi-
cation is unlikely to completely replace testing, as Donald
Knuth pointed out so long ago.

Quick Quiz 12.8: Given that we have two independent proofs
of correctness for the QRCU algorithm described herein, and
given that the proof of incorrectness covers what is known to
be a different algorithm, why is there any room for doubt?

12.1.5 Promela Parable: dynticks and Pre-
emptible RCU

In early 2008, a preemptible variant of RCU was accepted
into mainline Linux in support of real-time workloads,
a variant similar to the RCU implementations in the -rt
patchset [Mol05] since August 2005. Preemptible RCU
is needed for real-time workloads because older RCU
implementations disable preemption across RCU read-
side critical sections, resulting in excessive real-time
latencies.

However, one disadvantage of the older -rt implemen-
tation was that each grace period requires work to be
done on each CPU, even if that CPU is in a low-power
“dynticks-idle” state, and thus incapable of executing RCU
read-side critical sections. The idea behind the dynticks-
idle state is that idle CPUs should be physically powered
down in order to conserve energy. In short, preemptible
RCU can disable a valuable energy-conservation feature
of recent Linux kernels. Although Josh Triplett and Paul
McKenney had discussed some approaches for allowing

v2024.12.27a

246 CHAPTER 12. FORMAL VERIFICATION

CPUs to remain in low-power state throughout an RCU
grace period (thus preserving the Linux kernel’s ability
to conserve energy), matters did not come to a head until
Steve Rostedt integrated a new dyntick implementation
with preemptible RCU in the -rt patchset.

This combination caused one of Steve’s systems to
hang on boot, so in October, Paul coded up a dynticks-
friendly modification to preemptible RCU’s grace-period
processing. Steve coded up rcu_irq_enter() and rcu_
irq_exit() interfaces called from the irq_enter()
and irq_exit() interrupt entry/exit functions. These
rcu_irq_enter() and rcu_irq_exit() functions are
needed to allow RCU to reliably handle situations where
a dynticks-idle CPU is momentarily powered up for an
interrupt handler containing RCU read-side critical sec-
tions. With these changes in place, Steve’s system booted
reliably, but Paul continued inspecting the code periodi-
cally on the assumption that we could not possibly have
gotten the code right on the first try.

Paul reviewed the code repeatedly from October 2007
to February 2008, and almost always found at least one
bug. In one case, Paul even coded and tested a fix before
realizing that the bug was illusory, and in fact in all cases,
the “bug” turned out to be illusory.

Near the end of February, Paul grew tired of this game.
He therefore decided to enlist the aid of Promela and Spin.
The following presents a series of seven increasingly real-
istic Promela models, the last of which passes, consuming
about 40 GB of main memory for the state space.

More important, Promela and Spin did find a very subtle
bug for me!

Quick Quiz 12.9: Yeah, that’s just great! Now, just what
am I supposed to do if I don’t happen to have a machine with
40 GB of main memory???

Still better would be to come up with a simpler and
faster algorithm that has a smaller state space. Even better
would be an algorithm so simple that its correctness was
obvious to the casual observer!

Sections 12.1.5.1–12.1.5.4 give an overview of pre-
emptible RCU’s dynticks interface, followed by Sec-
tion 12.1.6’s discussion of the validation of the interface.

12.1.5.1 Introduction to Preemptible RCU and
dynticks

The per-CPU dynticks_progress_counter variable is
central to the interface between dynticks and preemptible
RCU. This variable has an even value whenever the
corresponding CPU is in dynticks-idle mode, and an odd

value otherwise. A CPU exits dynticks-idle mode for the
following three reasons:

1. To start running a task,

2. When entering the outermost of a possibly nested set
of interrupt handlers, and

3. When entering an NMI handler.

Preemptible RCU’s grace-period machinery samples
the value of the dynticks_progress_counter variable
in order to determine when a dynticks-idle CPU may safely
be ignored.

The following three sections give an overview of the
task interface, the interrupt/NMI interface, and the use
of the dynticks_progress_counter variable by the
grace-period machinery as of Linux kernel v2.6.25-rc4.

12.1.5.2 Task Interface

When a given CPU enters dynticks-idle mode because it
has no more tasks to run, it invokes rcu_enter_nohz():

1 static inline void rcu_enter_nohz(void)
2 {
3 mb();
4 __get_cpu_var(dynticks_progress_counter)++;
5 WARN_ON(__get_cpu_var(dynticks_progress_counter) &
6 0x1);
7 }

This function simply increments dynticks_
progress_counter and checks that the result is even, but
first executing a memory barrier to ensure that any other
CPU that sees the new value of dynticks_progress_
counter will also see the completion of any prior RCU
read-side critical sections.

Similarly, when a CPU that is in dynticks-idle mode
prepares to start executing a newly runnable task, it invokes
rcu_exit_nohz():

1 static inline void rcu_exit_nohz(void)
2 {
3 __get_cpu_var(dynticks_progress_counter)++;
4 mb();
5 WARN_ON(!(__get_cpu_var(dynticks_progress_counter) &
6 0x1));
7 }

This function again increments dynticks_progress_
counter, but follows it with a memory barrier to ensure
that if any other CPU sees the result of any subsequent
RCU read-side critical section, then that other CPU will
also see the incremented value of dynticks_progress_
counter. Finally, rcu_exit_nohz() checks that the
result of the increment is an odd value.

v2024.12.27a

12.1. STATE-SPACE SEARCH 247

The rcu_enter_nohz() and rcu_exit_nohz()
functions handle the case where a CPU enters and exits
dynticks-idle mode due to task execution, but does not
handle interrupts, which are covered in the following
section.

12.1.5.3 Interrupt Interface

The rcu_irq_enter() and rcu_irq_exit() functions
handle interrupt/NMI entry and exit, respectively. Of
course, nested interrupts must also be properly accounted
for. The possibility of nested interrupts is handled by a
second per-CPU variable, rcu_update_flag, which is
incremented upon entry to an interrupt or NMI handler
(in rcu_irq_enter()) and is decremented upon exit
(in rcu_irq_exit()). In addition, the pre-existing in_
interrupt() primitive is used to distinguish between an
outermost or a nested interrupt/NMI.

Interrupt entry is handled by the rcu_irq_enter()
shown below:

1 void rcu_irq_enter(void)
2 {
3 int cpu = smp_processor_id();
4
5 if (per_cpu(rcu_update_flag, cpu))
6 per_cpu(rcu_update_flag, cpu)++;
7 if (!in_interrupt() &&
8 (per_cpu(dynticks_progress_counter,
9 cpu) & 0x1) == 0) {

10 per_cpu(dynticks_progress_counter, cpu)++;
11 smp_mb();
12 per_cpu(rcu_update_flag, cpu)++;
13 }
14 }

Line 3 fetches the current CPU’s number, while lines 5
and 6 increment the rcu_update_flag nesting counter
if it is already non-zero. Lines 7–9 check to see whether
we are the outermost level of interrupt, and, if so, whether
dynticks_progress_counter needs to be incremented.
If so, line 10 increments dynticks_progress_counter,
line 11 executes a memory barrier, and line 12 increments
rcu_update_flag. As with rcu_exit_nohz(), the
memory barrier ensures that any other CPU that sees the
effects of an RCU read-side critical section in the interrupt
handler (following the rcu_irq_enter() invocation)
will also see the increment of dynticks_progress_
counter.
Quick Quiz 12.10: Why not simply increment rcu_update_
flag, and then only increment dynticks_progress_
counter if the old value of rcu_update_flag was zero???

Quick Quiz 12.11: But if line 7 finds that we are the
outermost interrupt, wouldn’t we always need to increment
dynticks_progress_counter?

Interrupt exit is handled similarly by rcu_irq_exit():
1 void rcu_irq_exit(void)
2 {
3 int cpu = smp_processor_id();
4
5 if (per_cpu(rcu_update_flag, cpu)) {
6 if (--per_cpu(rcu_update_flag, cpu))
7 return;
8 WARN_ON(in_interrupt());
9 smp_mb();

10 per_cpu(dynticks_progress_counter, cpu)++;
11 WARN_ON(per_cpu(dynticks_progress_counter,
12 cpu) & 0x1);
13 }
14 }

Line 3 fetches the current CPU’s number, as before.
Line 5 checks to see if the rcu_update_flag is non-
zero, returning immediately (via falling off the end of the
function) if not. Otherwise, lines 6 through 12 come into
play. Line 6 decrements rcu_update_flag, returning if
the result is not zero. Line 8 verifies that we are indeed
leaving the outermost level of nested interrupts, line 9
executes a memory barrier, line 10 increments dynticks_
progress_counter, and lines 11 and 12 verify that this
variable is now even. As with rcu_enter_nohz(), the
memory barrier ensures that any other CPU that sees the
increment of dynticks_progress_counter will also
see the effects of an RCU read-side critical section in
the interrupt handler (preceding the rcu_irq_exit()
invocation).

These two sections have described how the dynticks_
progress_counter variable is maintained during entry
to and exit from dynticks-idle mode, both by tasks and by
interrupts and NMIs. The following section describes how
this variable is used by preemptible RCU’s grace-period
machinery.

12.1.5.4 Grace-Period Interface

Of the four preemptible RCU grace-period states shown in
Figure 12.1, only the rcu_try_flip_waitack_state
and rcu_try_flip_waitmb_state states need to wait
for other CPUs to respond.

Of course, if a given CPU is in dynticks-idle state, we
shouldn’t wait for it. Therefore, just before entering one
of these two states, the preceding state takes a snapshot
of each CPU’s dynticks_progress_counter variable,
placing the snapshot in another per-CPU variable, rcu_
dyntick_snapshot. This is accomplished by invoking
dyntick_save_progress_counter(), shown below:

v2024.12.27a

248 CHAPTER 12. FORMAL VERIFICATION

rcu_try_flip_idle_state

(No RCU activity)

Increment grace−period counter

Request counter−flip acknowledgement

rcu_try_flip_waitack_state

(Wait for acknowledgements)

Memory barrier

(Wait for RCU read−side
rcu_try_flip_waitzero_state

critical sections to complete)

Request memory barriers

rcu_try_flip_waitmb_state

(Wait for memory barriers)

Still no activity

Figure 12.1: Preemptible RCU State Machine

1 static void dyntick_save_progress_counter(int cpu)
2 {
3 per_cpu(rcu_dyntick_snapshot, cpu) =
4 per_cpu(dynticks_progress_counter, cpu);
5 }

The rcu_try_flip_waitack_state state invokes
rcu_try_flip_waitack_needed(), shown below:

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();

10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if ((curr - snap) > 2 || (snap & 0x1) == 0)
13 return 0;
14 return 1;
15 }

Lines 7 and 8 pick up current and snapshot versions
of dynticks_progress_counter, respectively. The
memory barrier on line 9 ensures that the counter checks
in the later rcu_try_flip_waitzero_state follow the
fetches of these counters. Lines 10 and 11 return zero
(meaning no communication with the specified CPU is
required) if that CPU has remained in dynticks-idle state
since the time that the snapshot was taken. Similarly,
lines 12 and 13 return zero if that CPU was initially in
dynticks-idle state or if it has completely passed through

a dynticks-idle state. In both these cases, there is no
way that the CPU could have retained the old value of
the grace-period counter. If neither of these conditions
hold, line 14 returns one, meaning that the CPU needs to
explicitly respond.

For its part, the rcu_try_flip_waitmb_state state
invokes rcu_try_flip_waitmb_needed(), shown be-
low:

1 static inline int
2 rcu_try_flip_waitmb_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();

10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if (curr != snap)
13 return 0;
14 return 1;
15 }

This is quite similar to rcu_try_flip_waitack_
needed(), the difference being in lines 12 and 13, be-
cause any transition either to or from dynticks-idle state
executes the memory barrier needed by the rcu_try_
flip_waitmb_state state.

We now have seen all the code involved in the interface
between RCU and the dynticks-idle state. The next section
builds up the Promela model used to verify this code.

Quick Quiz 12.12: Can you spot any bugs in any of the code
in this section?

12.1.6 Validating Preemptible RCU and
dynticks

This section develops a Promela model for the interface
between dynticks and RCU step by step, with each of
Sections 12.1.6.1–12.1.6.7 illustrating one step, starting
with the process-level code, adding assertions, interrupts,
and finally NMIs.

Section 12.1.6.8 lists lessons (re)learned during this
effort, and Sections 12.1.6.9–12.1.6.15 present a simpler
solution to RCU’s dynticks problem.

12.1.6.1 Basic Model

This section translates the process-level dynticks en-
try/exit code and the grace-period processing into
Promela [Hol03]. We start with rcu_exit_nohz() and
rcu_enter_nohz() from the 2.6.25-rc4 kernel, placing

v2024.12.27a

12.1. STATE-SPACE SEARCH 249

these in a single Promela process that models exiting and
entering dynticks-idle mode in a loop as follows:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5
6 do
7 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
8 :: i < MAX_DYNTICK_LOOP_NOHZ ->
9 tmp = dynticks_progress_counter;

10 atomic {
11 dynticks_progress_counter = tmp + 1;
12 assert((dynticks_progress_counter & 1) == 1);
13 }
14 tmp = dynticks_progress_counter;
15 atomic {
16 dynticks_progress_counter = tmp + 1;
17 assert((dynticks_progress_counter & 1) == 0);
18 }
19 i++;
20 od;
21 }

Lines 6 and 20 define a loop. Line 7 exits the loop
once the loop counter i has exceeded the limit MAX_
DYNTICK_LOOP_NOHZ. Line 8 tells the loop construct to
execute lines 9–19 for each pass through the loop. Be-
cause the conditionals on lines 7 and 8 are exclusive of
each other, the normal Promela random selection of true
conditions is disabled. Lines 9 and 11 model rcu_
exit_nohz()’s non-atomic increment of dynticks_
progress_counter, while line 12 models the WARN_
ON(). The atomic construct simply reduces the Promela
state space, given that the WARN_ON() is not strictly speak-
ing part of the algorithm. Lines 14–18 similarly model
the increment and WARN_ON() for rcu_enter_nohz().
Finally, line 19 increments the loop counter.

Each pass through the loop therefore models a CPU ex-
iting dynticks-idle mode (for example, starting to execute
a task), then re-entering dynticks-idle mode (for example,
that same task blocking).

Quick Quiz 12.13: Why isn’t the memory barrier in rcu_
exit_nohz() and rcu_enter_nohz() modeled in Promela?

Quick Quiz 12.14: Isn’t it a bit strange to model rcu_exit_
nohz() followed by rcu_enter_nohz()? Wouldn’t it be
more natural to instead model entry before exit?

The next step is to model the interface to
RCU’s grace-period processing. For this, we
need to model dyntick_save_progress_counter(),
rcu_try_flip_waitack_needed(), rcu_try_flip_
waitmb_needed(), as well as portions of rcu_try_
flip_waitack() and rcu_try_flip_waitmb(), all

from the 2.6.25-rc4 kernel. The following grace_
period() Promela process models these functions as
they would be invoked during a single pass through pre-
emptible RCU’s grace-period processing.

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5
6 atomic {
7 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
8 snap = dynticks_progress_counter;
9 }

10 do
11 :: 1 ->
12 atomic {
13 curr = dynticks_progress_counter;
14 if
15 :: (curr == snap) && ((curr & 1) == 0) ->
16 break;
17 :: (curr - snap) > 2 || (snap & 1) == 0 ->
18 break;
19 :: 1 -> skip;
20 fi;
21 }
22 od;
23 snap = dynticks_progress_counter;
24 do
25 :: 1 ->
26 atomic {
27 curr = dynticks_progress_counter;
28 if
29 :: (curr == snap) && ((curr & 1) == 0) ->
30 break;
31 :: (curr != snap) ->
32 break;
33 :: 1 -> skip;
34 fi;
35 }
36 od;
37 }

Lines 6–9 print out the loop limit (but only into the
“.trail” file in case of error) and models a line of code from
rcu_try_flip_idle() and its call to dyntick_save_
progress_counter(), which takes a snapshot of the
current CPU’s dynticks_progress_counter variable.
These two lines are executed atomically to reduce state
space.

Lines 10–22 model the relevant code in rcu_
try_flip_waitack() and its call to rcu_try_flip_
waitack_needed(). This loop is modeling the grace-
period state machine waiting for a counter-flip acknowl-
edgement from each CPU, but only that part that interacts
with dynticks-idle CPUs.

Line 23 models a line from rcu_try_flip_
waitzero() and its call to dyntick_save_progress_
counter(), again taking a snapshot of the CPU’s
dynticks_progress_counter variable.

Finally, lines 24–36 model the relevant code in rcu_
try_flip_waitack() and its call to rcu_try_flip_

v2024.12.27a

250 CHAPTER 12. FORMAL VERIFICATION

waitack_needed(). This loop is modeling the grace-
period state-machine waiting for each CPU to execute a
memory barrier, but again only that part that interacts
with dynticks-idle CPUs.
Quick Quiz 12.15: Wait a minute! In the Linux kernel,
both dynticks_progress_counter and rcu_dyntick_
snapshot are per-CPU variables. So why are they instead
being modeled as single global variables?

The resulting model (dyntickRCU-base.spin),
when run with the runspin.sh script, generates 691
states and passes without errors, which is not at all sur-
prising given that it completely lacks the assertions that
could find failures. The next section therefore adds safety
assertions.

12.1.6.2 Validating Safety

A safe RCU implementation must never permit a grace
period to complete before the completion of any RCU
readers that started before the start of the grace period.
This is modeled by a grace_period_state variable that
can take on three states as follows:

1 #define GP_IDLE 0
2 #define GP_WAITING 1
3 #define GP_DONE 2
4 byte grace_period_state = GP_DONE;

The grace_period() process sets this variable as it
progresses through the grace-period phases, as shown
below:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5
6 grace_period_state = GP_IDLE;
7 atomic {
8 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
9 snap = dynticks_progress_counter;

10 grace_period_state = GP_WAITING;
11 }
12 do
13 :: 1 ->
14 atomic {
15 curr = dynticks_progress_counter;
16 if
17 :: (curr == snap) && ((curr & 1) == 0) ->
18 break;
19 :: (curr - snap) > 2 || (snap & 1) == 0 ->
20 break;
21 :: 1 -> skip;
22 fi;
23 }
24 od;
25 grace_period_state = GP_DONE;
26 grace_period_state = GP_IDLE;
27 atomic {
28 snap = dynticks_progress_counter;
29 grace_period_state = GP_WAITING;

30 }
31 do
32 :: 1 ->
33 atomic {
34 curr = dynticks_progress_counter;
35 if
36 :: (curr == snap) && ((curr & 1) == 0) ->
37 break;
38 :: (curr != snap) ->
39 break;
40 :: 1 -> skip;
41 fi;
42 }
43 od;
44 grace_period_state = GP_DONE;
45 }

Lines 6, 10, 25, 26, 29, and 44 update this variable (com-
bining atomically with algorithmic operations where fea-
sible) to allow the dyntick_nohz() process to verify the
basic RCU safety property. The form of this verification
is to assert that the value of the grace_period_state
variable cannot jump from GP_IDLE to GP_DONE during
a time period over which RCU readers could plausibly
persist.

Quick Quiz 12.16: Given there are a pair of back-to-back
changes to grace_period_state on lines 25 and 26, how
can we be sure that line 25’s changes won’t be lost?

The dyntick_nohz() Promela process implements
this verification as shown below:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->

10 tmp = dynticks_progress_counter;
11 atomic {
12 dynticks_progress_counter = tmp + 1;
13 old_gp_idle = (grace_period_state == GP_IDLE);
14 assert((dynticks_progress_counter & 1) == 1);
15 }
16 atomic {
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 grace_period_state != GP_DONE);
20 }
21 atomic {
22 dynticks_progress_counter = tmp + 1;
23 assert((dynticks_progress_counter & 1) == 0);
24 }
25 i++;
26 od;
27 }

Line 13 sets a new old_gp_idle flag if the value of
the grace_period_state variable is GP_IDLE at the
beginning of task execution, and the assertion at lines 18
and 19 fire if the grace_period_state variable has

v2024.12.27a

12.1. STATE-SPACE SEARCH 251

advanced to GP_DONE during task execution, which would
be illegal given that a single RCU read-side critical section
could span the entire intervening time period.

The resulting model (dyntickRCU-base-s.spin),
when run with the runspin.sh script, generates 964
states and passes without errors, which is reassuring. That
said, although safety is critically important, it is also quite
important to avoid indefinitely stalling grace periods. The
next section therefore covers verifying liveness.

12.1.6.3 Validating Liveness

Although liveness can be difficult to prove, there is a
simple trick that applies here. The first step is to make
dyntick_nohz() indicate that it is done via a dyntick_
nohz_done variable, as shown on line 27 of the following:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->

10 tmp = dynticks_progress_counter;
11 atomic {
12 dynticks_progress_counter = tmp + 1;
13 old_gp_idle = (grace_period_state == GP_IDLE);
14 assert((dynticks_progress_counter & 1) == 1);
15 }
16 atomic {
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 grace_period_state != GP_DONE);
20 }
21 atomic {
22 dynticks_progress_counter = tmp + 1;
23 assert((dynticks_progress_counter & 1) == 0);
24 }
25 i++;
26 od;
27 dyntick_nohz_done = 1;
28 }

With this variable in place, we can add assertions to
grace_period() to check for unnecessary blockage as
follows:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 grace_period_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);

10 shouldexit = 0;
11 snap = dynticks_progress_counter;
12 grace_period_state = GP_WAITING;
13 }
14 do
15 :: 1 ->

16 atomic {
17 assert(!shouldexit);
18 shouldexit = dyntick_nohz_done;
19 curr = dynticks_progress_counter;
20 if
21 :: (curr == snap) && ((curr & 1) == 0) ->
22 break;
23 :: (curr - snap) > 2 || (snap & 1) == 0 ->
24 break;
25 :: else -> skip;
26 fi;
27 }
28 od;
29 grace_period_state = GP_DONE;
30 grace_period_state = GP_IDLE;
31 atomic {
32 shouldexit = 0;
33 snap = dynticks_progress_counter;
34 grace_period_state = GP_WAITING;
35 }
36 do
37 :: 1 ->
38 atomic {
39 assert(!shouldexit);
40 shouldexit = dyntick_nohz_done;
41 curr = dynticks_progress_counter;
42 if
43 :: (curr == snap) && ((curr & 1) == 0) ->
44 break;
45 :: (curr != snap) ->
46 break;
47 :: else -> skip;
48 fi;
49 }
50 od;
51 grace_period_state = GP_DONE;
52 }

We have added the shouldexit variable on line 5,
which we initialize to zero on line 10. Line 17 as-
serts that shouldexit is not set, while line 18 sets
shouldexit to the dyntick_nohz_done variable main-
tained by dyntick_nohz(). This assertion will there-
fore trigger if we attempt to take more than one pass
through the wait-for-counter-flip-acknowledgement loop
after dyntick_nohz() has completed execution. After
all, if dyntick_nohz() is done, then there cannot be any
more state changes to force us out of the loop, so going
through twice in this state means an infinite loop, which
in turn means no end to the grace period.

Lines 32, 39, and 40 operate in a similar manner for the
second (memory-barrier) loop.

However, running this model (dyntickRCU-base-
sl-busted.spin) results in failure, as line 23 is check-
ing that the wrong variable is even. Upon failure,
spin writes out a “trail” file (dyntickRCU-base-sl-
busted.spin.trail), which records the sequence of
states that lead to the failure. Use the “spin -t -p -g
-l dyntickRCU-base-sl-busted.spin” command
to cause spin to retrace this sequence of states, print-
ing the statements executed and the values of vari-
ables (dyntickRCU-base-sl-busted.spin.trail.

v2024.12.27a

252 CHAPTER 12. FORMAL VERIFICATION

txt). Note that the line numbers do not match the listing
above due to the fact that spin takes both functions in a
single file. However, the line numbers do match the full
model (dyntickRCU-base-sl-busted.spin).

We see that the dyntick_nohz() process completed at
step 34 (search for “34:”), but that the grace_period()
process nonetheless failed to exit the loop. The value of
curr is 6 (see step 35) and that the value of snap is 5 (see
step 17). Therefore the first condition on line 21 above
does not hold because “curr != snap”, and the second
condition on line 23 does not hold either because snap is
odd and because curr is only one greater than snap.

So one of these two conditions has to be incorrect. Refer-
ring to the comment block in rcu_try_flip_waitack_
needed() for the first condition:

If the CPU remained in dynticks mode for the
entire time and didn’t take any interrupts, NMIs,
SMIs, or whatever, then it cannot be in the
middle of an rcu_read_lock(), so the next
rcu_read_lock() it executes must use the
new value of the counter. So we can safely
pretend that this CPU already acknowledged the
counter.

The first condition does match this, because if
“curr == snap” and if curr is even, then the corre-
sponding CPU has been in dynticks-idle mode the entire
time, as required. So let’s look at the comment block for
the second condition:

If the CPU passed through or entered a dynticks
idle phase with no active irq handlers, then,
as above, we can safely pretend that this CPU
already acknowledged the counter.

The first part of the condition is correct, because if
curr and snap differ by two, there will be at least one
even number in between, corresponding to having passed
completely through a dynticks-idle phase. However, the
second part of the condition corresponds to having started
in dynticks-idle mode, not having finished in this mode.
We therefore need to be testing curr rather than snap for
being an even number.

The corrected C code is as follows:

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);

8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();

10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if ((curr - snap) > 2 || (curr & 0x1) == 0)
13 return 0;
14 return 1;
15 }

Lines 10–13 can now be combined and simplified,
resulting in the following. A similar simplification can be
applied to rcu_try_flip_waitmb_needed().
1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();

10 if ((curr - snap) >= 2 || (curr & 0x1) == 0)
11 return 0;
12 return 1;
13 }

Making the corresponding correction in the model
(dyntickRCU-base-sl.spin) results in a correct verifi-
cation with 661 states that passes without errors. However,
it is worth noting that the first version of the liveness verifi-
cation failed to catch this bug, due to a bug in the liveness
verification itself. This liveness-verification bug was lo-
cated by inserting an infinite loop in the grace_period()
process, and noting that the liveness-verification code
failed to detect this problem!

We have now successfully verified both safety and
liveness conditions, but only for processes running and
blocking. We also need to handle interrupts, a task taken
up in the next section.

12.1.6.4 Interrupts

There are a couple of ways to model interrupts in Promela:

1. Using C-preprocessor tricks to insert the interrupt
handler between each and every statement of the
dynticks_nohz() process, or

2. Modeling the interrupt handler with a separate pro-
cess.

A bit of thought indicated that the second approach
would have a smaller state space, though it requires that
the interrupt handler somehow run atomically with respect
to the dynticks_nohz() process, but not with respect
to the grace_period() process.

Fortunately, it turns out that Promela permits you
to branch out of atomic statements. This trick allows

v2024.12.27a

12.1. STATE-SPACE SEARCH 253

us to have the interrupt handler set a flag, and recode
dynticks_nohz() to atomically check this flag and ex-
ecute only when the flag is not set. This can be accom-
plished with a C-preprocessor macro that takes a label
and a Promela statement as follows:

1 #define EXECUTE_MAINLINE(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_irq -> goto label; \
6 :: else -> stmt; \
7 fi; \
8 }

One might use this macro as follows:

EXECUTE_MAINLINE(stmt1,
tmp = dynticks_progress_counter)

Line 2 of the macro creates the specified statement label.
Lines 3–8 are an atomic block that tests the in_dyntick_
irq variable, and if this variable is set (indicating that the
interrupt handler is active), branches out of the atomic
block back to the label. Otherwise, line 6 executes the
specified statement. The overall effect is that mainline
execution stalls any time an interrupt is active, as required.

12.1.6.5 Validating Interrupt Handlers

The first step is to convert dyntick_nohz() to EXECUTE_
MAINLINE() form, as follows:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->

10 EXECUTE_MAINLINE(stmt1,
11 tmp = dynticks_progress_counter)
12 EXECUTE_MAINLINE(stmt2,
13 dynticks_progress_counter = tmp + 1;
14 old_gp_idle = (grace_period_state == GP_IDLE);
15 assert((dynticks_progress_counter & 1) == 1))
16 EXECUTE_MAINLINE(stmt3,
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 grace_period_state != GP_DONE))
20 EXECUTE_MAINLINE(stmt4,
21 dynticks_progress_counter = tmp + 1;
22 assert((dynticks_progress_counter & 1) == 0))
23 i++;
24 od;
25 dyntick_nohz_done = 1;
26 }

It is important to note that when a group of statements
is passed to EXECUTE_MAINLINE(), as in lines 12–15, all
statements in that group execute atomically.

Quick Quiz 12.17: But what would you do if you needed
the statements in a single EXECUTE_MAINLINE() group to
execute non-atomically?

Quick Quiz 12.18: But what if the dynticks_nohz()
process had “if” or “do” statements with conditions, where
the statement bodies of these constructs needed to execute
non-atomically?

The next step is to write a dyntick_irq() process to
model an interrupt handler:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_IRQ -> break;
9 :: i < MAX_DYNTICK_LOOP_IRQ ->

10 in_dyntick_irq = 1;
11 if
12 :: rcu_update_flag > 0 ->
13 tmp = rcu_update_flag;
14 rcu_update_flag = tmp + 1;
15 :: else -> skip;
16 fi;
17 if
18 :: !in_interrupt &&
19 (dynticks_progress_counter & 1) == 0 ->
20 tmp = dynticks_progress_counter;
21 dynticks_progress_counter = tmp + 1;
22 tmp = rcu_update_flag;
23 rcu_update_flag = tmp + 1;
24 :: else -> skip;
25 fi;
26 tmp = in_interrupt;
27 in_interrupt = tmp + 1;
28 old_gp_idle = (grace_period_state == GP_IDLE);
29 assert(!old_gp_idle ||
30 grace_period_state != GP_DONE);
31 tmp = in_interrupt;
32 in_interrupt = tmp - 1;
33 if
34 :: rcu_update_flag != 0 ->
35 tmp = rcu_update_flag;
36 rcu_update_flag = tmp - 1;
37 if
38 :: rcu_update_flag == 0 ->
39 tmp = dynticks_progress_counter;
40 dynticks_progress_counter = tmp + 1;
41 :: else -> skip;
42 fi;
43 :: else -> skip;
44 fi;
45 atomic {
46 in_dyntick_irq = 0;
47 i++;
48 }
49 od;
50 dyntick_irq_done = 1;
51 }

The loop from lines 7–49 models up to MAX_DYNTICK_
LOOP_IRQ interrupts, with lines 8 and 9 forming the loop
condition and line 47 incrementing the control variable.
Line 10 tells dyntick_nohz() that an interrupt handler

v2024.12.27a

254 CHAPTER 12. FORMAL VERIFICATION

is running, and line 46 tells dyntick_nohz() that this
handler has completed. Line 50 is used for liveness
verification, just like the corresponding line of dyntick_
nohz().
Quick Quiz 12.19: Why are lines 46 and 47 (the
“in_dyntick_irq = 0;” and the “i++;”) executed atom-
ically?

Lines 11–25 model rcu_irq_enter(), and lines 26
and 27 model the relevant snippet of __irq_enter().
Lines 28–30 verify safety in much the same manner as do
the corresponding lines of dynticks_nohz(). Lines 31
and 32 model the relevant snippet of __irq_exit(), and
finally lines 33–44 model rcu_irq_exit().

Quick Quiz 12.20: What property of interrupts is this
dynticks_irq() process unable to model?

The grace_period() process then becomes as fol-
lows:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 grace_period_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);

10 printf("MDLI = %d\n", MAX_DYNTICK_LOOP_IRQ);
11 shouldexit = 0;
12 snap = dynticks_progress_counter;
13 grace_period_state = GP_WAITING;
14 }
15 do
16 :: 1 ->
17 atomic {
18 assert(!shouldexit);
19 shouldexit = dyntick_nohz_done && dyntick_irq_done;
20 curr = dynticks_progress_counter;
21 if
22 :: (curr - snap) >= 2 || (curr & 1) == 0 ->
23 break;
24 :: else -> skip;
25 fi;
26 }
27 od;
28 grace_period_state = GP_DONE;
29 grace_period_state = GP_IDLE;
30 atomic {
31 shouldexit = 0;
32 snap = dynticks_progress_counter;
33 grace_period_state = GP_WAITING;
34 }
35 do
36 :: 1 ->
37 atomic {
38 assert(!shouldexit);
39 shouldexit = dyntick_nohz_done && dyntick_irq_done;
40 curr = dynticks_progress_counter;
41 if
42 :: (curr != snap) || ((curr & 1) == 0) ->
43 break;
44 :: else -> skip;
45 fi;

46 }
47 od;
48 grace_period_state = GP_DONE;
49 }

The implementation of grace_period() is very simi-
lar to the earlier one. The only changes are the addition of
line 10 to add the new interrupt-count parameter, changes
to lines 19 and 39 to add the new dyntick_irq_done
variable to the liveness checks, and of course the optimiza-
tions on lines 22 and 42.

This model (dyntickRCU-irqnn-ssl.spin) results
in a correct verification with roughly half a million states,
passing without errors. However, this version of the model
does not handle nested interrupts. This topic is taken up
in the next section.

12.1.6.6 Validating Nested Interrupt Handlers

Nested interrupt handlers may be modeled by splitting the
body of the loop in dyntick_irq() as follows:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 byte j = 0;
6 bit old_gp_idle;
7 bit outermost;
8
9 do

10 :: i >= MAX_DYNTICK_LOOP_IRQ &&
11 j >= MAX_DYNTICK_LOOP_IRQ -> break;
12 :: i < MAX_DYNTICK_LOOP_IRQ ->
13 atomic {
14 outermost = (in_dyntick_irq == 0);
15 in_dyntick_irq = 1;
16 }
17 if
18 :: rcu_update_flag > 0 ->
19 tmp = rcu_update_flag;
20 rcu_update_flag = tmp + 1;
21 :: else -> skip;
22 fi;
23 if
24 :: !in_interrupt &&
25 (dynticks_progress_counter & 1) == 0 ->
26 tmp = dynticks_progress_counter;
27 dynticks_progress_counter = tmp + 1;
28 tmp = rcu_update_flag;
29 rcu_update_flag = tmp + 1;
30 :: else -> skip;
31 fi;
32 tmp = in_interrupt;
33 in_interrupt = tmp + 1;
34 atomic {
35 if
36 :: outermost ->
37 old_gp_idle = (grace_period_state == GP_IDLE);
38 :: else -> skip;
39 fi;
40 }
41 i++;
42 :: j < i ->
43 atomic {
44 if

v2024.12.27a

12.1. STATE-SPACE SEARCH 255

45 :: j + 1 == i ->
46 assert(!old_gp_idle ||
47 grace_period_state != GP_DONE);
48 :: else -> skip;
49 fi;
50 }
51 tmp = in_interrupt;
52 in_interrupt = tmp - 1;
53 if
54 :: rcu_update_flag != 0 ->
55 tmp = rcu_update_flag;
56 rcu_update_flag = tmp - 1;
57 if
58 :: rcu_update_flag == 0 ->
59 tmp = dynticks_progress_counter;
60 dynticks_progress_counter = tmp + 1;
61 :: else -> skip;
62 fi;
63 :: else -> skip;
64 fi;
65 atomic {
66 j++;
67 in_dyntick_irq = (i != j);
68 }
69 od;
70 dyntick_irq_done = 1;
71 }

This is similar to the earlier dynticks_irq() process.
It adds a second counter variable j on line 5, so that i
counts entries to interrupt handlers and j counts exits. The
outermost variable on line 7 helps determine when the
grace_period_state variable needs to be sampled for
the safety checks. The loop-exit check on lines 10 and 11
is updated to require that the specified number of interrupt
handlers are exited as well as entered, and the increment
of i is moved to line 41, which is the end of the interrupt-
entry model. Lines 13–16 set the outermost variable to
indicate whether this is the outermost of a set of nested
interrupts and to set the in_dyntick_irq variable that
is used by the dyntick_nohz() process. Lines 34–40
capture the state of the grace_period_state variable,
but only when in the outermost interrupt handler.

Line 42 has the do-loop conditional for interrupt-exit
modeling: As long as we have exited fewer interrupts
than we have entered, it is legal to exit another interrupt.
Lines 43–50 check the safety criterion, but only if we
are exiting from the outermost interrupt level. Finally,
lines 65–68 increment the interrupt-exit count j and, if this
is the outermost interrupt level, clears in_dyntick_irq.

This model (dyntickRCU-irq-ssl.spin) results in
a correct verification with a bit more than half a million
states, passing without errors. However, this version of
the model does not handle NMIs, which are taken up in
the next section.

12.1.6.7 Validating NMI Handlers

We take the same general approach for NMIs as we do for
interrupts, keeping in mind that NMIs do not nest. This
results in a dyntick_nmi() process as follows:

1 proctype dyntick_nmi()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NMI -> break;
9 :: i < MAX_DYNTICK_LOOP_NMI ->

10 in_dyntick_nmi = 1;
11 if
12 :: rcu_update_flag > 0 ->
13 tmp = rcu_update_flag;
14 rcu_update_flag = tmp + 1;
15 :: else -> skip;
16 fi;
17 if
18 :: !in_interrupt &&
19 (dynticks_progress_counter & 1) == 0 ->
20 tmp = dynticks_progress_counter;
21 dynticks_progress_counter = tmp + 1;
22 tmp = rcu_update_flag;
23 rcu_update_flag = tmp + 1;
24 :: else -> skip;
25 fi;
26 tmp = in_interrupt;
27 in_interrupt = tmp + 1;
28 old_gp_idle = (grace_period_state == GP_IDLE);
29 assert(!old_gp_idle ||
30 grace_period_state != GP_DONE);
31 tmp = in_interrupt;
32 in_interrupt = tmp - 1;
33 if
34 :: rcu_update_flag != 0 ->
35 tmp = rcu_update_flag;
36 rcu_update_flag = tmp - 1;
37 if
38 :: rcu_update_flag == 0 ->
39 tmp = dynticks_progress_counter;
40 dynticks_progress_counter = tmp + 1;
41 :: else -> skip;
42 fi;
43 :: else -> skip;
44 fi;
45 atomic {
46 i++;
47 in_dyntick_nmi = 0;
48 }
49 od;
50 dyntick_nmi_done = 1;
51 }

Of course, the fact that we have NMIs requires ad-
justments in the other components. For example, the
EXECUTE_MAINLINE() macro now needs to pay atten-
tion to the NMI handler (in_dyntick_nmi) as well as
the interrupt handler (in_dyntick_irq) by checking the
dyntick_nmi_done variable as follows:

1 #define EXECUTE_MAINLINE(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \

v2024.12.27a

256 CHAPTER 12. FORMAL VERIFICATION

5 :: in_dyntick_irq || \
6 in_dyntick_nmi -> goto label; \
7 :: else -> stmt; \
8 fi; \
9 }

We will also need to introduce an EXECUTE_IRQ()
macro that checks in_dyntick_nmi in order to allow
dyntick_irq() to exclude dyntick_nmi():

1 #define EXECUTE_IRQ(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_nmi -> goto label; \
6 :: else -> stmt; \
7 fi; \
8 }

It is further necessary to convert dyntick_irq() to
EXECUTE_IRQ() as follows:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 byte j = 0;
6 bit old_gp_idle;
7 bit outermost;
8
9 do

10 :: i >= MAX_DYNTICK_LOOP_IRQ &&
11 j >= MAX_DYNTICK_LOOP_IRQ -> break;
12 :: i < MAX_DYNTICK_LOOP_IRQ ->
13 atomic {
14 outermost = (in_dyntick_irq == 0);
15 in_dyntick_irq = 1;
16 }
17 stmt1: skip;
18 atomic {
19 if
20 :: in_dyntick_nmi -> goto stmt1;
21 :: !in_dyntick_nmi && rcu_update_flag ->
22 goto stmt1_then;
23 :: else -> goto stmt1_else;
24 fi;
25 }
26 stmt1_then: skip;
27 EXECUTE_IRQ(stmt1_1, tmp = rcu_update_flag)
28 EXECUTE_IRQ(stmt1_2, rcu_update_flag = tmp + 1)
29 stmt1_else: skip;
30 stmt2: skip; atomic {
31 if
32 :: in_dyntick_nmi -> goto stmt2;
33 :: !in_dyntick_nmi &&
34 !in_interrupt &&
35 (dynticks_progress_counter & 1) == 0 ->
36 goto stmt2_then;
37 :: else -> goto stmt2_else;
38 fi;
39 }
40 stmt2_then: skip;
41 EXECUTE_IRQ(stmt2_1,
42 tmp = dynticks_progress_counter)
43 EXECUTE_IRQ(stmt2_2,
44 dynticks_progress_counter = tmp + 1)
45 EXECUTE_IRQ(stmt2_3, tmp = rcu_update_flag)
46 EXECUTE_IRQ(stmt2_4, rcu_update_flag = tmp + 1)
47 stmt2_else: skip;
48 EXECUTE_IRQ(stmt3, tmp = in_interrupt)
49 EXECUTE_IRQ(stmt4, in_interrupt = tmp + 1)

50 stmt5: skip;
51 atomic {
52 if
53 :: in_dyntick_nmi -> goto stmt4;
54 :: !in_dyntick_nmi && outermost ->
55 old_gp_idle = (grace_period_state == GP_IDLE);
56 :: else -> skip;
57 fi;
58 }
59 i++;
60 :: j < i ->
61 stmt6: skip;
62 atomic {
63 if
64 :: in_dyntick_nmi -> goto stmt6;
65 :: !in_dyntick_nmi && j + 1 == i ->
66 assert(!old_gp_idle ||
67 grace_period_state != GP_DONE);
68 :: else -> skip;
69 fi;
70 }
71 EXECUTE_IRQ(stmt7, tmp = in_interrupt);
72 EXECUTE_IRQ(stmt8, in_interrupt = tmp - 1);
73 stmt9: skip;
74 atomic {
75 if
76 :: in_dyntick_nmi -> goto stmt9;
77 :: !in_dyntick_nmi && rcu_update_flag != 0 ->
78 goto stmt9_then;
79 :: else -> goto stmt9_else;
80 fi;
81 }
82 stmt9_then: skip;
83 EXECUTE_IRQ(stmt9_1, tmp = rcu_update_flag)
84 EXECUTE_IRQ(stmt9_2, rcu_update_flag = tmp - 1)
85 stmt9_3: skip;
86 atomic {
87 if
88 :: in_dyntick_nmi -> goto stmt9_3;
89 :: !in_dyntick_nmi && rcu_update_flag == 0 ->
90 goto stmt9_3_then;
91 :: else -> goto stmt9_3_else;
92 fi;
93 }
94 stmt9_3_then: skip;
95 EXECUTE_IRQ(stmt9_3_1,
96 tmp = dynticks_progress_counter)
97 EXECUTE_IRQ(stmt9_3_2,
98 dynticks_progress_counter = tmp + 1)
99 stmt9_3_else:

100 stmt9_else: skip;
101 atomic {
102 j++;
103 in_dyntick_irq = (i != j);
104 }
105 od;
106 dyntick_irq_done = 1;
107 }

Note that we have open-coded the “if” statements
(for example, lines 17–29). In addition, statements that
process strictly local state (such as line 59) need not
exclude dyntick_nmi().

Finally, grace_period() requires only a few changes:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6

v2024.12.27a

12.1. STATE-SPACE SEARCH 257

7 grace_period_state = GP_IDLE;
8 atomic {
9 printf("MDL_NOHZ = %d\n", MAX_DYNTICK_LOOP_NOHZ);

10 printf("MDL_IRQ = %d\n", MAX_DYNTICK_LOOP_IRQ);
11 printf("MDL_NMI = %d\n", MAX_DYNTICK_LOOP_NMI);
12 shouldexit = 0;
13 snap = dynticks_progress_counter;
14 grace_period_state = GP_WAITING;
15 }
16 do
17 :: 1 ->
18 atomic {
19 assert(!shouldexit);
20 shouldexit = dyntick_nohz_done &&
21 dyntick_irq_done &&
22 dyntick_nmi_done;
23 curr = dynticks_progress_counter;
24 if
25 :: (curr - snap) >= 2 || (curr & 1) == 0 ->
26 break;
27 :: else -> skip;
28 fi;
29 }
30 od;
31 grace_period_state = GP_DONE;
32 grace_period_state = GP_IDLE;
33 atomic {
34 shouldexit = 0;
35 snap = dynticks_progress_counter;
36 grace_period_state = GP_WAITING;
37 }
38 do
39 :: 1 ->
40 atomic {
41 assert(!shouldexit);
42 shouldexit = dyntick_nohz_done &&
43 dyntick_irq_done &&
44 dyntick_nmi_done;
45 curr = dynticks_progress_counter;
46 if
47 :: (curr != snap) || ((curr & 1) == 0) ->
48 break;
49 :: else -> skip;
50 fi;
51 }
52 od;
53 grace_period_state = GP_DONE;
54 }

We have added the printf() for the new MAX_
DYNTICK_LOOP_NMI parameter on line 11 and added
dyntick_nmi_done to the shouldexit assignments on
lines 22 and 44.

The model (dyntickRCU-irq-nmi-ssl.spin) re-
sults in a correct verification with several hundred million
states, passing without errors.

Quick Quiz 12.21: Does Paul always write his code in this
painfully incremental manner?

12.1.6.8 Lessons (Re)Learned

This effort provided some lessons (re)learned:

1. Promela and Spin can verify interrupt/NMI-han-
dler interactions.

2. Documenting code can help locate bugs. In
this case, the documentation effort located a mis-
placed memory barrier in rcu_enter_nohz() and
rcu_exit_nohz(), as shown by the following
patch [McK08d].

static inline void rcu_enter_nohz(void)
{

+ mb();
__get_cpu_var(dynticks_progress_counter)++;

- mb();
}

static inline void rcu_exit_nohz(void)
{

- mb();
__get_cpu_var(dynticks_progress_counter)++;

+ mb();
}

3. Validate your code early, often, and up to the point
of destruction. This effort located one subtle bug
in rcu_try_flip_waitack_needed() that would
have been quite difficult to test or debug, as shown
by the following patch [McK08c].

- if ((curr - snap) > 2 || (snap & 0x1) == 0)
+ if ((curr - snap) > 2 || (curr & 0x1) == 0)

4. Always verify your verification code. The usual
way to do this is to insert a deliberate bug and verify
that the verification code catches it. Of course, if
the verification code fails to catch this bug, you
may also need to verify the bug itself, and so on,
recursing infinitely. However, if you find yourself
in this position, getting a good night’s sleep can be
an extremely effective debugging technique. You
will then see that the obvious verify-the-verification
technique is to deliberately insert bugs in the code
being verified. If the verification fails to find them,
the verification clearly is buggy.

5. Use of atomic instructions can simplify verifica-
tion. Unfortunately, use of the cmpxchg atomic
instruction would also slow down the critical IRQ
fastpath, so they are not appropriate in this case.

6. The need for complex formal verification often
indicates a need to re-think your design.

To this last point, it turns out that there is a much simpler
solution to the dynticks problem, which is presented in
the next section.

v2024.12.27a

258 CHAPTER 12. FORMAL VERIFICATION

Listing 12.17: Variables for Simple Dynticks Interface
1 struct rcu_dynticks {
2 int dynticks_nesting;
3 int dynticks;
4 int dynticks_nmi;
5 };
6
7 struct rcu_data {
8 ...
9 int dynticks_snap;

10 int dynticks_nmi_snap;
11 ...
12 };

12.1.6.9 Simplicity Avoids Formal Verification

The complexity of the dynticks interface for preemptible
RCU is primarily due to the fact that both IRQs and NMIs
use the same code path and the same state variables. This
leads to the notion of providing separate code paths and
variables for IRQs and NMIs, as has been done for hierar-
chical RCU [McK08b] as indirectly suggested by Manfred
Spraul [Spr08]. This work was pulled into mainline kernel
during the v2.6.29 development cycle [McK08f].

12.1.6.10 State Variables for Simplified Dynticks In-
terface

Listing 12.17 shows the new per-CPU state variables.
These variables are grouped into structs to allow multiple
independent RCU implementations (e.g., rcu and rcu_
bh) to conveniently and efficiently share dynticks state.
In what follows, they can be thought of as independent
per-CPU variables.

The dynticks_nesting, dynticks, and dynticks_
snap variables are for the IRQ code paths, and the
dynticks_nmi and dynticks_nmi_snap variables are
for the NMI code paths, although the NMI code path will
also reference (but not modify) the dynticks_nesting
variable. These variables are used as follows:

dynticks_nesting
This counts the number of reasons that the corre-
sponding CPU should be monitored for RCU read-
side critical sections. If the CPU is in dynticks-idle
mode, then this counts the IRQ nesting level, other-
wise it is one greater than the IRQ nesting level.

dynticks
This counter’s value is even if the corresponding
CPU is in dynticks-idle mode and there are no IRQ
handlers currently running on that CPU, otherwise
the counter’s value is odd. In other words, if this

counter’s value is odd, then the corresponding CPU
might be in an RCU read-side critical section.

dynticks_nmi
This counter’s value is odd if the corresponding CPU
is in an NMI handler, but only if the NMI arrived
while this CPU was in dyntick-idle mode with no IRQ
handlers running. Otherwise, the counter’s value
will be even.

dynticks_snap
This will be a snapshot of the dynticks counter, but
only if the current RCU grace period has extended
for too long a duration.

dynticks_nmi_snap
This will be a snapshot of the dynticks_nmi counter,
but again only if the current RCU grace period has
extended for too long a duration.

If both dynticks and dynticks_nmi have taken on
an even value during a given time interval, then the
corresponding CPU has passed through a quiescent state
during that interval.

Quick Quiz 12.22: But what happens if an NMI handler
starts running before an IRQ handler completes, and if that
NMI handler continues running until a second IRQ handler
starts?

12.1.6.11 Entering and Leaving Dynticks-Idle Mode

Listing 12.18 shows the rcu_enter_nohz() and rcu_
exit_nohz(), which enter and exit dynticks-idle mode,
also known as “nohz” mode. These two functions are
invoked from process context.

Line 6 ensures that any prior memory accesses (which
might include accesses from RCU read-side critical sec-
tions) are seen by other CPUs before those marking entry
to dynticks-idle mode. Lines 7 and 12 disable and reen-
able IRQs. Line 8 acquires a pointer to the current CPU’s
rcu_dynticks structure, and line 9 increments the cur-
rent CPU’s dynticks counter, which should now be even,
given that we are entering dynticks-idle mode in process
context. Finally, line 10 decrements dynticks_nesting,
which should now be zero.

The rcu_exit_nohz() function is quite similar, but in-
crements dynticks_nesting rather than decrementing
it and checks for the opposite dynticks polarity.

v2024.12.27a

12.1. STATE-SPACE SEARCH 259

Listing 12.18: Entering and Exiting Dynticks-Idle Mode
1 void rcu_enter_nohz(void)
2 {
3 unsigned long flags;
4 struct rcu_dynticks *rdtp;
5
6 smp_mb();
7 local_irq_save(flags);
8 rdtp = &__get_cpu_var(rcu_dynticks);
9 rdtp->dynticks++;

10 rdtp->dynticks_nesting--;
11 WARN_ON(rdtp->dynticks & 0x1);
12 local_irq_restore(flags);
13 }
14
15 void rcu_exit_nohz(void)
16 {
17 unsigned long flags;
18 struct rcu_dynticks *rdtp;
19
20 local_irq_save(flags);
21 rdtp = &__get_cpu_var(rcu_dynticks);
22 rdtp->dynticks++;
23 rdtp->dynticks_nesting++;
24 WARN_ON(!(rdtp->dynticks & 0x1));
25 local_irq_restore(flags);
26 smp_mb();
27 }

12.1.6.12 NMIs From Dynticks-Idle Mode

Listing 12.19 shows the rcu_nmi_enter() and rcu_
nmi_exit() functions, which inform RCU of NMI entry
and exit, respectively, from dynticks-idle mode. However,
if the NMI arrives during an IRQ handler, then RCU will al-
ready be on the lookout for RCU read-side critical sections
from this CPU, so lines 6 and 7 of rcu_nmi_enter()
and lines 18 and 19 of rcu_nmi_exit() silently return if
dynticks is odd. Otherwise, the two functions increment
dynticks_nmi, with rcu_nmi_enter() leaving it with
an odd value and rcu_nmi_exit() leaving it with an
even value. Both functions execute memory barriers be-
tween this increment and possible RCU read-side critical
sections on lines 10 and 20, respectively.

12.1.6.13 Interrupts From Dynticks-Idle Mode

Listing 12.20 shows rcu_irq_enter() and rcu_irq_
exit(), which inform RCU of entry to and exit from,
respectively, IRQ context. Line 6 of rcu_irq_enter()
increments dynticks_nesting, and if this variable was
already non-zero, line 7 silently returns. Otherwise, line 8
increments dynticks, which will then have an odd value,
consistent with the fact that this CPU can now execute RCU
read-side critical sections. Line 10 therefore executes a
memory barrier to ensure that the increment of dynticks
is seen before any RCU read-side critical sections that the
subsequent IRQ handler might execute.

Listing 12.19: NMIs From Dynticks-Idle Mode
1 void rcu_nmi_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks & 0x1)
7 return;
8 rdtp->dynticks_nmi++;
9 WARN_ON(!(rdtp->dynticks_nmi & 0x1));

10 smp_mb();
11 }
12
13 void rcu_nmi_exit(void)
14 {
15 struct rcu_dynticks *rdtp;
16
17 rdtp = &__get_cpu_var(rcu_dynticks);
18 if (rdtp->dynticks & 0x1)
19 return;
20 smp_mb();
21 rdtp->dynticks_nmi++;
22 WARN_ON(rdtp->dynticks_nmi & 0x1);
23 }

Listing 12.20: Interrupts From Dynticks-Idle Mode
1 void rcu_irq_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks_nesting++)
7 return;
8 rdtp->dynticks++;
9 WARN_ON(!(rdtp->dynticks & 0x1));

10 smp_mb();
11 }
12
13 void rcu_irq_exit(void)
14 {
15 struct rcu_dynticks *rdtp;
16
17 rdtp = &__get_cpu_var(rcu_dynticks);
18 if (--rdtp->dynticks_nesting)
19 return;
20 smp_mb();
21 rdtp->dynticks++;
22 WARN_ON(rdtp->dynticks & 0x1);
23 if (__get_cpu_var(rcu_data).nxtlist ||
24 __get_cpu_var(rcu_bh_data).nxtlist)
25 set_need_resched();
26 }

v2024.12.27a

260 CHAPTER 12. FORMAL VERIFICATION

Listing 12.21: Saving Dyntick Progress Counters
1 static int
2 dyntick_save_progress_counter(struct rcu_data *rdp)
3 {
4 int ret;
5 int snap;
6 int snap_nmi;
7
8 snap = rdp->dynticks->dynticks;
9 snap_nmi = rdp->dynticks->dynticks_nmi;

10 smp_mb();
11 rdp->dynticks_snap = snap;
12 rdp->dynticks_nmi_snap = snap_nmi;
13 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
14 if (ret)
15 rdp->dynticks_fqs++;
16 return ret;
17 }

Line 18 of rcu_irq_exit() decrements dynticks_
nesting, and if the result is non-zero, line 19 silently
returns. Otherwise, line 20 executes a memory barrier to
ensure that the increment of dynticks on line 21 is seen
after any RCU read-side critical sections that the prior
IRQ handler might have executed. Line 22 verifies that
dynticks is now even, consistent with the fact that no
RCU read-side critical sections may appear in dynticks-
idle mode. Lines 23–25 check to see if the prior IRQ
handlers enqueued any RCU callbacks, forcing this CPU
out of dynticks-idle mode via a reschedule API if so.

12.1.6.14 Checking For Dynticks Quiescent States

Listing 12.21 shows dyntick_save_progress_
counter(), which takes a snapshot of the specified
CPU’s dynticks and dynticks_nmi counters. Lines 8
and 9 snapshot these two variables to locals, line 10
executes a memory barrier to pair with the memory
barriers in the functions in Listings 12.18, 12.19,
and 12.20. Lines 11 and 12 record the snapshots for later
calls to rcu_implicit_dynticks_qs(), and line 13
checks to see if the CPU is in dynticks-idle mode with
neither IRQs nor NMIs in progress (in other words,
both snapshots have even values), hence in an extended
quiescent state. If so, lines 14 and 15 count this event, and
line 16 returns true if the CPU was in a quiescent state.

Listing 12.22 shows rcu_implicit_dynticks_qs(),
which is called to check whether a CPU has entered
dyntick-idle mode subsequent to a call to dynticks_
save_progress_counter(). Lines 9 and 11 take new
snapshots of the corresponding CPU’s dynticks and
dynticks_nmi variables, while lines 10 and 12 re-
trieve the snapshots saved earlier by dynticks_save_
progress_counter(). Line 13 then executes a memory

Listing 12.22: Checking Dyntick Progress Counters
1 static int
2 rcu_implicit_dynticks_qs(struct rcu_data *rdp)
3 {
4 long curr;
5 long curr_nmi;
6 long snap;
7 long snap_nmi;
8
9 curr = rdp->dynticks->dynticks;

10 snap = rdp->dynticks_snap;
11 curr_nmi = rdp->dynticks->dynticks_nmi;
12 snap_nmi = rdp->dynticks_nmi_snap;
13 smp_mb();
14 if ((curr != snap || (curr & 0x1) == 0) &&
15 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
16 rdp->dynticks_fqs++;
17 return 1;
18 }
19 return rcu_implicit_offline_qs(rdp);
20 }

barrier to pair with the memory barriers in the functions
in Listings 12.18, 12.19, and 12.20. Lines 14–15 then
check to see if the CPU is either currently in a quies-
cent state (curr and curr_nmi having even values) or
has passed through a quiescent state since the last call
to dynticks_save_progress_counter() (the values
of dynticks and dynticks_nmi having changed). If
these checks confirm that the CPU has passed through a
dyntick-idle quiescent state, then line 16 counts that fact
and line 17 returns an indication of this fact. Either way,
line 19 checks for race conditions that can result in RCU
waiting for a CPU that is offline.

Quick Quiz 12.23: This is still pretty complicated. Why
not just have a cpumask_t with per-CPU bits, clearing the bit
when entering an IRQ or NMI handler, and setting it upon
exit?

Linux-kernel RCU’s dyntick-idle code has since been
rewritten yet again based on a suggestion from Andy
Lutomirski [McK15c], but it is time to sum up and move
on to other topics.

12.1.6.15 Discussion

A slight shift in viewpoint resulted in a substantial sim-
plification of the dynticks interface for RCU. The key
change leading to this simplification was minimizing of
sharing between IRQ and NMI contexts. The only sharing
in this simplified interface is references from NMI context
to IRQ variables (the dynticks variable). This type of
sharing is benign, because the NMI functions never update
this variable, so that its value remains constant through
the lifetime of the NMI handler. This limitation of sharing
allows the individual functions to be understood one at

v2024.12.27a

12.2. SPECIAL-PURPOSE STATE-SPACE SEARCH 261

a time, in happy contrast to the situation described in
Section 12.1.5, where an NMI might change shared state
at any point during execution of the IRQ functions.

Verification can be a good thing, but simplicity is even
better.

12.2 Special-Purpose State-Space
Search

Jack of all trades, master of none.

Unknown

Although Promela and Spin allow you to verify pretty
much any (smallish) algorithm, their very generality can
sometimes be a curse. For example, Promela does not
understand memory models or any sort of reordering
semantics. This section therefore describes some state-
space search tools that understand memory models used
by production systems, greatly simplifying the verification
of weakly ordered code.

For example, Section 12.1.4 showed how to convince
Promela to account for weak memory ordering. Although
this approach can work well, it requires that the developer
fully understand the system’s memory model. Unfor-
tunately, few (if any) developers fully understand the
complex memory models of modern CPUs.

Therefore, another approach is to use a tool that already
understands this memory ordering, such as the PPCMEM
tool produced by Peter Sewell and Susmit Sarkar at the
University of Cambridge, Luc Maranget, Francesco Zappa
Nardelli, and Pankaj Pawan at INRIA, and Jade Alglave
at Oxford University, in cooperation with Derek Williams
of IBM [AMP+11]. This group formalized the memory
models of Power, Arm, x86, as well as that of the C/C++11
standard [Smi19], and produced the PPCMEM tool based
on the Power and Arm formalizations.

Quick Quiz 12.24: But x86 has strong memory ordering, so
why formalize its memory model?

The PPCMEM tool takes litmus tests as input. A sample
litmus test is presented in Section 12.2.1. Section 12.2.2 re-
lates this litmus test to the equivalent C-language program,
Section 12.2.3 describes how to apply PPCMEM to this
litmus test, and Section 12.2.4 discusses the implications.

Listing 12.23: PPCMEM Litmus Test
1 PPC SB+lwsync-RMW-lwsync+isync-simple
2 ""
3 {
4 0:r2=x; 0:r3=2; 0:r4=y; 0:r10=0; 0:r11=0; 0:r12=z;
5 1:r2=y; 1:r4=x;
6 }
7 P0 | P1 ;
8 li r1,1 | li r1,1 ;
9 stw r1,0(r2) | stw r1,0(r2) ;

10 lwsync | sync ;
11 | lwz r3,0(r4) ;
12 lwarx r11,r10,r12 | ;
13 stwcx. r11,r10,r12 | ;
14 bne Fail1 | ;
15 isync | ;
16 lwz r3,0(r4) | ;
17 Fail1: | ;
18
19 exists
20 (0:r3=0 /\ 1:r3=0)

12.2.1 Anatomy of a Litmus Test

An example PowerPC litmus test for PPCMEM is shown
in Listing 12.23. The ARM interface works the same
way, but with Arm instructions substituted for the Power
instructions and with the initial “PPC” replaced by “ARM”.

In the example, line 1 identifies the type of system
(“ARM” or “PPC”) and contains the title for the model.
Line 2 provides a place for an alternative name for the test,
which you will usually want to leave blank as shown in
the above example. Comments can be inserted between
lines 2 and 3 using the OCaml (or Pascal) syntax of (* *).

Lines 3–6 give initial values for all registers; each is
of the form P:R=V, where P is the process identifier, R is
the register identifier, and V is the value. For example,
process 0’s register r3 initially contains the value 2. If
the value is a variable (x, y, or z in the example) then
the register is initialized to the address of the variable. It
is also possible to initialize the contents of variables, for
example, x=1 initializes the value of x to 1. Uninitialized
variables default to the value zero, so that in the example,
x, y, and z are all initially zero.

Line 7 provides identifiers for the two processes, so
that the 0:r3=2 on line 4 could instead have been written
P0:r3=2. Line 7 is required, and the identifiers must be
of the form Pn, where n is the column number, starting
from zero for the left-most column. This may seem unnec-
essarily strict, but it does prevent considerable confusion
in actual use.

Quick Quiz 12.25: Why does line 8 of Listing 12.23 initialize
the registers? Why not instead initialize them on lines 4 and 5?

v2024.12.27a

262 CHAPTER 12. FORMAL VERIFICATION

Lines 8–17 are the lines of code for each process. A
given process can have empty lines, as is the case for P0’s
line 11 and P1’s lines 12–17. Labels and branches are
permitted, as demonstrated by the branch on line 14 to
the label on line 17. That said, too-free use of branches
will expand the state space. Use of loops is a particularly
good way to explode your state space.

Lines 19–20 show the assertion, which in this case
indicates that we are interested in whether P0’s and P1’s
r3 registers can both contain zero after both threads
complete execution. This assertion is important because
there are a number of use cases that would fail miserably
if both P0 and P1 saw zero in their respective r3 registers.

This should give you enough information to construct
simple litmus tests. Some additional documentation is
available, though much of this additional documentation
is intended for a different research tool that runs tests
on actual hardware. Perhaps more importantly, a large
number of pre-existing litmus tests are available with the
online tool (available via the “Select ARM Test” and
“Select POWER Test” buttons at https://www.cl.cam.
ac.uk/~pes20/ppcmem/). It is quite likely that one of
these pre-existing litmus tests will answer your Power or
Arm memory-ordering question.

12.2.2 What Does This Litmus Test Mean?
P0’s lines 8 and 9 are equivalent to the C statement x=1
because line 4 defines P0’s register r2 to be the address
of x. P0’s lines 12 and 13 are the mnemonics for load-
linked (“load register exclusive” in Arm parlance and
“load reserve” in Power parlance) and store-conditional
(“store register exclusive” in Arm parlance), respectively.
When these are used together, they form an atomic in-
struction sequence, roughly similar to the compare-and-
swap sequences exemplified by the x86 lock;cmpxchg
instruction. Moving to a higher level of abstraction, the
sequence from lines 10–15 is equivalent to the Linux
kernel’s atomic_add_return(&z, 0). Finally, line 16
is roughly equivalent to the C statement r3=y.

P1’s lines 8 and 9 are equivalent to the C statement
y=1, line 10 is a memory barrier, equivalent to the Linux
kernel statement smp_mb(), and line 11 is equivalent to
the C statement r3=x.
Quick Quiz 12.26: But whatever happened to line 17 of
Listing 12.23, the one that is the Fail1: label?

Putting all this together, the C-language equivalent to
the entire litmus test is as shown in Listing 12.24. The
key point is that if atomic_add_return() acts as a full

Listing 12.24: Meaning of PPCMEM Litmus Test
1 void P0(void)
2 {
3 int r3;
4
5 x = 1; /* Lines 8 and 9 */
6 atomic_add_return(&z, 0); /* Lines 10-15 */
7 r3 = y; /* Line 16 */
8 }
9

10 void P1(void)
11 {
12 int r3;
13
14 y = 1; /* Lines 8-9 */
15 smp_mb(); /* Line 10 */
16 r3 = x; /* Line 11 */
17 }

Listing 12.25: PPCMEM Detects an Error
./ppcmem -model lwsync_read_block \

-model coherence_points filename.litmus
...
States 6
0:r3=0; 1:r3=0;
0:r3=0; 1:r3=1;
0:r3=1; 1:r3=0;
0:r3=1; 1:r3=1;
0:r3=2; 1:r3=0;
0:r3=2; 1:r3=1;
Ok
Condition exists (0:r3=0 /\ 1:r3=0)
Hash=e2240ce2072a2610c034ccd4fc964e77
Observation SB+lwsync-RMW-lwsync+isync Sometimes 1

memory barrier (as the Linux kernel requires it to), then it
should be impossible for P0()’s and P1()’s r3 variables
to both be zero after execution completes.

The next section describes how to run this litmus test.

12.2.3 Running a Litmus Test
As noted earlier, litmus tests may be run interactively
via https://www.cl.cam.ac.uk/~pes20/ppcmem/,
which can help build an understanding of the memory
model. However, this approach requires that the user
manually carry out the full state-space search. Because
it is very difficult to be sure that you have checked every
possible sequence of events, a separate tool is provided
for this purpose [McK11d].

Because the litmus test shown in Listing 12.23 con-
tains read-modify-write instructions, we must add -model
arguments to the command line. If the litmus test is
stored in filename.litmus, this will result in the out-
put shown in Listing 12.25, where the ... stands for
voluminous making-progress output. The list of states in-
cludes 0:r3=0; 1:r3=0;, indicating once again that the
old PowerPC implementation of atomic_add_return()

https://www.cl.cam.ac.uk/~pes20/ppcmem/
https://www.cl.cam.ac.uk/~pes20/ppcmem/
https://www.cl.cam.ac.uk/~pes20/ppcmem/

v2024.12.27a

12.2. SPECIAL-PURPOSE STATE-SPACE SEARCH 263

Listing 12.26: PPCMEM on Repaired Litmus Test
./ppcmem -model lwsync_read_block \

-model coherence_points filename.litmus
...
States 5
0:r3=0; 1:r3=1;
0:r3=1; 1:r3=0;
0:r3=1; 1:r3=1;
0:r3=2; 1:r3=0;
0:r3=2; 1:r3=1;
No (allowed not found)
Condition exists (0:r3=0 /\ 1:r3=0)
Hash=77dd723cda9981248ea4459fcdf6097d
Observation SB+lwsync-RMW-lwsync+sync Never 0 5

does not act as a full barrier. The “Sometimes” on the
last line confirms this: The assertion triggers for some
executions, but not all of the time.

The fix to this Linux-kernel bug is to replace P0’s
isync with sync, which results in the output shown in
Listing 12.26. As you can see, 0:r3=0; 1:r3=0; does
not appear in the list of states, and the last line calls out
“Never”. Therefore, the model predicts that the offending
execution sequence cannot happen.

Quick Quiz 12.27: Does the Arm Linux kernel have a similar
bug?

Quick Quiz 12.28: Does the lwsync on line 10 in List-
ing 12.23 provide sufficient ordering?

12.2.4 PPCMEM Discussion
These tools promise to be of great help to people working
on low-level parallel primitives that run on Arm and on
Power. These tools do have some intrinsic limitations:

1. These tools are research prototypes, and as such are
unsupported.

2. These tools do not constitute official statements by
IBM or Arm on their respective CPU architectures.
For example, both corporations reserve the right to
report a bug at any time against any version of any of
these tools. These tools are therefore not a substitute
for careful stress testing on real hardware. Moreover,
both the tools and the model that they are based on are
under active development and might change at any
time. On the other hand, this model was developed
in consultation with the relevant hardware experts,
so there is good reason to be confident that it is a
robust representation of the architectures.

3. These tools currently handle a subset of the instruc-
tion set. This subset has been sufficient for my
purposes, but your mileage may vary. In particular,
the tool handles only word-sized accesses (32 bits),
and the words accessed must be properly aligned.3 In
addition, the tool does not handle some of the weaker
variants of the Arm memory-barrier instructions, nor
does it handle arithmetic.

4. The tools are restricted to small loop-free code frag-
ments running on small numbers of threads. Larger
examples result in state-space explosion, just as with
similar tools such as Promela and Spin.

5. The full state-space search does not give any indica-
tion of how each offending state was reached. That
said, once you realize that the state is in fact reach-
able, it is usually not too hard to find that state using
the interactive tool.

6. These tools are not much good for complex data
structures, although it is possible to create and tra-
verse extremely simple linked lists using initialization
statements of the form “x=y; y=z; z=42;”.

7. These tools do not handle memory mapped I/O or
device registers. Of course, handling such things
would require that they be formalized, which does
not appear to be in the offing.

8. The tools will detect only those problems for which
you code an assertion. This weakness is common to
all formal methods, and is yet another reason why
testing remains important. In the immortal words of
Donald Knuth quoted at the beginning of this chapter,
“Beware of bugs in the above code; I have only proved
it correct, not tried it.”

That said, one strength of these tools is that they are
designed to model the full range of behaviors allowed by
the architectures, including behaviors that are legal, but
which current hardware implementations do not yet inflict
on unwary software developers. Therefore, an algorithm
that is vetted by these tools likely has some additional
safety margin when running on real hardware. Further-
more, testing on real hardware can only find bugs; such
testing is inherently incapable of proving a given usage
correct. To appreciate this, consider that the researchers
routinely ran in excess of 100 billion test runs on real hard-
ware to validate their model. In one case, behavior that

3 But recent work focuses on mixed-size accesses [FSP+17].

v2024.12.27a

264 CHAPTER 12. FORMAL VERIFICATION

is allowed by the architecture did not occur, despite 176
billion runs [AMP+11]. In contrast, the full-state-space
search allows the tool to prove code fragments correct.

It is worth repeating that formal methods and tools are
no substitute for testing. The fact is that producing large
reliable concurrent software artifacts, the Linux kernel
for example, is quite difficult. Developers must therefore
be prepared to apply every tool at their disposal towards
this goal. The tools presented in this chapter are able to
locate bugs that are quite difficult to produce (let alone
track down) via testing. On the other hand, testing can
be applied to far larger bodies of software than the tools
presented in this chapter are ever likely to handle. As
always, use the right tools for the job!

Of course, it is always best to avoid the need to work
at this level by designing your parallel code to be easily
partitioned and then using higher-level primitives (such
as locks, sequence counters, atomic operations, and RCU)
to get your job done more straightforwardly. And even if
you absolutely must use low-level memory barriers and
read-modify-write instructions to get your job done, the
more conservative your use of these sharp instruments,
the easier your life is likely to be.

12.3 Axiomatic Approaches

Theory helps us to bear our ignorance of facts.

George Santayana

Although the PPCMEM tool can solve the famous “in-
dependent reads of independent writes” (IRIW) litmus
test shown in Listing 12.27, doing so requires no less
than fourteen CPU hours and generates no less than ten
gigabytes of state space. That said, this situation is a great
improvement over that before the advent of PPCMEM,
where solving this problem required perusing volumes
of reference manuals, attempting proofs, discussing with
experts, and being unsure of the final answer. Although
fourteen hours can seem like a long time, it is much shorter
than weeks or even months.

However, the time required is a bit surprising given the
simplicity of the litmus test, which has two threads storing
to two separate variables and two other threads loading
from these two variables in opposite orders. The assertion
triggers if the two loading threads disagree on the order
of the two stores. Even by the standards of memory-order
litmus tests, this is quite simple.

Listing 12.27: IRIW Litmus Test
1 PPC IRIW.litmus
2 ""
3 (* Traditional IRIW. *)
4 {
5 0:r1=1; 0:r2=x;
6 1:r1=1; 1:r4=y;
7 2:r2=x; 2:r4=y;
8 3:r2=x; 3:r4=y;
9 }

10 P0 | P1 | P2 | P3 ;
11 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
12 | | sync | sync ;
13 | | lwz r5,0(r4) | lwz r5,0(r2) ;
14
15 exists
16 (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

Listing 12.28: Expanded IRIW Litmus Test
1 PPC IRIW5.litmus
2 ""
3 (* Traditional IRIW, but with five stores instead of *)
4 (* just one. *)
5 {
6 0:r1=1; 0:r2=x;
7 1:r1=1; 1:r4=y;
8 2:r2=x; 2:r4=y;
9 3:r2=x; 3:r4=y;

10 }
11 P0 | P1 | P2 | P3 ;
12 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
13 addi r1,r1,1 | addi r1,r1,1 | sync | sync ;
14 stw r1,0(r2) | stw r1,0(r4) | lwz r5,0(r4) | lwz r5,0(r2) ;
15 addi r1,r1,1 | addi r1,r1,1 | | ;
16 stw r1,0(r2) | stw r1,0(r4) | | ;
17 addi r1,r1,1 | addi r1,r1,1 | | ;
18 stw r1,0(r2) | stw r1,0(r4) | | ;
19 addi r1,r1,1 | addi r1,r1,1 | | ;
20 stw r1,0(r2) | stw r1,0(r4) | | ;
21
22 exists
23 (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

One reason for the amount of time and space consumed
is that PPCMEM does a trace-based full-state-space search,
which means that it must generate and evaluate all possible
orders and combinations of events at the architectural level.
At this level, both loads and stores correspond to ornate
sequences of events and actions, resulting in a very large
state space that must be completely searched, in turn
resulting in large memory and CPU consumption.

Of course, many of the traces are quite similar to one
another, which suggests that an approach that treated
similar traces as one might improve performace. One
such approach is the axiomatic approach of Alglave et
al. [AMT14], which creates a set of axioms to represent the
memory model and then converts litmus tests to theorems
that might be proven or disproven over this set of axioms.
The resulting tool, called “herd”, conveniently takes as
input the same litmus tests as PPCMEM, including the
IRIW litmus test shown in Listing 12.27.

v2024.12.27a

12.3. AXIOMATIC APPROACHES 265

However, where PPCMEM requires 14 CPU hours
to solve IRIW, herd does so in 17 milliseconds, which
represents a speedup of more than six orders of magnitude.
That said, the problem is exponential in nature, so we
should expect herd to exhibit exponential slowdowns for
larger problems. And this is exactly what happens, for
example, if we add four more writes per writing CPU
as shown in Listing 12.28, herd slows down by a factor
of more than 50,000, requiring more than 15 minutes of
CPU time. Adding threads also results in exponential
slowdowns [MS14].

Despite their exponential nature, both PPCMEM and
herd have proven quite useful for checking key parallel
algorithms, including the queued-lock handoff on x86 sys-
tems. The weaknesses of the herd tool are similar to those
of PPCMEM, which were described in Section 12.2.4.
There are some obscure (but very real) cases for which
the PPCMEM and herd tools disagree, and as of 2021
many but not all of these disagreements was resolved.

It would be helpful if the litmus tests could be written
in C (as in Listing 12.24) rather than assembly (as in
Listing 12.23). This is now possible, as will be described
in the following sections.

12.3.1 Axiomatic Approaches and Locking
Axiomatic approaches may also be applied to higher-level
languages and also to higher-level synchronization primi-
tives, as exemplified by the lock-based litmus test shown
in Listing 12.29 (C-Lock1.litmus). This litmus test
can be modeled by the Linux kernel memory consistency
model (LKMM) [AMM+18, MS18]. As expected, the
herd tool’s output features the string Never, correctly
indicating that P1() cannot see x having a value of one.4

Quick Quiz 12.29: What do you have to do to run herd on
litmus tests like that shown in Listing 12.29?

Of course, if P0() and P1() use different locks, as
shown in Listing 12.30 (C-Lock2.litmus), then all bets
are off. And in this case, the herd tool’s output features
the string Sometimes, correctly indicating that use of
different locks allows P1() to see x having a value of one.

Quick Quiz 12.30: Why bother modeling locking directly?
Why not simply emulate locking with atomic operations?

4 The output of the herd tool is compatible with that of PPCMEM,
so feel free to look at Listings 12.25 and 12.26 for examples showing
the output format.

Listing 12.29: Locking Example
1 C Lock1
2
3 {}
4
5 P0(int *x, spinlock_t *sp)
6 {
7 spin_lock(sp);
8 WRITE_ONCE(*x, 1);
9 WRITE_ONCE(*x, 0);

10 spin_unlock(sp);
11 }
12
13 P1(int *x, spinlock_t *sp)
14 {
15 int r1;
16
17 spin_lock(sp);
18 r1 = READ_ONCE(*x);
19 spin_unlock(sp);
20 }
21
22 exists (1:r1=1)

Listing 12.30: Broken Locking Example
1 C Lock2
2
3 {}
4
5 P0(int *x, spinlock_t *sp1)
6 {
7 spin_lock(sp1);
8 WRITE_ONCE(*x, 1);
9 WRITE_ONCE(*x, 0);

10 spin_unlock(sp1);
11 }
12
13 P1(int *x, spinlock_t *sp2) // Buggy!
14 {
15 int r1;
16
17 spin_lock(sp2);
18 r1 = READ_ONCE(*x);
19 spin_unlock(sp2);
20 }
21
22 exists (1:r1=1)

v2024.12.27a

266 CHAPTER 12. FORMAL VERIFICATION

Listing 12.31: Canonical RCU Removal Litmus Test
1 C C-RCU-remove
2
3 {
4 int z=1;
5 int y=2;
6 int *x=y;
7 }
8
9 P0(int **x, int *y, int *z)

10 {
11 rcu_assign_pointer(*x, z);
12 synchronize_rcu();
13 WRITE_ONCE(*y, 0);
14 }
15
16 P1(int **x, int *y, int *z)
17 {
18 int *r1;
19 int r2;
20
21 rcu_read_lock();
22 r1 = rcu_dereference(*x);
23 r2 = READ_ONCE(*r1);
24 rcu_read_unlock();
25 }
26
27 locations [1:r1; x; y; z]
28 exists (1:r2=0)

But locking is not the only synchronization primitive
that can be modeled directly: The next section looks at
RCU.

12.3.2 Axiomatic Approaches and RCU

Axiomatic approaches can also analyze litmus tests in-
volving RCU [AMM+18]. To that end, Listing 12.31
(C-RCU-remove.litmus) shows a litmus test corre-
sponding to the canonical RCU-mediated removal from
a linked list. As with the locking litmus test, this RCU
litmus test can be modeled by LKMM, with similar perfor-
mance advantages compared to modeling emulations of
RCU. Line 6 shows x as the list head, initially referencing
y, which in turn is initialized to the value 2 on line 5.

P0() on lines 9–14 removes element y from the list by
replacing it with element z (line 11), waits for a grace
period (line 12), and finally zeroes y to emulate free()
(line 13). P1() on lines 16–25 executes within an RCU
read-side critical section (lines 21–24), picking up the list
head (line 22) and then loading the next element (line 23).
The next element should be non-zero, that is, not yet freed
(line 28). Several other variables are output for debugging
purposes (line 27).

The output of the herd tool when running this litmus
test features Never, indicating that P0() never accesses a
freed element, as expected. Also as expected, removing

Listing 12.32: Complex RCU Litmus Test
1 C C-RomanPenyaev-list-rcu-rr
2
3 {
4 int *z=1;
5 int *y=z;
6 int *x=y;
7 int *w=x;
8 int *v=w;
9 int *c=w;

10 }
11
12 P0(int **c, int **v)
13 {
14 int *r1;
15 int *r2;
16 int *r3;
17 int *r4;
18
19 rcu_read_lock();
20 r1 = READ_ONCE(*c);
21 if (r1 == 0) {
22 r1 = READ_ONCE(*v);
23 }
24 r2 = rcu_dereference(*(int **)r1);
25 smp_store_release(c, r2);
26 rcu_read_unlock();
27 rcu_read_lock();
28 r3 = READ_ONCE(*c);
29 if (r3 == 0) {
30 r3 = READ_ONCE(*v);
31 }
32 r4 = rcu_dereference(*(int **)r3);
33 smp_store_release(c, r4);
34 rcu_read_unlock();
35 }
36
37 P1(int **c, int **v, int **w, int **x, int **y)
38 {
39 int *r1;
40
41 rcu_assign_pointer(*w, y);
42 synchronize_rcu();
43 r1 = READ_ONCE(*c);
44 if ((int **)r1 == x) {
45 WRITE_ONCE(*c, 0);
46 synchronize_rcu();
47 }
48 smp_store_release(x, 0);
49 }
50
51 locations [1:r1; c; v; w; x; y]
52 exists (0:r1=0 \/ 0:r2=0 \/ 0:r3=0 \/ 0:r4=0)

line 12 results in P0() accessing a freed element, as
indicated by the Sometimes in the herd output.

A litmus test for a more complex example proposed
by Roman Penyaev [Pen18] is shown in Listing 12.32
(C-RomanPenyaev-list-rcu-rr.litmus). In this ex-
ample, readers (modeled by P0() on lines 12–35) access a
linked list in a round-robin fashion by “leaking” a pointer
to the last list element accessed into variable c. Updaters
(modeled by P1() on lines 37–49) remove an element,
taking care to avoid disrupting current or future readers.

v2024.12.27a

12.4. SAT SOLVERS 267

Quick Quiz 12.31: Wait!!! Isn’t leaking pointers out of an
RCU read-side critical section a critical bug???

Lines 4–8 define the initial linked list, tail first. In the
Linux kernel, this would be a doubly linked circular list,
but herd is currently incapable of modeling such a beast.
The strategy is instead to use a singly linked linear list
that is long enough that the end is never reached. Line 9
defines variable c, which is used to cache the list pointer
between successive RCU read-side critical sections.

Again, P0() on lines 12–35 models readers. This
process models a pair of successive readers traversing
round-robin through the list, with the first reader on
lines 19–26 and the second reader on lines 27–34. Line 20
fetches the pointer cached in c, and if line 21 sees that
the pointer was NULL, line 22 restarts at the beginning
of the list. In either case, line 24 advances to the next
list element, and line 25 stores a pointer to this element
back into variable c. Lines 27–34 repeat this process,
but using registers r3 and r4 instead of r1 and r2. As
with Listing 12.31, this litmus test stores zero to emulate
free(), so line 52 checks for any of these four registers
being NULL, also known as zero.

Because P0() leaks an RCU-protected pointer from its
first RCU read-side critical section to its second, P1()
must carry out its update (removing x) very carefully.
Line 41 removes x by linking w to y. Line 42 waits for
readers, after which no subsequent reader has a path to
x via the linked list. Line 43 fetches c, and if line 44
determines that c references the newly removed x, line 45
sets c to NULL and line 46 again waits for readers, after
which no subsequent reader can fetch x from c. In either
case, line 48 emulates free() by storing zero to x.

Quick Quiz 12.32: In Listing 12.32, why couldn’t a reader
fetch c just before P1() zeroed it on line 45, and then later
store this same value back into c just after it was zeroed, thus
defeating the zeroing operation?

The output of the herd tool when running this litmus
test features Never, indicating that P0() never accesses a
freed element, as expected. Also as expected, removing
either synchronize_rcu() results in P1() accessing a
freed element, as indicated by Sometimes in the herd
output.

Quick Quiz 12.33: In Listing 12.32, why not have just one
call to synchronize_rcu() immediately before line 48?

Quick Quiz 12.34: Also in Listing 12.32, can’t line 48 be
WRITE_ONCE() instead of smp_store_release()?

These sections have shown how axiomatic approaches
can successfully model synchronization primitives such
as locking and RCU in C-language litmus tests. Longer
term, the hope is that the axiomatic approaches will model
even higher-level software artifacts, producing exponen-
tial verification speedups. This could potentially allow
axiomatic verification of much larger software systems,
perhaps incorporating spatial-synchronization techniques
from separation logic [GRY13, ORY01]. Another alter-
native is to press the axioms of boolean logic into service,
as described in the next section.

12.4 SAT Solvers

Live by the heuristic, die by the heuristic.

Unknown

Any finite program with bounded loops and recursion can
be converted into a logic expression, which might express
that program’s assertions in terms of its inputs. Given such
a logic expression, it would be quite interesting to know
whether any possible combinations of inputs could result in
one of the assertions triggering. If the inputs are expressed
as combinations of boolean variables, this is simply SAT,
also known as the satisfiability problem. SAT solvers
are heavily used in verification of hardware, which has
motivated great advances. A world-class early 1990s SAT
solver might be able to handle a logic expression with 100
distinct boolean variables, but by the early 2010s million-
variable SAT solvers were readily available [KS08].

In addition, front-end programs for SAT solvers can
automatically translate C code into logic expressions,
taking assertions into account and generating assertions
for error conditions such as array-bounds errors. One
example is the C bounded model checker, or cbmc, which
is available as part of many Linux distributions. This
tool is quite easy to use, with cbmc test.c sufficing to
validate test.c, resulting in the processing flow shown
in Figure 12.2. This ease of use is exceedingly important
because it opens the door to formal verification being incor-
porated into regression-testing frameworks. In contrast,
the traditional tools that require non-trivial translation to
a special-purpose language are confined to design-time
verification.

More recently, SAT solvers have appeared that han-
dle parallel code. These solvers operate by convert-
ing the input code into single static assignment (SSA)
form, then generating all permitted access orders. This

v2024.12.27a

268 CHAPTER 12. FORMAL VERIFICATION

C Code

Logic Expression

SAT Solver

(If Counterexample
Trace Generation

Located)

Verification Result

CBMC

Figure 12.2: CBMC Processing Flow

approach seems promising, but it remains to be seen
how well it works in practice. One encouraging
sign is work in 2016 applying cbmc to Linux-kernel
RCU [LMKM16, LMKM18, Roy17]. This work used
minimal configurations of RCU, and verified scenarios
using small numbers of threads, but nevertheless suc-
cessfully ingested Linux-kernel C code and produced a
useful result. The logic expressions generated from the C
code had up to 90 million variables, 450 million clauses,
occupied tens of gigabytes of memory, and required up to
80 hours of CPU time for the SAT solver to produce the
correct result.

Nevertheless, a Linux-kernel hacker might be justified
in feeling skeptical of a claim that his or her code had
been automatically verified, and such hackers would find
many fellow skeptics going back decades [DMLP79].
One way to productively express such skepticism is to
provide bug-injected versions of the allegedly verified
code. If the formal-verification tool finds all the injected
bugs, our hacker might gain more confidence in the tool’s
capabilities. Of course, tools that find valid bugs of which
the hacker was not yet aware will likely engender even
more confidence. And this is exactly why there is a git
archive with a 20-branch set of mutations, with each
branch potentially containing a bug injected into Linux-
kernel RCU [McK17]. Anyone with a formal-verification

C Code

Representation

(If Counterexample
Trace Generation

Located)

Verification Result

Nidhugg

LLVM Internal

Order Reduction
Dynamic Partial

(DPOR) Algorithm

Figure 12.3: Nidhugg Processing Flow

tool is cordially invited to try that tool out on this set of
verification challenges.

Currently, cbmc is able to find a number of injected
bugs, however, it has not yet been able to locate a bug that
RCU’s maintainer was not already aware of. Nevertheless,
there is some reason to hope that SAT solvers will someday
be useful for finding concurrency bugs in parallel code.

12.5 Stateless Model Checkers

He’s making a list, he’s permuting it twice. . .

with apologies to Haven Gillespie and J. Fred Coots

The SAT-solver approaches described in the previous
section are quite convenient and powerful, but the full
tracking of all possible executions, including state, can
incur substantial overhead. In fact, the memory and CPU-
time overheads can sharply limit the size of programs
that can be feasibly verified, which raises the question of
whether less-exact approaches might find bugs in larger
programs.

Although the jury is still out on this question, stateless
model checkers such as Nidhugg [LSLK14] have in some
cases handled larger programs [KS17b], and with similar
ease of use, as illustrated by Figure 12.3. In addition,
Nidhugg was more than an order of magnitude faster

v2024.12.27a

12.6. SUMMARY 269

than was cbmc for some Linux-kernel RCU verification
scenarios. Of course, Nidhugg’s speed and scalability
advantages are tied to the fact that it does not handle
data non-determinism, but this was not a factor in these
particular verification scenarios.

Nevertheless, as with cbmc, Nidhugg has not yet been
able to locate a bug that Linux-kernel RCU’s maintainer
was not already aware of. However, it was able to demon-
strate that one historical bug in Linux-kernel RCU was
fixed by a different commit than the maintainer thought,
which gives some additional hope that stateless model
checkers like Nidhugg might someday be useful for finding
concurrency bugs in parallel code.

12.6 Summary

Western thought has focused on True-False; it is

high time to shift to Robust-Fragile.

Nassim Nicholas Taleb, summarized

The formal-verification techniques described in this chap-
ter are very powerful tools for validating small parallel
algorithms, but they should not be the only tools in your
toolbox. Despite decades of focus on formal verification,
testing remains the validation workhorse for large parallel
software systems [Cor06a, Jon11, McK15d].

It is nevertheless quite possible that this will not always
be the case. To see this, consider that there is estimated to
be more than twenty billion instances of the Linux kernel
as of 2017. Suppose that the Linux kernel has a bug that
manifests on average every million years of runtime. As
noted at the end of the preceding chapter, this bug will be
appearing more than 50 times per day across the installed
base. But the fact remains that most formal validation
techniques can be used only on very small codebases. So
what is a concurrency coder to do?

Think in terms of finding the first bug, the first relevant
bug, the last relevant bug, and the last bug.

The first bug is normally found via inspection or com-
piler diagnostics. Although the increasingly sophisticated
compiler diagnostics comprise a lightweight sort of formal
verification, it is not common to think of them in those
terms. This is in part due to an odd practitioner prejudice
which says “If I am using it, it cannot be formal verifica-
tion” on the one hand, and a large gap between compiler
diagnostics and verification research on the other.

Although the first relevant bug might be located via
inspection or compiler diagnostics, it is not unusual for

these two steps to find only typos and false positives.
Either way, the bulk of the relevant bugs, that is, those
bugs that might actually be encountered in production,
will often be found via testing.

When testing is driven by anticipated or real use cases,
it is not uncommon for the last relevant bug to be located
by testing. This situation might motivate a complete
rejection of formal verification, however, irrelevant bugs
have an annoying habit of suddenly becoming relevant at
the least convenient moment possible, courtesy of black-
hat attacks. For security-critical software, which appears
to be a continually increasing fraction of the total, there
can thus be strong motivation to find and fix the last bug.
Testing is demonstrably unable to find the last bug, so
there is a possible role for formal verification, assuming,
that is, that formal verification proves capable of growing
into that role. As this chapter has shown, current formal
verification systems are extremely limited.

Quick Quiz 12.35: But shouldn’t sufficiently low-level
software be for all intents and purposes immune to being
exploited by black hats?

Please note that formal verification is often much harder
to use than is testing. This is in part a cultural statement,
and there is reason to hope that formal verification will
be perceived to be easier with increased familiarity. That
said, very simple test harnesses can find significant bugs
in arbitrarily large software systems. In contrast, the effort
required to apply formal verification seems to increase
dramatically as the system size increases.

I have nevertheless made occasional use of formal
verification for almost 30 years by playing to formal
verification’s strengths, namely design-time verification
of small complex portions of the overarching software
construct. The larger overarching software construct is of
course validated by testing.

Quick Quiz 12.36: In light of the full verification of the L4
microkernel, isn’t this limited view of formal verification just
a little bit obsolete?

One final approach is to consider the following two
definitions from Section 11.1.2 and the consequence that
they imply:

Definition: Bug-free programs are trivial programs.

Definition: Reliable programs have no known bugs.

Consequence: Any non-trivial reliable program con-
tains at least one as-yet-unknown bug.

v2024.12.27a

270 CHAPTER 12. FORMAL VERIFICATION

From this viewpoint, any advances in validation and
verification can have but two effects: (1) An increase in
the number of trivial programs or (2) A decrease in the
number of reliable programs. Of course, the human race’s
increasing reliance on multicore systems and software
provides extreme motivation for a very sharp increase in
the number of trivial programs.

However, if your code is so complex that you find your-
self relying too heavily on formal-verification tools, you
should carefully rethink your design, especially if your
formal-verification tools require your code to be hand-
translated to a special-purpose language. For example, a
complex implementation of the dynticks interface for pre-
emptible RCU that was presented in Section 12.1.5 turned
out to have a much simpler alternative implementation,
as discussed in Section 12.1.6.9. All else being equal, a
simpler implementation is much better than a proof of
correctness for a complex implementation.

And the open challenge to those working on formal ver-
ification techniques and systems is to prove this summary
wrong! To assist in this task, Verification Challenge 6 is
now available [McK17]. Have at it!!!

12.7 Choosing a Validation Plan

Science is a first-rate piece of furniture for one’s

upper chamber, but only given common sense on the

ground floor.

Oliver Wendell Holmes, updated

What sort of validation should you use for your project?
As is often the case in software in particular and in

engineering in general, the answer is “it depends”.
Note that neither running a test nor undertaking formal

verification will change your project. At best, such ef-
fort have an indirect effect by locating a bug that is later
fixed. Nevertheless, fixing a bug might prevent inconve-
nience, monetary loss, property damage, or even loss of
life. Clearly, this sort of indirect effect can be extremely
valuable.

Unfortunately, as we have seen, it is difficult to predict
whether or not a given validation effort will find important
bugs. It is therefore all too easy to invest too little—
or even to fail to invest at all, especially if development
estimates proved overly optimistic or budgets unexpectedly
tight, conditions which almost always come into play in
real-world software projects.

The decision to nevertheless invest in validation is often
forced by experienced people with forceful personalities.
But this is no guarantee, given that other stakeholders
might also have forceful personalities. Worse yet, these
other stakeholders might bring stories of expensive val-
idation efforts that nevertheless allowed embarrassing
bugs to escape to the end users. So although a scarred,
grey-haired, and grouchy veteran might carry the day, a
more organized approach would perhaps be more useful.

Fortunately, there is a strictly financial analog to invest-
ments in validation, and that is the insurance policy.

Both insurance policies and validation efforts require
consistent up-front investments, and both defend against
disasters that might or might not ever happen. Further-
more, both have exclusions of various types. For example,
insurance policies for coastal areas might exclude damages
due to tidal waves, while on the other hand we have seen
that there is not yet any validation methodology that can
find each and every bug.

In addition, it is possible to over-invest in both insurance
and in validation. For but one example, a validation plan
that consumed the entire development budget would be
just as pointless as would an insurance policy that covered
the Sun going nova.

One approach is to devote a given fraction of the soft-
ware budget to validation, with that fraction depending on
the criticality of the software, so that safety-critical avion-
ics software might grant a larger fraction of its budget to
validation than would a homework assignment. Where
available, experience from prior similar projects should
be brought to bear. However, it is necessary to structure
the project so that the validation investment starts when
the project does, otherwise the inevitable overruns in
spending on coding will crowd out the validation effort.

Staffing start-up projects with experienced people can
result in overinvestment in validation efforts. Just as it
is possible to go broke buying too much insurance, it is
possible to kill a project by investing too much in testing.
This is especially the case for first-of-a-kind projects where
it is not yet clear which use cases will be important, in
which case testing for all possible use cases will be a
possibly fatal waste of time, energy, and funding.

However, as the tasks supported by a start-up project
become more routine, users often become less forgiving of
failures, thus increasing the need for validation. Managing
this shift in investment can be extremely challenging,
especially in the all-too-common case where the users
are unwilling or unable to disclose the exact nature of
their use case. It then becomes critically important to

v2024.12.27a

12.7. CHOOSING A VALIDATION PLAN 271

0

5000

10000

15000

20000

25000

30000

35000

40000

v2
.6

.1
2

v2
.6

.1
6

v2
.6

.2
0

v2
.6

.2
4

v2
.6

.2
8

v2
.6

.3
2

v2
.6

.3
6

v3
.0

v3
.4

v3
.8

v3
.1

2

v3
.1

6

v4
.0

v4
.4

v4
.8

v4
.1

2

v4
.1

6

v5
.0

v5
.4

v5
.8

v5
.1

2

v5
.1

6

v6
.0

v6
.4

v6
.8

v6
.1

2

0

10

20

30

40

50

L
o
C

%
 T

e
st

Linux Release

RCU

RCU Test

% Test

Figure 12.4: Linux-Kernel RCU Test Code

reverse-engineer the use cases from bug reports and from
discussions with the users. As these use cases are better
understood, use of continuous integration can help reduce
the cost of finding and fixing any bugs located.

One example evolution of a software project’s use of
validation is shown in Figure 12.4. As can be seen in
the figure, Linux-kernel RCU didn’t have any validation
code whatsoever until Linux kernel v2.6.15, which was
released more than three years after the October 2002
v2.5.43 release that added RCU to the Linux kernel. The
test suite achieved its peak fraction of the total lines of code
in Linux kernel v2.6.19–v2.6.21. This fraction decreased
sharply with the acceptance of preemptible RCU for real-
time applications in v2.6.25. This decrease was due to the
fact that the RCU API was identical in the preemptible
and non-preemptible variants of RCU. This in turn meant
that the existing test suite applied to both variants, so
that even though the Linux-kernel RCU code expanded
significantly, there was no need to expand the tests.

Subsequent bars in Figure 12.4 show that the RCU code
base expanded significantly, but that the corresponding
validation code expanded even more dramatically. Linux
kernel v3.5 added tests for the rcu_barrier() API, clos-
ing a long-standing hole in test coverage. Linux kernel
v3.14 added automated testing and analysis of test results,
moving RCU towards continuous integration. Linux ker-
nel v4.7 added a performance validation suite for RCU’s
update-side primitives. Linux kernel v4.12 added Tree
SRCU, featuring improved update-side scalability, and
v4.13 removed the old less-scalable SRCU implementa-

tion. Linux kernel v5.0 briefly hosted the nolibc library
within the rcutorture scripting directory before it moved to
its long-term home in tools/include/nolibc. Linux
kernel v5.8 added the Tasks Trace and Rude flavors of
RCU. Linux kernel v5.9 added the refscale.c suite
of read-side performance tests. Linux kernels v5.12 and
v5.13 started adding the ability to change a given CPU’s
callback-offloading status at runtime and also added the
torture.sh acceptance-test script. Linux kernel v5.14
added distributed rcutorture. Linux kernel v5.15 added
demonic vCPU placement in rcutorture testing, which
was successful in locating a number of race conditions.5
Linux kernel v5.17 removed the RCU_FAST_NO_HZ Kcon-
fig option. Numerous other changes may be found in the
Linux kernel’s git archives.

We have established that the validation budget varies
from one project to the next, and also over the lifetime of
any given project. But how should the validation invest-
ment be split between testing and formal verification?

This question is being answered naturally as compilers
adopt increasingly aggressive formal-verification tech-
niques into their diagnostics and as formal-verification
tools continue to mature. In addition, the Linux-kernel
lockdep and KCSAN tools illustrate the advantages of
combining formal verification techniques with run-time
analysis, as discussed in Section 11.3. Other com-

5 The trick is to place one pair of vCPUs within the same core
on one socket, while placing another pair within the same core on
some other socket. As you might expect from Chapter 3, this produces
different memory latencies between different pairs of vCPUs (https:
//paulmck.livejournal.com/62071.html).

https://paulmck.livejournal.com/62071.html
https://paulmck.livejournal.com/62071.html

v2024.12.27a

272 CHAPTER 12. FORMAL VERIFICATION

bined techniques analyze traces gathered from execu-
tions [dOCdO19]. For the time being, the best practice
is to focus first on testing and to reserve explicit work on
formal verification for those portions of the project that
are not well-served by testing, and that have exceptional
needs for robustness. For example, Linux-kernel RCU
relies primarily on testing, but has made occasional use
of formal verification as discussed in this chapter.

In short, choosing a validation plan for concurrent
software remains more an art than a science, let alone a
field of engineering. However, there is every reason to
expect that increasingly rigorous approaches will continue
to become more prevalent.

v2024.12.27a

You don’t learn how to shoot and then learn how to

launch and then learn to do a controlled spin—you

learn to launch-shoot-spin.

Ender’s Shadow, Orson Scott CardChapter 13

Putting It All Together

This chapter gives some hints on concurrent-programming
puzzles. Section 13.1 considers counter conundrums,
Section 13.2 refurbishes reference counting, Section 13.3
helps with hazard pointers, Section 13.4 surmises on
sequence-locking specials, Section 13.5 and reflects on
RCU rescues. Finally, although the best performance and
scalability results from design rather than after-the-fact
micro-optimization, micro-optimization is nevertheless
necessary for the absolute best possible performance and
scalability. Therefore, Section 13.6 meanders through a
few micro-optimizations.

13.1 Counter Conundrums

Ford carried on counting quietly. This is about the

most aggressive thing you can do to a computer, the

equivalent of going up to a human being and saying

“Blood . . . blood . . . blood . . . blood . . .”

Douglas Adams

This section outlines solutions to counter conundrums.

13.1.1 Counting Updates
Suppose that Schrödinger (see Section 10.1) wants to
count the number of updates for each animal, and that
these updates are synchronized using a per-data-element
lock. How can this counting best be done?

Of course, any number of counting algorithms from
Chapter 5 might qualify, but the optimal approach is quite
simple. Just place a counter in each data element, and
increment it under the protection of that element’s lock!

If readers access the count locklessly, then updaters
should use WRITE_ONCE() to update the counter and
lockless readers should use READ_ONCE() to load it.

13.1.2 Counting Lookups

Suppose that Schrödinger also wants to count the number
of lookups for each animal, where lookups are protected
by RCU. How can this counting best be done?

One approach would be to protect a lookup counter
with the per-element lock, as discussed in Section 13.1.1.
Unfortunately, this would require all lookups to acquire
this lock, which would be a severe bottleneck on large
systems.

Another approach is to “just say no” to counting, fol-
lowing the example of the noatime mount option. If
this approach is feasible, it is clearly the best: After all,
nothing is faster than doing nothing. If the lookup count
cannot be dispensed with, read on!

Any of the counters from Chapter 5 could be pressed
into service, with the statistical counters described in Sec-
tion 5.2 being perhaps the most common choice. However,
this results in a large memory footprint: The number of
counters required is the number of data elements multi-
plied by the number of threads.

If this memory overhead is excessive, then one approach
is to keep per-core or even per-socket counters rather
than per-CPU counters, with an eye to the hash-table
performance results depicted in Figure 10.3. This will
require that the counter increments be atomic operations,
especially for user-mode execution where a given thread
could migrate to another CPU at any time.

If some elements are looked up very frequently, there are
a number of approaches that batch updates by maintaining
a per-thread log, where multiple log entries for a given
element can be merged. After a given log entry has a
sufficiently large increment or after sufficient time has
passed, the log entries may be applied to the corresponding
data elements. Silas Boyd-Wickizer has done some work
formalizing this notion [BW14].

273

v2024.12.27a

274 CHAPTER 13. PUTTING IT ALL TOGETHER

13.2 Refurbish Reference Counting

Counting is the religion of this generation. It is its

hope and its salvation.

Gertrude Stein

Although reference counting is a conceptually simple
technique, many devils hide in the details when it is
applied to concurrent software. After all, if the object
was not subject to premature disposal, there would be no
need for the reference counter in the first place. But if the
object can be disposed of, what prevents disposal during
the reference-acquisition process itself?

There are a number of ways to refurbish reference
counters for use in concurrent software, including:

1. A lock residing outside of the object must be held
while manipulating the reference count.

2. The object is created with a non-zero reference count,
and new references may be acquired only when the
current value of the reference counter is non-zero. If
a thread does not have a reference to a given object,
it might seek help from another thread that already
has a reference.

3. In some cases, hazard pointers may be used as a
drop-in replacement for reference counters.

4. An existence guarantee is provided for the object, thus
preventing it from being freed while some other entity
might be attempting to acquire a reference. Existence
guarantees are often provided by automatic garbage
collectors, and, as is seen in Sections 9.3 and 9.5, by
hazard pointers and RCU, respectively.

5. A type-safety guarantee is provided for the object. An
additional identity check must be performed once the
reference is acquired. Type-safety guarantees can be
provided by special-purpose memory allocators, for
example, by the SLAB_TYPESAFE_BY_RCU feature
within the Linux kernel, as is seen in Section 9.5.

Of course, any mechanism that provides existence guar-
antees by definition also provides type-safety guaran-
tees. This results in four general categories of reference-
acquisition protection: Reference counting, hazard point-
ers, sequence locking, and RCU.
Quick Quiz 13.1: Why not implement reference-acquisition
using a simple compare-and-swap operation that only acquires
a reference if the reference counter is non-zero?

Table 13.1: Synchronizing Reference Counting

Release

Acquisition Locks Reference
Counts

Hazard
Pointers

RCU

Locks − CAM M CA
Reference
Counts

A AM M A

Hazard
Pointers

M M M M

RCU CA MCA M CA

Given that the key reference-counting issue is synchro-
nization between acquisition of a reference and freeing
of the object, we have nine possible combinations of
mechanisms, as shown in Table 13.1. This table divides
reference-counting mechanisms into the following broad
categories:

1. Simple counting with neither atomic operations,
memory barriers, nor alignment constraints (“−”).

2. Atomic counting without memory barriers (“A”).

3. Atomic counting, with memory barriers required
only on release (“AM”).

4. Atomic counting with a check combined with the
atomic acquisition operation, and with memory bar-
riers required only on release (“CAM”).

5. Atomic counting with a check combined with the
atomic acquisition operation (“CA”).

6. Simple counting with a check combined with full
memory barriers (“M”).

7. Atomic counting with a check combined with the
atomic acquisition operation, and with memory bar-
riers also required on acquisition (“MCA”).

However, because all Linux-kernel atomic operations that
return a value are defined to contain memory barriers,1
all release operations contain memory barriers, and all
checked acquisition operations also contain memory bar-
riers. Therefore, cases “CA” and “MCA” are equivalent to
“CAM”, so that there are sections below for only the first
four cases and the sixth case: “−”, “A”, “AM”, “CAM”,
and “M”. Later sections describe optimizations that can

1 With atomic_read() and ATOMIC_INIT() being the exceptions
that prove the rule.

v2024.12.27a

13.2. REFURBISH REFERENCE COUNTING 275

improve performance if reference acquisition and release
is very frequent, and the reference count need be checked
for zero only very rarely.

13.2.1 Implementation of Reference-
Counting Categories

Simple counting protected by locking (“−”) is described
in Section 13.2.1.1, atomic counting with no memory
barriers (“A”) is described in Section 13.2.1.2, atomic
counting with acquisition memory barrier (“AM”) is de-
scribed in Section 13.2.1.3, and atomic counting with
check and release memory barrier (“CAM”) is described
in Section 13.2.1.4. Use of hazard pointers is described
in Section 9.3 on page 135 and in Section 13.3.

13.2.1.1 Simple Counting

Simple counting, with neither atomic operations nor mem-
ory barriers, can be used when the reference-counter
acquisition and release are both protected by the same
lock. In this case, it should be clear that the reference count
itself may be manipulated non-atomically, because the
lock provides any necessary exclusion, memory barriers,
atomic instructions, and disabling of compiler optimiza-
tions. This is the method of choice when the lock is
required to protect other operations in addition to the ref-
erence count, but where a reference to the object must be
held after the lock is released. Listing 13.1 shows a simple
API that might be used to implement simple non-atomic
reference counting—although simple reference counting
is almost always open-coded instead.

13.2.1.2 Atomic Counting

Simple atomic counting may be used in cases where any
CPU acquiring a reference must already hold a reference.
This style is used when a single CPU creates an object
for its own private use, but must allow for accesses from
other CPUs, tasks, timer handlers, and so on. Any CPU
that hands the object off must first acquire a new reference
on behalf of the recipient on the one hand, or refrain from
further accesses after the handoff on the other. In the
Linux kernel, the kref primitives are used to implement
this style of reference counting, as shown in Listing 13.2.2

Atomic counting is required in this case because lock-
ing does not protect all reference-count operations, which

2 As of Linux v4.10. Linux v4.11 introduced a refcount_t
API that improves efficiency weakly ordered platforms, but which is
functionally equivalent to the atomic_t that it replaced.

Listing 13.1: Simple Reference-Count API
1 struct sref {
2 int refcount;
3 };
4
5 void sref_init(struct sref *sref)
6 {
7 sref->refcount = 1;
8 }
9

10 void sref_get(struct sref *sref)
11 {
12 sref->refcount++;
13 }
14
15 int sref_put(struct sref *sref,
16 void (*release)(struct sref *sref))
17 {
18 WARN_ON(release == NULL);
19 WARN_ON(release == (void (*)(struct sref *))kfree);
20
21 if (--sref->refcount == 0) {
22 release(sref);
23 return 1;
24 }
25 return 0;
26 }

means that two different CPUs might concurrently ma-
nipulate the reference count. If normal increment and
decrement were used, a pair of CPUs might both fetch
the reference count concurrently, perhaps both obtaining
the value “3”. If both of them increment their value,
they will both obtain “4”, and both will store this value
back into the counter. Since the new value of the counter
should instead be “5”, one of the increments has been
lost. Therefore, atomic operations must be used both for
counter increments and for counter decrements.

If releases are guarded by locking, hazard pointers, or
RCU, memory barriers are not required, but for different
reasons. In the case of locking, the locks provide any
needed memory barriers (and disabling of compiler opti-
mizations), and the locks also prevent a pair of releases
from running concurrently. In the case of hazard pointers
and RCU, cleanup will be deferred, and any needed mem-
ory barriers or disabling of compiler optimizations will
be provided by the hazard-pointers or RCU infrastructure.
Therefore, if two CPUs release the final two references
concurrently, the actual cleanup will be deferred until both
CPUs have released their hazard pointers or exited their
RCU read-side critical sections, respectively.

Quick Quiz 13.2: Why isn’t it necessary to guard against
cases where one CPU acquires a reference just after another
CPU releases the last reference?

The kref structure itself, consisting of a single atomic
data item, is shown in lines 1–3 of Listing 13.2. The kref_

v2024.12.27a

276 CHAPTER 13. PUTTING IT ALL TOGETHER

Listing 13.2: Linux Kernel kref API
1 struct kref {
2 atomic_t refcount;
3 };
4
5 void kref_init(struct kref *kref)
6 {
7 atomic_set(&kref->refcount, 1);
8 }
9

10 void kref_get(struct kref *kref)
11 {
12 WARN_ON(!atomic_read(&kref->refcount));
13 atomic_inc(&kref->refcount);
14 }
15
16 static inline int
17 kref_sub(struct kref *kref, unsigned int count,
18 void (*release)(struct kref *kref))
19 {
20 WARN_ON(release == NULL);
21
22 if (atomic_sub_and_test((int) count,
23 &kref->refcount)) {
24 release(kref);
25 return 1;
26 }
27 return 0;
28 }

init() function on lines 5–8 initializes the counter to
the value “1”. Note that the atomic_set() primitive
is a simple assignment, the name stems from the data
type of atomic_t rather than from the operation. The
kref_init() function must be invoked during object
creation, before the object has been made available to any
other CPU.

The kref_get() function on lines 10–14 uncondition-
ally atomically increments the counter. The atomic_
inc() primitive does not necessarily explicitly disable
compiler optimizations on all platforms, but the fact that
the kref primitives are in a separate module and that
the Linux kernel build process does no cross-module
optimizations has the same effect.

The kref_sub() function on lines 16–28 atomically
decrements the counter, and if the result is zero, line 24
invokes the specified release() function and line 25
returns, informing the caller that release() was invoked.
Otherwise, kref_sub() returns zero, informing the caller
that release() was not called.

Quick Quiz 13.3: Suppose that just after the atomic_sub_
and_test() on line 22 of Listing 13.2 is invoked, that some
other CPU invokes kref_get(). Doesn’t this result in that
other CPU now having an illegal reference to a released object?

Listing 13.3: Linux Kernel dst_clone API
1 static inline
2 struct dst_entry * dst_clone(struct dst_entry * dst)
3 {
4 if (dst)
5 atomic_inc(&dst->__refcnt);
6 return dst;
7 }
8
9 static inline

10 void dst_release(struct dst_entry * dst)
11 {
12 if (dst) {
13 WARN_ON(atomic_read(&dst->__refcnt) < 1);
14 smp_mb__before_atomic_dec();
15 atomic_dec(&dst->__refcnt);
16 }
17 }

Quick Quiz 13.4: Suppose that kref_sub() returns zero, in-
dicating that the release() function was not invoked. Under
what conditions can the caller rely on the continued existence
of the enclosing object?

Quick Quiz 13.5: Why not just pass kfree() as the release
function?

13.2.1.3 Atomic Counting With Release Memory
Barrier

Atomic reference counting with release memory barriers
is used by the Linux kernel’s networking layer to track
the destination caches that are used in packet routing.
The actual implementation is quite a bit more involved;
this section focuses on the aspects of struct dst_entry
reference-count handling that matches this use case, shown
in Listing 13.3.3

The dst_clone() primitive may be used if the caller
already has a reference to the specified dst_entry, in
which case it obtains another reference that may be handed
off to some other entity within the kernel. Because a
reference is already held by the caller, dst_clone()
need not execute any memory barriers. The act of handing
the dst_entry to some other entity might or might not
require a memory barrier, but if such a memory barrier is
required, it will be embedded in the mechanism used to
hand the dst_entry off.

The dst_release() primitive may be invoked from
any environment, and the caller might well reference ele-
ments of the dst_entry structure immediately prior to the
call to dst_release(). The dst_release() primitive

3 As of Linux v4.13. Linux v4.14 added a level of indirection to
permit more comprehensive debugging checks, but the overall effect in
the absence of bugs is identical.

v2024.12.27a

13.2. REFURBISH REFERENCE COUNTING 277

therefore contains a memory barrier on line 14 preventing
both the compiler and the CPU from misordering accesses.

Please note that the programmer making use of dst_
clone() and dst_release() need not be aware of the
memory barriers, only of the rules for using these two
primitives.

13.2.1.4 Atomic Counting With Check and Release
Memory Barrier

Consider a situation where the caller must be able to
acquire a new reference to an object to which it does
not already hold a reference, but where that object’s
existence is guaranteed. The fact that initial reference-
count acquisition can now run concurrently with reference-
count release adds further complications. Suppose that
a reference-count release finds that the new value of the
reference count is zero, signaling that it is now safe to
clean up the reference-counted object. We clearly cannot
allow a reference-count acquisition to start after such
clean-up has commenced, so the acquisition must include
a check for a zero reference count. This check must be
part of the atomic increment operation, as shown below.

Quick Quiz 13.6: Why can’t the check for a zero reference
count be made in a simple “if” statement with an atomic
increment in its “then” clause?

The Linux kernel’s fget() and fput() primitives use
this style of reference counting. Simplified versions of
these functions are shown in Listing 13.4.4

Line 4 of fget() fetches the pointer to the current
process’s file-descriptor table, which might well be shared
with other processes. Line 6 invokes rcu_read_lock(),
which enters an RCU read-side critical section. The call-
back function from any subsequent call_rcu() primitive
will be deferred until a matching rcu_read_unlock()
is reached (line 10 or 14 in this example). Line 7 looks
up the file structure corresponding to the file descriptor
specified by the fd argument, as will be described later.
If there is an open file corresponding to the specified file
descriptor, then line 9 attempts to atomically acquire a ref-
erence count. If it fails to do so, lines 10–11 exit the RCU
read-side critical section and report failure. Otherwise, if
the attempt is successful, lines 14–15 exit the read-side
critical section and return a pointer to the file structure.

The fcheck_files() primitive is a helper function
for fget(). Line 22 uses rcu_dereference() to safely

4 As of Linux v2.6.38. Additional O_PATH functionality was added
in v2.6.39, refactoring was applied in v3.14, and mmap_sem contention
was reduced in v4.1.

Listing 13.4: Linux Kernel fget/fput API
1 struct file *fget(unsigned int fd)
2 {
3 struct file *file;
4 struct files_struct *files = current->files;
5
6 rcu_read_lock();
7 file = fcheck_files(files, fd);
8 if (file) {
9 if (!atomic_inc_not_zero(&file->f_count)) {

10 rcu_read_unlock();
11 return NULL;
12 }
13 }
14 rcu_read_unlock();
15 return file;
16 }
17
18 struct file *
19 fcheck_files(struct files_struct *files, unsigned int fd)
20 {
21 struct file * file = NULL;
22 struct fdtable *fdt = rcu_dereference((files)->fdt);
23
24 if (fd < fdt->max_fds)
25 file = rcu_dereference(fdt->fd[fd]);
26 return file;
27 }
28
29 void fput(struct file *file)
30 {
31 if (atomic_dec_and_test(&file->f_count))
32 call_rcu(&file->f_u.fu_rcuhead, file_free_rcu);
33 }
34
35 static void file_free_rcu(struct rcu_head *head)
36 {
37 struct file *f;
38
39 f = container_of(head, struct file, f_u.fu_rcuhead);
40 kmem_cache_free(filp_cachep, f);
41 }

fetch an RCU-protected pointer to this task’s current file-
descriptor table, and line 24 checks to see if the specified
file descriptor is in range. If so, line 25 fetches the pointer
to the file structure, again using the rcu_dereference()
primitive. Line 26 then returns a pointer to the file structure
or NULL in case of failure.

The fput() primitive releases a reference to a file
structure. Line 31 atomically decrements the reference
count, and, if the result was zero, line 32 invokes the call_
rcu() primitives in order to free up the file structure
(via the file_free_rcu() function specified in call_
rcu()’s second argument), but only after all currently-
executing RCU read-side critical sections complete, that
is, after an RCU grace period has elapsed.

Once the grace period completes, the file_free_
rcu() function obtains a pointer to the file structure on
line 39, and frees it on line 40.

v2024.12.27a

278 CHAPTER 13. PUTTING IT ALL TOGETHER

This code fragment thus demonstrates how RCU can be
used to guarantee existence while an in-object reference
count is being incremented.

13.2.2 Counter Optimizations

In some cases where increments and decrements are
common, but checks for zero are rare, it makes sense to
maintain per-CPU or per-task counters, as was discussed
in Chapter 5. For example, see the paper on sleepable
read-copy update (SRCU), which applies this technique
to RCU [McK06]. This approach eliminates the need for
atomic instructions or memory barriers on the increment
and decrement primitives, but still requires that code-
motion compiler optimizations be disabled. In addition,
the primitives such as synchronize_srcu() that check
for the aggregate reference count reaching zero can be quite
slow. This underscores the fact that these techniques are
designed for situations where the references are frequently
acquired and released, but where it is rarely necessary to
check for a zero reference count.

However, it is usually the case that use of reference
counts requires writing (often atomically) to a data struc-
ture that is otherwise read only. In this case, reference
counts are imposing expensive cache misses on readers.

It is therefore worthwhile to look into synchronization
mechanisms that do not require readers to write to the data
structure being traversed. One possibility is the hazard
pointers covered in Section 9.3 and another is RCU, which
is covered in Section 9.5.

13.3 Hazard-Pointer Helpers

It’s the little things that count, hundreds of them.

Cliff Shaw

This section looks at some issues that can be addressed
with the help of hazard pointers. In addition, hazard
pointers can sometimes be used to address the issues
called out in Section 13.5, and vice versa.

13.3.1 Scalable Reference Count

Suppose a reference count is becoming a performance or
scalability bottleneck. What can you do?

One approach is to instead use hazard pointers.

There are some differences, perhaps most notably that
with hazard pointers it is extremely expensive to determine
when the corresponding reference count has reached zero.

One way to work around this problem is to split the load
between reference counters and hazard pointers. Each data
element has a reference counter that tracks the number of
other data elements referencing this element on the one
hand, and readers use hazard pointers on the other.

Making this arrangement work both efficiently and cor-
rectly can be quite challenging, and so interested readers
are invited to examine the UnboundedQueue and Con-
currentHashMap data structures implemented in Folly
open-source library.5

13.3.2 Long-Duration Accesses
Suppose a reader-writer-locking reader is holding the lock
for so long that updates are excessively delayed. If that
reader can reasonably be converted to use reference count-
ing instead of reader-writer locking, but if performance
and scalability considerations prevent use of actual refer-
ence counters, then hazard pointers provides a scalable
variant of reference counting.

The key point is that where reader-writer locking readers
block all updates for that lock, hazard pointers instead
simply hang onto the data that is actually needed, while
still allowing updates to proceed.

If the reader cannot be reasonably be converted to use
reference counting, the tricks in Section 13.5.8 might be
helpful.

13.4 Sequence-Locking Specials

The girl who can’t dance says the band can’t play.

Yiddish proverb

This section looks at some special uses of sequence locks.

13.4.1 Dueling Sequence Locks
The classic sequence-locking use case enables a reader to
see a consistent snapshot of a small collection of variables,
for example, calibration constants for timekeeping. This
works quite well in practice because calibration constants
are rarely updated and, when updated, are updated quickly.
Readers therefore almost never need to retry.

5 https://github.com/facebook/folly

https://github.com/facebook/folly

v2024.12.27a

13.4. SEQUENCE-LOCKING SPECIALS 279

However, if the updater is delayed during the update,
readers will also be delayed. Such delays might be due to
interrupts, NMIs, or even virtual-CPU preemption.

One way to prevent updater delays from causing reader
delays is to maintain two sets of calibration constants.
Each set is updated in turn, but frequently enough that
readers can make good use of either set. Each set has its
own sequence lock (seqlock_t structure).

The updater alternates between the two sets, so that an
delayed updater delays readers of at most one of the sets.

Each reader attempts to access the first set, but upon
retry attempts to access the second set. If the second set
also forces a retry, the reader repeats starting again from
the first set. If the updater is stuck, only one of the two
sets will force readers to retry, and therefore readers will
succeed as soon as they attempt to access the other set.
Quick Quiz 13.7: Why don’t all sequence-locking use cases
replicate the data in this fashion?

13.4.2 Correlated Data Elements
Suppose we have a hash table where we need correlated
views of two or more of the elements. These elements
are updated together, and we do not want to see an old
version of the first element along with new versions of the
other elements. For example, Schrödinger decided to add
his extended family to his in-memory database along with
all his animals. Although Schrödinger understands that
marriages and divorces do not happen instantaneously, he
is also a traditionalist. As such, he absolutely does not want
his database ever to show that the bride is now married,
but the groom is not, and vice versa. Plus, if you think
Schrödinger is a traditionalist, you just try conversing with
some of his family members! In other words, Schrödinger
wants to be able to carry out a wedlock-consistent traversal
of his database.

One approach is to use sequence locks (see Section 9.4),
so that wedlock-related updates are carried out under
the protection of write_seqlock(), while reads re-
quiring wedlock consistency are carried out within a
read_seqbegin() / read_seqretry() loop. Note that
sequence locks are not a replacement for RCU protection:
Sequence locks protect against concurrent modifications,
but RCU is still needed to protect against concurrent
deletions.

This approach works quite well when the number of
correlated elements is small, the time to read these el-
ements is short, and the update rate is low. Otherwise,
updates might happen so quickly that readers might never

complete. Although Schrödinger does not expect that even
his least-sane relatives will marry and divorce quickly
enough for this to be a problem, he does realize that this
problem could well arise in other situations. One way to
avoid this reader-starvation problem is to have the readers
use the update-side primitives if there have been too many
retries, but this can degrade both performance and scala-
bility. Another way to avoid starvation is to have multiple
sequence locks, in Schrödinger’s case, perhaps one per
species.

In addition, if the update-side primitives are used too
frequently, poor performance and scalability will result
due to lock contention. One way to avoid this is to maintain
a per-element sequence lock, and to hold both spouses’
locks when updating their marital status. Readers can do
their retry looping on either of the spouses’ locks to gain
a stable view of any change in marital status involving
both members of the pair. This avoids contention due to
high marriage and divorce rates, but complicates gaining
a stable view of all marital statuses during a single scan
of the database.

If the element groupings are well-defined and persistent,
which marital status is hoped to be, then one approach
is to add pointers to the data elements to link together
the members of a given group. Readers can then traverse
these pointers to access all the data elements in the same
group as the first one located.

This technique is used heavily in the Linux kernel,
perhaps most notably in the dcache subsystem [Bro15b].
Note that it is likely that similar schemes also work with
hazard pointers.

This approach provides sequential consistency to suc-
cessful readers, each of which will either see the effects of
a given update or not, with any partial updates resulting in
a read-side retry. Sequential consistency is an extremely
strong guarantee, incurring equally strong restrictions
and equally high overheads. In this case, we saw that
readers might be starved on the one hand, or might need
to acquire the update-side lock on the other. Although this
works very well in cases where updates are infrequent,
it unnecessarily forces read-side retries even when the
update does not affect any of the data that a retried reader
accesses. Section 13.5.4 therefore covers a much weaker
form of consistency that not only avoids reader starvation,
but also avoids any form of read-side retry. The next
section instead presents a weaker form of consistency that
can be provided with much lower probabilities of reader
starvation.

v2024.12.27a

280 CHAPTER 13. PUTTING IT ALL TOGETHER

13.4.3 Atomic Move

Suppose that individual data elements are moved from
one data structure to another, and that readers look up
only single data structures. However, when a data element
moves, readers must must never see it as being in both
structures at the same time and must also never see it
as missing from both structures at the same time. At
the same time, any reader seeing the element in its new
location must never subsequently see it in its old location.
In addition, the move may be implemented by inserting
a new copy of the old data element into the destination
location.

For example, consider a hash table that supports an
atomic-to-readers rename operation. Expanding on Schrö-
dinger’s zoo, suppose that an animal’s name changes, for
example, each of the brides in Schrödinger’s traditionalist
family might change their last name to match that of their
groom.

But changing their name might change the hash value,
and might also require that the bride’s element move from
one hash chain to another. The consistency set forth above
requires that if a reader successfully looks up the new
name, then any subsequent lookup of the old name by
that reader must result in failure. Similarly, if a reader’s
lookup of the old name results in lookup failure, then any
subsequent lookup of the new name by that reader must
succeed. In short, a given reader should not see a bride
momentarily blinking out of existence, nor should that
reader lookup a bride under her new name and then later
lookup that bride under her old name.

This consistency guarantee could be enforced with a
single global sequence lock as described in Section 13.4.2,
but this can result in reader starvation even for readers that
are not looking up a bride who is currently undergoing
a name change. This guarantee could also be enforced
by requiring that readers acquire a per-hash-chain lock,
but reviewing Figure 10.2 shows that this results in poor
performance and scalabilty, even for single-socket systems.

Another more reader-friendly way to implement this is
to use RCU and to place a sequence lock on each element.
Readers looking up a given element act as sequence-lock
readers across their full set of accesses to that element.
Note that these sequence-lock operations will order each
reader’s lookups.

Renaming an element can then proceed roughly as
follows:

1. Acquire a global lock protecting rename operations.

2. Allocate and initialize a copy of the element with the
new name.

3. Write-acquire the sequence lock on the element with
the old name, which has the side effect of ordering this
acquisition with the following insertion. Concurrent
lookups of the old name will now repeatedly retry.

4. Insert the copy of the element with the new name.
Lookups of the new name will now succeed.

5. Execute smp_wmb() to order the prior insertion with
the subsequent removal.

6. Remove the element with the old name. Concurrent
lookups of the old name will now fail.

7. Write-release the sequence lock if necessary, for
example, if required by lock dependency checkers.

8. Release the global lock.

Thus, readers looking up the old name will retry until
the new name is available, at which point their final retry
will fail. Any subsequent lookups of the new name will
succeed. Any reader succeeding in looking up the new
name is guaranteed that any subsequent lookup of the old
name will fail, perhaps after a series of retries.
Quick Quiz 13.8: Is it possible to write-acquire the sequence
lock on the new element before it is inserted instead of acquiring
that of the old element before it is removed?

Quick Quiz 13.9: Is it possible to avoid the global lock?

It is of course possible to instead implement this pro-
cedure somewhat more efficiently using simple flags.
However, this can be thought of as a simplified variant
of sequence locking that relies on the fact that a given
element’s sequence lock is never write-acquired more than
once.

13.4.4 Upgrade to Writer
As discussed in Section 9.5.4.9, RCU permits readers to
upgrade to writers. This capability can be quite useful
when a reader scanning an RCU-protected data structure
notices that the current element needs to be updated. What
happens when you try this trick with sequence locking?

It turns out that this sequence-locking trick is actually
used in the Linux kernel, for example, by the sdma_
flush() function in drivers/infiniband/hw/hfi1/
sdma.c. The effect is to doom the enclosing reader to
retry. This trick is therefore used when the reader detects
some condition that requires a retry.

v2024.12.27a

13.5. RCU RESCUES 281

13.5 RCU Rescues

With great doubts comes great understanding, with

little doubts comes little understanding.

Chinese proverb

This section shows how to apply RCU to some examples
discussed earlier in this book. In some cases, RCU
provides simpler code, in other cases better performance
and scalability, and in still other cases, both.

13.5.1 RCU and Per-Thread-Variable-
Based Statistical Counters

Section 5.2.3 described an implementation of statistical
counters that provided excellent performance, roughly that
of simple increment (as in the C ++ operator), and linear
scalability—but only for incrementing via inc_count().
Unfortunately, threads needing to read out the value via
read_count() were required to acquire a global lock, and
thus incurred high overhead and suffered poor scalability.
The code for the lock-based implementation is shown in
Listing 5.4 on page 55.

Quick Quiz 13.10: Why on earth did we need that global
lock in the first place?

13.5.1.1 Design

The hope is to use RCU rather than final_mutex to
protect the thread traversal in read_count() in order to
obtain excellent performance and scalability from read_
count(), rather than just from inc_count(). However,
we do not want to give up any accuracy in the computed
sum. In particular, when a given thread exits, we absolutely
cannot lose the exiting thread’s count, nor can we double-
count it. Such an error could result in inaccuracies equal to
the full precision of the result, in other words, such an error
would make the result completely useless. And in fact, one
of the purposes of final_mutex is to ensure that threads
do not come and go in the middle of read_count()
execution.

Therefore, if we are to dispense with final_mutex, we
will need to come up with some other method for ensuring
consistency. One approach is to place the total count for
all previously exited threads and the array of pointers to
the per-thread counters into a single structure. Such a
structure, once made available to read_count(), is held

constant, ensuring that read_count() sees consistent
data.

13.5.1.2 Implementation

Lines 1–4 of Listing 13.5 show the countarray struc-
ture, which contains a ->total field for the count from
previously exited threads, and a counterp[] array of
pointers to the per-thread counter for each currently
running thread. This structure allows a given execution of
read_count() to see a total that is consistent with the
indicated set of running threads.

Lines 6–8 contain the definition of the per-thread
counter variable, the global pointer countarrayp refer-
encing the current countarray structure, and the final_
mutex spinlock.

Lines 10–13 show inc_count(), which is unchanged
from Listing 5.4.

Lines 15–31 show read_count(), which has changed
significantly. Lines 22 and 29 substitute rcu_
read_lock() and rcu_read_unlock() for acquisi-
tion and release of final_mutex. Line 23 uses rcu_
dereference() to snapshot the current countarray
structure into local variable cap. Proper use of RCU will
guarantee that this countarray structure will remain with
us through at least the end of the current RCU read-side
critical section at line 29. Line 24 initializes sum to cap->
total, which is the sum of the counts of threads that
have previously exited. Lines 25–27 add up the per-thread
counters corresponding to currently running threads, and,
finally, line 30 returns the sum.

The initial value for countarrayp is provided by
count_init() on lines 33–41. This function runs before
the first thread is created, and its job is to allocate and zero
the initial structure, and then assign it to countarrayp.

Lines 43–50 show the count_register_thread()
function, which is invoked by each newly created thread.
Line 45 picks up the current thread’s index, line 47 acquires
final_mutex, line 48 installs a pointer to this thread’s
counter, and line 49 releases final_mutex.

Quick Quiz 13.11: Hey!!! Line 48 of Listing 13.5 modifies
a value in a pre-existing countarray structure! Didn’t you
say that this structure, once made available to read_count(),
remained constant???

Lines 52–72 show count_unregister_thread(),
which is invoked by each thread just before it exits.
Lines 58–62 allocate a new countarray structure, line 63
acquires final_mutex and line 69 releases it. Line 64
copies the contents of the current countarray into the

v2024.12.27a

282 CHAPTER 13. PUTTING IT ALL TOGETHER

Listing 13.5: RCU and Per-Thread Statistical Counters
1 struct countarray {
2 unsigned long total;
3 unsigned long *counterp[NR_THREADS];
4 };
5
6 unsigned long __thread counter = 0;
7 struct countarray *countarrayp = NULL;
8 DEFINE_SPINLOCK(final_mutex);
9

10 __inline__ void inc_count(void)
11 {
12 WRITE_ONCE(counter, counter + 1);
13 }
14
15 unsigned long read_count(void)
16 {
17 struct countarray *cap;
18 unsigned long *ctrp;
19 unsigned long sum;
20 int t;
21
22 rcu_read_lock();
23 cap = rcu_dereference(countarrayp);
24 sum = cap->total;
25 for_each_thread(t) {
26 ctrp = READ_ONCE(cap->counterp[t]);
27 if (ctrp != NULL) sum += READ_ONCE(*ctrp);
28 }
29 rcu_read_unlock();
30 return sum;
31 }
32
33 void count_init(void)
34 {
35 countarrayp = malloc(sizeof(*countarrayp));
36 if (countarrayp == NULL) {
37 fprintf(stderr, "Out of memory\n");
38 exit(EXIT_FAILURE);
39 }
40 memset(countarrayp, '\0', sizeof(*countarrayp));
41 }
42
43 void count_register_thread(unsigned long *p)
44 {
45 int idx = smp_thread_id();
46
47 spin_lock(&final_mutex);
48 countarrayp->counterp[idx] = &counter;
49 spin_unlock(&final_mutex);
50 }
51
52 void count_unregister_thread(int nthreadsexpected)
53 {
54 struct countarray *cap;
55 struct countarray *capold;
56 int idx = smp_thread_id();
57
58 cap = malloc(sizeof(*countarrayp));
59 if (cap == NULL) {
60 fprintf(stderr, "Out of memory\n");
61 exit(EXIT_FAILURE);
62 }
63 spin_lock(&final_mutex);
64 *cap = *countarrayp;
65 cap->total += counter;
66 cap->counterp[idx] = NULL;
67 capold = countarrayp;
68 rcu_assign_pointer(countarrayp, cap);
69 spin_unlock(&final_mutex);
70 synchronize_rcu();
71 free(capold);
72 }

newly allocated version, line 65 adds the exiting thread’s
counter to new structure’s ->total, and line 66 NULLs
the exiting thread’s counterp[] array element. Line 67
then retains a pointer to the current (soon to be old)
countarray structure, and line 68 uses rcu_assign_
pointer() to install the new version of the countarray
structure. Line 70 waits for a grace period to elapse, so
that any threads that might be concurrently executing in
read_count(), and thus might have references to the old
countarray structure, will be allowed to exit their RCU
read-side critical sections, thus dropping any such refer-
ences. Line 71 can then safely free the old countarray
structure.
Quick Quiz 13.12: Given the fixed-size counterp array,
exactly how does this code avoid a fixed upper bound on the
number of threads???

13.5.1.3 Discussion

Quick Quiz 13.13: Wow! Listing 13.5 contains 70 lines
of code, compared to only 42 in Listing 5.4. Is this extra
complexity really worth it?

Use of RCU enables exiting threads to wait until other
threads are guaranteed to be done using the exiting threads’
__thread variables. This allows the read_count()
function to dispense with locking, thereby providing ex-
cellent performance and scalability for both the inc_
count() and read_count() functions. However, this
performance and scalability come at the cost of some
increase in code complexity. It is hoped that compiler and
library writers employ user-level RCU [Des09b] to provide
safe cross-thread access to __thread variables, greatly
reducing the complexity seen by users of __thread vari-
ables.

13.5.2 RCU and Counters for Removable
I/O Devices

Section 5.4.6 showed a fanciful pair of code fragments for
dealing with counting I/O accesses to removable devices.
These code fragments suffered from high overhead on
the fastpath (starting an I/O) due to the need to acquire a
reader-writer lock.

This section shows how RCU may be used to avoid this
overhead.

The code for performing an I/O is quite similar to the
original, with an RCU read-side critical section being

v2024.12.27a

13.5. RCU RESCUES 283

substituted for the reader-writer lock read-side critical
section in the original:

1 rcu_read_lock();
2 if (removing) {
3 rcu_read_unlock();
4 cancel_io();
5 } else {
6 add_count(1);
7 rcu_read_unlock();
8 do_io();
9 sub_count(1);

10 }

The RCU read-side primitives have minimal overhead,
thus speeding up the fastpath, as desired.

The updated code fragment removing a device is as
follows:

1 spin_lock(&mylock);
2 removing = 1;
3 sub_count(mybias);
4 spin_unlock(&mylock);
5 synchronize_rcu();
6 while (read_count() != 0) {
7 poll(NULL, 0, 1);
8 }
9 remove_device();

Here we replace the reader-writer lock with an exclusive
spinlock and add a synchronize_rcu() to wait for all of
the RCU read-side critical sections to complete. Because
of the synchronize_rcu(), once we reach line 6, we
know that all remaining I/Os have been accounted for.

Of course, the overhead of synchronize_rcu() can
be large, but given that device removal is quite rare, this
is usually a good tradeoff.

13.5.3 Array and Length
Suppose we have an RCU-protected variable-length array,
as shown in Listing 13.6. The length of the array ->a[]
can change dynamically, and at any given time, its length
is given by the field ->length. Of course, this introduces
the following race condition:

1. The array is initially 16 characters long, and thus
->length is equal to 16.

2. CPU 0 loads the value of ->length, obtaining the
value 16.

Listing 13.6: RCU-Protected Variable-Length Array
1 struct foo {
2 int length;
3 char *a;
4 };

Listing 13.7: Improved RCU-Protected Variable-Length Array
1 struct foo_a {
2 int length;
3 char a[0];
4 };
5
6 struct foo {
7 struct foo_a *fa;
8 };

3. CPU 1 shrinks the array to be of length 8, and assigns
a pointer to a new 8-character block of memory into
->a[].

4. CPU 0 picks up the new pointer from ->a[], and
stores a new value into element 12. Because the
array has only 8 characters, this results in a SEGV or
(worse yet) memory corruption.

How can we prevent this?
One approach is to make careful use of memory barriers,

which are covered in Chapter 15. This works, but incurs
read-side overhead and, perhaps worse, requires use of
explicit memory barriers.

A better approach is to put the value and the array into
the same structure, as shown in Listing 13.7 [ACMS03].
Allocating a new array (foo_a structure) then automat-
ically provides a new place for the array length. This
means that if any CPU picks up a reference to ->fa, it is
guaranteed that the ->length will match the ->a[].

1. The array is initially 16 characters long, and thus
->length is equal to 16.

2. CPU 0 loads the value of ->fa, obtaining a pointer to
the structure containing the value 16 and the 16-byte
array.

3. CPU 0 loads the value of ->fa->length, obtaining
the value 16.

4. CPU 1 shrinks the array to be of length 8, and assigns
a pointer to a new foo_a structure containing an 8-
character block of memory into ->fa.

5. CPU 0 picks up the new pointer from ->a[], and
stores a new value into element 12. But because
CPU 0 is still referencing the old foo_a structure
that contains the 16-byte array, all is well.

Of course, in both cases, CPU 1 must wait for a grace
period before freeing the old array.

A more general version of this approach is presented in
the next section.

v2024.12.27a

284 CHAPTER 13. PUTTING IT ALL TOGETHER

Listing 13.8: Uncorrelated Measurement Fields
1 struct animal {
2 char name[40];
3 double age;
4 double meas_1;
5 double meas_2;
6 double meas_3;
7 char photo[0]; /* large bitmap. */
8 };

Listing 13.9: Correlated Measurement Fields
1 struct measurement {
2 double meas_1;
3 double meas_2;
4 double meas_3;
5 };
6
7 struct animal {
8 char name[40];
9 double age;

10 struct measurement *mp;
11 char photo[0]; /* large bitmap. */
12 };

13.5.4 Correlated Fields
Suppose that each of Schödinger’s animals is represented
by the data element shown in Listing 13.8. The meas_
1, meas_2, and meas_3 fields are a set of correlated
measurements that are updated periodically. It is critically
important that readers see these three values from a single
measurement update: If a reader sees an old value of
meas_1 but new values of meas_2 and meas_3, that reader
will become fatally confused. How can we guarantee that
readers will see coordinated sets of these three values?6

One approach would be to allocate a new animal
structure, copy the old structure into the new structure,
update the new structure’s meas_1, meas_2, and meas_3
fields, and then replace the old structure with a new one by
updating the pointer. This does guarantee that all readers
see coordinated sets of measurement values, but it requires
copying a large structure due to the ->photo[] field. This
copying might incur unacceptably large overhead.

Another approach is to impose a level of indirection,
as shown in Listing 13.9 [McK04, Section 5.3.4]. When
a new measurement is taken, a new measurement struc-
ture is allocated, filled in with the measurements, and
the animal structure’s ->mp field is updated to point to
this new measurement structure using rcu_assign_
pointer(). After a grace period elapses, the old
measurement structure can be freed.

6 This situation is similar to that described in Section 13.4.2, except
that here readers need only see a consistent view of a given single data
element, not the consistent view of a group of data elements that was
required in that earlier section.

Quick Quiz 13.14: But cant’t the approach shown in List-
ing 13.9 result in extra cache misses, in turn resulting in
additional read-side overhead?

This approach enables readers to see correlated values
for selected fields, but while incurring minimal read-side
overhead. This per-data-element consistency suffices in
the common case where a reader looks only at a single
data element.

13.5.5 Update-Friendly Traversal
Suppose that a statistical scan of all elements in a hash
table is required. For example, Schrödinger might wish
to compute the average length-to-weight ratio over all of
his animals.7 Suppose further that Schrödinger is willing
to ignore slight errors due to animals being added to and
removed from the hash table while this statistical scan is
being carried out. What should Schrödinger do to control
concurrency?

One approach is to enclose the statistical scan in an
RCU read-side critical section. This permits updates to
proceed concurrently without unduly impeding the scan.
In particular, the scan does not block the updates and
vice versa, which allows scan of hash tables containing
very large numbers of elements to be supported gracefully,
even in the face of very high update rates.

Quick Quiz 13.15: But how does this scan work while a
resizable hash table is being resized? In that case, neither the
old nor the new hash table is guaranteed to contain all the
elements in the hash table!

13.5.6 Scalable Reference Count Two
Suppose a reference count is becoming a performance or
scalability bottleneck. What can you do?

One approach is to use per-CPU counters for each
reference count, somewhat similar to the algorithms in
Chapter 5, in particular, the exact limit counters described
in Section 5.4. The need to switch between per-CPU and
global modes for these counters results either in expensive
increments and decrements on the one hand (Section 5.4.1)
or in the use of POSIX signals on the other (Section 5.4.3).

Another approach is to use RCU to mediate the switch
between per-CPU and global counting modes. Each update
is carried out within an RCU read-side critical section,
and each update checks a flag to determine whether to

7 Why would such a quantity be useful? Beats me! But group
statistics are often useful.

v2024.12.27a

13.5. RCU RESCUES 285

update the per-CPU counters on the one hand or the global
on the other. To switch modes, update the flag, wait for a
grace period, and then move any remaining counts from
the per-CPU counters to the global counter or vice versa.

The Linux kernel uses this RCU-mediated approach in
its percpu_ref style of reference counter. Code using
this reference counter must initialize the percpu_ref
structure using percpu_ref_init(), which takes as
arguments a pointer to the structure, a pointer to a function
to invoke when the reference count reaches zero, a set of
mode flags, and a set of kmalloc() GFP_ flags. After
normal initialization, the structure has one reference and
is in per-CPU mode.

The mode flags are usually zero, but can include the
PERCPU_REF_INIT_ATOMIC bit if the counter is to start
in slow non-per-CPU (that is, atomic) mode. There
is also a PERCPU_REF_ALLOW_REINIT bit that allows
a given percpu_ref counter to be reused via a call
to percpu_ref_reinit() without needing to be freed
and reallocated. Regardless of how the percpu_ref
structure is initialized, percpu_ref_get() may be used
to acquire a reference and percpu_ref_put() may be
used to release a reference.

When in per-CPU mode, the percpu_ref structure
cannot determine whether or not its value has reached
zero. When such a determination is necessary, percpu_
ref_kill() may be invoked. This function switches
the structure into atomic mode and removes the initial
reference installed by the call to percpu_ref_init().
Of course, when in atomic mode, calls to percpu_ref_
get() and percpu_ref_put() are quite expensive, but
percpu_ref_put() can tell when the value reaches zero.

Readers desiring more percpu_ref information are
referred to the Linux-kernel documentation and source
code.

13.5.7 Retriggered Grace Periods
There is no call_rcu_cancel(), so once an rcu_head
structure is passed to call_rcu(), there is no calling it
back. It must be left alone until the callback is invoked. In
the common case, this is as it should be because the rcu_
head structure is on a one-way journey to deallocation.

However, there are use cases that combine RCU and
explicit open() and close() calls. After a close()
call, readers are not supposed to begin new accesses to the
data structure, but there might well be readers completing
their traversal. This situation can be handled in the usual
manner: Wait for a grace period following the close()
call before freeing the data structures.

CLOSED OPEN
open()

CLOSING

close() CB

REOPENING
open()

 CB

RECLOSING

 close() CB open()

Figure 13.1: Retrigger-Grace-Period State Machine

But what if open() is called before the grace period
ends?

Again, there is no call_rcu_cancel(), so another
approach is to set a flag that is checked by the callback
function, which can opt out of actually freeing anything.
Problem solved!

But what if open() and then another close() are both
called before the grace period ends?

One approach is to have a second value for the flag that
causes the callback to requeue itself.

But what if there is not only a open() and then another
close(), but also another open() before the grace period
ends?

In this case, the callback needs to set state to reflect that
last open() still being in effect.

Continuing this line of thought leads us to the state ma-
chine shown in Figure 13.1. The initial state is CLOSED
and the operational state is OPEN. The diamond-shaped
arrowheads denote call_rcu() invocation, while the
arrows labeled “CB” denote callback invocation.

The normal path through this state machine traverses the
states CLOSED, OPEN, CLOSING (with an invocation
of call_rcu()), and back to CLOSED once the callback
has been invoked. If open() is invoked before the grace
period completes, the state machine traverses the cycle
OPEN, CLOSING (with an invocation of call_rcu()),
REOPENING, and back to OPEN once the callback has
been invoked. If open() and then close() are invoked
before the grace period completes, the state machine
traverses the cycle OPEN, CLOSING (with an invocation

v2024.12.27a

286 CHAPTER 13. PUTTING IT ALL TOGETHER

of call_rcu()), REOPENING, RECLOSING, and back
to CLOSING once the callback has been invoked.

Given an indefinite alternating sequence of close()
and open() invocations, the state machine would traverse
OPEN, and CLOSING (with an invocation of call_
rcu()), followed by alternating sojourns in the REOPEN-
ING and RECLOSING states. Once the grace period
ends, the state machine would transition to either of the
CLOSING or the OPEN state, depending on which of the
RECLOSING or REOPENING states the callback was
invoked in.

Rough pseudocode of this state machine is shown in
Listing 13.10. The five states are shown on lines 1–5, the
current state is held in rtrg_status on line 7, which is
protected by the lock on line 8.

The three CB transitions (emanating from states CLOS-
ING, REOPENING, and RECLOSING) are implemented
by the close_cb() function shown on lines 11–26.
Line 15 invokes a user-supplied close_cleanup() to
take any final cleanup actions such as freeing memory
when transitioning to the CLOSED state. Line 21 contains
the call_rcu() invocation that causes a later transition
to the CLOSED state.

The open() function on lines 28–42 implements the
transitions to the OPEN, CLOSING, and REOPENING
states, with line 40 invoking a do_open() function to
implement any allocation and initialization of any needed
data structures.

The close() function on lines 44–58 implements the
transitions to the CLOSING and RECLOSING states,
with line 56 invoking a do_close() function to take any
actions that might be required to finalize this transition,
for example, causing later read-only traversals to return
errors. Line 49 contains the call_rcu() invocation that
causes a later transition to the CLOSED state.

This state machine and pseudocode shows how to get the
effect of a call_rcu_cancel() in those rare situations
needing such semantics.

13.5.8 Long-Duration Accesses Two
Suppose a reader-writer-locking reader is holding the lock
for so long that updates are excessively delayed. Suppose
further that this reader cannot reasonably be converted to
use reference counting (otherwise, see Section 13.3.2).

If that reader can be reasonably converted to use RCU,
that might solve the problem. The reason is that RCU
readers do not completely block updates, but rather block
only the cleanup portions of those updates (including
memory reclamation). Therefore, if the system has ample

Listing 13.10: Retriggering a Grace Period (Pseudocode)
1 #define RTRG_CLOSED 0
2 #define RTRG_OPEN 1
3 #define RTRG_CLOSING 2
4 #define RTRG_REOPENING 3
5 #define RTRG_RECLOSING 4
6
7 int rtrg_status;
8 DEFINE_SPINLOCK(rtrg_lock);
9 struct rcu_head rtrg_rh;

10
11 void close_cb(struct rcu_head *rhp)
12 {
13 spin_lock(rtrg_lock);
14 if (rtrg_status = RTRG_CLOSING) {
15 close_cleanup();
16 rtrg_status = RTRG_CLOSED;
17 } else if (rtrg_status == RTRG_REOPENING) {
18 rtrg_status = RTRG_OPEN;
19 } else if (rtrg_status == RTRG_RECLOSING) {
20 rtrg_status = RTRG_CLOSING;
21 call_rcu(&rtrg_rh, close_cb);
22 } else {
23 WARN_ON_ONCE(1);
24 }
25 spin_unlock(rtrg_lock);
26 }
27
28 int open(void)
29 {
30 spin_lock(rtrg_lock);
31 if (rtrg_status == RTRG_CLOSED) {
32 rtrg_status = RTRG_OPEN;
33 } else if (rtrg_status == RTRG_CLOSING ||
34 rtrg_status == RTRG_RECLOSING) {
35 rtrg_status = RTRG_REOPENING;
36 } else {
37 spin_unlock(rtrg_lock);
38 return -EBUSY;
39 }
40 do_open();
41 spin_unlock(rtrg_lock);
42 }
43
44 int close(void)
45 {
46 spin_lock(rtrg_lock);
47 if (rtrg_status == RTRG_OPEN) {
48 rtrg_status = RTRG_CLOSING;
49 call_rcu(&rtrg_rh, close_cb);
50 } else if (rtrg_status == RTRG_REOPENING) {
51 rtrg_status = RTRG_RECLOSING;
52 } else {
53 spin_unlock(rtrg_lock);
54 return -ENOENT;
55 }
56 do_close();
57 spin_unlock(rtrg_lock);
58 }

v2024.12.27a

13.6. MICRO-OPTIMIZATION 287

memory, converting the reader-writer lock to RCU may
suffice.

However, converting to RCU does not always suffice.
For example, the code might traverse an extremely large
linked data structure within a single RCU read-side critical
section, which might so greatly extend the RCU grace
period that the system runs out of memory. These situa-
tions can be handled in a couple of different ways: (1) Use
SRCU instead of RCU and (2) Acquire a reference to exit
the RCU reader.

13.5.8.1 Use SRCU

In the Linux kernel, RCU is global. In other words,
any long-running RCU reader anywhere in the kernel
will delay the current RCU grace period. If the long-
running RCU reader is traversing a small data structure,
that small amount of data is delaying freeing of all other
data structures, which can result in memory exhaustion.

One way to avoid this problem is to use SRCU for
that long-running RCU reader’s data structure, with its
own srcu_struct structure. The resulting long-running
SRCU readers will then delay only that srcu_struct
structure’s grace periods, and not those of RCU, thus
avoiding memory exhaustion. For more details, see the
SRCU API in Section 9.5.3.

Unfortunately, this approach does have some drawbacks.
For one thing, SRCU readers are not subject to priority
boosting, which can result in additional delays to low-
priority SRCU readers on busy systems. Worse yet, defin-
ing a separate srcu_struct structure reduces the number
of RCU updaters, which in turn increases the grace-period
overhead per updater. This means that giving each current
Linux-kernel RCU use case its own srcu_struct struc-
ture could multiply system-wide grace-period overhead
by the number of such structures.

Therefore, it is often better to acquire some sort of non-
RCU reference on the needed data to permit a momentary
exit from the RCU read-side critical section, as described
in the next section.

13.5.8.2 Acquire a Reference

If the RCU read-side critical section is too long, shorten
it!

In some cases, this can be done trivially. For example,
code that scans all of the hash chains of a statically
allocated array of hash buckets can just as easily scan each
hash chain within its own critical section.

This works because hash chains are normally quite short,
and by design. When traversing long linked structures, it
is necessary to have some way of stopping in the middle
and resuming later.

For example, in Linux kernel v5.16, the khugepaged_
scan_file() function checks to see if some other task
needs the current CPU using need_resched(), and if
so invokes xas_pause() to adjust the traversal’s iterator
appropriately, and then invokes cond_resched_rcu() to
yield the CPU. In turn, the cond_resched_rcu() func-
tion invokes rcu_read_unlock(), cond_resched(),
and finally rcu_read_lock() to drop out of the RCU
read-side critical section in order to yield the CPU.

Of course, where feasible, another approach would be
to switch to a data structure such as a hash table that is
more friendly to momentarily dropping out of an RCU
read-side critical section.
Quick Quiz 13.16: But how would this work with a resizable
hash table, such as the one described in Section 10.4?

13.6 Micro-Optimization

The devil is in the details.

Unknown

The data structures shown in this book were coded straight-
forwardly, with no adaptation to the underlying system’s
cache hierarchy. In addition, many of the implementations
used pointers to functions for key-to-hash conversions
and other frequent operations. Although this approach
provides simplicity and portability, in many cases it does
give up some performance.

The following sections touch on specialization, memory
conservation, and hardware considerations. Please do not
mistake these short sections for a definitive treatise on this
subject. Whole books have been written on optimizing
for a specific CPU, let alone to the wide variety of CPU
families in common use today.

13.6.1 Specialization
The resizable hash table presented in Section 10.4 on
page 200 used an opaque type for the key. This allows
great flexibility, permitting any sort of key to be used,
but it also incurs significant overhead due to the calls via
of pointers to functions. Now, modern hardware uses
sophisticated branch-prediction techniques to minimize

v2024.12.27a

288 CHAPTER 13. PUTTING IT ALL TOGETHER

this overhead, but on the other hand, real-world software
is often larger than can be accommodated even by today’s
large hardware branch-prediction tables. This is especially
the case for calls via pointers, in which case the branch
prediction hardware must record a pointer in addition to
branch-taken/branch-not-taken information.

This overhead can be eliminated by specializing a
hash-table implementation to a given key type and hash
function, for example, by using C++ templates. Doing
so eliminates the ->ht_cmp(), ->ht_gethash(), and
->ht_getkey() function pointers in the ht structure
shown in Listing 10.9 on page 202. It also eliminates the
corresponding calls through these pointers, which could
allow the compiler to inline the resulting fixed functions,
eliminating not only the overhead of the call instruction,
but the argument marshalling as well.
Quick Quiz 13.17: How much do these specializations really
save? Are they really worth it?

All that aside, one of the great benefits of modern
hardware compared to that available when I first started
learning to program back in the early 1970s is that much
less specialization is required. This allows much greater
productivity than was possible back in the days of four-
kilobyte address spaces.

13.6.2 Bits and Bytes
The hash tables discussed in this chapter made almost no
attempt to conserve memory. For example, the ->ht_
idx field in the ht structure in Listing 10.9 on page 202
always has a value of either zero or one, yet takes up
a full 32 bits of memory. It could be eliminated, for
example, by stealing a bit from the ->ht_resize_key
field. This works because the ->ht_resize_key field
is large enough to address every byte of memory and
the ht_bucket structure is more than one byte long, so
that the ->ht_resize_key field must have several bits
to spare.

This sort of bit-packing trick is frequently used in
data structures that are highly replicated, as is the page
structure in the Linux kernel. However, the resizable
hash table’s ht structure is not all that highly replicated.
It is instead the ht_bucket structures we should focus
on. There are two major opportunities for shrinking the
ht_bucket structure: (1) Placing the ->htb_lock field
in a low-order bit of one of the ->htb_head pointers and
(2) Reducing the number of pointers required.

The first opportunity might make use of bit-spinlocks
in the Linux kernel, which are provided by the include/

linux/bit_spinlock.h header file. These are used in
space-critical data structures in the Linux kernel, but are
not without their disadvantages:

1. They are significantly slower than the traditional
spinlock primitives.

2. They cannot participate in the lockdep deadlock
detection tooling in the Linux kernel [Cor06a].

3. They do not record lock ownership, further compli-
cating debugging.

4. They do not participate in priority boosting in -rt
kernels, which means that preemption must be dis-
abled when holding bit spinlocks, which can degrade
real-time latency.

Despite these disadvantages, bit-spinlocks are extremely
useful when memory is at a premium.

One aspect of the second opportunity was covered in
Section 10.4.4 on page 207, which presented resizable hash
tables that require only one set of bucket-list pointers in
place of the pair of sets required by the resizable hash table
presented in Section 10.4 on page 200. Another approach
would be to use singly linked bucket lists in place of the
doubly linked lists used in this chapter. One downside of
this approach is that deletion would then require additional
overhead, either by marking the outgoing pointer for later
removal or by searching the bucket list for the element
being deleted.

In short, there is a tradeoff between minimal memory
overhead on the one hand, and performance and simplicity
on the other. Fortunately, the relatively large memories
available on modern systems have allowed us to priori-
tize performance and simplicity over memory overhead.
However, even though the year 2022’s pocket-sized smart-
phones sport many gigabytes of memory and its mid-range
servers sport terabytes, it is sometimes necessary to take
extreme measures to reduce memory overhead.

13.6.3 Hardware Considerations
Modern computers typically move data between CPUs
and main memory in fixed-sized blocks that range in size
from 32 bytes to 256 bytes. These blocks are called cache
lines, and are extremely important to high performance
and scalability, as was discussed in Section 3.2. One
timeworn way to kill both performance and scalability is
to place incompatible variables into the same cacheline.
For example, suppose that a resizable hash table data

v2024.12.27a

13.6. MICRO-OPTIMIZATION 289

Listing 13.11: Alignment for 64-Byte Cache Lines
1 struct hash_elem {
2 struct ht_elem e;
3 long __attribute__ ((aligned(64))) counter;
4 };

element had the ht_elem structure in the same cacheline
as a frequently incremented counter. The frequent incre-
menting would cause the cacheline to be present at the
CPU doing the incrementing, but nowhere else. If other
CPUs attempted to traverse the hash bucket list containing
that element, they would incur expensive cache misses,
degrading both performance and scalability.

One way to solve this problem on systems with 64-
byte cache line is shown in Listing 13.11. Here GCC’s
aligned attribute is used to force the ->counter and the
ht_elem structure into separate cache lines. This would
allow CPUs to traverse the hash bucket list at full speed
despite the frequent incrementing.

Of course, this raises the question “How did we
know that cache lines are 64 bytes in size?” On a
Linux system, this information may be obtained from
the /sys/devices/system/cpu/cpu*/cache/ direc-
tories, and it is even possible to make the installation
process rebuild the application to accommodate the sys-
tem’s hardware structure. However, this would be more
difficult if you wanted your application to also run on a
variety of environments, including non-Linux systems.
Furthermore, even if you were content to run only on
Linux, such a self-modifying installation poses validation
challenges. For example, systems with 32-byte cachelines
might work well, but performance might suffer on systems
with 64-byte cachelines due to false sharing.

Fortunately, there are some rules of thumb that work
reasonably well in practice, which were gathered into a
1995 paper [GKPS95].8 The first group of rules involve
rearranging structures to accommodate cache geometry:

1. Place read-mostly data far from frequently updated
data. For example, place read-mostly data at the
beginning of the structure and frequently updated
data at the end. Place data that is rarely accessed in
between.

2. If the structure has groups of fields such that each
group is updated by an independent code path, sep-
arate these groups from each other. Again, it can
be helpful to place rarely accessed data between the

8 A number of these rules are paraphrased and expanded on here
with permission from Orran Krieger.

groups. In some cases, it might also make sense
to place each such group into a separate structure
referenced by the original structure.

3. Where possible, associate update-mostly data with
a CPU, thread, or task. We saw several very effec-
tive examples of this rule of thumb in the counter
implementations in Chapter 5.

4. Going one step further, partition your data on a per-
CPU, per-thread, or per-task basis, as was discussed
in Chapter 8.

There has been some work towards automated trace-
based rearrangement of structure fields [GDZE10]. This
work might well ease one of the more painstaking tasks
required to get excellent performance and scalability from
multithreaded software.

An additional set of rules of thumb deal with locks:

1. Given a heavily contended lock protecting data that
is frequently modified, take one of the following
approaches:

(a) Place the lock in a different cacheline than the
data that it protects.

(b) Use a lock that is adapted for high contention,
such as a queued lock.

(c) Redesign to reduce lock contention. (This
approach is best, but is not always trivial.)

2. Place uncontended locks into the same cache line
as the data that they protect. This approach means
that the cache miss that brings the lock to the current
CPU also brings its data.

3. Protect read-mostly data with hazard pointers, RCU,
or, for long-duration critical sections, reader-writer
locks.

Of course, these are rules of thumb rather than absolute
rules. Some experimentation is required to work out
which are most applicable to a given situation.

v2024.12.27a

290 CHAPTER 13. PUTTING IT ALL TOGETHER

v2024.12.27a

If a little knowledge is a dangerous thing, just think

what you could do with a lot of knowledge!

UnknownChapter 14

Advanced Synchronization

This chapter covers synchronization techniques used for
lockless algorithms and parallel real-time systems.

Although lockless algorithms can be quite helpful when
faced with extreme requirements, they are no panacea.
For example, as noted at the end of Chapter 5, you should
thoroughly apply partitioning, batching, and well-tested
packaged weak APIs (see Chapters 8 and 9) before even
thinking about lockless algorithms.

But after doing all that, you still might find yourself
needing the advanced techniques described in this chap-
ter. To that end, Section 14.1 summarizes techniques
used thus far for avoiding locks and Section 14.2 gives a
brief overview of non-blocking synchronization. Memory
ordering is also quite important, but it warrants its own
chapter, namely Chapter 15.

The second form of advanced synchronization pro-
vides the stronger forward-progress guarantees needed
for parallel real-time computing, which is the topic of
Section 14.3.

14.1 Avoiding Locks

We are confronted with insurmountable

opportunities.

Walt Kelly

Although locking is the workhorse of parallelism in pro-
duction, in many situations performance, scalability, and
real-time response can all be greatly improved through use
of lockless techniques. A particularly impressive example
of such a lockless technique is the statistical counters
described in Section 5.2, which avoids not only locks,
but also read-modify-write atomic operations, memory
barriers, and even cache misses for counter increments.
Other examples we have covered include:

1. The fastpaths through a number of other counting
algorithms in Chapter 5.

2. The fastpath through resource allocator caches in
Section 6.4.3.

3. The maze solver in Section 6.5.

4. The data-ownership techniques in Chapter 8.

5. The reference-counting, hazard-pointer, and RCU
techniques in Chapter 9.

6. The lookup code paths in Chapter 10.

7. Many of the techniques in Chapter 13.

In short, lockless techniques are quite useful and
are heavily used. However, it is best if lockless tech-
niques are hidden behind a well-defined API, such
as the inc_count(), memblock_alloc(), rcu_read_
lock(), and so on. The reason for this is that undisci-
plined use of lockless techniques is a good way to create
difficult bugs. If you believe that finding and fixing
such bugs is easier than avoiding them, please re-read
Chapters 11 and 12.

14.2 Non-Blocking Synchronization

Never worry about theory as long as the machinery

does what it’s supposed to do.

Robert A. Heinlein

The term non-blocking synchronization (NBS) [Her90]
describes eight classes of linearizable algorithms with
differing forward-progress guarantees [ACHS13], which
are as follows:

291

v2024.12.27a

292 CHAPTER 14. ADVANCED SYNCHRONIZATION

1. Bounded population-oblivious wait-free synchroniza-
tion: Every thread will make progress within a spe-
cific finite period of time, where this period of time is
independent of the number of threads [HS08]. This
level is widely considered to be even less achievable
than bounded wait-free synchronization.

2. Bounded wait-free synchronization: Every thread
will make progress within a specific finite period
of time [Her91]. This level is widely considered to
be unachievable, which might be why Alitarh et al.
omitted it [ACHS13].

3. Wait-free synchronization: Every thread will make
progress in finite time [Her93].

4. Lock-free synchronization: At least one thread will
make progress in finite time [Her93].

5. Obstruction-free synchronization: Every thread will
make progress in finite time in the absence of con-
tention [HLM03].

6. Clash-free synchronization: At least one thread will
make progress in finite time in the absence of con-
tention [ACHS13].

7. Starvation-free synchronization: Every thread will
make progress in finite time in the absence of fail-
ures [ACHS13].

8. Deadlock-free synchronization: At least one thread
will make progress in finite time in the absence of
failures [ACHS13].

NBS class 1 was formulated some time before 2015,
classes 2, 3, and 4 were first formulated in the early 1990s,
class 5 was first formulated in the early 2000s, and class 6
was first formulated in 2013. The final two classes have
seen informal use for a great many decades, but were
reformulated in 2013.

Quick Quiz 14.1: Given that there will always be a sharply
limited number of CPUs available, is population obliviousness
really useful?

In theory, any parallel algorithm can be cast into wait-
free form, but there are a relatively small subset of NBS
algorithms that are in common use. A few of these are
listed in the following section.

14.2.1 Simple NBS
Perhaps the simplest NBS algorithm is atomic update of
an integer counter using fetch-and-add (atomic_add_
return()) primitives. This section lists a few additional
commonly used NBS algorithms in roughly increasing
order of complexity.

14.2.1.1 NBS Sets

One simple NBS algorithm implements a set of integers in
an array. Here the array index indicates a value that might
be a member of the set and the array element indicates
whether or not that value actually is a set member. The
linearizability criterion for NBS algorithms requires that
reads from and updates to the array either use atomic
instructions or be accompanied by memory barriers, but
in the not-uncommon case where linearizability is not
important, simple volatile loads and stores suffice, for
example, using READ_ONCE() and WRITE_ONCE().

An NBS set may also be implemented using a bit-
map, where each value that might be a member of the
set corresponds to one bit. Reads and updates must
normally be carried out via atomic bit-manipulation in-
structions, although compare-and-swap (cmpxchg() or
CAS) instructions can also be used.

14.2.1.2 NBS Counters

The statistical counters algorithm discussed in Section 5.2
can be considered to be bounded-wait-free, but only by us-
ing a cute definitional trick in which the sum is considered
to be approximate rather than exact.1 Given sufficiently
wide error bounds that are a function of the length of time
that the read_count() function takes to sum the coun-
ters, it is not possible to prove that any non-linearizable
behavior occurred. This definitely (if a bit artificially)
classifies the statistical-counters algorithm as bounded
wait-free. This algorithm is probably the most heavily
used NBS algorithm in the Linux kernel.

14.2.1.3 Half-NBS Queue

Another common NBS algorithm is the atomic queue
where elements are enqueued using an atomic exchange
instruction [MS98b], followed by a store into the ->next
pointer of the new element’s predecessor, as shown in
Listing 14.1, which shows the userspace-RCU library
implementation [Des09b]. Line 9 updates the tail pointer

1 Citation needed. I heard of this trick verbally from Mark Moir.

v2024.12.27a

14.2. NON-BLOCKING SYNCHRONIZATION 293

Listing 14.1: NBS Enqueue Algorithm
1 static inline bool
2 ___cds_wfcq_append(struct cds_wfcq_head *head,
3 struct cds_wfcq_tail *tail,
4 struct cds_wfcq_node *new_head,
5 struct cds_wfcq_node *new_tail)
6 {
7 struct cds_wfcq_node *old_tail;
8
9 old_tail = uatomic_xchg(&tail->p, new_tail);

10 CMM_STORE_SHARED(old_tail->next, new_head);
11 return old_tail != &head->node;
12 }
13
14 static inline bool
15 _cds_wfcq_enqueue(struct cds_wfcq_head *head,
16 struct cds_wfcq_tail *tail,
17 struct cds_wfcq_node *new_tail)
18 {
19 return ___cds_wfcq_append(head, tail,
20 new_tail, new_tail);
21 }

to reference the new element while returning a reference
to its predecessor, which is stored in local variable old_
tail. Line 10 then updates the predecessor’s ->next
pointer to reference the newly added element, and finally
line 11 returns an indication as to whether or not the queue
was initially empty.

Although mutual exclusion is required to dequeue a
single element (so that dequeue is blocking), it is possible
to carry out a non-blocking removal of the entire contents
of the queue. What is not possible is to dequeue any
given element in a non-blocking manner: The enqueuer
might have failed between lines 9 and 10 of the listing,
so that the element in question is only partially enqueued.
This results in a half-NBS algorithm where enqueues
are NBS but dequeues are blocking. This algorithm is
nevertheless heavily used in practice, in part because most
production software is not required to tolerate arbitrary
fail-stop errors.

Quick Quiz 14.2: Wait! In order to dequeue all elements,
both the ->head and ->tail pointers must be changed, which
cannot be done atomically on typical computer systems. So
how is this supposed to work???

14.2.1.4 NBS Stack

Listing 14.2 shows the LIFO push algorithm, which boasts
lock-free push and bounded wait-free pop (lifo-push.c),
forming an NBS stack. The origins of this algorithm are
unknown, but it was referred to in a patent granted in
1975 [BS75]. This patent was filed in 1973, a few months
before your editor saw his first computer, which had but
one CPU.

Listing 14.2: NBS Stack Algorithm
1 struct node_t {
2 value_t val;
3 struct node_t *next;
4 };
5
6 // LIFO list structure
7 struct node_t* top;
8
9 void list_push(value_t v)

10 {
11 struct node_t *newnode = malloc(sizeof(*newnode));
12 struct node_t *oldtop;
13
14 newnode->val = v;
15 oldtop = READ_ONCE(top);
16 do {
17 newnode->next = oldtop;
18 oldtop = cmpxchg(&top, newnode->next, newnode);
19 } while (newnode->next != oldtop);
20 }
21
22
23 void list_pop_all(void (foo)(struct node_t *p))
24 {
25 struct node_t *p = xchg(&top, NULL);
26
27 while (p) {
28 struct node_t *next = p->next;
29
30 foo(p);
31 free(p);
32 p = next;
33 }
34 }

Lines 1–4 show the node_t structure, which contains
an arbitrary value and a pointer to the next structure on
the stack and line 7 shows the top-of-stack pointer.

The list_push() function spans lines 9–20. Line 11
allocates a new node and line 14 initializes it. Line 17
initializes the newly allocated node’s ->next pointer, and
line 18 attempts to push it on the stack. If line 19 detects
cmpxchg() failure, another pass through the loop retries.
Otherwise, the new node has been successfully pushed,
and this function returns to its caller. Note that line 19
resolves races in which two concurrent instances of list_
push() attempt to push onto the stack. The cmpxchg()
will succeed for one and fail for the other, causing the
other to retry, thereby selecting an arbitrary order for the
two node on the stack.

The list_pop_all() function spans lines 23–34. The
xchg() statement on line 25 atomically removes all nodes
on the stack, placing the head of the resulting list in local
variable p and setting top to NULL. This atomic operation
serializes concurrent calls to list_pop_all(): One of
them will get the list, and the other a NULL pointer, at
least assuming that there were no concurrent calls to
list_push().

v2024.12.27a

294 CHAPTER 14. ADVANCED SYNCHRONIZATION

An instance of list_pop_all() that obtains a non-
empty list in p processes this list in the loop spanning
lines 27–33. Line 28 prefetches the ->next pointer,
line 30 invokes the function referenced by foo() on the
current node, line 31 frees the current node, and line 32
sets up p for the next pass through the loop.

But suppose that a pair of list_push() instances run
concurrently with a list_pop_all() with a list initially
containing a single Node 𝐴. Here is one way that this
scenario might play out:

1. The first list_push() instance pushes a new
Node 𝐵, executing through line 17, having just stored
a pointer to Node 𝐴 into Node 𝐵’s ->next pointer.

2. The list_pop_all() instance runs to completion,
setting top to NULL and freeing Node 𝐴.

3. The second list_push() instance runs to comple-
tion, pushing a new Node 𝐶, but happens to allocate
the memory that used to belong to Node 𝐴.

4. The first list_push() instance executes the
cmpxchg() on line 18. Because new Node 𝐶

has the same address as the newly freed Node 𝐴,
this cmpxchg() succeeds and this list_push()
instance runs to completion.

Note that both pushes and the popall all ran successfully
despite the reuse of Node 𝐴’s memory. This is an unusual
property: Most data structures require protection against
what is often called the ABA problem.

But this property holds only for algorithm written in
assembly language. The sad fact is that most languages
(including C and C++) do not support pointers to lifetime-
ended objects, such as the pointer to the old Node 𝐴

contained in Node 𝐵’s ->next pointer. In fact, compilers
are within their rights to assume that if two pointers
(call them p and q) were returned from two different
calls to malloc(), then those pointers must not be equal.
Real compilers really will generate the constant false in
response to a p==q comparison. A pointer to an object that
has been freed, but whose memory has been reallocated
for a compatibly typed object is termed a zombie pointer.

Many concurrent applications avoid this problem by
carefully hiding the memory allocator from the compiler,
thus preventing the compiler from making inappropriate
assumptions. This obfuscatory approach currently works
in practice, but might well one day fall victim to increas-
ingly aggressive optimizers. There is work underway in
both the C and C++ standards committees to address this

problem [MMS19, MMM+20]. In the meantime, please
exercise great care when coding ABA-tolerant algorithms.

Quick Quiz 14.3: So why not ditch antique languages like C
and C++ for something more modern?

14.2.2 Applicability of NBS Benefits
The most heavily cited NBS benefits stem from its forward-
progress guarantees, its tolerance of fail-stop bugs, and
from its linearizability. Each of these is discussed in one
of the following sections.

14.2.2.1 NBS Forward Progress Guarantees

NBS’s forward-progress guarantees have caused many to
suggest its use in real-time systems, and NBS algorithms
are in fact used in a great many such systems. However, it
is important to note that forward-progress guarantees are
largely orthogonal to those that form the basis of real-time
programming:

1. Real-time forward-progress guarantees usually have
some definite time associated with them, for example,
“scheduling latency must be less than 100 microsec-
onds.” In contrast, the most popular forms of NBS
only guarantees that progress will be made in finite
time, with no definite bound.

2. Real-time forward-progress guarantees are often
probabilistic, as in the soft-real-time guarantee that
“at least 99.9 % of the time, scheduling latency must
be less than 100 microseconds.” In contrast, many
of NBS’s forward-progress guarantees are uncondi-
tional.

3. Real-time forward-progress guarantees are often con-
ditioned on environmental constraints, for example,
only being honored: (1) For the highest-priority
tasks, (2) When each CPU spends at least a certain
fraction of its time idle, and (3) When I/O rates
are below some specified maximum. In contrast,
NBS’s forward-progress guarantees are often uncon-
ditional, although recent NBS work accommodates
conditional guarantees [ACHS13].

4. An important component of a real-time program’s en-
vironment is the scheduler. NBS algorithms assume
a worst-case demonic scheduler, though for whatever
reason, not a scheduler so demonic that it simply
refuses to ever run the application housing the NBS

v2024.12.27a

14.2. NON-BLOCKING SYNCHRONIZATION 295

algorithm. In contrast, real-time systems assume that
the scheduler is doing its level best to satisfy any
scheduling constraints it knows about, and, in the
absence of such constraints, its level best to honor pro-
cess priorities and to provide fair scheduling to pro-
cesses of the same priority. Non-demonic schedulers
allow real-time programs to use simpler algorithms
than those required for NBS [ACHS13, Bra11].

5. NBS forward-progress guarantee classes assume that
a number of underlying operations are lock-free or
even wait-free, when in fact these operations are
blocking on common-case computer systems.

6. NBS forward-progress guarantees are often achieved
by subdividing operations. For example, in order
to avoid a blocking dequeue operation, an NBS
algorithm might substitute a non-blocking polling
operation. This is fine in theory, but not helpful
in practice to real-world programs that require an
element to propagate through the queue in a timely
fashion.

7. Real-time forward-progress guarantees usually apply
only in the absence of software bugs. In contrast,
many classes of NBS guarantees apply even in the
face of fail-stop bugs.

8. NBS forward-progress guarantee classes imply lin-
earizability. In contrast, real-time forward progress
guarantees are often independent of ordering con-
straints such as linearizability.

Quick Quiz 14.4: Why does anyone care about demonic
schedulers?

To reiterate, despite these differences, a number of NBS
algorithms are extremely useful in real-time programs.

14.2.2.2 NBS Underlying Operations

An NBS algorithm can be truly non-blocking only if the
underlying operations that it uses are also non-blocking.
In a surprising number of cases, this is not the case in
practice.

For example, non-blocking algorithms often allocate
memory. In theory, this is fine, given the existence of
lock-free memory allocators [Mic04b]. But in practice,
most environments must eventually obtain memory from
operating-system kernels, which commonly use locking.
Therefore, unless all the memory that will ever be needed
is somehow preallocated, a “non-blocking” algorithm that

allocates memory will not be non-blocking when running
on common-case real-world computer systems.

This same point clearly also applies to algorithms
performing I/O operations or otherwise interacting with
their environment.

Perhaps surprisingly, this point also applies to ostensi-
bly non-blocking algorithms that do only plain loads and
stores, such as the counters discussed in Section 14.2.1.2.
And at first glance, those loads and stores that can be com-
piled into single load and store instructions, respectively,
would seem to be not just non-blocking, but bounded
population-oblivious wait free.

Except that load and store instructions are not necessar-
ily either fast or deterministic. For example, as noted in
Chapter 3, cache misses can consume thousands of CPU
cycles. Worse yet, the measured cache-miss latencies can
be a function of the number of CPUs, as illustrated in Fig-
ure 5.1. It is only reasonable to assume that these latencies
also depend on the details of the system’s interconnect.
In addition, given that hardware vendors generally do not
publish upper bounds for cache-miss latencies, it seems
brave to assume that memory-reference instructions are
in fact wait-free in modern computer systems. And the
antique systems for which such bounds are available suffer
from profound overall slowness.

Furthermore, hardware is not the only source of slow-
ness for memory-reference instructions. For example,
when running on typical computer systems, both loads
and stores can result in page faults. Which cause in-kernel
page-fault handlers to be invoked. Which might acquire
locks, or even do I/O, potentially even using something
like network file system (NFS). All of which are most
emphatically blocking operations.

Nor are page faults the only kernel-induced hazard.
A given CPU might be interrupted at any time, and the
interrupt handler might run for some time. During this
time, the user-mode ostensibly non-blocking algorithm
will not be running at all. This situation raises interesting
questions about the forward-progress guarantees provided
by system calls relying on interrupts, for example, the
membarrier() system call.

Things do look bleak, but the non-blocking nature of
such algorithms can be at least partially redeemed using a
number of approaches:

1. Run on bare metal, with paging disabled. If you are
both brave and confident that you can write code that
is free of wild-pointer bugs, this approach might be
for you.

v2024.12.27a

296 CHAPTER 14. ADVANCED SYNCHRONIZATION

2. Run on a non-blocking operating-system ker-
nel [GC96]. Such kernels are quite rare, in part
because they have traditionally completely failed to
provide the hoped-for performance and scalability
advantages over lock-based kernels. But perhaps you
should write one.

3. Use facilities such as mlockall() to avoid page
faults, while also ensuring that your program preal-
locates all the memory it will ever need at boot time.
This can work well, but at the expense of severe
common-case underutilization of memory. In envi-
ronments that are cost-constrained or power-limited,
this approach is not likely to be feasible.

4. Use facilities such as the Linux kernel’s NO_HZ_
FULL tickless mode [Cor13]. In recent versions of
the Linux kernel, this mode directs interrupts away
from a designated set of CPUs. However, this can
sharply limit throughput for applications that are I/O
bound during even part of their operation.

Given these considerations, it is no surprise that non-
blocking synchronization is far more important in theory
than it is in practice.

14.2.2.3 NBS Subdivided Operations

One common trick that provides a given algorithm a loftier
place on the NBS ranking is to replace blocking operations
with a polling API. For example, instead of having a
reliable dequeue operation that might be merely lock-free
or even blocking, instead provide a dequeue operation
that will spuriously fail in a wait-free manner rather than
exhibiting dreaded lock-free or blocking behaviors.

This can work well in theory, but a common effect
in practice is to merely move the lock-free or blocking
behavior out of that specific algorithm and into the hapless
code making use of that algorithm. In such cases, not only
has nothing has been gained by this trick, but this trick has
increased the complexity of all users of this algorithm.

With concurrent algorithms as elsewhere, maximizing
a specific metric is no substitute for thinking carefully
about the needs of one’s users.

14.2.2.4 NBS Fail-Stop Tolerance

Of the classes of NBS algorithms, wait-free synchroniza-
tion (bounded or otherwise), lock-free synchronization,
obstruction-free synchronization, and clash-free synchro-
nization guarantee forward progress even in the presence

of fail-stop bugs. An example fail-stop bug might cause
some thread to be preempted indefinitely. As we will see,
this fail-stop-tolerant property can be useful, but the fact
is that composing a set of fail-stop-tolerant mechanisms
does not necessarily result in a fail-stop-tolerant system.
To see this, consider a system made up of a series of
wait-free queues, where an element is removed from one
queue in the series, processed, and then added to the next
queue.

If a thread is preempted in the midst of a queuing
operation, in theory all is well because the wait-free
nature of the queue will guarantee forward progress. But
in practice, the element being processed is lost because
the fail-stop-tolerant nature of the wait-free queues does
not extend to the code using those queues.

Nevertheless, there are a few applications where NBS’s
rather limited fail-stop-tolerance is useful. For example,
in some network-based or web applications, a fail-stop
event will eventually result in a retransmission, which
will restart any work that was lost due to the fail-stop
event. Systems running such applications can therefore
be heavily loaded, even to the point where the scheduler
can no longer provide any reasonable fairness guarantee.
In constrast, if a thread fail-stops while holding a lock,
the application might need to be restarted. Nevertheless,
NBS is not a panacea even within this restricted area, due
to the possibility of spurious retransmissions due to pure
scheduling delays. In some cases, it may be more efficient
to reduce the load to avoid queueing delays, which will
also improve the scheduler’s ability to provide fair access,
reducing or even eliminating the fail-stop events, thus
reducing the number of retry operations, in turn further
reducing the load.

14.2.2.5 NBS Linearizability

It is important to note that linearizability can be quite use-
ful, especially when analyzing concurrent code made up
of strict locking and fully ordered atomic operations.2 Fur-
thermore, this handling of fully ordered atomic operations
automatically covers simple NBS algorithms.

However, the linearization points of a complex NBS
algorithms are often buried deep within that algorithm,
and thus not visible to users of a library function im-
plementing a part of such an algorithm. Therefore, any
claims that users benefit from the linearizability properties
of complex NBS algorithms should be regarded with deep
suspicion [HKLP12].

2 For example, the Linux kernel’s value-returning atomic operations.

v2024.12.27a

14.2. NON-BLOCKING SYNCHRONIZATION 297

It is sometimes asserted that linearizability is necessary
for developers to produce proofs of correctness for their
concurrent code. However, such proofs are the exception
rather than the rule, and modern developers who do
produce proofs often use modern proof techniques that do
not depend on linearizability. Furthermore, developers
frequently use modern proof techniques that do not require
a full specification, given that developers often learn their
specification after the fact, one bug at a time. A few such
proof techniques were discussed in Chapter 12.3

It is often asserted that linearizability maps well to se-
quential specifications, which are said to be more natural
than are concurrent specifications [RR20]. But this asser-
tion fails to account for our highly concurrent objective
universe. This universe can only be expected to select for
ability to cope with concurrency, especially for those par-
ticipating in team sports or overseeing small children. In
addition, given that the teaching of sequential computing
is still believed to be somewhat of a black art [PBCE20],
it is reasonable to expect that teaching of concurrent com-
puting is in a similar state of disarray. Therefore, focusing
on only one proof technique is unlikely to be a good way
forward.

Again, please understand that linearizability is quite
useful in many situations. Then again, so is that venerable
tool, the hammer. But there comes a point in the field of
computing where one should put down the hammer and
pick up a keyboard. Similarly, it appears that there are
times when linearizability is not the best tool for the job.

To their credit, there are some linearizability advocates
who are aware of some of its shortcomings [RR20]. There
are also proposals to extend linearizability, for example,
interval-linearizability, which is intended to handle the
common case of operations that require non-zero time to
complete [CnRR18]. It remains to be seen whether these
proposals will result in theories able to handle modern
concurrent software artifacts, especially given that several
of the proof techniques discussed in Chapter 12 already
handle many modern concurrent software artifacts.

14.2.3 NBS Discussion
It is possible to create fully non-blocking queues [MS96],
however, such queues are much more complex than the

3 A memorable verbal discussion with an advocate of linearizability
resulted in question: “So the reason linearizability is important is to
rescue 1980s proof techniques?” The advocate immediately replied in the
affirmative, then spent some time disparaging a particular modern proof
technique. Oddly enough, that technique was one of those successfully
applied to Linux-kernel RCU.

half-NBS algorithm outlined above. The lesson here
is to carefully consider your actual requirements. Re-
laxing irrelevant requirements can often result in great
improvements in simplicity, performance, and scalability.

Recent research points to another important way to
relax requirements. It turns out that systems providing
fair scheduling can enjoy most of the benefits of wait-
free synchronization even when running algorithms that
provide only non-blocking synchronization, both in the-
ory [ACHS13] and in practice [AB13]. Because most
schedulers used in production do in fact provide fairness,
the more-complex algorithms providing wait-free syn-
chronization usually provide no practical advantages over
simpler and faster non-wait-free algorithms.

Interestingly enough, fair scheduling is but one benefi-
cial constraint that is often respected in practice. Other sets
of constraints can permit blocking algorithms to achieve
deterministic real-time response. For example, given:
(1) Fair locks granted in FIFO order within a given pri-
ority level, (2) Priority inversion avoidance (for example,
priority inheritance [TS95, WTS96] or priority ceiling),
(3) A bounded number of threads, (4) Bounded critical
section durations, (5) Bounded load, and (6) Absence of
fail-stop bugs, lock-based applications can provide deter-
ministic response times [Bra11, SM04a]. This approach
of course blurs the distinction between blocking and wait-
free synchronization, which is all to the good. Hopefully
theoretical frameworks will continue to improve their
ability to describe software actually used in practice.

Those who feel that theory should lead the way are
referred to the inimitable Peter Denning, who said of
operating systems: “Theory follows practice” [Den15],
or to the eminent Tony Hoare, who said of the whole of
engineering: “In all branches of engineering science, the
engineering starts before the science; indeed, without the
early products of engineering, there would be nothing
for the scientist to study!” [Mor07]. Of course, once
an appropriate body of theory becomes available, it is
wise to make use of it. However, note well that the first
appropriate body of theory is often one thing and the first
proposed body of theory quite another.

Quick Quiz 14.5: It seems like the various members of the
NBS hierarchy are rather useless. So why bother with them at
all???

Proponents of NBS algorithms sometimes call out real-
time computing as an important NBS beneficiary. The
next section looks more deeply at the forward-progress
needs of real-time systems.

v2024.12.27a

298 CHAPTER 14. ADVANCED SYNCHRONIZATION

14.3 Parallel Real-Time Computing

One always has time enough if one applies it well.

Johann Wolfgang von Göthe

An important emerging area in computing is that of paral-
lel real-time computing. Section 14.3.1 looks at a number
of definitions of “real-time computing”, moving beyond
the usual sound bites to more meaningful criteria. Sec-
tion 14.3.2 surveys the sorts of applications that need
real-time response. Section 14.3.3 notes that parallel real-
time computing is upon us, and discusses when and why
parallel real-time computing can be useful. Section 14.3.4
gives a brief overview of how parallel real-time systems
may be implemented, with Sections 14.3.5 and 14.3.6 fo-
cusing on operating systems and applications, respectively.
Finally, Section 14.3.7 outlines how to decide whether or
not your application needs real-time facilities.

14.3.1 What is Real-Time Computing?
One traditional way of classifying real-time computing
is into the categories of hard real time and soft real time,
where the macho hard real-time applications never miss
their deadlines, but the wimpy soft real-time applications
miss their deadlines quite often.

14.3.1.1 Soft Real Time

It should be easy to see problems with this definition
of soft real time. For one thing, by this definition, any
piece of software could be said to be a soft real-time
application: “My application computes million-point
Fourier transforms in half a picosecond.” “No way!!! The
clock cycle on this system is more than three hundred
picoseconds!” “Ah, but it is a soft real-time application!”
If the term “soft real time” is to be of any use whatsoever,
some limits are clearly required.

We might therefore say that a given soft real-time
application must meet its response-time requirements at
least some fraction of the time, for example, we might say
that it must execute in less than 20 microseconds 99.9 %
of the time.

This of course raises the question of what is to be
done when the application fails to meet its response-time
requirements. The answer varies with the application,
but one possibility is that the system being controlled
has sufficient stability and inertia to render harmless the
occasional late control action. Another possibility is that

Figure 14.1: Real-Time Response, Meet Hammer

the application has two ways of computing the result, a fast
and deterministic but inaccurate method on the one hand
and a very accurate method with unpredictable compute
time on the other. One reasonable approach would be to
start both methods in parallel, and if the accurate method
fails to finish in time, kill it and use the answer from the
fast but inaccurate method. One candidate for the fast but
inaccurate method is to take no control action during the
current time period, and another candidate is to take the
same control action as was taken during the preceding
time period.

In short, it does not make sense to talk about soft real
time without some measure of exactly how soft it is.

14.3.1.2 Hard Real Time

In contrast, the definition of hard real time is quite definite.
After all, a given system either always meets its deadlines
or it doesn’t.

Unfortunately, a strict application of this definition
would mean that there can never be any hard real-time
systems. The reason for this is fancifully depicted in
Figure 14.1. And although you can always construct
a more robust system, perhaps with redundancy, your
adversary can always get a bigger hammer. But don’t take
my word for it: Ask the dinosaurs.

Then again, perhaps it is unfair to blame the software
for what is clearly not just a hardware problem, but a bona
fide big-iron hardware problem at that.4 This suggests
that we define hard real-time software as software that

4 Or, given modern hammers, a big-steel problem.

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 299

Figure 14.2: Real-Time Response: Hardware Matters

will always meet its deadlines, but only in the absence of
a hardware failure. Unfortunately, failure is not always an
option, as fancifully depicted in Figure 14.2. We simply
cannot expect the poor gentleman depicted in that figure
to be reassured our saying “Rest assured that if a missed
deadline results in your tragic death, it most certainly will
not have been due to a software problem!” Hard real-time
response is a property of the entire system, not just of the
software.

But if we cannot demand perfection, perhaps we can
make do with notification, similar to the soft real-time
approach noted earlier. Then if the Life-a-Tron in Fig-
ure 14.2 is about to miss its deadline, it can alert the
hospital staff.

Unfortunately, this approach has the trivial solution
fancifully depicted in Figure 14.3. A system that always
immediately issues a notification that it won’t be able
to meet its deadline complies with the letter of the law,
but is completely useless. There clearly must also be
a requirement that the system meets its deadline some
fraction of the time, or perhaps that it be prohibited from
missing its deadlines on more than a certain number of
consecutive operations.

We clearly cannot take a sound-bite approach to either
hard or soft real time. The next section therefore takes a
more real-world approach.

14.3.1.3 Real-World Real Time

Although sentences like “Hard real-time systems always
meet their deadlines!” are catchy and easy to memorize,

something else is needed for real-world real-time systems.
Although the resulting specifications are harder to memo-
rize, they can simplify construction of a real-time system
by imposing constraints on the environment, the workload,
and the real-time application itself.

Environmental Constraints Constraints on the envi-
ronment address the objection to open-ended promises of
response times implied by “hard real time”. These con-
straints might specify permissible operating temperatures,
air quality, levels and types of electromagnetic radiation,
and, to Figure 14.1’s point, levels of shock and vibration.

Of course, some constraints are easier to meet than
others. Any number of people have learned the hard way
that commodity computer components often refuse to
operate at sub-freezing temperatures, which suggests a set
of climate-control requirements.

An old college friend once had the challenge of op-
erating a real-time system in an atmosphere featuring
some rather aggressive chlorine compounds, a challenge
that he wisely handed off to his colleagues designing the
hardware. In effect, my colleague imposed an atmospheric-
composition constraint on the environment immediately
surrounding the computer, a constraint that the hardware
designers met through use of physical seals.

Another old college friend worked on a computer-
controlled system that sputtered ingots of titanium using
an industrial-strength arc in a vacuum. From time to time,
the arc would decide that it was bored with its path through
the ingot of titanium and choose a far shorter and more en-
tertaining path to ground. As we all learned in our physics
classes, a sudden shift in the flow of electrons creates an
electromagnetic wave, with larger shifts in larger flows
creating higher-power electromagnetic waves. And in this
case, the resulting electromagnetic pulses were sufficient
to induce a quarter of a volt potential difference in the
leads of a small “rubber ducky” antenna located more than
400 meters away. This meant that nearby conductors expe-
rienced higher voltages, courtesy of the inverse-square law.
This included those conductors making up the computer
controlling the sputtering process. In particular, the volt-
age induced on that computer’s reset line was sufficient to
actually reset the computer, mystifying everyone involved.
This situation was addressed using hardware, including
some elaborate shielding and a fiber-optic network with
the lowest bitrate I have ever heard of, namely 9600 baud.
Less spectacular electromagnetic environments can often
be handled by software through use of error detection and
correction codes. That said, it is important to remember

v2024.12.27a

300 CHAPTER 14. ADVANCED SYNCHRONIZATION

Figure 14.3: Real-Time Response: Notification Insufficient

that although error detection and correction codes can
reduce failure rates, they normally cannot reduce them
all the way down to zero, which can present yet another
obstacle to achieving hard real-time response.

There are also situations where a minimum level of
energy is required, for example, through the power leads
of the system and through the devices through which the
system is to communicate with that portion of the outside
world that is to be monitored or controlled.
Quick Quiz 14.6: But what about battery-powered systems?
They don’t require energy flowing into the system as a whole.

A number of systems are intended to operate in envi-
ronments with impressive levels of shock and vibration,
for example, engine control systems. More strenuous
requirements may be found when we move away from
continuous vibrations to intermittent shocks. For example,
during my undergraduate studies, I encountered an old
Athena ballistics computer, which was designed to con-
tinue operating normally even if a hand grenade went off
nearby.5 And finally, the “black boxes” used in airliners
must continue operating before, during, and after a crash.

Of course, it is possible to make hardware more robust
against environmental shocks and insults. Any number of
ingenious mechanical shock-absorbing devices can reduce
the effects of shock and vibration, multiple layers of shield-
ing can reduce the effects of low-energy electromagnetic
radiation, error-correction coding can reduce the effects
of high-energy radiation, various potting and sealing tech-
niques can reduce the effect of air quality, and any number

5 Decades later, the acceptance tests for some types of computer
systems involve large detonations, and some types of communications
networks must deal with what is delicately termed “ballistic jamming.”

of heating and cooling systems can counter the effects of
temperature. In extreme cases, triple modular redundancy
can reduce the probability that a fault in one part of the
system will result in incorrect behavior from the overall
system. However, all of these methods have one thing in
common: Although they can reduce the probability of
failure, they cannot reduce it to zero.

These environmental challenges are often met via ro-
bust hardware, however, the workload and application
constraints in the next two sections are often handled in
software.

Workload Constraints Just as with people, it is often
possible to prevent a real-time system from meeting its
deadlines by overloading it. For example, if the system is
being interrupted too frequently, it might not have suffi-
cient CPU bandwidth to handle its real-time application.
A hardware solution to this problem might limit the rate
at which interrupts were delivered to the system. Possible
software solutions include disabling interrupts for some
time if they are being received too frequently, resetting the
device generating too-frequent interrupts, or even avoiding
interrupts altogether in favor of polling.

Overloading can also degrade response times due to
queueing effects, so it is not unusual for real-time systems
to overprovision CPU bandwidth, so that a running system
has (say) 80 % idle time. This approach also applies to
storage and networking devices. In some cases, separate
storage and networking hardware might be reserved for
the sole use of high-priority portions of the real-time
application. In short, it is not unusual for this hardware to
be mostly idle, given that response time is more important
than throughput in real-time systems.

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 301

Quick Quiz 14.7: But given the results from queueing theory,
won’t low utilization merely improve the average response
time rather than improving the worst-case response time? And
isn’t worst-case response time all that most real-time systems
really care about?

Of course, maintaining sufficiently low utilization re-
quires great discipline throughout the design and imple-
mentation. There is nothing quite like a little feature creep
to destroy deadlines.

Application Constraints It is easier to provide bounded
response time for some operations than for others. For
example, it is quite common to see response-time specifi-
cations for interrupts and for wake-up operations, but quite
rare for (say) filesystem unmount operations. One reason
for this is that it is quite difficult to bound the amount of
work that a filesystem-unmount operation might need to
do, given that the unmount is required to flush all of that
filesystem’s in-memory data to mass storage.

This means that real-time applications must be confined
to operations for which bounded latencies can reasonably
be provided. Other operations must either be pushed
out into the non-real-time portions of the application or
forgone entirely.

There might also be constraints on the non-real-time
portions of the application. For example, is the non-real-
time application permitted to use the CPUs intended for
the real-time portion? Are there time periods during which
the real-time portion of the application is expected to be
unusually busy, and if so, is the non-real-time portion of
the application permitted to run at all during those times?
Finally, by what amount is the real-time portion of the
application permitted to degrade the throughput of the
non-real-time portion?

Real-World Real-Time Specifications As can be seen
from the preceding sections, a real-world real-time specifi-
cation needs to include constraints on the environment, on
the workload, and on the application itself. In addition, for
the operations that the real-time portion of the application
is permitted to make use of, there must be constraints on
the hardware and software implementing those operations.

For each such operation, these constraints might in-
clude a maximum response time (and possibly also a
minimum response time) and a probability of meeting
that response time. A probability of 100 % indicates that
the corresponding operation must provide hard real-time
service.

In some cases, both the response times and the required
probabilities of meeting them might vary depending on
the parameters to the operation in question. For example,
a network operation over a local LAN would be much
more likely to complete in (say) 100 microseconds than
would that same network operation over a transcontinental
WAN. Furthermore, a network operation over a copper
or fiber LAN might have an extremely high probability
of completing without time-consuming retransmissions,
while that same networking operation over a lossy WiFi
network might have a much higher probability of missing
tight deadlines. Similarly, a read from a tightly coupled
solid-state disk (SSD) could be expected to complete
much more quickly than that same read to an old-style
USB-connected rotating-rust disk drive.6

Some real-time applications pass through different
phases of operation. For example, a real-time system
controlling a plywood lathe that peels a thin sheet of wood
(called “veneer”) from a spinning log must: (1) Load the
log into the lathe, (2) Position the log on the lathe’s chucks
so as to expose the largest cylinder contained within that
log to the blade, (3) Start spinning the log, (4) Continu-
ously vary the knife’s position so as to peel the log into
veneer, (5) Remove the remaining core of the log that is
too small to peel, and (6) Wait for the next log. Each of
these six phases of operation might well have its own set
of deadlines and environmental constraints, for example,
one would expect phase 4’s deadlines to be much more
severe than those of phase 6, as in milliseconds rather than
seconds. One might therefore expect that low-priority
work would be performed in phase 6 rather than in phase 4.
In any case, careful choices of hardware, drivers, and soft-
ware configuration would be required to support phase 4’s
more severe requirements.

A key advantage of this phase-by-phase approach is
that the latency budgets can be broken down, so that
the application’s various components can be developed
independently, each with its own latency budget. Of
course, as with any other kind of budget, there will likely
be the occasional conflict as to which component gets
which fraction of the overall budget, and as with any
other kind of budget, strong leadership and a sense of
shared goals can help to resolve these conflicts in a timely
fashion. And, again as with other kinds of technical
budget, a strong validation effort is required in order to
ensure proper focus on latencies and to give early warning

6 Important safety tip: Worst-case response times from USB devices
can be extremely long. Real-time systems should therefore take care to
place any USB devices well away from critical paths.

v2024.12.27a

302 CHAPTER 14. ADVANCED SYNCHRONIZATION

of latency problems. A successful validation effort will
almost always include a good test suite, which might be
unsatisfying to the theorists, but has the virtue of helping
to get the job done. As a point of fact, as of early 2021,
most real-world real-time system use an acceptance test
rather than formal proofs.

However, the widespread use of test suites to validate
real-time systems does have a very real disadvantage,
namely that real-time software is validated only on spe-
cific configurations of hardware and software. Adding
additional configurations requires additional costly and
time-consuming testing. Perhaps the field of formal veri-
fication will advance sufficiently to change this situation,
but as of early 2021, rather large advances are required.

Quick Quiz 14.8: Formal verification is already quite capable,
benefiting from decades of intensive study. Are additional
advances really required, or is this just a practitioner’s excuse
to continue to lazily ignore the awesome power of formal
verification?

In addition to latency requirements for the real-time por-
tions of the application, there will likely be performance
and scalability requirements for the non-real-time portions
of the application. These additional requirements reflect
the fact that ultimate real-time latencies are often attained
by degrading scalability and average performance.

Software-engineering requirements can also be impor-
tant, especially for large applications that must be devel-
oped and maintained by large teams. These requirements
often favor increased modularity and fault isolation.

This is a mere outline of the work that would be required
to specify deadlines and environmental constraints for a
production real-time system. It is hoped that this outline
clearly demonstrates the inadequacy of the sound-bite-
based approach to real-time computing.

14.3.2 Who Needs Real-Time?
It is possible to argue that all computing is in fact real-
time computing. For one example, when you purchase a
birthday gift online, you expect the gift to arrive before
the recipient’s birthday. And in fact even turn-of-the-
millennium web services observed sub-second response
constraints [Boh01], and requirements have not eased with
the passage of time [DHJ+07]. It is nevertheless useful
to focus on those real-time applications whose response-
time requirements cannot be achieved straightforwardly
by non-real-time systems and applications. Of course,
as hardware costs decrease and bandwidths and memory
sizes increase, the line between real-time and non-real-

time will continue to shift, but such progress is by no
means a bad thing.

Quick Quiz 14.9: Differentiating real-time from non-real-
time based on what can “be achieved straightforwardly by
non-real-time systems and applications” is a travesty! There is
absolutely no theoretical basis for such a distinction!!! Can’t
we do better than that???

Real-time computing is used in industrial-control ap-
plications, ranging from manufacturing to avionics; sci-
entific applications, perhaps most spectacularly in the
adaptive optics used by large Earth-bound telescopes to
de-twinkle starlight; military applications, including the
afore-mentioned avionics; and financial-services applica-
tions, where the first computer to recognize an opportunity
is likely to reap most of the profit. These four areas could
be characterized as “in search of production”, “in search
of life”, “in search of death”, and “in search of money”.

Financial-services applications differ subtly from ap-
plications in the other three categories in that money is
non-material, meaning that non-computational latencies
are quite small. In contrast, mechanical delays inherent
in the other three categories provide a very real point of
diminishing returns beyond which further reductions in
the application’s real-time response provide little or no
benefit. This means that financial-services applications,
along with other real-time information-processing appli-
cations, face an arms race, where the application with the
lowest latencies normally wins. Although the resulting
latency requirements can still be specified as described
in Paragraph “Real-World Real-Time Specifications” on
Page 301, the unusual nature of these requirements has
led some to refer to financial and information-processing
applications as “low latency” rather than “real time”.

Regardless of exactly what we choose to call it, there is
substantial need for real-time computing [Pet06, Inm07].

14.3.3 Who Needs Parallel Real-Time?
It is less clear who really needs parallel real-time com-
puting, but the advent of low-cost multicore systems
has brought it to the fore regardless. Unfortunately, the
traditional mathematical basis for real-time computing
assumes single-CPU systems, with a few exceptions that
prove the rule [Bra11]. Fortunately, there are a couple
of ways of squaring modern computing hardware to fit
the real-time mathematical circle, and a few Linux-kernel
hackers have been encouraging academics to make this
transition [dOCdO19, Gle10].

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 303

Stimulus

Response

Hard
Real-Time
"Reflexes"

Non-Real-Time
Strategy

and Planning

Figure 14.4: Real-Time Reflexes

One approach is to recognize the fact that many real-
time systems resemble biological nervous systems, with
responses ranging from real-time reflexes to non-real-time
strategizing and planning, as depicted in Figure 14.4.
The hard real-time reflexes, which read from sensors and
control actuators, run real-time on a single CPU or on
special-purpose hardware such as an FPGA. The non-real-
time strategy and planning portion of the application runs
on the remaining CPUs. Strategy and planning activities
might include statistical analysis, periodic calibration, user
interface, supply-chain activities, and preparation. For
an example of high-compute-load preparation activities,
think back to the veneer-peeling application discussed
in Paragraph “Real-World Real-Time Specifications” on
Page 301. While one CPU is attending to the high-speed
real-time computations required to peel one log, the other
CPUs might be analyzing the size and shape of the next
log in order to determine how to position the next log
so as to obtain the largest cylinder of high-quality wood.
It turns out that many applications have non-real-time
and real-time components [BMP08], so this approach can
often be used to allow traditional real-time analysis to be
combined with modern multicore hardware.

Another trivial approach is to shut off all but one
hardware thread so as to return to the settled mathemat-
ics of uniprocessor real-time computing. However, this
approach gives up potential cost and energy-efficiency
advantages. That said, obtaining these advantages requires
overcoming the parallel performance obstacles covered in
Chapter 3, and not merely on average, but instead in the
worst case.

Implementing parallel real-time systems can therefore
be quite a challenge. Ways of meeting this challenge are
outlined in the following section.

14.3.4 Implementing Parallel Real-Time
Systems

We will look at two major styles of real-time systems,
event-driven and polling. An event-driven real-time sys-
tem remains idle much of the time, responding in real
time to events passed up through the operating system to

1 s

1 ms

10 ms

100 ms

1 μs

10 μs

100 μs

1 ns

10 ns

100 ns

100 ps

Scripting languages

 Linux 2.4 kernel

Real-time Java (with GC)
Linux 2.6.x/3.x kernel

Real-time Java (no GC)

Linux -rt patchset
Specialty RTOSes (no MMU)

Hand-coded assembly

Custom digital hardware

Custom analog hardware

Linux 4.x/5.x kernel

Figure 14.5: Real-Time Response Regimes

the application. Alternatively, the system could instead
be running a background non-real-time workload. A
polling real-time system features a real-time thread that
is CPU bound, running in a tight loop that polls inputs
and updates outputs on each pass. This tight polling loop
often executes entirely in user mode, reading from and
writing to hardware registers that have been mapped into
the user-mode application’s address space. Alternatively,
some applications place the polling loop into the kernel,
for example, using loadable kernel modules.

Regardless of the style chosen, the approach used to
implement a real-time system will depend on the deadlines,
for example, as shown in Figure 14.5. Starting from the top
of this figure, if you can live with response times in excess
of one second, you might well be able to use scripting
languages to implement your real-time application—and
scripting languages are in fact used surprisingly often,
not that I necessarily recommend this practice. If the
required latencies exceed several tens of milliseconds, old
2.4 versions of the Linux kernel can be used, not that I
necessarily recommend this practice, either. Special real-
time Java implementations can provide real-time response
latencies of a few milliseconds, even when the garbage
collector is used. The Linux 2.6.x and 3.x kernels can
provide real-time latencies of a few hundred microseconds
if painstakingly configured, tuned, and run on real-time-
friendly hardware. Special real-time Java implementations
can provide real-time latencies below 100 microseconds if
use of the garbage collector is carefully avoided. (But note
that avoiding the garbage collector means also avoiding
Java’s large standard libraries, thus also avoiding Java’s
productivity advantages.) The Linux 4.x and 5.x kernels
can provide sub-hundred-microsecond latencies, but with
all the same caveats as for the 2.6.x and 3.x kernels. A

v2024.12.27a

304 CHAPTER 14. ADVANCED SYNCHRONIZATION

Linux kernel incorporating the -rt patchset can provide
latencies well below 20 microseconds, and specialty real-
time operating systems (RTOSes) running without MMUs
can provide sub-ten-microsecond latencies. Achieving
sub-microsecond latencies typically requires hand-coded
assembly or even special-purpose hardware.

Of course, careful configuration and tuning are required
all the way down the stack. In particular, if the hardware or
firmware fails to provide real-time latencies, there is noth-
ing that the software can do to make up for the lost time.
Worse yet, high-performance hardware sometimes sacri-
fices worst-case behavior to obtain greater throughput. In
fact, timings from tight loops run with interrupts disabled
can provide the basis for a high-quality random-number
generator [MOZ09]. Furthermore, some firmware does
cycle-stealing to carry out various housekeeping tasks, in
some cases attempting to cover its tracks by reprogram-
ming the victim CPU’s hardware clocks. Of course, cycle
stealing is expected behavior in virtualized environment,
but people are nevertheless working towards real-time
response in virtualized environments [Gle12, Kis14]. It is
therefore critically important to evaluate your hardware’s
and firmware’s real-time capabilities.

But given competent real-time hardware and firmware,
the next layer up the stack is the operating system, which
is covered in the next section.

14.3.5 Implementing Parallel Real-Time
Operating Systems

There are a number of strategies that may be used to
implement a real-time system. One approach is to port
a general-purpose non-real-time OS on top of a special
purpose real-time operating system (RTOS), as shown in
Figure 14.6. The green “Linux Process” boxes represent
non-real-time processes running on the Linux kernel,
while the yellow “RTOS Process” boxes represent real-
time processes running on the RTOS.

This was a very popular approach before the Linux
kernel gained real-time capabilities, and is still in
use [xen14, Yod04b]. However, this approach requires
that the application be split into one portion that runs on
the RTOS and another that runs on Linux. Although it
is possible to make the two environments look similar,
for example, by forwarding POSIX system calls from
the RTOS to a utility thread running on Linux, there are
invariably rough edges.

In addition, the RTOS must interface to both the hard-
ware and to the Linux kernel, thus requiring significant

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

Linux
Kernel

RCU read-side
critical sections

Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

R
T

O
S

 P
ro

ce
ss

R
T

O
S

 P
ro

ce
ss

RTOS

L
in

ux
 P

ro
ce

ss

Figure 14.6: Linux Ported to RTOS

maintenance with changes in both hardware and ker-
nel. Furthermore, each such RTOS often has its own
system-call interface and set of system libraries, which
can balkanize both ecosystems and developers. In fact,
these problems seem to be what drove the combination of
RTOSes with Linux, as this approach allowed access to
the full real-time capabilities of the RTOS, while allowing
the application’s non-real-time code full access to Linux’s
open-source ecosystem.

Although pairing RTOSes with the Linux kernel was a
clever and useful short-term response during the time that
the Linux kernel had minimal real-time capabilities, it
also motivated adding real-time capabilities to the Linux
kernel. Progress towards this goal is shown in Figure 14.7.
The upper row shows a diagram of the Linux kernel with
preemption disabled, thus having essentially no real-time
capabilities. The middle row shows a set of diagrams
showing the increasing real-time capabilities of the main-
line Linux kernel with preemption enabled. Finally, the
bottom row shows a diagram of the Linux kernel with
the -rt patchset applied, maximizing real-time capabilities.
Functionality from the -rt patchset is added to mainline,
hence the increasing capabilities of the mainline Linux ker-
nel over time. Nevertheless, the most demanding real-time
applications continue to use the -rt patchset.

The non-preemptible kernel shown at the top of Fig-
ure 14.7 is built with CONFIG_PREEMPT=n, so that ex-
ecution within the Linux kernel cannot be preempted.
This means that the kernel’s real-time response latency
is bounded below by the longest code path in the Linux

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 305

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Linux
Kernel

RCU read-side
critical sections

Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

CONFIG_PREEMPT=n

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Linux
Kernel

RCU read-side
critical sections

Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

RCU read-side
critical sectionsLinux

Kernel Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

RCU read-side
critical sectionsLinux

Kernel Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

CONFIG_PREEMPT=y
Pre-2008

CONFIG_PREEMPT=y
(With preemptible RCU)

CONFIG_PREEMPT=y
(With threaded interrupts)

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

RCU read-side
critical sectionsLinux

Kernel Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

-rt patchset

Figure 14.7: Linux-Kernel Real-Time Implementations

v2024.12.27a

306 CHAPTER 14. ADVANCED SYNCHRONIZATION

kernel, which is indeed long. However, user-mode exe-
cution is preemptible, so that one of the real-time Linux
processes shown in the upper right may preempt any of
the non-real-time Linux processes shown in the upper left
anytime the non-real-time process is executing in user
mode.

The middle row of Figure 14.7 shows three stages (from
left to right) in the development of Linux’s preemptible
kernels. In all three stages, most process-level code within
the Linux kernel can be preempted. This of course greatly
improves real-time response latency, but preemption is still
disabled within RCU read-side critical sections, spinlock
critical sections, interrupt handlers, interrupt-disabled
code regions, and preempt-disabled code regions, as in-
dicated by the red boxes in the left-most diagram in the
middle row of the figure. The advent of preemptible RCU
allowed RCU read-side critical sections to be preempted,
as shown in the central diagram, and the advent of threaded
interrupt handlers allowed device-interrupt handlers to
be preempted, as shown in the right-most diagram. Of
course, a great deal of other real-time functionality was
added during this time, however, it cannot be as easily
represented on this diagram. It will instead be discussed
in Section 14.3.5.1.

The bottom row of Figure 14.7 shows the -rt patchset,
which features threaded (and thus preemptible) interrupt
handlers for many devices, which also allows the corre-
sponding “interrupt-disabled” regions of these drivers
to be preempted. These drivers instead use locking to
coordinate the process-level portions of each driver with
its threaded interrupt handlers. Finally, in some cases, dis-
abling of preemption is replaced by disabling of migration.
These measures result in excellent response times in many
systems running the -rt patchset [RMF19, dOCdO19].

A final approach is simply to get everything out of the
way of the real-time process, clearing all other processing
off of any CPUs that this process needs, as shown in
Figure 14.8. This was implemented in the 3.10 Linux
kernel via the CONFIG_NO_HZ_FULL Kconfig parame-
ter [Cor13, Wei12]. It is important to note that this
approach requires at least one housekeeping CPU to do
background processing, for example running kernel dae-
mons. However, when there is only one runnable task on a
given non-housekeeping CPU, scheduling-clock interrupts
are shut off on that CPU, removing an important source
of interference and OS jitter. With a few exceptions, the
kernel does not force other processing off of the non-
housekeeping CPUs, but instead simply provides better
performance when only one runnable task is present on a

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

RCU read-side
critical sectionsLinux

Kernel Spinlock
critical sections

Interrupt handlers

Interrupt disable

Preempt disable

Scheduling
Clock

Interrupt

N
O

_
H

Z
_

F
U

L
L

 L
in

ux
 P

ro
ce

ss

N
O

_
H

Z
_

F
U

L
L

 L
in

ux
 P

ro
ce

ss

Figure 14.8: CPU Isolation

given CPU. Any number of userspace tools may be used
to force a given CPU to have no more that one runnable
task. If configured properly, a non-trivial undertaking,
CONFIG_NO_HZ_FULL offers real-time threads levels of
performance that come close to those of bare-metal sys-
tems [ACA+18]. Frédéric Weisbecker produced a practi-
cal guide to CONFIG_NO_HZ_FULL configuration [Wei22d,
Wei22b, Wei22e, Wei22c, Wei22a, Wei22f].

There has of course been much debate over which
of these approaches is best for real-time systems,
and this debate has been going on for quite some
time [Cor04a, Cor04c]. As usual, the answer seems
to be “It depends,” as discussed in the following sections.
Section 14.3.5.1 considers event-driven real-time systems,
and Section 14.3.5.2 considers real-time systems that use
a CPU-bound polling loop.

14.3.5.1 Event-Driven Real-Time Support

The operating-system support required for event-driven
real-time applications is quite extensive, however, this
section will focus on only a few items, namely timers,
threaded interrupts, priority inheritance, preemptible RCU,
and preemptible spinlocks.

Timers are clearly critically important for real-time
operations. After all, if you cannot specify that something
be done at a specific time, how are you going to respond by
that time? Even in non-real-time systems, large numbers
of timers are generated, so they must be handled extremely
efficiently. Example uses include retransmit timers for

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 307

TCP connections (which are almost always canceled before
they have a chance to fire),7 timed delays (as in sleep(1),
which are rarely canceled), and timeouts for the poll()
system call (which are often canceled before they have
a chance to fire). A good data structure for such timers
would therefore be a priority queue whose addition and
deletion primitives were fast and O (1) in the number of
timers posted.

The classic data structure for this purpose is the calendar
queue, which in the Linux kernel is called the timer
wheel. This age-old data structure is also heavily used
in discrete-event simulation. The idea is that time is
quantized, for example, in the Linux kernel, the duration
of the time quantum is the period of the scheduling-clock
interrupt. A given time can be represented by an integer,
and any attempt to post a timer at some non-integral
time will be rounded to a convenient nearby integral time
quantum.

One straightforward implementation would be to allo-
cate a single array, indexed by the low-order bits of the
time. This works in theory, but in practice systems create
large numbers of long-duration timeouts (for example, the
two-hour keepalive timeouts for TCP sessions) that are
almost always canceled. These long-duration timeouts
cause problems for small arrays because much time is
wasted skipping timeouts that have not yet expired. On
the other hand, an array that is large enough to gracefully
accommodate a large number of long-duration timeouts
would consume too much memory, especially given that
performance and scalability concerns require one such
array for each and every CPU.

A common approach for resolving this conflict is to
provide multiple arrays in a hierarchy. At the lowest level
of this hierarchy, each array element represents one unit of
time. At the second level, each array element represents 𝑁
units of time, where 𝑁 is the number of elements in each
array. At the third level, each array element represents 𝑁2

units of time, and so on up the hierarchy. This approach
allows the individual arrays to be indexed by different
bits, as illustrated by Figure 14.9 for an unrealistically
small eight-bit clock. Here, each array has 16 elements,
so the low-order four bits of the time (currently 0xf)
index the low-order (rightmost) array, and the next four
bits (currently 0x1) index the next level up. Thus, we
have two arrays each with 16 elements, for a total of 32
elements, which, taken together, is much smaller than
the 256-element array that would be required for a single
array.

7 At least assuming reasonably low packet-loss rates!

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

xa

xb

xc

xd

xe

xf

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

ax

bx

cx

dx

ex

fx

1f

Figure 14.9: Timer Wheel

This approach works extremely well for throughput-
based systems. Each timer operation is O (1) with small
constant, and each timer element is touched at most 𝑚 + 1
times, where 𝑚 is the number of levels.

Unfortunately, timer wheels do not work well for real-
time systems, and for two reasons. The first reason is
that there is a harsh tradeoff between timer accuracy
and timer overhead, which is fancifully illustrated by
Figures 14.10 and 14.11. In Figure 14.10, timer processing
happens only once per millisecond, which keeps overhead
acceptably low for many (but not all!) workloads, but
which also means that timeouts cannot be set for finer
than one-millisecond granularities. On the other hand,
Figure 14.11 shows timer processing taking place every
ten microseconds, which provides acceptably fine timer
granularity for most (but not all!) workloads, but which
processes timers so frequently that the system might well
not have time to do anything else.

The second reason is the need to cascade timers from
higher levels to lower levels. Referring back to Figure 14.9,
we can see that any timers enqueued on element 1x in
the upper (leftmost) array must be cascaded down to the
lower (rightmost) array so that may be invoked when
their time arrives. Unfortunately, there could be a large
number of timeouts waiting to be cascaded, especially for
timer wheels with larger numbers of levels. The power of
statistics causes this cascading to be a non-problem for

v2024.12.27a

308 CHAPTER 14. ADVANCED SYNCHRONIZATION

Figure 14.10: Timer Wheel at 1 kHz

Figure 14.11: Timer Wheel at 100 kHz

throughput-oriented systems, but cascading can result in
problematic degradations of latency in real-time systems.

Of course, real-time systems could simply choose a
different data structure, for example, some form of heap
or tree, giving up O (1) bounds on insertion and dele-
tion operations to gain O (log 𝑛) limits on data-structure-
maintenance operations. This can be a good choice for
special-purpose RTOSes, but is inefficient for general-
purpose systems such as Linux, which routinely support
extremely large numbers of timers.

The solution chosen for the Linux kernel’s -rt patch-
set is to differentiate between timers that schedule later
activity and timeouts that schedule error handling for
low-probability errors such as TCP packet losses. One key
observation is that error handling is normally not particu-
larly time-critical, so that a timer wheel’s millisecond-level
granularity is good and sufficient. Another key observa-
tion is that error-handling timeouts are normally canceled
very early, often before they can be cascaded. In addition,
systems commonly have many more error-handling time-
outs than they do timer events, so that an O (log 𝑛) data
structure should provide acceptable performance for timer
events.

However, it is possible to do better, namely by simply
refusing to cascade timers. Instead of cascading, the
timers that would otherwise have been cascaded all the
way down the calendar queue are handled in place. This
does result in up to a few percent error for the time duration,
but the few situations where this is a problem can instead
use tree-based high-resolution timers (hrtimers).

In short, the Linux kernel’s -rt patchset uses timer
wheels for error-handling timeouts and a tree for timer
events, providing each category the required quality of
service.

Threaded interrupts are used to address a significant
source of degraded real-time latencies, namely long-
running interrupt handlers, as shown in Figure 14.12.
These latencies can be especially problematic for devices
that can deliver a large number of events with a single in-
terrupt, which means that the interrupt handler will run for
an extended period of time processing all of these events.
Worse yet are devices that can deliver new events to a
still-running interrupt handler, as such an interrupt handler
might well run indefinitely, thus indefinitely degrading
real-time latencies.

One way of addressing this problem is the use of
threaded interrupts shown in Figure 14.13. Interrupt
handlers run in the context of a preemptible IRQ thread,

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 309

Interrupt
Interrupt Handler

Mainline

Code

Mainline

Code

Return From

Interrupt

Long Latency:

Degrades Response Time

Figure 14.12: Non-Threaded Interrupt Handler

Interrupt

In
te

rr
u
p
t

Mainline

Code

Mainline

Code

Return From

Interrupt

Short Latency:

Improved Response Time

Interrupt Handler

Preemptible

IRQ Thread

Figure 14.13: Threaded Interrupt Handler

which runs at a configurable priority. The device interrupt
handler then runs for only a short time, just long enough
to make the IRQ thread aware of the new event. As shown
in the figure, threaded interrupts can greatly improve real-
time latencies, in part because interrupt handlers running
in the context of the IRQ thread may be preempted by
high-priority real-time threads.

However, there is no such thing as a free lunch, and
there are downsides to threaded interrupts. One downside
is increased interrupt latency. Instead of immediately
running the interrupt handler, the handler’s execution is
deferred until the IRQ thread gets around to running it. Of
course, this is not a problem unless the device generating
the interrupt is on the real-time application’s critical path.

Another downside is that poorly written high-priority
real-time code might starve the interrupt handler, for ex-
ample, preventing networking code from running, in turn
making it very difficult to debug the problem. Developers
must therefore take great care when writing high-priority
real-time code. This has been dubbed the Spiderman
principle: With great power comes great responsibility.

Priority inheritance is used to handle priority inversion,
which can be caused by, among other things, locks acquired
by preemptible interrupt handlers [SRL90]. Suppose that
a low-priority thread holds a lock, but is preempted by a
group of medium-priority threads, at least one such thread
per CPU. If an interrupt occurs, a high-priority IRQ
thread will preempt one of the medium-priority threads,
but only until it decides to acquire the lock held by the
low-priority thread. Unfortunately, the low-priority thread
cannot release the lock until it starts running, which the
medium-priority threads prevent it from doing. So the
high-priority IRQ thread cannot acquire the lock until after
one of the medium-priority threads releases its CPU. In
short, the medium-priority threads are indirectly blocking
the high-priority IRQ threads, a classic case of priority
inversion.

Note that this priority inversion could not happen with
non-threaded interrupts because the low-priority thread
would have to disable interrupts while holding the lock,
which would prevent the medium-priority threads from
preempting it.

In the priority-inheritance solution, the high-priority
thread attempting to acquire the lock donates its priority

v2024.12.27a

310 CHAPTER 14. ADVANCED SYNCHRONIZATION

Figure 14.14: Priority Inversion and User Input

to the low-priority thread holding the lock until such time
as the lock is released, thus preventing long-term priority
inversion.

Of course, priority inheritance does have its limitations.
For example, if you can design your application to avoid
priority inversion entirely, you will likely obtain somewhat
better latencies [Yod04b]. This should be no surprise,
given that priority inheritance adds a pair of context
switches to the worst-case latency. That said, priority
inheritance can convert indefinite postponement into a
limited increase in latency, and the software-engineering
benefits of priority inheritance may outweigh its latency
costs in many applications.

Another limitation is that it addresses only lock-based
priority inversions within the context of a given operating
system. One priority-inversion scenario that it cannot
address is a high-priority thread waiting on a network
socket for a message that is to be written by a low-priority
process that is preempted by a set of CPU-bound medium-
priority processes. In addition, a potential disadvantage
of applying priority inheritance to user input is fancifully
depicted in Figure 14.14.

A final limitation involves reader-writer locking. Sup-
pose that we have a very large number of low-priority
threads, perhaps even thousands of them, each of which
read-holds a particular reader-writer lock. Suppose that all
of these threads are preempted by a set of medium-priority
threads, with at least one medium-priority thread per CPU.
Finally, suppose that a high-priority thread awakens and
attempts to write-acquire this same reader-writer lock.
No matter how vigorously we boost the priority of the
threads read-holding this lock, it could well be a good
long time before the high-priority thread can complete its
write-acquisition.

There are a number of possible solutions to this reader-
writer lock priority-inversion conundrum:

1. Only allow one read-acquisition of a given reader-
writer lock at a time. (This is the approach tradition-
ally taken by the Linux kernel’s -rt patchset.)

2. Only allow 𝑁 read-acquisitions of a given reader-
writer lock at a time, where 𝑁 is the number of
CPUs.

3. Only allow 𝑁 read-acquisitions of a given reader-
writer lock at a time, where 𝑁 is a number specified
somehow by the developer.

4. Prohibit high-priority threads from write-acquiring
reader-writer locks that are ever read-acquired by
threads running at lower priorities. (This is a variant
of the priority ceiling protocol [SRL90].)

Quick Quiz 14.10: But if you only allow one reader at a time
to read-acquire a reader-writer lock, isn’t that the same as an
exclusive lock???

The no-concurrent-readers restriction eventually be-
came intolerable, so the -rt developers looked more care-
fully at how the Linux kernel uses reader-writer spinlocks.
They learned that time-critical code rarely uses those parts
of the kernel that write-acquire reader-writer locks, so that
the prospect of writer starvation was not a show-stopper.
They therefore constructed a real-time reader-writer lock
in which write-side acquisitions use priority inheritance
among each other, but where read-side acquisitions take
absolute priority over write-side acquisitions. This ap-
proach appears to be working well in practice, and is
another lesson in the importance of clearly understanding
what your users really need.

One interesting detail of this implementation is that
both the rt_read_lock() and the rt_write_lock()
functions enter an RCU read-side critical section and both
the rt_read_unlock() and the rt_write_unlock()
functions exit that critical section. This is necessary
because non-realtime kernels’ reader-writer locking func-
tions disable preemption across their critical sections, and
there really are reader-writer locking use cases that rely
on the fact that synchronize_rcu() will therefore wait
for all pre-existing reader-writer-lock critical sections to
complete. Let this be a lesson to you: Understanding what
your users really need is critically important to correct
operation, not just to performance. Not only that, but what
your users really need changes over time.

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 311

Listing 14.3: Preemptible Linux-Kernel RCU
1 void __rcu_read_lock(void)
2 {
3 current->rcu_read_lock_nesting++;
4 barrier();
5 }
6
7 void __rcu_read_unlock(void)
8 {
9 barrier();

10 if (!--current->rcu_read_lock_nesting)
11 barrier();
12 if (READ_ONCE(current->rcu_read_unlock_special.s)) {
13 rcu_read_unlock_special(t);
14 }
15 }

This has the side-effect that all of a -rt kernel’s reader-
writer locking critical sections are subject to RCU priority
boosting. This provides at least a partial solution to the
problem of reader-writer lock readers being preempted
for extended periods of time.

It is also possible to avoid reader-writer lock priority
inversion by converting the reader-writer lock to RCU, as
briefly discussed in the next section.

Preemptible RCU can sometimes be used as a re-
placement for reader-writer locking [MW07, MBWW12,
McK14f], as was discussed in Section 9.5. Where it can
be used, it permits readers and updaters to run concur-
rently, which prevents low-priority readers from inflicting
any sort of priority-inversion scenario on high-priority up-
daters. However, for this to be useful, it is necessary to be
able to preempt long-running RCU read-side critical sec-
tions [GMTW08]. Otherwise, long RCU read-side critical
sections would result in excessive real-time latencies.

A preemptible RCU implementation was therefore
added to the Linux kernel. This implementation avoids
the need to individually track the state of each and every
task in the kernel by keeping lists of tasks that have been
preempted within their current RCU read-side critical
sections. A grace period is permitted to end: (1) Once
all CPUs have completed any RCU read-side critical sec-
tions that were in effect before the start of the current
grace period and (2) Once all tasks that were preempted
while in one of those pre-existing critical sections have
removed themselves from their lists. A simplified version
of this implementation is shown in Listing 14.3. The
__rcu_read_lock() function spans lines 1–5 and the
__rcu_read_unlock() function spans lines 7–15.

Line 3 of __rcu_read_lock() increments a per-task
count of the number of nested rcu_read_lock() calls,
and line 4 prevents the compiler from reordering the

subsequent code in the RCU read-side critical section to
precede the rcu_read_lock().

Line 9 of __rcu_read_unlock() prevents the com-
piler from reordering the code in the critical section with
the remainder of this function. Line 10 decrements the
nesting count and checks to see if it has become zero, in
other words, if this corresponds to the outermost rcu_
read_unlock() of a nested set. If so, line 11 prevents
the compiler from reordering this nesting update with
line 12’s check for special handling. If special handling is
required, then the call to rcu_read_unlock_special()
on line 13 carries it out.

There are several types of special handling that can
be required, but we will focus on that required when the
RCU read-side critical section has been preempted. In
this case, the task must remove itself from the list that it
was added to when it was first preempted within its RCU
read-side critical section. However, it is important to note
that these lists are protected by locks, which means that
rcu_read_unlock() is no longer lockless. However,
the highest-priority threads will not be preempted, and
therefore, for those highest-priority threads, rcu_read_
unlock() will never attempt to acquire any locks. In
addition, if implemented carefully, locking can be used to
synchronize real-time software [Bra11, SM04a].
Quick Quiz 14.11: Suppose that preemption occurs just after
the load from t->rcu_read_unlock_special.s on line 12
of Listing 14.3. Mightn’t that result in the task failing to invoke
rcu_read_unlock_special(), thus failing to remove itself
from the list of tasks blocking the current grace period, in turn
causing that grace period to extend indefinitely?

Another important real-time feature of RCU, whether
preemptible or not, is the ability to offload RCU callback
execution to a kernel thread. To use this, your kernel must
be built with CONFIG_RCU_NOCB_CPU=y and booted with
the rcu_nocbs= kernel boot parameter specifying which
CPUs are to be offloaded. Alternatively, any CPU speci-
fied by the nohz_full= kernel boot parameter described
in Section 14.3.5.2 will also have its RCU callbacks off-
loaded.

In short, this preemptible RCU implementation enables
real-time response for read-mostly data structures without
the delays inherent to priority boosting of large numbers of
readers, and also without delays due to callback invocation.

Preemptible spinlocks are an important part of the -rt
patchset due to the long-duration spinlock-based critical
sections in the Linux kernel. This functionality has not yet
reached mainline: Although they are a conceptually simple

v2024.12.27a

312 CHAPTER 14. ADVANCED SYNCHRONIZATION

substitution of sleeplocks for spinlocks, they have proven
relatively controversial. In addition the real-time function-
ality that is already in the mainline Linux kernel suffices
for a great many use cases, which slowed the -rt patch-
set’s development rate in the early 2010s [Edg13, Edg14].
However, preemptible spinlocks are absolutely necessary
to the task of achieving real-time latencies down in the
tens of microseconds. Fortunately, Linux Foundation
organized an effort to fund moving the remaining code
from the -rt patchset to mainline.

Per-CPU variables are used heavily in the Linux kernel
for performance reasons. Unfortunately for real-time
applications, many use cases for per-CPU variables require
coordinated update of multiple such variables, which is
normally provided by disabling preemption, which in
turn degrades real-time latencies. Real-time applications
clearly need some other way of coordinating per-CPU
variable updates.

One alternative is to supply per-CPU spinlocks, which
as noted above are actually sleeplocks, so that their critical
sections can be preempted and so that priority inheritance
is provided. In this approach, code updating groups
of per-CPU variables must acquire the current CPU’s
spinlock, carry out the update, then release whichever
lock is acquired, keeping in mind that a preemption might
have resulted in a migration to some other CPU. However,
this approach introduces both overhead and deadlocks.

Another alternative, which is used in the -rt patchset
as of early 2021, is to convert preemption disabling to
migration disabling. This ensures that a given kernel
thread remains on its CPU through the duration of the
per-CPU-variable update, but could also allow some other
kernel thread to intersperse its own update of those same
variables, courtesy of preemption. There are cases such
as statistics gathering where this is not a problem. In the
surprisingly rare case where such mid-update preemption
is a problem, the use case at hand must properly synchro-
nize the updates, perhaps through a set of per-CPU locks
specific to that use case. Although introducing locks again
introduces the possibility of deadlock, the per-use-case
nature of these locks makes any such deadlocks easier to
manage and avoid.

Closing event-driven remarks. There are of course
any number of other Linux-kernel components that are
critically important to achieving world-class real-time la-
tencies, for example, deadline scheduling [dO18b, dO18a],
however, those listed in this section give a good feeling

for the workings of the Linux kernel augmented by the -rt
patchset.

14.3.5.2 Polling-Loop Real-Time Support

At first glance, use of a polling loop might seem to avoid
all possible operating-system interference problems. After
all, if a given CPU never enters the kernel, the kernel
is completely out of the picture. And the traditional
approach to keeping the kernel out of the way is simply
not to have a kernel, and many real-time applications do
indeed run on bare metal, particularly those running on
eight-bit microcontrollers.

One might hope to get bare-metal performance on a
modern operating-system kernel simply by running a
single CPU-bound user-mode thread on a given CPU,
avoiding all causes of interference. Although the reality is
of course more complex, it is becoming possible to do just
that, courtesy of the NO_HZ_FULL implementation led by
Frederic Weisbecker [Cor13, Wei12] that was accepted
into version 3.10 of the Linux kernel. Nevertheless,
considerable care is required to properly set up such an
environment, as it is necessary to control a number of
possible sources of OS jitter. The discussion below covers
the control of several sources of OS jitter, including device
interrupts, kernel threads and daemons, scheduler real-
time throttling (this is a feature, not a bug!), timers, non-
real-time device drivers, in-kernel global synchronization,
scheduling-clock interrupts, page faults, and finally, non-
real-time hardware and firmware.

Interrupts are an excellent source of large amounts of
OS jitter. Unfortunately, in most cases interrupts are ab-
solutely required in order for the system to communicate
with the outside world. One way of resolving this conflict
between OS jitter and maintaining contact with the out-
side world is to reserve a small number of housekeeping
CPUs, and to force all interrupts to these CPUs. The
Documentation/IRQ-affinity.txt file in the Linux
source tree describes how to direct device interrupts to
specified CPUs, which as of early 2021 involves something
like the following:

$ echo 0f > /proc/irq/44/smp_affinity

This command would confine interrupt #44 to CPUs 0–
3. Note that scheduling-clock interrupts require special
handling, and are discussed later in this section.

A second source of OS jitter is due to kernel threads
and daemons. Individual kernel threads, such as RCU’s

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 313

grace-period kthreads (rcu_bh, rcu_preempt, and rcu_
sched), may be forced onto any desired CPUs using the
taskset command, the sched_setaffinity() system
call, or cgroups.

Per-CPU kthreads are often more challenging, some-
times constraining hardware configuration and workload
layout. Preventing OS jitter from these kthreads requires
either that certain types of hardware not be attached to
real-time systems, that all interrupts and I/O initiation take
place on housekeeping CPUs, that special kernel Kconfig
or boot parameters be selected in order to direct work
away from the worker CPUs, or that worker CPUs never
enter the kernel. Specific per-kthread advice may be found
in the Linux kernel source Documentation directory at
admin-guide/kernel-per-CPU-kthreads.rst.

A third source of OS jitter in the Linux kernel for
CPU-bound threads running at real-time priority is the
scheduler itself. This is an intentional debugging feature,
designed to ensure that important non-realtime work is
allotted at least 50 milliseconds out of each second, even if
there is an infinite-loop bug in your real-time application.
However, when you are running a polling-loop-style real-
time application, you will need to disable this debugging
feature. This can be done as follows:

$ echo -1 > /proc/sys/kernel/sched_rt_runtime_us

You will of course need to be running as root to exe-
cute this command, and you will also need to carefully
consider the aforementioned Spiderman principle. One
way to minimize the risks is to offload interrupts and ker-
nel threads/daemons from all CPUs running CPU-bound
real-time threads, as described in the paragraphs above.
In addition, you should carefully read the material in the
Documentation/scheduler directory. The material in
the sched-rt-group.rst file is particularly important,
especially if you are using the cgroups real-time fea-
tures enabled by the CONFIG_RT_GROUP_SCHED Kconfig
parameter.

A fourth source of OS jitter comes from timers. In
most cases, keeping a given CPU out of the kernel will
prevent timers from being scheduled on that CPU. One
important exception are recurring timers, where a given
timer handler posts a later occurrence of that same timer.
If such a timer gets started on a given CPU for any reason,
that timer will continue to run periodically on that CPU,
inflicting OS jitter indefinitely. One crude but effective
way to offload recurring timers is to use CPU hotplug
to offline all worker CPUs that are to run CPU-bound

real-time application threads, online these same CPUs,
then start your real-time application.

A fifth source of OS jitter is provided by device drivers
that were not intended for real-time use. For an old
canonical example, in 2005, the VGA driver would blank
the screen by zeroing the frame buffer with interrupts
disabled, which resulted in tens of milliseconds of OS
jitter. One way of avoiding device-driver-induced OS
jitter is to carefully select devices that have been used
heavily in real-time systems, and which have therefore
had their real-time bugs fixed. Another way is to confine
the device’s interrupts and all code using that device to
designated housekeeping CPUs. A third way is to test the
device’s ability to support real-time workloads and fix any
real-time bugs.8

A sixth source of OS jitter is provided by some in-kernel
full-system synchronization algorithms, perhaps most no-
tably the global TLB-flush algorithm. This can be avoided
by avoiding memory-unmapping operations, and espe-
cially avoiding unmapping operations within the kernel.
As of early 2021, the way to avoid in-kernel unmapping
operations is to avoid unloading kernel modules.

A seventh source of OS jitter is provided by scheduling-
clock interrrupts and RCU callback invocation. These
may be avoided by building your kernel with the NO_HZ_
FULL Kconfig parameter enabled, and then booting with
the nohz_full= parameter specifying the list of worker
CPUs that are to run real-time threads. For example,
nohz_full=2-7 would designate CPUs 2, 3, 4, 5, 6,
and 7 as worker CPUs, thus leaving CPUs 0 and 1 as
housekeeping CPUs. The worker CPUs would not incur
scheduling-clock interrupts as long as there is no more
than one runnable task on each worker CPU, and each
worker CPU’s RCU callbacks would be invoked on one
of the housekeeping CPUs. A CPU that has suppressed
scheduling-clock interrupts due to there only being one
runnable task on that CPU is said to be in adaptive ticks
mode or in nohz_full mode. It is important to ensure
that you have designated enough housekeeping CPUs to
handle the housekeeping load imposed by the rest of the
system, which requires careful benchmarking and tuning.

An eighth source of OS jitter is page faults. Because
most Linux implementations use an MMU for memory
protection, real-time applications running on these systems
can be subject to page faults. Use the mlock() and
mlockall() system calls to pin your application’s pages

8 If you take this approach, please submit your fixes upstream so
that others can benefit. After all, when you need to port your application
to a later version of the Linux kernel, you will be one of those “others”.

v2024.12.27a

314 CHAPTER 14. ADVANCED SYNCHRONIZATION

Listing 14.4: Locating Sources of OS Jitter
1 cd /sys/kernel/debug/tracing
2 echo 1 > max_graph_depth
3 echo function_graph > current_tracer
4 # run workload
5 cat per_cpu/cpuN/trace

into memory, thus avoiding major page faults. Of course,
the Spiderman principle applies, because locking down
too much memory may prevent the system from getting
other work done.

A ninth source of OS jitter is unfortunately the hardware
and firmware. It is therefore important to use systems that
have been designed for real-time use.

Unfortunately, this list of OS-jitter sources can never be
complete, as it will change with each new version of the
kernel. This makes it necessary to be able to track down
additional sources of OS jitter. Given a CPU 𝑁 running
a CPU-bound usermode thread, the commands shown in
Listing 14.4 will produce a list of all the times that this
CPU entered the kernel. Of course, the N on line 5 must
be replaced with the number of the CPU in question, and
the 1 on line 2 may be increased to show additional levels
of function call within the kernel. The resulting trace can
help track down the source of the OS jitter.

As always, there is no free lunch, and NO_HZ_FULL
is no exception. As noted earlier, NO_HZ_FULL makes
kernel/user transitions more expensive due to the need for
delta process accounting and the need to inform kernel
subsystems (such as RCU) of the transitions. As a rough
rule of thumb, NO_HZ_FULL helps with many types of
real-time and heavy-compute workloads, but hurts other
workloads that feature high rates of system calls and
I/O [ACA+18]. Additional limitations, tradeoffs, and
configuration advice may be found in Documentation/
timers/no_hz.rst file in the Linux source tree.

As you can see, obtaining bare-metal performance
when running CPU-bound real-time threads on a general-
purpose OS such as Linux requires painstaking attention
to detail. Automation would of course help, and some
automation has been applied, but given the relatively small
number of users, automation can be expected to appear
relatively slowly. Nevertheless, the ability to gain near-
bare-metal performance while running a general-purpose
operating system promises to ease construction of some
types of real-time systems.

14.3.6 Implementing Parallel Real-Time
Applications

Developing real-time applications is a wide-ranging topic,
and this section can only touch on a few aspects. To this
end, Section 14.3.6.1 looks at a few software components
commonly used in real-time applications, Section 14.3.6.2
provides a brief overview of how polling-loop-based ap-
plications may be implemented, Section 14.3.6.3 gives
a similar overview of streaming applications, and Sec-
tion 14.3.6.4 briefly covers event-based applications.

14.3.6.1 Real-Time Components

As in all areas of engineering, a robust set of components
is essential to productivity and reliability. This section is
not a full catalog of real-time software components—such
a catalog would fill multiple books—but rather a brief
overview of the types of components available.

A natural place to look for real-time software com-
ponents would be algorithms offering wait-free synchro-
nization [Her91], and in fact lockless algorithms are very
important to real-time computing. However, wait-free
synchronization only guarantees forward progress in finite
time. Although a century is finite, this is unhelpful when
your deadlines are measured in microseconds, let alone
milliseconds.

Nevertheless, there are some important wait-free algo-
rithms that do provide bounded response time, including
atomic test and set, atomic exchange, atomic fetch-and-
add, single-producer/single-consumer FIFO queues based
on circular arrays, and numerous per-thread partitioned
algorithms. In addition, recent research has confirmed
the observation that algorithms with lock-free guarantees9

also provide the same latencies in practice (in the wait-
free sense), assuming a stochastically fair scheduler and
absence of fail-stop bugs [ACHS13]. This means that
many non-wait-free stacks and queues are nevertheless
appropriate for real-time use.

Quick Quiz 14.12: But isn’t correct operation despite fail-stop
bugs a valuable fault-tolerance property?

In practice, locking is often used in real-time programs,
theoretical concerns notwithstanding. However, under
more severe constraints, lock-based algorithms can also

9 Wait-free algorithms guarantee that all threads make progress in
finite time, while lock-free algorithms only guarantee that at least one
thread will make progress in finite time. See Section 14.2 for more
details.

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 315

provide bounded latencies [Bra11]. These constraints
include:

1. Fair scheduler. In the common case of a fixed-priority
scheduler, the bounded latencies are provided only
to the highest-priority threads.

2. Sufficient bandwidth to support the workload. An
implementation rule supporting this constraint might
be “There will be at least 50 % idle time on all CPUs
during normal operation,” or, more formally, “The
offered load will be sufficiently low to allow the
workload to be schedulable at all times.”

3. No fail-stop bugs.

4. FIFO locking primitives with bounded acquisition,
handoff, and release latencies. Again, in the com-
mon case of a locking primitive that is FIFO within
priorities, the bounded latencies are provided only
to the highest-priority threads.

5. Some way of preventing unbounded priority inver-
sion. The priority-ceiling and priority-inheritance
disciplines mentioned earlier in this chapter suffice.

6. Bounded nesting of lock acquisitions. We can have
an unbounded number of locks, but only as long as a
given thread never acquires more than a few of them
(ideally only one of them) at a time.

7. Bounded number of threads. In combination with the
earlier constraints, this constraint means that there
will be a bounded number of threads waiting on any
given lock.

8. Bounded time spent in any given critical section.
Given a bounded number of threads waiting on any
given lock and a bounded critical-section duration,
the wait time will be bounded.

Quick Quiz 14.13: I couldn’t help but spot the word “include”
before this list. Are there other constraints?

This result opens a vast cornucopia of algorithms and
data structures for use in real-time software—and validates
long-standing real-time practice.

Of course, a careful and simple application design is also
extremely important. The best real-time components in the
world cannot make up for a poorly thought-out design. For
parallel real-time applications, synchronization overheads
clearly must be a key component of the design.

14.3.6.2 Polling-Loop Applications

Many real-time applications consist of a single CPU-bound
loop that reads sensor data, computes a control law, and
writes control output. If the hardware registers providing
sensor data and taking control output are mapped into the
application’s address space, this loop might be completely
free of system calls. But beware of the Spiderman princi-
ple: With great power comes great responsibility, in this
case the responsibility to avoid bricking the hardware by
making inappropriate references to the hardware registers.

This arrangement is often run on bare metal, without
the benefits of (or the interference from) an operating
system. However, increasing hardware capability and
increasing levels of automation motivates increasing soft-
ware functionality, for example, user interfaces, logging,
and reporting, all of which can benefit from an operating
system.

One way of gaining much of the benefit of running on
bare metal while still having access to the full features
and functions of a general-purpose operating system is to
use the Linux kernel’s NO_HZ_FULL capability, described
in Section 14.3.5.2.

14.3.6.3 Streaming Applications

One type of big-data real-time application takes input from
numerous sources, processes it internally, and outputs
alerts and summaries. These streaming applications are
often highly parallel, processing different information
sources concurrently.

One approach for implementing streaming applications
is to use dense-array circular FIFOs to connect different
processing steps [Sut13]. Each such FIFO has only a single
thread producing into it and a (presumably different) single
thread consuming from it. Fan-in and fan-out points use
threads rather than data structures, so if the output of
several FIFOs needed to be merged, a separate thread
would input from them and output to another FIFO for
which this separate thread was the sole producer. Similarly,
if the output of a given FIFO needed to be split, a separate
thread would input from this FIFO and output to several
FIFOs as needed.

This discipline might seem restrictive, but it allows com-
munication among threads with minimal synchronization
overhead, and minimal synchronization overhead is im-
portant when attempting to meet tight latency constraints.
This is especially true when the amount of processing for
each step is small, so that the synchronization overhead is
significant compared to the processing overhead.

v2024.12.27a

316 CHAPTER 14. ADVANCED SYNCHRONIZATION

Listing 14.5: Timed-Wait Test Program
1 if (clock_gettime(CLOCK_REALTIME, ×tart) != 0) {
2 perror("clock_gettime 1");
3 exit(-1);
4 }
5 if (nanosleep(&timewait, NULL) != 0) {
6 perror("nanosleep");
7 exit(-1);
8 }
9 if (clock_gettime(CLOCK_REALTIME, &timeend) != 0) {

10 perror("clock_gettime 2");
11 exit(-1);
12 }

The individual threads might be CPU-bound, in which
case the advice in Section 14.3.6.2 applies. On the other
hand, if the individual threads block waiting for data from
their input FIFOs, the advice of the next section applies.

14.3.6.4 Event-Driven Applications

We will use fuel injection into a mid-sized industrial
engine as a fanciful example for event-driven applications.
Under normal operating conditions, this engine requires
that the fuel be injected within a one-degree interval
surrounding top dead center. If we assume a 1,500-RPM
rotation rate, we have 25 rotations per second, or about
9,000 degrees of rotation per second, which translates
to 111 microseconds per degree. We therefore need to
schedule the fuel injection to within a time interval of
about 100 microseconds.

Suppose that a timed wait was to be used to initiate fuel
injection, although if you are building an engine, I hope
you supply a rotation sensor. We need to test the timed-
wait functionality, perhaps using the test program shown
in Listing 14.5. Unfortunately, if we run this program, we
can get unacceptable timer jitter, even in a -rt kernel.

One problem is that POSIX CLOCK_REALTIME is, oddly
enough, not intended for real-time use. Instead, it means
“realtime” as opposed to the amount of CPU time con-
sumed by a process or thread. For real-time use, you
should instead use CLOCK_MONOTONIC. However, even
with this change, results are still unacceptable.

Another problem is that the thread must be raised to a
real-time priority by using the sched_setscheduler()
system call. But even this change is insufficient, because
we can still see page faults. We also need to use the
mlockall() system call to pin the application’s memory,
preventing page faults. With all of these changes, results
might finally be acceptable.

In other situations, further adjustments might be needed.
It might be necessary to affinity time-critical threads onto
their own CPUs, and it might also be necessary to affinity

interrupts away from those CPUs. It might be necessary
to carefully select hardware and drivers, and it will very
likely be necessary to carefully select kernel configuration.

As can be seen from this example, real-time computing
can be quite unforgiving.

14.3.6.5 The Role of RCU

Suppose that you are writing a parallel real-time applica-
tion that needs to access data that is subject to gradual
change, perhaps due to changes in temperature, humid-
ity, and barometric pressure. The real-time response
constraints on this program are so severe that it is not
permissible to spin or block, thus ruling out locking, nor is
it permissible to use a retry loop, thus ruling out sequence
locks and hazard pointers. Fortunately, the temperature
and pressure are normally controlled, so that a default
hard-coded set of data is usually sufficient.

However, the temperature, humidity, and pressure oc-
casionally deviate too far from the defaults, and in such
situations it is necessary to provide data that replaces the
defaults. Because the temperature, humidity, and pressure
change gradually, providing the updated values is not a
matter of urgency, though it must happen within a few min-
utes. The program is to use a global pointer imaginatively
named cur_cal that normally references default_cal,
which is a statically allocated and initialized structure that
contains the default calibration values in fields imagina-
tively named a, b, and c. Otherwise, cur_cal points to
a dynamically allocated structure providing the current
calibration values.

Listing 14.6 shows how RCU can be used to solve
this problem. Lookups are deterministic, as shown in
calc_control() on lines 9–15, consistent with real-
time requirements. Updates are more complex, as shown
by update_cal() on lines 17–35.

Quick Quiz 14.14: Given that real-time systems are often used
for safety-critical applications, and given that runtime memory
allocation is forbidden in many safety-critical situations, what
is with the call to malloc()???

Quick Quiz 14.15: Don’t you need some kind of synchro-
nization to protect update_cal()?

This example shows how RCU can provide deterministic
read-side data-structure access to real-time programs.

v2024.12.27a

14.3. PARALLEL REAL-TIME COMPUTING 317

Listing 14.6: Real-Time Calibration Using RCU
1 struct calibration {
2 short a;
3 short b;
4 short c;
5 };
6 struct calibration default_cal = { 62, 33, 88 };
7 struct calibration cur_cal = &default_cal;
8
9 short calc_control(short t, short h, short press)

10 {
11 struct calibration *p;
12
13 p = rcu_dereference(cur_cal);
14 return do_control(t, h, press, p->a, p->b, p->c);
15 }
16
17 bool update_cal(short a, short b, short c)
18 {
19 struct calibration *p;
20 struct calibration *old_p;
21
22 old_p = rcu_dereference(cur_cal);
23 p = malloc(sizeof(*p);
24 if (!p)
25 return false;
26 p->a = a;
27 p->b = b;
28 p->c = c;
29 rcu_assign_pointer(cur_cal, p);
30 if (old_p == &default_cal)
31 return true;
32 synchronize_rcu();
33 free(old_p);
34 return true;
35 }

14.3.7 Real Time vs. Real Fast: How to
Choose?

The choice between real-time and real-fast computing can
be a difficult one. Because real-time systems often inflict
a throughput penalty on non-real-time computing, using
real-time when it is not required is unwise, as fancifully
depicted by Figure 14.15.

On the other hand, failing to use real-time when it is
required can also cause problems, as fancifully depicted
by Figure 14.16. It is almost enough to make you feel
sorry for the boss!

One rule of thumb uses the following four questions to
help you choose:

1. Is average long-term throughput the only goal?

2. Is it permissible for heavy loads to degrade response
times?

3. Is there high memory pressure, ruling out use of the
mlockall() system call?

4. Does the basic work item of your application take
more than 100 milliseconds to complete?

Figure 14.15: The Dark Side of Real-Time Computing

Figure 14.16: The Dark Side of Real-Fast Computing

v2024.12.27a

318 CHAPTER 14. ADVANCED SYNCHRONIZATION

If the answer to any of these questions is “yes”, you
should choose real-fast over real-time, otherwise, real-time
might be for you.

Choose wisely, and if you do choose real-time, make
sure that your hardware, firmware, and operating system
are up to the job!

v2024.12.27a

The art of progress is to preserve order amid change

and to preserve change amid order.

Alfred North WhiteheadChapter 15

Advanced Synchronization: Memory
Ordering

Causality and sequencing are deeply intuitive, and hackers
often have a strong grasp of these concepts. These intu-
itions can be quite helpful when writing, analyzing, and
debugging not only sequential code, but also parallel code
that makes use of standard mutual-exclusion mechanisms
such as locking. Unfortunately, these intuitions break
down completely in complex concurrent code, such as
that in the Linux-kernel, which often uses weakly ordered
atomic operations and memory barriers. One example
of such code implements the standard mutual-exclusion
mechanisms themselves, while another example imple-
ments fast paths that use weaker synchronization. Insults
to intuition notwithstanding, some argue that weakness
is a virtue [Alg13]. Vice or virtue, this chapter will help
you gain an understanding of memory ordering, that, with
practice, will be sufficient to implement synchronization
primitives and performance-critical fast paths.

First, Section 15.1 provides some reliable intuitions
and useful rules of thumb, which can often provide a use-
ful alternative to learning the full Linux-kernel memory
model (LKMM). However, those working on fast-paths
or concurrency primitives will need the additional detail
provided by the following sections. Section 15.2 will
demonstrate that real computer systems can reorder mem-
ory references, give some reasons why they do so, and
provide some information on how to prevent undesired
reordering. Sections 15.3 and 15.4 will cover the types of
pain that hardware and compilers, respectively, can inflict
on unwary parallel programmers. Section 15.5 gives an
overview of the benefits of modeling memory ordering at
higher levels of abstraction. Finally, Section 15.6 follows
up with more detail on a few representative hardware
platforms.

Quick Quiz 15.1: This chapter has been rewritten since the
first edition, and heavily edited since the second edition. Did
memory ordering change all that since 2014, let alone since
2021?

15.1 Memory-Model Intuitions

Almost all people are intelligent. It is method that

they lack.

F. W. Nichol

This section is for people who would like to avoid learn-
ing all the details of the Linux-kernel memory model
(LKMM), the better to get on with their concurrency lives.
The good news is that learning a very small fraction of
LKMM can get you most of its benefits.

But first, it is necessary to understand the temporal and
non-temporal nature of communication from one thread
to another when using memory as the communications
medium, as will be discussed in detail in Section 15.3.7.
The key point is that although loads and stores are con-
ceptually simple, on real multicore hardware significant
periods of time are required for their effects to become
visible to all other threads. Strange though it might seem,
this means that a given store’s value might not be returned
by a load that happens later in wall-clock time, and it also
means that a given store’s value might be overwritten by
a store that happens earlier in wall-clock time.

The simple and intuitive case occurs when one thread
loads a value that some other thread stored. This straight-
forward cause-and-effect case exhibits temporal behavior,
so that the software can safely assume that the store in-

319

v2024.12.27a

320 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

struction completed before the load instruction started.
In real life, the load instruction might well have started
quite some time before the store instruction did, but all
modern hardware must carefully hide such cases from the
software. Software will thus see the expected temporal
cause-and-effect behavior when one thread loads a value
that some other thread stores, as will be discussed in
Section 15.3.7.3.

This intuitive temporal behavior provides the basis for
the next section’s transitive intuitions.

15.1.1 Transitive Intuitions
This section lists intuitions regarding single threads or
variables, locking, release-acquire chains, RCU, and fully
ordered code.

15.1.1.1 Singular Intuitive Bliss

A program that has only one variable or only one thread
will see all accesses in order. There is quite a bit of code
that can attain adequate performance when running single-
threaded on modern computer systems, but this book is
primarily about software that needs multiple CPUs. On,
then, to the next section.

15.1.1.2 Locking Intuitions

Another transitive intuition involves that much-maligned
workhorse, locking, as will be described in more detail
in Section 15.5.2, to say nothing of Chapter 7. This
section contains a graphical description followed by a
verbal description.

The graphical description is shown in Figure 15.1,
which shows a lock being acquired and released by CPUs 0,
1, and 2 in that order. The solid black arrows depict the
unlock-lock ordering. The dotted lines emanating from
them to the wide green arrows show the effects on ordering.
In particular:

1. The fact that CPU 0’s unlock precedes CPU 1’s lock
ensures that any access executed by CPU 0 within
or before its critical section will be seen by accesses
executed by CPU 1 within and after its critical section.

2. The fact that CPU 0’s unlock precedes CPU 2’s lock
ensures that any access executed by CPU 0 within
or before its critical section will be seen by accesses
executed by CPU 2 within and after its critical section.

3. The fact that CPU 1’s unlock precedes CPU 2’s lock
ensures that any access executed by CPU 1 within
or before its critical section will be seen by accesses
executed by CPU 2 within and after its critical section.

In short, lock-based ordering is transitive through
CPUs 0, 1, and 2. A key point is that this ordering
extends beyond the critical sections, so that everything
before an earlier lock release is seen by everything after a
later lock acquisition.

For those who prefer words to diagrams, code holding a
given lock will see the accesses in all prior critical sections
for that same lock, transitively. And if such code sees the
accesses in a given critical section, it will also see the
accesses in all of that CPU’s code preceding that critical
section. In other words, when a CPU releases a given
lock, all of that lock’s subsequent critical sections will see
the accesses in all of that CPU’s code preceding that lock
release.

Inversely, code holding a given lock will be protected
from seeing the accesses in any subsequent critical sections
for that same lock, again, transitively. And if such code
is protected against seeing the accesses in a given critical
section, it will also be protected against seeing the accesses
in all of that CPU’s code following that critical section. In
other words, when a CPU acquires a given lock, all of that
lock’s previous critical sections will be protected from
seeing the accesses in all of that CPU’s code following
that lock acquisition.

But what does it mean to “see accesses” and exactly
what accesses are seen?

To start, an access is either a load or a store, possibly
occurring as part of a read-modify-write operation.

If a CPU’s code prior to its release of a given lock
contains an access A to a given variable, then for an access
B to that same variable contained in any CPU’s code
following a later acquisition of that same lock:

1. If A and B are both loads, then B will return either
the same value that A did or some later value.

2. If A is a load and B is a store, then B will overwrite
either the value loaded by A or some later value.

3. If A is a store and B is a load, then B will return
either the value stored by A or some later value.

4. If A and B are both stores, then B will overwrite
either the value stored by A or some later value.

Here, “some later value” is shorthand for “the value
stored by some intervening access”.

v2024.12.27a

15.1. MEMORY-MODEL INTUITIONS 321

CPU 0

Lock

Unlock

C
ri
ti
ca
l

S
e
ct
io
n

B
e
fo
re

C
ri
ti
ca
l

S
e
ct
io
n

A
ft
e
r

C
ri
ti
ca
l

S
e
ct
io
n

CPU 1

Lock

Unlock

C
ri
ti
ca
l

S
e
ct
io
n

B
e
fo
re

C
ri
ti
ca
l

S
e
ct
io
n

A
ft
e
r

C
ri
ti
ca
l

S
e
ct
io
n

CPU 2

Lock

Unlock

C
ri
ti
ca
l

S
e
ct
io
n

B
e
fo
re

C
ri
ti
ca
l

S
e
ct
io
n

A
ft
e
r

C
ri
ti
ca
l

S
e
ct
io
n

Time

Figure 15.1: Locking Intuitions

v2024.12.27a

322 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Quick Quiz 15.2: But what about reader-writer locking?

Locking is strongly intuitive, which is one reason why
it has survived so many attempts to eliminate it. This is
also one reason why you should use it where it applies.

15.1.1.3 Release-Acquire Intuitions

Release-acquire chains also behave in a transitively in-
tuitive manner not unlike that of locking, except that
release-acquire chains do not provide mutual exclusion.
This section also contains a graphical description followed
by a verbal description.

The graphical description is shown in Figure 15.2,
which shows a release-acquire chain extending through
CPUs 0, 1, and 2. The solid black arrows depict the
release-acquire ordering. The dotted lines emanating
from them to the wide green arrows show the effects on
ordering.

1. The fact that CPU 0’s release of A is read by CPU 1’s
acquire of A ensures that any accesses executed by
CPU 0 prior to its release will be seen by any accesses
executed by CPU 1 after its acquire.

2. The fact that CPU 1’s release of B is read by CPU 2’s
acquire of B ensures that any accesses executed by
CPU 1 prior to its release will be seen by any accesses
executed by CPU 2 after its acquire.

3. Note also that CPU 0’s release of A is read by CPU 1’s
acquire of A, which precedes CPU 1’s release of B,
which is read by CPU 2’s acquire of B. Taken
together, all this ensures that any accesses executed
by CPU 0 prior to its release will be seen by any
accesses executed by CPU 2 after its acquire.

This illustrates that properly constructed release-acquire
ordering is transitive through CPUs 0, 1, and 2, and in
fact may be extended through as many CPUs as needed.1

For those who prefer words to diagrams, when an
acquire loads the value stored by a release, discussed in
Section 15.3.7.4, then the code following that release will
see all accesses preceding the acquire. More precisely,
if CPU 0 does an acquire that loads the value stored by
CPU 1’s release, than all the subsequent accesses executed
by CPU 0 will see the all of CPU 1’s accesses prior to its
release.

1 But please note that stray stores to either A or B can break the
release-acquire chain, as illustrated by Listing 15.27.

Similarly, the accesses preceding that release access
will be protected from seeing the accesses following the
acquire access. (More precision is left as an exercise to
the reader.)

Releases and acquires can be chained, for example
CPU 0’s release stores the value loaded by CPU 1’s
acquire, a later release by CPU 1 stores the value loaded
by CPU 2’s acquire, and so on. The accesses following a
given acquire will see the accesses preceding each prior
release in the chain, and, inversely, the accesses preceding
a given release will be protected from seeing the accesses
following each later acquire in the chain. Some long-
chain examples will be illustrated by Listings 15.22, 15.23,
and 15.24 on pages 345–346, respectively.

The seeing and not seeing of accesses works the same
way as described in Section 15.1.1.2.

However, as will be illustrated by Listing 15.27 on
page 347, the acquire access must load exactly what was
stored by the release access. Any intervening store that
is not itself part of that same release-acquire chain will
break the chain. And again, release-acquire chains do not
provide mutual exclusion.

Nevertheless, properly constructed release-acquire
chains are transitive, intuitive, and useful.

15.1.1.4 RCU Intuitions

As noted in Section 9.5.2 on page 148, RCU provides a
number of ordering guarantees.

The first is the publish-subscribe mechanism described
in Section 9.5.2.1 on page 148. This resembles the
acquire-release chains discussed in the previous section,
but substitutes a member of the rcu_dereference()
family of primitives for the smp_load_acquire(). Un-
like smp_load_acquire(), the ordering implied by
rcu_dereference() applies only to subsequent ac-
cesses that dereference the pointer returned by that rcu_
dereference() as shown in Figure 9.10 on page 148.

The second guarantee says that if any part of an RCU
read-side critical section precedes the beginning of a grace
period, then the entirety of that critical section precedes
the end of that grace period, as shown in Figure 9.11 on
page 150.

The third guarantee says that if any part of an RCU read-
side critical section follows the end of a grace period, then
the entirety of that critical section follows the beginning
of that grace period, as shown in Figure 9.12 on page 150.

Both of these two guarantees are discussed in Sec-
tion 9.5.2.2 on page 149, with more examples shown
in Figures 9.13 and 9.14 on pages 150 and 151. These

v2024.12.27a

15.1. MEMORY-MODEL INTUITIONS 323

CPU 0

Release A

B
e
fo

re
R

e
le

a
se

A
ft

e
r

R
e
le

a
se

CPU 1

Acquire A

Release B

B
e
fo

re
A

cq
u
ir

e
A

ft
e
r

R
e
le

a
se

Time

CPU 2

Acquire B

B
e
fo

re
A

cq
u
ir

e
A

ft
e
r

A
cq

u
ir

e

Figure 15.2: Release-Acquire Intuitions

two guarantees have further version-maintenance conse-
quences that are discussed in Section 9.5.2.3 on page 152.

These guarantees will be discussed somewhat more
formally in Section 15.5.3 on page 361.

Much of the sophistication of RCU lies not in its guar-
antees, but in its use cases, which are the subject of
Section 9.5.4 starting on page 164.

15.1.1.5 Fully Ordered Intuitions

A more extreme example of transitivity places at least one
smp_mb() between each pair of accesses. All accesses
seen by any given access will also be seen by all later
accesses.

The resulting program will be fully ordered, if somewhat
slow. Such programs will be sequentially consistent and
much loved by formal-verification experts who specialize
in tried-and-true 1980s proof techniques. But slow or not,
smp_mb() is always there when you need it!

Nevertheless, there are situations that cannot be ad-
dressed by these intuitive approaches. The next section
therefore presents a more complete, if less transitive, set
of rules of thumb.

15.1.2 Rules of Thumb

The transitive intuitions presented in the previous section
are very appealing, at least as memory models go. Unfortu-
nately, hardware is under no obligation to provide temporal
cause-and-effect illusions when one thread’s store over-
writes a value either loaded or stored by some other thread.
It is quite possible that, from the software’s viewpoint, an
earlier store will overwrite a later store’s value, but only if
those two stores were executed by different threads, as will
be illustrated by Figure 15.16 on page 344. Similarly, a
later load might well read a value overwritten by an earlier
store, but again only if that load and store were executed
by different threads, as will be illustrated by Figure 15.15
on page 343. This counter-intuitive behavior occurs due
to the need to buffer stores in order to achieve adequate
performance, as will be discussed in Section 15.3.7.2 on
page 342.

As a result, situations where one thread reads a value
written by some other thread can make do with far weaker
ordering than can situations where one thread overwrites
a value loaded or stored by some other thread. These
differences are captured by the following rules of thumb.
However, it is important to note that none of these rules
involve mutual exclusion. There is instead an if-then
nature to these rules, as illustrated by Figure 15.3. In the

v2024.12.27a

324 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

CPU 0

Memory
Reference

to X

O
rd

e
ri

n
g

Memory
Reference

to Y

Time

CPU 1

Memory
Reference

to Y

O
rd

e
ri

n
g

Memory
Reference

to X

Figure 15.3: If-Then Nature of Memory Ordering

figure, if CPU 1’s reference to Y follows that of CPU 1,
and if both CPUs provide sufficient ordering between their
two accesses, then CPU 0’s access to X will also precede
that of CPU 1.

The first rule of thumb is that memory-ordering oper-
ations are only required where there is a possibility of
interaction between at least two variables shared among
at least two threads, which underlies the singular intu-
itive bliss presented in Section 15.1.1.1. In light of the
intervening material, this single sentence encapsulates
many of the basic rules of thumb that will be presented
in Section 15.2.3 on page 329, for example, keeping in
mind that “memory-barrier pairing” is a two-thread spe-
cial case of “cycle”. And, as always, if a single-threaded
program will provide sufficient performance, why bother
with parallelism?2 After all, avoiding parallelism also
avoids the added cost and complexity of memory-ordering
operations.

2 Hobbyists and researchers should of course feel free to ignore this
and many other cautions.

The second rule of thumb involves load-buffering situ-
ations: If all thread-to-thread communication in a given
cycle use store-to-load links (that is, the next thread’s
load returns the value stored by the previous thread),
minimal ordering suffices. Minimal ordering includes
dependencies and acquires as well as all stronger ordering
operations. Because a lock acquisition must load the lock-
word value stored by any prior release of that lock, this
rule of thumb underlies the locking intuitions presented
in Section 15.1.1.2.

The third rule of thumb involves release-acquire chains:
If all but one of the links in a given cycle is a store-to-
load link, it is sufficient to use release-acquire pairs for
each of those store-to-load links, as will be illustrated
by Listings 15.23 and 15.24 starting on page 346. This
rule underlies the release-acquire intuitions presented in
Section 15.1.1.3.

You can replace a given acquire with a dependency in
environments permitting this, keeping in mind that the C11
standard’s memory model does not fully respect dependen-
cies. Therefore, a dependency leading to a load must be
headed by a READ_ONCE() or an rcu_dereference():
A plain C-language load is not sufficient. In addition,
carefully review Sections 15.4.2 and 15.4.3, on pages 352
and 354, because a dependency broken by your compiler
will not order anything. The two threads sharing the sole
non-store-to-load link can sometimes substitute WRITE_
ONCE() plus smp_wmb() for smp_store_release() on
the one hand, and READ_ONCE() plus smp_rmb() for
smp_load_acquire() on the other. However, the wise
developer will check such substitutions carefully, for ex-
ample, using the herd tool as described in Section 12.3
on page 264.
Quick Quiz 15.3: Why is it necessary to use heavier-weight
ordering for load-to-store and store-to-store links, but not for
store-to-load links? What on earth makes store-to-load links
so special???

The fourth and final rule of thumb identifies where full
memory barriers (or stronger) are required: If a given
cycle contains two or more non-store-to-load links (that is,
a total of two or more links that are either load-to-store or
store-to-store links), you will need at least one full barrier
between each pair of non-store-to-load links in that cycle,
as will be illustrated by Listing 15.19 on page 343 and
most especially by the example presented in Section 15.3.8
on page 347. Full barriers include smp_mb(), success-
ful full-strength non-void atomic RMW operations, and
other atomic RMW operations in conjunction with ei-
ther smp_mb__before_atomic() or smp_mb__after_

v2024.12.27a

15.2. ORDERING: WHY AND HOW? 325

atomic(). Any of RCU’s grace-period-wait primitives
(synchronize_rcu() and friends) also act as full bar-
riers, but at far greater expense than smp_mb(). With
strength comes expense, though full barriers usually hurt
performance more than they hurt scalability. The extreme
logical endpoint of this rule of thumb underlies the fully
ordered intuitions presented in Section 15.1.1.5.

Recapping the rules:

1. Memory-ordering operations are required only if at
least two variables are shared by at least two threads.

2. If all links in a cycle are store-to-load links, then
minimal ordering suffices.

3. If all but one of the links in a cycle are store-to-
load links, then each store-to-load link may use a
release-acquire pair.

4. Otherwise, at least one full barrier is required between
each pair of non-store-to-load links.

Note that an architecture is permitted to provide stronger
guarantees, as will be discussed in Section 15.6, but these
guarantees may only be relied upon in code that runs only
for that architecture. In addition, more accurate memory
models [AMM+18] may give stronger guarantees with
lower-overhead operations than do these rules of thumb,
albeit at the expense of greater complexity. In these more
formal memory-ordering papers, a store-to-load link is an
example of a reads-from (rf) link, a load-to-store link is
an example of a from-reads (fr) link, and a store-to-store
link is an example of a coherence (co) link.

One final word of advice: Use of raw memory-ordering
primitives is a last resort. It is almost always better to use
existing primitives, such as locking or RCU, thus letting
those primitives do the memory ordering for you.

With that said, the next section describes why hardware
misorders memory references and some of the things that
you can do about it.

15.2 Ordering: Why and How?

Nothing is orderly till people take hold of it.

Everything in creation lies around loose.

Henry Ward Beecher, updated

One motivation for memory ordering can be seen in the
trivial-seeming litmus test in Listing 15.1 (C-SB+o-o+o-

Listing 15.1: Memory Misordering: Store-Buffering Litmus
Test

1 C C-SB+o-o+o-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 WRITE_ONCE(*x0, 2);

10 r2 = READ_ONCE(*x1);
11 }
12
13 P1(int *x0, int *x1)
14 {
15 int r2;
16
17 WRITE_ONCE(*x1, 2);
18 r2 = READ_ONCE(*x0);
19 }
20
21 exists (1:r2=0 /\ 0:r2=0)

o.litmus), which at first glance might appear to guar-
antee that the exists clause never triggers.3 After all,
if 0:r2=0 as shown in the exists clause,4 we might
hope that Thread P0()’s load from x1 into r2 must have
happened before Thread P1()’s store to x1, which might
raise further hopes that Thread P1()’s load from x0 into
r2 must happen after Thread P0()’s store to x0, so that
1:r2=2, thus never triggering the exists clause. The ex-
ample is symmetric, so similar reasoning might lead us to
hope that 1:r2=0 guarantees that 0:r2=2. Unfortunately,
the lack of memory barriers dashes these hopes. The CPU
is within its rights to reorder the statements within both
Thread P0() and Thread P1(), even on relatively strongly
ordered systems such as x86.
Quick Quiz 15.4: The compiler can also reorder
Thread P0()’s and Thread P1()’s memory accesses in List-
ing 15.1, right?

This willingness to reorder can be confirmed using tools
such as litmus7 [AMT14], which found that the counter-
intuitive ordering happened 314 times out of 100,000,000
trials on an x86 laptop. Oddly enough, the perfectly legal
outcome where both loads return the value 2 occurred less
frequently, in this case, only 167 times.5 The lesson here
is clear: Increased counter-intuitivity does not necessarily
imply decreased probability!

3 Purists would instead insist that the exists clause is never
satisfied, but we use “trigger” here by analogy with assertions.

4 That is, Thread P0()’s instance of local variable r2 equals zero.
See Section 12.2.1 for documentation of litmus-test nomenclature.

5 Please note that results are sensitive to the exact hardware config-
uration, how heavily the system is loaded, and much else besides. So
why not try it out on your own system?

v2024.12.27a

326 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

The following sections show exactly how this intuition
breaks down, and then put forward some mental models
of memory ordering that can help you avoid these pitfalls.

Section 15.2.1 gives a brief overview of why hardware
misorders memory accesses, and then Section 15.2.2 gives
an equally brief overview of how you can thwart such
misordering. Finally, Section 15.2.3 lists some basic rules
of thumb, which will be further refined in later sections.
These sections focus on hardware reordering, but rest
assured that compilers reorder much more aggressively
than hardware ever dreamed of doing. Compiler-induced
reordering will be taken up in Section 15.4.

15.2.1 Why Hardware Misordering?
But why does memory misordering happen in the first
place? Can’t CPUs keep track of ordering on their own?
Isn’t that why we have computers in the first place, to keep
track of things?

Many people do indeed expect their computers to keep
track of things, but many also insist that they keep track
of things quickly. In fact, so intense is the focus on perfor-
mance that modern CPUs are extremely complex, as can be
seen in the simplified block diagram in Figure 15.4. Those
needing to squeeze the last few percent of performance
from their systems will in turn need to pay close attention
to the fine details of this figure when tuning their software.
Except that this close attention to detail means that when a
given CPU degrades with age, the software will no longer
run quickly on it. For example, if the leftmost ALU fails,
software tuned to take full advantage of all of the ALUs
might well run more slowly than untuned software. One
solution to this problem is to take systems out of service
as soon as any of their CPUs start degrading.

Another option is to recall the lessons of Chapter 3,
especially the lesson that for many important workloads,
main memory cannot keep up with modern CPUs, which
can execute hundreds of instructions in the time required to
fetch a single variable from memory. For such workloads,
the detailed internal structure of the CPU is irrelevant, and
the CPU can instead be approximated by the blue shapes
in Figure 15.5 labeled CPU, store buffer, and cache.

Because of these data-intensive workloads, CPUs sport
increasingly large caches, as was seen back in Figure 3.12,
which means that although the first load by a given CPU
from a given variable will result in an expensive cache miss
as was discussed in Section 3.1.7, subsequent repeated
loads from that variable by that CPU might execute very
quickly because the initial cache miss will have loaded
that variable into that CPU’s cache.

However, it is also necessary to accommodate frequent
concurrent stores from multiple CPUs to a set of shared
variables. In cache-coherent systems, if the caches hold
multiple copies of a given variable, all the copies of that
variable must have the same value. This works extremely
well for concurrent loads, but not so well for concurrent
stores: Each store must do something about all copies of
the old value (another cache miss!), which, given the finite
speed of light and the atomic nature of matter, will be
slower than impatient software hackers would like. And
these strings of stores are the reason for the blue block
labelled store buffer in Figure 15.5.

Removing the internal CPU complexity from Fig-
ure 15.5, adding a second CPU, and showing main memory
results in Figure 15.6. When a given CPU stores to a
variable not present in that CPU’s cache, then the new
value is instead placed in that CPU’s store buffer. The
CPU can then proceed immediately, without having to
wait for the store to do something about all the old values
of that variable residing in other CPUs’ caches.

Although store buffers can greatly increase performance,
they can cause instructions and memory references to
execute out of order, which can in turn cause serious
confusion, as fancifully illustrated in Figure 15.7.

In particular, store buffers cause the memory misorder-
ing illustrated by Listing 15.1. Table 15.1 shows the steps
leading to this misordering. Row 1 shows the initial state,
where CPU 0 has x1 in its cache and CPU 1 has x0 in its
cache, both variables having a value of zero. Row 2 shows
the state change due to each CPU’s store (lines 9 and 17
of Listing 15.1). Because neither CPU has the stored-to
variable in its cache, both CPUs record their stores in their
respective store buffers.
Quick Quiz 15.5: But wait!!! On row 2 of Table 15.1 both
x0 and x1 each have two values at the same time, namely zero
and two. How can that possibly work???

Row 3 shows the two loads (lines 10 and 18 of List-
ing 15.1). Because the variable being loaded by each CPU
is in that CPU’s cache, each load immediately returns the
cached value, which in both cases is zero.

But the CPUs are not done yet: Sooner or later, they
must empty their store buffers. Because caches move data
around in relatively large blocks called cachelines, and
because each cacheline can hold several variables, each
CPU must get the cacheline into its own cache so that it
can update the portion of that cacheline corresponding to
the variable in its store buffer, but without disturbing any
other part of the cacheline. Each CPU must also ensure
that the cacheline is not present in any other CPU’s cache,

v2024.12.27a

15.2. ORDERING: WHY AND HOW? 327

128 Entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

Instruction
Fetch Unit

18 Entry
Instruction Queue

7+ Entry µop Buffer

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB)
Retirement Register File
(Program Visible State)

Shared Bus
Interface

Unit

Shared
L2 Cache
(16 way)

256 Entry
L2 DTLB

Micro-
code

Complex
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

32 Entry Reservation Station

ALU ALU
SSE

Shuffle
ALU

SSE
Shuffle
MUL

ALU
Branch

SSE
ALU

128 Bit
FMUL
FDIV

128 Bit
FADD

Store
Address

Store
Data

Load
Address

Memory Ordering Buffer
(MOB)

32 KB Dual Ported Data Cache
(8 way)

16 Entry
DTLB

Port 0 Port 1 Port 2Port 3 Port 4Port 5

Internal Results Bus
LoadStore

128 Bit
128 Bit

4 µops

4 µops

4 µops

4 µops 1 µop 1 µop 1 µop

128 Bit

6 Instructions

4 µops

256
Bit

Figure 15.4: Intel Core 2 Architecture

128 Entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

Instruction
Fetch Unit

18 Entry
Instruction Queue

7+ Entry µop Buffer

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB)
Retirement Register File
(Program Visible State)

Shared Bus
Interface

Unit

Shared
L2 Cache
(16 way)

256 Entry
L2 DTLB

Micro-
code

Complex
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

32 Entry Reservation Station

ALU ALU
SSE

Shuffle
ALU

SSE
Shuffle
MUL

ALU
Branch

SSE
ALU

128 Bit
FMUL
FDIV

128 Bit
FADD

Store
Address

Store
Data

Load
Address

Memory Ordering Buffer
(MOB)

32 KB Dual Ported Data Cache
(8 way)

16 Entry
DTLB

Port 0 Port 1 Port 2Port 3 Port 4Port 5

Internal Results Bus
LoadStore

128 Bit
128 Bit

4 µops

4 µops

4 µops

4 µops 1 µop 1 µop 1 µop

128 Bit

6 Instructions

4 µops

256
Bit

Store Buffer

Cache

CPU

Figure 15.5: Intel Core 2 Architecture Simplified

Table 15.1: Memory Misordering: Store-Buffering Sequence of Events

CPU 0 CPU 1

Instruction Store Buffer Cache Instruction Store Buffer Cache

1 (Initial state) x1==0 (Initial state) x0==0
2 x0 = 2; x0==2 x1==0 x1 = 2; x1==2 x0==0
3 r2 = x1; (0) x0==2 x1==0 r2 = x0; (0) x1==2 x0==0
4 (Read-invalidate) x0==2 x0==0 (Read-invalidate) x1==2 x1==0
5 (Finish store) x0==2 (Finish store) x1==2

v2024.12.27a

328 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

CPU 0

Cache

Store
Buffer

Cache

Store
Buffer

CPU 1

Memory

Figure 15.6: System Architecture With Store Buffers

do I out things of

Look! can order.

Figure 15.7: CPUs Can Do Things Out of Order

for which a read-invalidate operation is used. As shown
on row 4, after both read-invalidate operations complete,
the two CPUs have traded cachelines, so that CPU 0’s
cache now contains x0 and CPU 1’s cache now contains
x1. Once these two variables are in their new homes,
each CPU can flush its store buffer into the corresponding
cache line, leaving each variable with its final value as
shown on row 5.

Quick Quiz 15.6: But don’t the values also need to be flushed
from the cache to main memory?

In summary, store buffers are needed to allow CPUs to
handle store instructions efficiently, but they can result in
counter-intuitive memory misordering.

But what do you do if your algorithm really needs its
memory references to be ordered? For example, suppose
that you are communicating with a driver using a pair of
flags, one that says whether or not the driver is running

Listing 15.2: Memory Ordering: Store-Buffering Litmus Test
1 C C-SB+o-mb-o+o-mb-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 WRITE_ONCE(*x0, 2);

10 smp_mb();
11 r2 = READ_ONCE(*x1);
12 }
13
14 P1(int *x0, int *x1)
15 {
16 int r2;
17
18 WRITE_ONCE(*x1, 2);
19 smp_mb();
20 r2 = READ_ONCE(*x0);
21 }
22
23 exists (1:r2=0 /\ 0:r2=0)

and the other that says whether there is a request pending
for that driver. The requester needs to set the request-
pending flag, then check the driver-running flag, and if
false, wake the driver. Once the driver has serviced all the
pending requests that it knows about, it needs to clear its
driver-running flag, then check the request-pending flag
to see if it needs to restart. This very reasonable approach
cannot work unless there is some way to make sure that
the hardware processes the stores and loads in order. This
is the subject of the next section.

15.2.2 How to Force Ordering?
It turns out that there are compiler directives and syn-
chronization primitives (such as locking and RCU) that
are responsible for maintaining the illusion of ordering
through use of memory barriers (for example, smp_mb()
in the Linux kernel). These memory barriers can be ex-
plicit instructions, as they are on Arm, POWER, Itanium,
and Alpha, or they can be implied by other instructions,
as they often are on x86. Since these standard synchro-
nization primitives preserve the illusion of ordering, your
path of least resistance is to simply use these primitives,
thus allowing you to stop reading this section.

However, if you need to implement the synchronization
primitives themselves, or if you are simply interested in
understanding how memory ordering works, read on! The
first stop on the journey is Listing 15.2 (C-SB+o-mb-
o+o-mb-o.litmus), which places an smp_mb() Linux-
kernel full memory barrier between the store and load
in both P0() and P1(), but is otherwise identical to

v2024.12.27a

15.2. ORDERING: WHY AND HOW? 329

Listing 15.1. These barriers prevent the counter-intuitive
outcome from happening on 100,000,000 trials on my x86
laptop. Interestingly enough, the added overhead due to
these barriers causes the legal outcome where both loads
return the value two to happen more than 800,000 times,
as opposed to only 167 times for the barrier-free code in
Listing 15.1.

These barriers have a profound effect on ordering, as
can be seen in Table 15.2. Although the first two rows
are the same as in Table 15.1 and although the smp_
mb() instructions on row 3 do not change state in and of
themselves, they do cause the stores to complete (rows 4
and 5) before the loads (row 6), which rules out the
counter-intuitive outcome shown in Table 15.1. Note that
variables x0 and x1 each still have more than one value
on row 2, however, as promised earlier, the smp_mb()
invocations straighten things out in the end.

Although full barriers such as smp_mb() have extremely
strong ordering guarantees, their strength comes at a
high price in terms of foregone hardware and compiler
optimizations. A great many situations can be handled
with much weaker ordering guarantees that use much
cheaper memory-ordering instructions, or, in some case,
no memory-ordering instructions at all.

Table 15.3 provides a cheatsheet of the Linux kernel’s
ordering primitives and their guarantees. Each row corre-
sponds to a primitive or category of primitives that might
or might not provide ordering, with the columns labeled
“Prior Ordered Operation” and “Subsequent Ordered Op-
eration” being the operations that might (or might not)
be ordered against. Cells containing “Y” indicate that
ordering is supplied unconditionally, while other charac-
ters indicate that ordering is supplied only partially or
conditionally. Blank cells indicate that no ordering is
supplied.

The “Store” row also covers the store portion of an
atomic RMW operation. In addition, the “Load” row
covers the load component of a successful value-returning
_relaxed() RMW atomic operation, although the com-
bined “_relaxed() RMW operation” line provides a
convenient combined reference in the value-returning
case. A CPU executing unsuccessful value-returning
atomic RMW operations must invalidate the correspond-
ing variable from all other CPUs’ caches. Therefore,
unsuccessful value-returning atomic RMW operations
have many of the properties of a store, which means that
the “_relaxed() RMW operation” line also applies to
unsuccessful value-returning atomic RMW operations.

The *_acquire row covers smp_load_acquire(),
cmpxchg_acquire(), xchg_acquire(), and so on; the
*_release row covers smp_store_release(), rcu_
assign_pointer(), cmpxchg_release(), xchg_
release(), and so on; and the “Successful full-
strength non-void RMW” row covers atomic_add_
return(), atomic_add_unless(), atomic_dec_
and_test(), cmpxchg(), xchg(), and so on. The “Suc-
cessful” qualifiers apply to primitives such as atomic_
add_unless(), cmpxchg_acquire(), and cmpxchg_
release(), which have no effect on either memory or
on ordering when they indicate failure, as indicated by the
earlier “_relaxed() RMW operation” row.

Column “C” indicates cumulativity and propagation,
as explained in Sections 15.3.7.1 and 15.3.7.2. In the
meantime, this column can usually be ignored when there
are at most two threads involved.
Quick Quiz 15.7: The rows in Table 15.3 seem quite random
and confused. Whatever is the conceptual basis of this table???

Quick Quiz 15.8: Why is Table 15.3 missing
smp_mb__after_unlock_lock() and smp_mb__after_
spinlock()?

It is important to note that this table is just a cheat
sheet, and is therefore in no way a replacement for a good
understanding of memory ordering. To begin building
such an understanding, the next section will present some
basic rules of thumb.

15.2.3 Basic Rules of Thumb
This section presents some basic rules of thumb that are
“good and sufficient” for a great many situations. In fact,
you could write a great deal of concurrent code having
excellent performance and scalability without needing any-
thing more than these rules of thumb. More sophisticated
rules of thumb will be presented in Section 15.1.

Quick Quiz 15.9: But how can I know that a given project
can be designed and coded within the confines of these rules
of thumb?

A given thread sees its own accesses in order. This rule
assumes that loads and stores from/to shared variables use
READ_ONCE() and WRITE_ONCE(), respectively. Other-
wise, the compiler can profoundly scramble6 your code,

6 Many compiler writers prefer the word “optimize”.

v2024.12.27a

330 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Table 15.2: Memory Ordering: Store-Buffering Sequence of Events

CPU 0 CPU 1

Instruction Store Buffer Cache Instruction Store Buffer Cache

1 (Initial state) x1==0 (Initial state) x0==0
2 x0 = 2; x0==2 x1==0 x1 = 2; x1==2 x0==0
3 smp_mb(); x0==2 x1==0 smp_mb(); x1==2 x0==0
4 (Read-invalidate) x0==2 x0==0 (Read-invalidate) x1==2 x1==0
5 (Finish store) x0==2 (Finish store) x1==2
6 r2 = x1; (2) x1==2 r2 = x0; (2) x0==2

Table 15.3: Linux-Kernel Memory-Ordering Cheat Sheet

Prior Ordered Operation Subsequent Ordered Operation

Operation Providing Ordering C Self R W RMW Self R W DR DW RMW SV

Store, for example, WRITE_ONCE() Y Y
Load, for example, READ_ONCE() Y Y Y Y
_relaxed() RMW operation Y Y Y Y
*_dereference() Y Y Y Y
Successful *_acquire() R Y Y Y Y Y Y
Successful *_release() C Y Y Y W Y
smp_rmb() Y R Y Y R
smp_wmb() Y W Y Y W
smp_mb() and synchronize_rcu() CP Y Y Y Y Y Y Y Y
Successful full-strength non-void RMW CP Y Y Y Y Y Y Y Y Y Y Y
smp_mb__before_atomic() CP Y Y Y a a a a Y
smp_mb__after_atomic() CP a a Y Y Y Y Y Y

Key: C: Ordering is cumulative
P: Ordering propagates
R: Read, for example, READ_ONCE(), or read portion of RMW
W: Write, for example, WRITE_ONCE(), or write portion of RMW
Y: Provides the specified ordering
a: Provides specified ordering given intervening RMW atomic operation

DR: Dependent read (address dependency, Section 15.3.3)
DW: Dependent write (address, data, or control dependency, Sections 15.3.3–15.3.5)

RMW: Atomic read-modify-write operation
Self: Orders self, as opposed to accesses both before and after
SV: Orders later accesses to the same variable

Applies to Linux kernel v4.15 and later.

v2024.12.27a

15.2. ORDERING: WHY AND HOW? 331

Given Y0 before Y1 ...

.... memory barriers guarantee X0 before X1.
Memory

Reference X0

Memory
Barrier

Memory
Reference Y0

Memory
Reference Y1

Memory
Barrier

Memory
Reference X1

CPU 1

CPU 0

Figure 15.8: Memory Barriers Provide Conditional If-
Then Ordering

and sometimes the CPU can do a bit of scrambling as well,
as discussed in Section 15.6.4.

Interrupts and signal handlers are part of a thread.
Both interrupt and signal handlers happen between a pair
of adjacent instructions in a thread. This means that a given
handler appears to execute atomically from the viewpoint
of the interrupted thread, at least at the assembly-language
level. However, the C and C++ languages do not define
the results of handlers and interrupted threads sharing
plain variables. Instead, such shared variables must be
sig_atomic_t, lock-free atomics, or volatile.

On the other hand, because the handler executes within
the interrupted thread’s context, the memory ordering used
to synchronize communication between the handler and
the thread can be extremely lightweight. For example, the
counterpart of an acquire load is a READ_ONCE() followed
by a barrier() compiler directive and the counterpart
of a release store is a barrier() followed by a WRITE_
ONCE(). The counterpart of a full memory barrier is
barrier(). Finally, disabling interrupts or signals (as
the case may be) within the thread excludes handlers.

Ordering has conditional if-then semantics. Fig-
ure 15.8 illustrates this for memory barriers. Assuming
that both memory barriers are strong enough, if CPU 1’s
access Y1 happens after CPU 0’s access Y0, then CPU 1’s

access X1 is guaranteed to happen after CPU 0’s access
X0.
Quick Quiz 15.10: How can you tell which memory barriers
are strong enough for a given use case?

Listing 15.2 is a case in point. The smp_mb() on
lines 10 and 19 serve as the barriers, the store to x0 on
line 9 as X0, the load from x1 on line 11 as Y0, the store
to x1 on line 18 as Y1, and the load from x0 on line 20 as
X1. Applying the if-then rule step by step, we know that
the store to x1 on line 18 happens after the load from x1
on line 11 if P0()’s local variable r2 is set to the value
zero. The if-then rule would then state that the load from
x0 on line 20 happens after the store to x0 on line 9. In
other words, P1()’s local variable r2 is guaranteed to
end up with the value two only if P0()’s local variable
r2 ends up with the value zero. This underscores the
point that memory ordering guarantees are conditional,
not absolute.

Although Figure 15.8 specifically mentions memory
barriers, this same if-then rule applies to the rest of the
Linux kernel’s ordering operations.

Ordering operations must be paired. If you carefully
order the operations in one thread, but then fail to do so
in another thread, then there is no ordering. Both threads
must provide ordering for the if-then rule to apply.7

Ordering operations almost never speed things up. If
you find yourself tempted to add a memory barrier in an
attempt to force a prior store to be flushed to memory
faster, resist! Adding ordering usually slows things down.
Of course, there are situations where adding instructions
speeds things up, as was shown by Figure 9.22 on page 165,
but careful benchmarking is required in such cases. And
even then, it is quite possible that although you sped things
up a little bit on your system, you might well have slowed
things down significantly on your users’ systems. Or on
your future system.

Ordering operations are not magic. When your pro-
gram is failing due to some race condition, it is often
tempting to toss in a few memory-ordering operations in
an attempt to barrier your bugs out of existence. A far bet-
ter reaction is to use higher-level primitives in a carefully
designed manner. With concurrent programming, it is
almost always better to design your bugs out of existence
than to hack them down to lower probabilities.

7 In Section 15.3.7.2, pairing will be generalized to cycles.

v2024.12.27a

332 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

These are only rough rules of thumb. Although these
rules of thumb cover the vast majority of situations seen
in actual practice, as with any set of rules of thumb, they
do have their limits. The next section will demonstrate
some of these limits by introducing trick-and-trap lit-
mus tests that are intended to insult your intuition while
increasing your understanding. These litmus tests will
also illuminate many of the concepts represented by the
Linux-kernel memory-ordering cheat sheet shown in Ta-
ble 15.3, and can be automatically analyzed given proper
tooling [AMM+18]. Section 15.1 will circle back to this
cheat sheet, presenting a more sophisticated set of rules of
thumb in light of learnings from all the intervening tricks
and traps.

Quick Quiz 15.11: Wait!!! Where do I find this tooling that
automatically analyzes litmus tests???

15.3 Tricks and Traps

Knowing where the trap is—that’s the first step in

evading it.

Duke Leto Atreides, Dune, Frank Herbert

Now that you know that hardware can reorder memory
accesses and that you can prevent it from doing so, the
next step is to get you to admit that your intuition has a
problem. This painful task is taken up by Section 15.3.1,
which presents some code demonstrating that scalar vari-
ables can take on multiple values simultaneously, and by
Sections 15.3.2 through 15.3.7, which show a series of
intuitively correct code fragments that fail miserably on
real hardware. Once your intuition has made it through
the grieving process, later sections will summarize the
basic rules that memory ordering follows.

But first, let’s take a quick look at just how many values
a single variable might have at a single point in time.

15.3.1 Variables With Multiple Values
It is natural to think of a variable as taking on a well-
defined sequence of values in a well-defined, global order.
Unfortunately, the next stop on the journey says “goodbye”
to this comforting fiction. Hopefully, you already started
to say “goodbye” in response to row 2 of Tables 15.1
and 15.2, and if so, the purpose of this section is to drive
this point home.

Listing 15.3: Software Logic Analyzer
1 state.variable = mycpu;
2 lasttb = oldtb = firsttb = gettb();
3 while (state.variable == mycpu) {
4 lasttb = oldtb;
5 oldtb = gettb();
6 if (lasttb - firsttb > 1000)
7 break;
8 }

1

2

4

2

2

2

0 100 200 300 400 500 (ns)

3

CPU 2

CPU 3

CPU 4

CPU 1

Figure 15.9: A Variable With Multiple Simultaneous
Values

To this end, consider the program fragment shown in
Listing 15.3. This code fragment is executed in parallel
by several CPUs. Line 1 sets a shared variable to the
current CPU’s ID, line 2 initializes several variables from
a gettb() function that delivers the value of a fine-
grained hardware “timebase” counter that is synchronized
among all CPUs (not available from all CPU architectures,
unfortunately!), and the loop from lines 3–8 records the
length of time that the variable retains the value that this
CPU assigned to it. Of course, one of the CPUs will
“win”, and would thus never exit the loop if not for the
check on lines 6–7.

Quick Quiz 15.12: What assumption is the code fragment in
Listing 15.3 making that might not be valid on real hardware?

Upon exit from the loop, firsttb will hold a timestamp
taken shortly after the assignment and lasttb will hold
a timestamp taken before the last sampling of the shared
variable that still retained the assigned value, or a value
equal to firsttb if the shared variable had changed
before entry into the loop. This allows us to plot each
CPU’s view of the value of state.variable over a 532-
nanosecond time period, as shown in Figure 15.9. This
data was collected in 2006 on 1.5 GHz POWER5 system
with 8 cores, each containing a pair of hardware threads.
CPUs 1, 2, 3, and 4 recorded the values, while CPU 0
controlled the test. The timebase counter period was about
5.32 ns, sufficiently fine-grained to allow observations of
intermediate cache states.

Each horizontal bar represents the observations of a
given CPU over time, with the gray regions to the left

v2024.12.27a

15.3. TRICKS AND TRAPS 333

indicating the time before the corresponding CPU’s first
measurement. During the first 5 ns, only CPU 3 has an
opinion about the value of the variable. During the next
10 ns, CPUs 2 and 3 disagree on the value of the variable,
but thereafter agree that the value is “2”, which is in fact
the final agreed-upon value. However, CPU 1 believes
that the value is “1” for almost 300 ns, and CPU 4 believes
that the value is “4” for almost 500 ns.
Quick Quiz 15.13: How could CPUs possibly have different
views of the value of a single variable at the same time?

Quick Quiz 15.14: Why do CPUs 2 and 3 come to agreement
so quickly, when it takes so long for CPUs 1 and 4 to come to
the party?

And if you think that the situation with four CPUs
was intriguing, consider Figure 15.10, which shows the
same situation, but with 15 CPUs each assigning their
number to a single shared variable at time 𝑡 = 0. Both
diagrams in the figure are drawn in the same way as
Figure 15.9. The only difference is that the unit of
horizontal axis is timebase ticks, with each tick lasting
about 5.3 nanoseconds. The entire sequence therefore
lasts a bit longer than the events recorded in Figure 15.9,
consistent with the increase in number of CPUs. The
upper diagram shows the overall picture, while the lower
one zooms in on the first 50 timebase ticks. Again, CPU 0
coordinates the test, so does not record any values.

All CPUs eventually agree on the final value of 9, but
not before the values 15 and 12 take early leads. Note
that there are fourteen different opinions on the variable’s
value at time 21 indicated by the vertical line in the lower
diagram. Note also that all CPUs see sequences whose
orderings are consistent with the directed graph shown in
Figure 15.11. Nevertheless, these figures underscore the
importance of proper use of memory-ordering operations.

How many values can a single variable take on at a
single point in time? As many as one per store buffer in
the system! We have therefore entered a regime where we
must bid a fond farewell to comfortable intuitions about
values of variables and the passage of time. This is the
regime where memory-ordering operations are needed.

But remember well the lessons from Chapters 3 and 6.
Having all CPUs store concurrently to the same variable
is no way to design a parallel program, at least not if
performance and scalability are at all important to you.

Unfortunately, memory ordering has many other ways
of insulting your intuition, and not all of these ways
conflict with performance and scalability. The next section
overviews reordering of unrelated memory reference.

Listing 15.4: Message-Passing Litmus Test (No Ordering)
1 C C-MP+o-wmb-o+o-o
2
3 {}
4
5 P0(int* x0, int* x1) {
6 WRITE_ONCE(*x0, 2);
7 smp_wmb();
8 WRITE_ONCE(*x1, 2);
9 }

10
11 P1(int* x0, int* x1) {
12 int r2;
13 int r3;
14
15 r2 = READ_ONCE(*x1);
16 r3 = READ_ONCE(*x0);
17 }
18
19 exists (1:r2=2 /\ 1:r3=0)

15.3.2 Memory-Reference Reordering
Section 15.2.1 showed that even relatively strongly ordered
systems like x86 can reorder prior stores with later loads,
at least when the store and load are to different variables.
This section builds on that result, looking at the other
combinations of loads and stores.

15.3.2.1 Load Followed By Load

Listing 15.4 (C-MP+o-wmb-o+o-o.litmus) shows the
classic message-passing litmus test, where x0 is the mes-
sage and x1 is a flag indicating whether or not a message is
available. In this test, the smp_wmb() forces P0() stores
to be ordered, but no ordering is specified for the loads.
Relatively strongly ordered architectures, such as x86, do
enforce ordering. However, weakly ordered architectures
often do not [AMP+11]. Therefore, the exists clause on
line 19 of the listing can trigger.

One rationale for reordering loads from different loca-
tions is that doing so allows execution to proceed when
an earlier load misses the cache, but the values for later
loads are already present.

Quick Quiz 15.15: But why make load-load reordering
visible to the user? Why not just use speculative execution to
allow execution to proceed in the common case where there
are no intervening stores, in which case the reordering cannot
be visible anyway?

Thus, portable code relying on ordered loads must add
explicit ordering, for example, the smp_rmb() shown
on line 16 of Listing 15.5 (C-MP+o-wmb-o+o-rmb-
o.litmus), which prevents the exists clause from trig-
gering.

v2024.12.27a

334 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

1 6 4 10 15 3 9

2 3 9

3 9

4 10 15 12 9

5 10 15 12 9

6 2 15 9

7 2 15 9

8 9

9

10 15 12 9

11 10 15 12 9

12 9

13 12 9

14 15 12 9

15 12 9

0 50 100 150 200 250 300 350 400 450 500 (tick)

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 11

CPU 12

CPU 13

CPU 14

CPU 15

1

2

3

4

5

6

7

8 9

9

10

11

12

13

14 15

15

0 5 10 15 20 25 30 35 40 45 (tick)

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 11

CPU 12

CPU 13

CPU 14

CPU 15

Figure 15.10: A Variable With More Simultaneous Values

v2024.12.27a

15.3. TRICKS AND TRAPS 335

1

6

2 4

15

3 12

9

10

5

7

8

11

13

14

Figure 15.11: Possible Global Orders With More Simul-
taneous Values

Listing 15.5: Enforcing Order of Message-Passing Litmus Test
1 C C-MP+o-wmb-o+o-rmb-o
2
3 {}
4
5 P0(int* x0, int* x1) {
6 WRITE_ONCE(*x0, 2);
7 smp_wmb();
8 WRITE_ONCE(*x1, 2);
9 }

10
11 P1(int* x0, int* x1) {
12 int r2;
13 int r3;
14
15 r2 = READ_ONCE(*x1);
16 smp_rmb();
17 r3 = READ_ONCE(*x0);
18 }
19
20 exists (1:r2=2 /\ 1:r3=0)

Listing 15.6: Load-Buffering Litmus Test (No Ordering)
1 C C-LB+o-o+o-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = READ_ONCE(*x1);

10 WRITE_ONCE(*x0, 2);
11 }
12
13 P1(int *x0, int *x1)
14 {
15 int r2;
16
17 r2 = READ_ONCE(*x0);
18 WRITE_ONCE(*x1, 2);
19 }
20
21 exists (1:r2=2 /\ 0:r2=2)

Listing 15.7: Enforcing Ordering of Load-Buffering Litmus
Test

1 C C-LB+o-r+a-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = READ_ONCE(*x1);

10 smp_store_release(x0, 2);
11 }
12
13 P1(int *x0, int *x1)
14 {
15 int r2;
16
17 r2 = smp_load_acquire(x0);
18 WRITE_ONCE(*x1, 2);
19 }
20
21 exists (1:r2=2 /\ 0:r2=2)

15.3.2.2 Load Followed By Store

Listing 15.6 (C-LB+o-o+o-o.litmus) shows the classic
load-buffering litmus test. Although relatively strongly
ordered systems such as x86 or the IBM Mainframe do
not reorder prior loads with subsequent stores, many
weakly ordered architectures really do allow such reorder-
ing [AMP+11]. Therefore, the exists clause on line 21
really can trigger.

Although it is rare for actual hardware to exhibit this
reordering [Mar17], one situation where it might be desir-
able to do so is when a load misses the cache, the store
buffer is nearly full, and the cacheline for a subsequent
store is ready at hand. Therefore, portable code must
enforce any required ordering, for example, as shown
in Listing 15.7 (C-LB+o-r+a-o.litmus). The smp_

v2024.12.27a

336 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.8: Message-Passing Litmus Test, No Writer Ordering
(No Ordering)

1 C C-MP+o-o+o-rmb-o
2
3 {}
4
5 P0(int* x0, int* x1) {
6 WRITE_ONCE(*x0, 2);
7 WRITE_ONCE(*x1, 2);
8 }
9

10 P1(int* x0, int* x1) {
11 int r2;
12 int r3;
13
14 r2 = READ_ONCE(*x1);
15 smp_rmb();
16 r3 = READ_ONCE(*x0);
17 }
18
19 exists (1:r2=2 /\ 1:r3=0)

store_release() and smp_load_acquire() guaran-
tee that the exists clause on line 21 never triggers.

15.3.2.3 Store Followed By Store

Listing 15.8 (C-MP+o-o+o-rmb-o.litmus) once again
shows the classic message-passing litmus test, with the
smp_rmb() providing ordering for P1()’s loads, but with-
out any ordering for P0()’s stores. Again, the rela-
tively strongly ordered architectures do enforce ordering,
but weakly ordered architectures do not necessarily do
so [AMP+11], which means that the exists clause can
trigger. One situation in which such reordering could be
beneficial is when the store buffer is full, another store is
ready to execute, but the cacheline needed by the oldest
store is not yet available. In this situation, allowing stores
to complete out of order would allow execution to proceed.
Therefore, portable code must explicitly order the stores,
for example, as shown in Listing 15.5, thus preventing the
exists clause from triggering.
Quick Quiz 15.16: Why should strongly ordered systems
pay the performance price of unnecessary smp_rmb() and
smp_wmb() invocations? Shouldn’t weakly ordered systems
shoulder the full cost of their misordering choices???

15.3.3 Address Dependencies
An address dependency occurs when the value returned
by a load instruction is used to compute the address used
by a later memory-reference instruction. This means that
the exact same sequence of instructions used to traverse
a linked data structure in single-threaded code provides
weak but extremely useful ordering in concurrent code.

Listing 15.9: Message-Passing Address-Dependency Litmus
Test (No Ordering Before v4.15)

1 C C-MP+o-wmb-o+o-ad-o
2
3 {
4 y=1;
5 x1=y;
6 }
7
8 P0(int* x0, int** x1) {
9 WRITE_ONCE(*x0, 2);

10 smp_wmb();
11 WRITE_ONCE(*x1, x0);
12 }
13
14 P1(int** x1) {
15 int *r2;
16 int r3;
17
18 r2 = READ_ONCE(*x1);
19 r3 = READ_ONCE(*r2);
20 }
21
22 exists (1:r2=x0 /\ 1:r3=1)

Quick Quiz 15.17: Must an address dependency begin with a
load instruction? Why not something like xchg_relaxed(),
which also loads a value from memory?

Listing 15.9 (C-MP+o-wmb-o+o-addr-o.litmus)
shows a linked variant of the message-passing pattern.
The head pointer is x1, which initially references the int
variable y (line 5), which is in turn initialized to the value
1 (line 4). P0() updates head pointer x1 to reference x0
(line 11), but only after initializing it to 2 (line 9) and
forcing ordering (line 10). P1() picks up the head pointer
x1 (line 18), and then loads the referenced value (line 19).
There is thus an address dependency from the load on
line 18 to the load on line 19. In this case, the value
returned by line 18 is exactly the address used by line 19,
but many variations are possible, including field access
using the C-language -> operator, addition, subtraction,
and array indexing.8

One might hope that line 18’s load from the head pointer
would be ordered before line 19’s dereference, which is in
fact the case on Linux v4.15 and later. However, prior to
v4.15, this was not the case on DEC Alpha, which could
in effect use a speculated value for the dependent load, as
described in more detail in Section 15.6.1. Therefore, on
older versions of Linux, Listing 15.9’s exists clause can
trigger.

Listing 15.10 shows how to make this work reliably on
pre-v4.15 Linux kernels running on DEC Alpha, by re-
placing READ_ONCE() on line 18 of Listing 15.9 with

8 But note that in the Linux kernel, the address dependency must
be carried through the pointer to the array, not through the array index.

v2024.12.27a

15.3. TRICKS AND TRAPS 337

Listing 15.10: Enforced Ordering of Message-Passing Address-
Dependency Litmus Test (Before v4.15)

1 C C-MP+o-wmb-o+ld-addr-o
2
3 {
4 y=1;
5 x1=y;
6 }
7
8 P0(int* x0, int** x1) {
9 WRITE_ONCE(*x0, 2);

10 smp_wmb();
11 WRITE_ONCE(*x1, x0);
12 }
13
14 P1(int** x1) {
15 int *r2;
16 int r3;
17
18 r2 = lockless_dereference(*x1); // Obsolete
19 r3 = READ_ONCE(*r2);
20 }
21
22 exists (1:r2=x0 /\ 1:r3=1)

Listing 15.11: S Address-Dependency Litmus Test
1 C C-S+o-wmb-o+o-addr-o
2
3 {
4 y=1;
5 x1=y;
6 }
7
8 P0(int* x0, int** x1) {
9 WRITE_ONCE(*x0, 2);

10 smp_wmb();
11 WRITE_ONCE(*x1, x0);
12 }
13
14 P1(int** x1) {
15 int *r2;
16
17 r2 = READ_ONCE(*x1);
18 WRITE_ONCE(*r2, 3);
19 }
20
21 exists (1:r2=x0 /\ x0=2)

lockless_dereference(),9 which acts like READ_
ONCE() on all platforms other than DEC Alpha, where
it acts like a READ_ONCE() followed by an smp_mb(),
thereby forcing the required ordering on all platforms, in
turn preventing the exists clause from triggering.

But what happens if the dependent operation is a
store rather than a load, for example, in the S litmus
test [AMP+11] shown in Listing 15.11 (C-S+o-wmb-
o+o-addr-o.litmus)? Because no production-quality
platform speculates stores, it is not possible for the WRITE_
ONCE() on line 9 to overwrite the WRITE_ONCE() on
line 18, meaning that the exists clause on line 21 cannot

9 Note that lockless_dereference() is not needed on v4.15
and later, and therefore is not available in these later Linux kernels. Nor
is it needed in versions of this book containing this footnote.

Listing 15.12: Load-Buffering Data-Dependency Litmus Test
1 C C-LB+o-r+o-data-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = READ_ONCE(*x1);

10 smp_store_release(x0, 2);
11 }
12
13 P1(int *x0, int *x1)
14 {
15 int r2;
16
17 r2 = READ_ONCE(*x0);
18 WRITE_ONCE(*x1, r2);
19 }
20
21 exists (1:r2=2 /\ 0:r2=2)

trigger, even on DEC Alpha, even in pre-v4.15 Linux
kernels.
Quick Quiz 15.18: But how do we know that all platforms
really avoid triggering the exists clauses in Listings 15.10
and 15.11?

Quick Quiz 15.19: Why the use of smp_wmb() in List-
ings 15.10 and 15.11? Wouldn’t smp_store_release() be
a better choice?

Quick Quiz 15.20: SP, MP, LB, and now S. Where do all
these litmus-test abbreviations come from and how can anyone
keep track of them?

However, it is important to note that address depen-
dencies can be fragile and easily broken by compiler
optimizations, as discussed in Section 15.4.2.

15.3.4 Data Dependencies
A data dependency occurs when the value returned by a
load instruction is used to compute the data stored by a later
store instruction. Note well the “data” above: If the value
returned by a load was instead used to compute the address
used by a later store instruction, that would instead be an
address dependency, which was covered in Section 15.3.3.
However, the existence of data dependencies means that
the exact same sequence of instructions used to update
a linked data structure in single-threaded code provides
weak but extremely useful ordering in concurrent code.

Listing 15.12 (C-LB+o-r+o-data-o.litmus) is sim-
ilar to Listing 15.7, except that P1()’s ordering between
lines 17 and 18 is enforced not by an acquire load, but
instead by a data dependency: The value loaded by line 17

v2024.12.27a

338 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

is what line 18 stores. The ordering provided by this data
dependency is sufficient to prevent the exists clause
from triggering.

Just as with address dependencies, data dependencies
are fragile and can be easily broken by compiler opti-
mizations, as discussed in Section 15.4.2. In fact, data
dependencies can be even more fragile than are address
dependencies. The reason for this is that address depen-
dencies normally involve pointer values. In contrast, as
shown in Listing 15.12, it is tempting to carry data depen-
dencies through integral values, which the compiler has
much more freedom to optimize into nonexistence. For
but one example, if the integer loaded was multiplied by
the constant zero, the compiler would know that the result
was zero, and could therefore substitute the constant zero
for the value loaded, thus breaking the dependency.

Quick Quiz 15.21: But wait!!! Line 17 of Listing 15.12 uses
READ_ONCE(), which marks the load as volatile, which means
that the compiler absolutely must emit the load instruction
even if the value is later multiplied by zero. So how can the
compiler possibly break this data dependency?

In short, you can rely on data dependencies only if you
prevent the compiler from breaking them.

15.3.5 Control Dependencies
A control dependency occurs when the value returned by
a load instruction is tested to determine whether or not
a later store instruction is executed. In other words, a
simple conditional branch or conditional-move instruction
can act as a weak but low-overhead memory-barrier in-
struction. However, note well the “later store instruction”:
Although all platforms respect load-to-store dependen-
cies, many platforms do not respect load-to-load control
dependencies.

Listing 15.13 (C-LB+o-r+o-ctrl-o.litmus) shows
another load-buffering example, this time using a control
dependency (line 18) to order the load on line 17 and the
store on line 19. The ordering is sufficient to prevent the
exists from triggering.

However, control dependencies are even more suscep-
tible to being optimized out of existence than are data
dependencies, and Section 15.4.3 describes some of the
rules that must be followed in order to prevent your com-
piler from breaking your control dependencies.

It is worth reiterating that control dependencies pro-
vide ordering only from loads to stores. Therefore, the
load-to-load control dependency shown on lines 14–16
of Listing 15.14 (C-MP+o-r+o-ctrl-o.litmus) does

Listing 15.13: Load-Buffering Control-Dependency Litmus
Test

1 C C-LB+o-r+o-ctrl-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = READ_ONCE(*x1);

10 smp_store_release(x0, 2);
11 }
12
13 P1(int *x0, int *x1)
14 {
15 int r2;
16
17 r2 = READ_ONCE(*x0);
18 if (r2 >= 0)
19 WRITE_ONCE(*x1, 2);
20 }
21
22 exists (1:r2=2 /\ 0:r2=2)

Listing 15.14: Message-Passing Control-Dependency Litmus
Test (No Ordering)

1 C C-MP+o-r+o-ctrl-o
2
3 {}
4
5 P0(int* x0, int* x1) {
6 WRITE_ONCE(*x0, 2);
7 smp_store_release(x1, 2);
8 }
9

10 P1(int* x0, int* x1) {
11 int r2;
12 int r3 = 0;
13
14 r2 = READ_ONCE(*x1);
15 if (r2 >= 0)
16 r3 = READ_ONCE(*x0);
17 }
18
19 exists (1:r2=2 /\ 1:r3=0)

v2024.12.27a

15.3. TRICKS AND TRAPS 339

not provide ordering, and therefore does not prevent the
exists clause from triggering.

In summary, control dependencies can be useful, but
they are high-maintenance items. You should therefore
use them only when performance considerations permit
no other solution.
Quick Quiz 15.22: Wouldn’t control dependencies be more
robust if they were mandated by language standards???

15.3.6 Cache Coherence
On cache-coherent platforms, all CPUs agree on the order
of loads and stores to a given variable. Fortunately, when
READ_ONCE() and WRITE_ONCE() are used, almost all
platforms are cache-coherent, as indicated by the “SV”
column of the cheat sheet shown in Table 15.3. Unfortu-
nately, this property is so popular that it has been named
multiple times, with “single-variable SC”,10 “single-copy
atomic” [SF95], and just plain “coherence” [AMP+11]
having seen use. Rather than further compound the con-
fusion by inventing yet another term for this concept,
this book uses “cache coherence” and “coherence” inter-
changeably.

Listing 15.15 (C-CCIRIW+o+o+o-o+o-o.litmus)
shows a litmus test that tests for cache coherence, where
“IRIW” stands for “independent reads of independent
writes”. Because this litmus test uses only one vari-
able, P2() and P3() must agree on the order of P0()’s
and P1()’s stores. In other words, if P2() believes that
P0()’s store came first, then P3() had better not believe
that P1()’s store came first. And in fact the exists
clause on line 33 will trigger if this situation arises.

Quick Quiz 15.23: But in Listing 15.15, wouldn’t be just
as bad if P2()’s r1 and r2 obtained the values 2 and 1,
respectively, while P3()’s r3 and r4 obtained the values 1
and 2, respectively?

It is tempting to speculate that different-sized overlap-
ping loads and stores to a single region of memory (as
might be set up using the C-language union keyword)
would provide similar ordering guarantees. However,
Flur et al. [FSP+17] discovered some surprisingly simple
litmus tests that demonstrate that such guarantees can
be violated on real hardware. It is therefore necessary
to restrict code to non-overlapping same-sized aligned

10 Recall that SC stands for sequentially consistent.

Listing 15.15: Cache-Coherent IRIW Litmus Test
1 C C-CCIRIW+o+o+o-o+o-o
2
3 {}
4
5 P0(int *x)
6 {
7 WRITE_ONCE(*x, 1);
8 }
9

10 P1(int *x)
11 {
12 WRITE_ONCE(*x, 2);
13 }
14
15 P2(int *x)
16 {
17 int r1;
18 int r2;
19
20 r1 = READ_ONCE(*x);
21 r2 = READ_ONCE(*x);
22 }
23
24 P3(int *x)
25 {
26 int r3;
27 int r4;
28
29 r3 = READ_ONCE(*x);
30 r4 = READ_ONCE(*x);
31 }
32
33 exists(2:r1=1 /\ 2:r2=2 /\ 3:r3=2 /\ 3:r4=1)

CPU 0 CPU 1 CPU 2 CPU 3

Memory Memory

Figure 15.12: Global System Bus And Multi-Copy Atom-
icity

accesses to a given variable, at least if portability is a
consideration.11

Adding more variables and threads increases the scope
for reordering and other counter-intuitive behavior, as
discussed in the next section.

15.3.7 Multicopy Atomicity
Threads running on a fully multicopy atomic [SF95] plat-
form are guaranteed to agree on the order of stores, even to
different variables. A useful mental model of such a sys-
tem is the single-bus architecture shown in Figure 15.12.

11 There is reason to believe that using atomic RMW operations (for
example, xchg()) for all the stores will provide sequentially consistent
ordering, but this has not yet been proven either way.

v2024.12.27a

340 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

If each store resulted in a message on the bus, and if the
bus could accommodate only one store at a time, then any
pair of CPUs would agree on the order of all stores that
they observed. Unfortunately, building a computer system
as shown in the figure, without store buffers or even caches,
would result in glacially slow computation. Most CPU
vendors interested in providing multicopy atomicity there-
fore instead provide the slightly weaker other-multicopy
atomicity [ARM17, Section B2.3], which excludes the
CPU doing a given store from the requirement that all
CPUs agree on the order of all stores.12 This means that
if only a subset of CPUs are doing stores, the other CPUs
will agree on the order of stores, hence the “other” in
“other-multicopy atomicity”. Unlike multicopy-atomic
platforms, within other-multicopy-atomic platforms, the
CPU doing the store is permitted to observe its store
early, which allows its later loads to obtain the newly
stored value directly from the store buffer, which improves
performance.
Quick Quiz 15.24: Can you give a specific example showing
different behavior for multicopy atomic on the one hand and
other-multicopy atomic on the other?

Perhaps there will come a day when all platforms
provide some flavor of multi-copy atomicity, but in the
meantime, non-multicopy-atomic platforms do exist, and
so software must deal with them.

Listing 15.16 (C-WRC+o+o-data-o+o-rmb-
o.litmus) demonstrates multicopy atomicity, that is,
on a multicopy-atomic platform, the exists clause on
line 28 cannot trigger. In contrast, on a non-multicopy-
atomic platform this exists clause can trigger, despite
P1()’s accesses being ordered by a data dependency and
P2()’s accesses being ordered by an smp_rmb(). Recall
that the definition of multicopy atomicity requires that
all threads agree on the order of stores, which can be
thought of as all stores reaching all threads at the same
time. Therefore, a non-multicopy-atomic platform can
have a store reach different threads at different times. In
particular, P0()’s store might reach P1() long before it
reaches P2(), which raises the possibility that P1()’s
store might reach P2() before P0()’s store does.

This leads to the question of why a real system con-
strained by the usual laws of physics would ever trigger the
exists clause of Listing 15.16. The cartoonish diagram
of a such a real system is shown in Figure 15.13. CPU 0

12 As of early 2021, Armv8 and x86 provide other-multicopy atomic-
ity, IBM mainframe provides full multicopy atomicity, and PPC provides
no multicopy atomicity at all. More detail is shown in Table 15.5 on
page 369.

Listing 15.16: WRC Litmus Test With Dependencies (No
Ordering)

1 C C-WRC+o+o-data-o+o-rmb-o
2
3 {}
4
5 P0(int *x)
6 {
7 WRITE_ONCE(*x, 1);
8 }
9

10 P1(int *x, int* y)
11 {
12 int r1;
13
14 r1 = READ_ONCE(*x);
15 WRITE_ONCE(*y, r1);
16 }
17
18 P2(int *x, int* y)
19 {
20 int r2;
21 int r3;
22
23 r2 = READ_ONCE(*y);
24 smp_rmb();
25 r3 = READ_ONCE(*x);
26 }
27
28 exists (1:r1=1 /\ 2:r2=1 /\ 2:r3=0)

Memory Memory

Cache

CPU 0 CPU 1Store
Buffer CPU 2 CPU 3

Cache

Store
Buffer

Figure 15.13: Shared Store Buffers And Multi-Copy
Atomicity

v2024.12.27a

15.3. TRICKS AND TRAPS 341

and CPU 1 share a store buffer, as do CPUs 2 and 3.
This means that CPU 1 can load a value out of the store
buffer, thus potentially immediately seeing a value stored
by CPU 0. In contrast, CPUs 2 and 3 will have to wait for
the corresponding cache line to carry this new value to
them.
Quick Quiz 15.25: Then who would even think of designing
a system with shared store buffers???

Table 15.4 shows one sequence of events that can result
in the exists clause in Listing 15.16 triggering. This
sequence of events will depend critically on P0() and
P1() sharing both cache and a store buffer in the manner
shown in Figure 15.13.
Quick Quiz 15.26: But just how is it fair that P0() and P1()
must share a store buffer and a cache, but P2() gets one each
of its very own???

Row 1 shows the initial state, with the initial value of y
in P0()’s and P1()’s shared cache, and the initial value
of x in P2()’s cache.

Row 2 shows the immediate effect of P0() executing
its store on line 7. Because the cacheline containing x is
not in P0()’s and P1()’s shared cache, the new value (1)
is stored in the shared store buffer.

Row 3 shows two transitions. First, P0() issues a read-
invalidate operation to fetch the cacheline containing x so
that it can flush the new value for x out of the shared store
buffer. Second, P1() loads from x (line 14), an operation
that completes immediately because the new value of x is
immediately available from the shared store buffer.

Row 4 also shows two transitions. First, it shows the
immediate effect of P1() executing its store to y (line 15),
placing the new value into the shared store buffer. Second,
it shows the start of P2()’s load from y (line 23).

Row 5 continues the tradition of showing two transitions.
First, it shows P1() complete its store to y, flushing from
the shared store buffer to the cache. Second, it shows
P2() request the cacheline containing y.

Row 6 shows P2() receive the cacheline containing y,
allowing it to finish its load into r2, which takes on the
value 1.

Row 7 shows P2() execute its smp_rmb() (line 24),
thus keeping its two loads ordered.

Row 8 shows P2() execute its load from x, which
immediately returns with the value zero from P2()’s
cache.

Row 9 shows P2() finally responding to P0()’s request
for the cacheline containing x, which was made way back
up on row 3.

Listing 15.17: WRC Litmus Test With Release
1 C C-WRC+o+o-r+a-o
2
3 {}
4
5 P0(int *x)
6 {
7 WRITE_ONCE(*x, 1);
8 }
9

10 P1(int *x, int* y)
11 {
12 int r1;
13
14 r1 = READ_ONCE(*x);
15 smp_store_release(y, r1);
16 }
17
18 P2(int *x, int* y)
19 {
20 int r2;
21 int r3;
22
23 r2 = smp_load_acquire(y);
24 r3 = READ_ONCE(*x);
25 }
26
27 exists (1:r1=1 /\ 2:r2=1 /\ 2:r3=0)

Finally, row 10 shows P0() finish its store, flushing its
value of x from the shared store buffer to the shared cache.

Note well that the exists clause on line 28 has trig-
gered. The values of r1 and r2 are both the value one, and
the final value of r3 the value zero. This strange result oc-
curred because P0()’s new value of x was communicated
to P1() long before it was communicated to P2().

Quick Quiz 15.27: Referring to Table 15.4, why on earth
would P0()’s store take so long to complete when P1()’s store
complete so quickly? In other words, does the exists clause
on line 28 of Listing 15.16 really trigger on real systems?

This counter-intuitive result happens because although
dependencies do provide ordering, they provide it only
within the confines of their own thread. This three-thread
example requires stronger ordering, which is the subject
of Sections 15.3.7.1 through 15.3.7.4.

15.3.7.1 Cumulativity

The three-thread example shown in Listing 15.16 re-
quires cumulative ordering, or cumulativity. A cumulative
memory-ordering operation orders not just any given ac-
cess preceding it, but also earlier accesses by any thread
to that same variable.

Dependencies do not provide cumulativity, which is
why the “C” column is blank for the READ_ONCE()
row of Table 15.3 on page 330. However, as indi-
cated by the “C” in their “C” column, release opera-

v2024.12.27a

342 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Table 15.4: Memory Ordering: WRC Sequence of Events

P0() P0() & P1() P1() P2()

Instruction Store Buffer Cache Instruction Instruction Store Buffer Cache

1 (Initial state) y==0 (Initial state) (Initial state) x==0
2 x = 1; x==1 y==0 x==0
3 (Read-Invalidate x) x==1 y==0 r1 = x (1) x==0
4 x==1 y==1 y==0 y = r1 r2 = y x==0
5 x==1 y==1 (Finish store) (Read y) x==0
6 (Respond y) x==1 y==1 (r2==1) x==0 y==1
7 x==1 y==1 smp_rmb() x==0 y==1
8 x==1 y==1 r3 = x (0) x==0 y==1
9 x==1 x==0 y==1 (Respond x) y==1

10 (Finish store) x==1 y==1 y==1

tions do provide cumulativity. Therefore, Listing 15.17
(C-WRC+o+o-r+a-o.litmus) substitutes a release oper-
ation for Listing 15.16’s data dependency. Because the
release operation is cumulative, its ordering applies not
only to Listing 15.17’s load from x by P1() on line 14,
but also to the store to x by P0() on line 7—but only
if that load returns the value stored, which matches the
1:r1=1 in the exists clause on line 27. This means that
P2()’s load-acquire suffices to force the load from x on
line 24 to happen after the store on line 7, so the value
returned is one, which does not match 2:r3=0, which in
turn prevents the exists clause from triggering.

These ordering constraints are depicted graphically in
Figure 15.14. Note also that cumulativity is not limited to
a single step back in time. If there was another load from
x or store to x from any thread that came before the store
on line 7, that prior load or store would also be ordered
before the load on line 24, though only if both r1 and r2
both end up containing the value 1.

In short, use of cumulative ordering operations can sup-
press non-multicopy-atomic behaviors in some situations.
Cumulativity nevertheless has limits, which are examined
in the next section.

15.3.7.2 Propagation

Listing 15.18 (C-W+RWC+o-r+a-o+o-mb-o.litmus)
shows the limitations of cumulativity and store-release,
even with a full memory barrier. The problem is that
although the smp_store_release() on line 8 has cumu-
lativity, and although that cumulativity does order P2()’s
load on line 26, the smp_store_release()’s ordering
cannot propagate through the combination of P1()’s load

Listing 15.18: W+RWC Litmus Test With Release (No Order-
ing)

1 C C-W+RWC+o-r+a-o+o-mb-o
2
3 {}
4
5 P0(int *x, int *y)
6 {
7 WRITE_ONCE(*x, 1);
8 smp_store_release(y, 1);
9 }

10
11 P1(int *y, int *z)
12 {
13 int r1;
14 int r2;
15
16 r1 = smp_load_acquire(y);
17 r2 = READ_ONCE(*z);
18 }
19
20 P2(int *z, int *x)
21 {
22 int r3;
23
24 WRITE_ONCE(*z, 1);
25 smp_mb();
26 r3 = READ_ONCE(*x);
27 }
28
29 exists(1:r1=1 /\ 1:r2=0 /\ 2:r3=0)

(line 17) and P2()’s store (line 24). This means that the
exists clause on line 29 really can trigger.

Quick Quiz 15.28: But it is not necessary to worry about
propagation unless there are at least three threads in the litmus
test, right?

This situation might seem completely counter-intuitive,
but keep in mind that the speed of light is finite and
computers are of non-zero size. It therefore takes time for
the effect of the P2()’s store to x to propagate to P1(),

v2024.12.27a

15.3. TRICKS AND TRAPS 343

... cumulativity guarantees CPU 0's store before CPU 1's store

Given this link ...

.... memory barriers guarantee this order and given this link ... Load r1=x

Release store
y=r1

Acquire load
r2=y

Memory
Barrier

Load r3=x

CPU 2

CPU 1

CPU 0

Store x=1

Figure 15.14: Cumulativity

WRITE_ONCE(x, 1);CPU 0

CPU 1

CPU 2

CPU 3 r1 = READ_ONCE(x) == 0;

x =
 0

x =
 1

Time

fr

Figure 15.15: Load-to-Store is Counter-Temporal

which in turn means that it is possible that P1()’s read
from x happens much later in time, but nevertheless still
sees the old value of zero. This situation is depicted in
Figure 15.15: Just because a load sees the old value does
not mean that this load executed at an earlier time than
did the store of the new value.

Note that Listing 15.18 also shows the limitations of
memory-barrier pairing, given that there are not two but
three processes. These more complex litmus tests can
instead be said to have cycles, where memory-barrier
pairing is the special case of a two-thread cycle. The
cycle in Listing 15.18 goes through P0() (lines 7 and 8),
P1() (lines 16 and 17), P2() (lines 24, 25, and 26), and
back to P0() (line 7). The exists clause delineates
this cycle: The 1:r1=1 indicates that the smp_load_
acquire() on line 16 returned the value stored by the
smp_store_release() on line 8, the 1:r2=0 indicates
that the WRITE_ONCE() on line 24 came too late to affect
the value returned by the READ_ONCE() on line 17, and
finally the 2:r3=0 indicates that the WRITE_ONCE() on

Listing 15.19: W+WRC Litmus Test With More Barriers
1 C C-W+RWC+o-mb-o+a-o+o-mb-o
2
3 {}
4
5 P0(int *x, int *y)
6 {
7 WRITE_ONCE(*x, 1);
8 smp_mb();
9 WRITE_ONCE(*y, 1);

10 }
11
12 P1(int *y, int *z)
13 {
14 int r1;
15 int r2;
16
17 r1 = smp_load_acquire(y);
18 r2 = READ_ONCE(*z);
19 }
20
21 P2(int *z, int *x)
22 {
23 int r3;
24
25 WRITE_ONCE(*z, 1);
26 smp_mb();
27 r3 = READ_ONCE(*x);
28 }
29
30 exists(1:r1=1 /\ 1:r2=0 /\ 2:r3=0)

line 7 came too late to affect the value returned by the
READ_ONCE() on line 26. In this case, the fact that the
exists clause can trigger means that the cycle is said to
be allowed. In contrast, in cases where the exists clause
cannot trigger, the cycle is said to be prohibited.

v2024.12.27a

344 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

WRITE_ONCE(x, 1);CPU 0

CPU 1

CPU 2

CPU 3

X =
 0

X =
 1

WRITE_ONCE(x, 2);

X =
 2

Time

co

Figure 15.16: Store-to-Store is Counter-Temporal

But what if we need to prohibit the cycle corresponding
to the exists clause on line 29 of Listing 15.18? One
solution is to replace P0()’s smp_store_release()
with an smp_mb(), which Table 15.3 shows to have not
only cumulativity, but also propagation. The result is
shown in Listing 15.19 (C-W+RWC+o-mb-o+a-o+o-mb-
o.litmus).
Quick Quiz 15.29: But given that smp_mb() has the prop-
agation property, why doesn’t the smp_mb() on line 25 of
Listing 15.18 prevent the exists clause from triggering?

For completeness, Figure 15.16 shows that the “winning”
store among a group of stores to the same variable is not
necessarily the store that started last. This should not
come as a surprise to anyone who carefully examined
Figure 15.10 on page 334. One way to rationalize the
counter-temporal properties of both load-to-store and
store-to-store ordering is to clearly distinguish between
the temporal order in which the store instructions executed
on the one hand, and the order in which the corresponding
cacheline visited the CPUs that executed those instructions
on the other. It is the cacheline-visitation order that defines
the externally visible ordering of the actual stores. This
cacheline-visitation order is not directly visible to the
code executing the store instructions, which results in the
counter-intuitive counter-temporal nature of load-to-store
and store-to-store ordering.13

Quick Quiz 15.30: But for litmus tests having only ordered
stores, as shown in Listing 15.20 (C-2+2W+o-wmb-o+o-wmb-
o.litmus), research shows that the cycle is prohibited, even
in weakly ordered systems such as Arm and Power [SSA+11].
Given that, is store-to-store ordering really always counter-
temporal???

But sometimes time really is on our side. Read on!

13 In some hardware-multithreaded systems, the store would become
visible to other CPUs in that same core as soon as the store reached the
shared store buffer. As a result, such systems are non-multicopy atomic.

Listing 15.20: 2+2W Litmus Test With Write Barriers
1 C C-2+2W+o-wmb-o+o-wmb-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 1);
8 smp_wmb();
9 WRITE_ONCE(*x1, 2);

10 }
11
12 P1(int *x0, int *x1)
13 {
14 WRITE_ONCE(*x1, 1);
15 smp_wmb();
16 WRITE_ONCE(*x0, 2);
17 }
18
19 exists (x0=1 /\ x1=1)

WRITE_ONCE(x, 1);CPU 0

CPU 1

CPU 2

CPU 3 r1 = READ_ONCE(x);
X =

 0
X =

 1

Time

rf

Figure 15.17: Store-to-Load is Temporal

15.3.7.3 Happens-Before

As shown in Figure 15.17, on platforms without user-
visible speculation, if a load returns the value from a
particular store, then, courtesy of the finite speed of light
and the non-zero size of modern computing systems, the
store absolutely has to have executed at an earlier time
than did the load. This means that carefully constructed
programs can rely on the passage of time itself as a
memory-ordering operation.

Quick Quiz 15.31: Why don’t we just stick to sanely ordered
CPU families like x86, so that time will always be on our
side???

Of course, just the passage of time by itself is not
enough, as was seen in Listing 15.6 on page 335, which
has nothing but store-to-load links and, because it provides
absolutely no ordering, still can trigger its exists clause.
However, as long as each thread provides even the weakest
possible ordering, exists clause would not be able to
trigger. For example, Listing 15.21 (C-LB+a-o+o-data-
o+o-data-o.litmus) shows P0() ordered with an smp_
load_acquire() and both P1() and P2() ordered with
data dependencies. These orderings, which are close to
the top of Table 15.3, suffice to prevent the exists clause
from triggering.

v2024.12.27a

15.3. TRICKS AND TRAPS 345

Listing 15.21: LB Litmus Test With One Acquire
1 C C-LB+a-o+o-data-o+o-data-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = smp_load_acquire(x0);

10 WRITE_ONCE(*x1, 2);
11 }
12
13 P1(int *x1, int *x2)
14 {
15 int r2;
16
17 r2 = READ_ONCE(*x1);
18 WRITE_ONCE(*x2, r2);
19 }
20
21 P2(int *x2, int *x0)
22 {
23 int r2;
24
25 r2 = READ_ONCE(*x2);
26 WRITE_ONCE(*x0, r2);
27 }
28
29 exists (0:r2=2 /\ 1:r2=2 /\ 2:r2=2)

Quick Quiz 15.32: Can you construct a litmus test like that
in Listing 15.21 that uses only dependencies?

An important use of time for ordering memory accesses
is covered in the next section.

15.3.7.4 Release-Acquire Chains

A minimal release-acquire chain was shown in Listing 15.7
on page 335, but these chains can be much longer, as shown
in Listing 15.22 (C-LB+a-r+a-r+a-r+a-r.litmus).
The longer the release-acquire chain, the more order-
ing is gained from the passage of time, so that no matter
how many threads are involved, the corresponding exists
clause cannot trigger.

Although release-acquire chains are inherently store-to-
load creatures, it turns out that they can tolerate one load-
to-store step, despite such steps being counter-temporal,
as shown in Figure 15.15 on page 343. For example, List-
ing 15.23 (C-ISA2+o-r+a-r+a-r+a-o.litmus) shows
a three-step release-acquire chain, but where P3()’s final
access is a READ_ONCE() from x0, which is accessed via
WRITE_ONCE() by P0(), forming a non-temporal load-to-
store link between these two processes. However, because
P0()’s smp_store_release() (line 8) is cumulative,
if P3()’s READ_ONCE() returns zero, this cumulativity
will force the READ_ONCE() to be ordered before P0()’s
smp_store_release(). In addition, the release-acquire

Listing 15.22: Long LB Release-Acquire Chain
1 C C-LB+a-r+a-r+a-r+a-r
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 int r2;
8
9 r2 = smp_load_acquire(x0);

10 smp_store_release(x1, 2);
11 }
12
13 P1(int *x1, int *x2)
14 {
15 int r2;
16
17 r2 = smp_load_acquire(x1);
18 smp_store_release(x2, 2);
19 }
20
21 P2(int *x2, int *x3)
22 {
23 int r2;
24
25 r2 = smp_load_acquire(x2);
26 smp_store_release(x3, 2);
27 }
28
29 P3(int *x3, int *x0)
30 {
31 int r2;
32
33 r2 = smp_load_acquire(x3);
34 smp_store_release(x0, 2);
35 }
36
37 exists (0:r2=2 /\ 1:r2=2 /\ 2:r2=2 /\ 3:r2=2)

chain (lines 8, 15, 16, 23, 24, and 32) forces P3()’s
READ_ONCE() to be ordered after P0()’s smp_store_
release(). Because P3()’s READ_ONCE() cannot be
both before and after P0()’s smp_store_release(),
either or both of two things must be true:

1. P3()’s READ_ONCE() came after P0()’s WRITE_
ONCE(), so that the READ_ONCE() returned the value
two, so that the exists clause’s 3:r2=0 is false.

2. The release-acquire chain did not form, that is, one
or more of the exists clause’s 1:r2=2, 2:r2=2, or
3:r1=2 is false.

Either way, the exists clause cannot trigger, despite
this litmus test containing a notorious load-to-store link
between P3() and P0(). But never forget that release-
acquire chains can tolerate only one load-to-store link, as
was seen in Listing 15.18.

Release-acquire chains can also tolerate a single store-
to-store step, as shown in Listing 15.24 (C-Z6.2+o-r+a-
r+a-r+a-o.litmus). As with the previous example,
smp_store_release()’s cumulativity combined with

v2024.12.27a

346 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.23: Long ISA2 Release-Acquire Chain
1 C C-ISA2+o-r+a-r+a-r+a-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 smp_store_release(x1, 2);
9 }

10
11 P1(int *x1, int *x2)
12 {
13 int r2;
14
15 r2 = smp_load_acquire(x1);
16 smp_store_release(x2, 2);
17 }
18
19 P2(int *x2, int *x3)
20 {
21 int r2;
22
23 r2 = smp_load_acquire(x2);
24 smp_store_release(x3, 2);
25 }
26
27 P3(int *x3, int *x0)
28 {
29 int r1;
30 int r2;
31
32 r1 = smp_load_acquire(x3);
33 r2 = READ_ONCE(*x0);
34 }
35
36 exists (1:r2=2 /\ 2:r2=2 /\ 3:r1=2 /\ 3:r2=0)

the temporal nature of the release-acquire chain prevents
the exists clause on line 35 from triggering.

Quick Quiz 15.33: Suppose we have a short release-acquire
chain along with one load-to-store link and one store-to-store
link, like that shown in Listing 15.25. Given that there is only
one of each type of non-store-to-load link, the exists cannot
trigger, right?

But beware: Adding a second store-to-store link allows
the correspondingly updated exists clause to trigger. To
see this, review Listings 15.26 and 15.27, which have
identical P0() and P1() processes. The only code dif-
ference is that Listing 15.27 has an additional P2() that
does an smp_store_release() to the x2 variable that
P0() releases and P1() acquires. The exists clause
is also adjusted to exclude executions in which P2()’s
smp_store_release() precedes that of P0().

Running the litmus test in Listing 15.27 shows that the
addition of P2() can totally destroy the ordering from
the release-acquire chain. Therefore, when constructing
release-acquire chains, please take care to construct them
properly.

Listing 15.24: Long Z6.2 Release-Acquire Chain
1 C C-Z6.2+o-r+a-r+a-r+a-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 smp_store_release(x1, 2);
9 }

10
11 P1(int *x1, int *x2)
12 {
13 int r2;
14
15 r2 = smp_load_acquire(x1);
16 smp_store_release(x2, 2);
17 }
18
19 P2(int *x2, int *x3)
20 {
21 int r2;
22
23 r2 = smp_load_acquire(x2);
24 smp_store_release(x3, 2);
25 }
26
27 P3(int *x3, int *x0)
28 {
29 int r2;
30
31 r2 = smp_load_acquire(x3);
32 WRITE_ONCE(*x0, 3);
33 }
34
35 exists (1:r2=2 /\ 2:r2=2 /\ 3:r2=2 /\ x0=2)

Listing 15.25: Z6.2 Release-Acquire Chain (Ordering?)
1 C C-Z6.2+o-r+a-o+o-mb-o
2
3 {}
4
5 P0(int *x, int *y)
6 {
7 WRITE_ONCE(*x, 1);
8 smp_store_release(y, 1);
9 }

10
11 P1(int *y, int *z)
12 {
13 int r1;
14
15 r1 = smp_load_acquire(y);
16 WRITE_ONCE(*z, 1);
17 }
18
19 P2(int *z, int *x)
20 {
21 int r2;
22
23 WRITE_ONCE(*z, 2);
24 smp_mb();
25 r2 = READ_ONCE(*x);
26 }
27
28 exists(1:r1=1 /\ 2:r2=0 /\ z=2)

v2024.12.27a

15.3. TRICKS AND TRAPS 347

Listing 15.26: A Release-Acquire Chain Ordering Multiple
Accesses

1 C C-MP+o-r+a-o
2
3 {}
4
5 P0(int* x0, int* x1, int* x2) {
6 int r1;
7
8 WRITE_ONCE(*x0, 2);
9 r1 = READ_ONCE(*x1);

10 smp_store_release(x2, 2);
11 }
12
13 P1(int* x0, int* x1, int* x2) {
14 int r2;
15 int r3;
16
17 r2 = smp_load_acquire(x2);
18 WRITE_ONCE(*x1, 2);
19 r3 = READ_ONCE(*x0);
20 }
21
22 exists (1:r2=2 /\ (1:r3=0 \/ 0:r1=2))

Listing 15.27: A Release-Acquire Chain With Added Store
(Ordering?)

1 C C-MPO+o-r+a-o+o
2
3 {}
4
5 P0(int* x0, int* x1, int* x2) {
6 int r1;
7
8 WRITE_ONCE(*x0, 2);
9 r1 = READ_ONCE(*x1);

10 smp_store_release(x2, 2);
11 }
12
13 P1(int* x0, int* x1, int* x2) {
14 int r2;
15 int r3;
16
17 r2 = smp_load_acquire(x2);
18 WRITE_ONCE(*x1, 2);
19 r3 = READ_ONCE(*x0);
20 }
21
22 P2(int* x2) {
23 smp_store_release(x2, 3);
24 }
25
26 exists (1:r2=3 /\ x2=3 /\ (1:r3=0 \/ 0:r1=2))

Quick Quiz 15.34: There are store-to-load links, load-to-store
links, and store-to-store links. But what about load-to-load
links?

In short, properly constructed release-acquire chains
form a peaceful island of intuitive bliss surrounded by a
strongly counter-intuitive sea of more complex memory-
ordering constraints.

15.3.8 A Counter-Intuitive Case Study
This section will revisit Listing E.11 on page 569, which
was presented in the answer to Quick Quiz 15.28. This
litmus test has only two threads, with the stores in P0()
being ordered by smp_wmb() and the accesses in P1() be-
ing ordered by smp_mb(). Despite this litmus test’s small
size and heavy ordering, the counter-intuitive outcome
shown in the exists clause is in fact allowed.

One way to look at this was presented in the answer
to Quick Quiz 15.28, namely that the link from P0() to
P1() is a store-to-store link, and that back from P1()
to P0() is a store-to-store link. Both links are counter-
temporal, thus requiring full memory barriers in both
processes. Revisiting Figures 15.16 and 15.17 shows that
these counter-temporal links give the hardware consider-
able latitude.

But that raises the question of exactly how hardware
would go about using this latitude to satisfy the exists
clause in Listing E.11. There is no known “toy” hardware
implementation that can do this, so let us instead study
the sequence of steps that the PowerPC architecture goes
through to make this happen.

The first step in this study is to translate Listing E.11 to
a PowerPC assembly language litmus test (Section 12.2.1
on page 261):

1 PPC R+lwsync+sync
2 {
3 0:r1=1; 0:r2=x; 0:r4=y;
4 1:r1=2; 1:r2=y; 1:r4=x;
5 }
6 P0 | P1 ;
7 stw r1,0(r2) | stw r1,0(r2) ;
8 lwsync | sync ;
9 stw r1,0(r4) | lwz r3,0(r4) ;

10 exists (y=2 /\ 1:r3=0)

The first line identifies the type of test (PPC) and gives
the test’s name. Lines 3 and 4 initialize P0()’s and P1()’s
registers, respectively. Lines 6–9 show the PowerPC
assembly statements corresponding to the C code from
Listing E.11, with the first column being the code for P0()
and the second column being the code for P1(). Line 7

v2024.12.27a

348 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

shows the initial WRITE_ONCE() calls in both columns;
the columns of line 8 show the smp_wmb() and smp_mb()
for P0() and P1(), respectively; the columns of line 9
shows P0()’s WRITE_ONCE() and P1()’s READ_ONCE(),
respectively; and finally line 10 shows the exists clause.

In order for this exists clause to be satisfied, P0()’s
stw to y must precede that of P1(), but P1()’s later lwz
from x must precede P0()’s stw to x. Seeing how this can
happen requires a rough understanding of the following
PowerPC terminology.

Instruction commit:
This can be thought of as the execution of that instruc-
tion as opposed to the memory-system consequences
of having executed that instruction.

Write reaching coherence point:
This can be thought of as the value written being
deposited into the corresponding cache line.

Partial coherence commit:
This can be thought of as the system having worked
out the order in which a pair of values written will
be deposited into the corresponding cache line, but
potentially well before that cache line arrives. Some
might argue that the data in Figure 15.10 suggests
that real PowerPC hardware does in fact use partial
coherence commits to handle concurrent stores by
multiple hardware threads within a single core.

Write propagate to thread:
This occurs when a second hardware thread becomes
aware of the first hardware thread’s write. The time
at which a write propagates to a given thread might
not have any relation to cache-line movement. For
example, if a pair of threads share a store buffer,
they might see each others’ writes long before the
cache line gets involved. On the other hand, if a pair
of hardware threads are widely separated, the first
thread’s write’s value might have been deposited into
the corresponding cache line long before the second
thread learns of that write.

Barrier propagate to thread:
Hardware threads make each other aware of memory-
barrier instructions as needed by propagating them
to each other.

Acknowledge sync:
The PowerPC sync instruction implements the Linux
kernel’s smp_mb() full barrier. And one reason that
the sync instruction provides such strong ordering

is that each sync is not only propagated to other
hardware threads, but these other threads must also
acknowledge each sync. This two-way communi-
cation allows the hardware threads to cooperate to
produce the required strong global ordering.

We are now ready to step through the PowerPC sequence
of events that satisfies the above exists clause.

To best understand this, please follow along at
https://www.cl.cam.ac.uk/~pes20/ppcmem/
index.html, carefully copying the above assembly-
language litmus test into the pane. The result should look
as shown in Figure 15.18, give or take space characters.
Click on the “Interactive” button in the lower left, which,
after a short delay, should produce a display as shown in
Figure 15.19. If the “Interactive” button refuses to do
anything, this usually means that there is a syntax error,
for example, a spurious newline character might have
been introduced during the copy-paste operation.

This display has one clickable link in each section
displaying thread state, and as the “Commit” in each
link suggests, these links commit each thread’s first stw
instruction. If you prefer, you can instead click on the
corresponding links listed under “Enabled transitions”
near the bottom of the screen. Note well that some of the
later memory-system transitions will appear in the upper
“Storage subsystem state” section of this display.

The following sequence of clicks demonstrates how the
exists clause can be satisfied:

1. Commit P0()’s first stw instruction (to x).

2. Commit P1()’s stw instruction.

3. Commit P0()’s lwsync instruction.

4. Commit P0()’s second stw instruction (to y).

5. Commit P1()’s sync instruction.

6. At this point, there should be no clickable links in
either of the two sections displaying thread state, but
there should be quite a few of them up in the “Storage
subsystem state”. The following steps tell you which
of them to click on.

7. Partial coherence commit: c:W y=1 ->
d:W y=2. This commits the system to processing
P0()’s store to y before P1()’s store even though
neither store has reached either the coherence point
or any other thread. One might imagine partial
coherence commits happening within a store buffer

https://www.cl.cam.ac.uk/~pes20/ppcmem/index.html
https://www.cl.cam.ac.uk/~pes20/ppcmem/index.html

v2024.12.27a

15.3. TRICKS AND TRAPS 349

Figure 15.18: PPCMEM Initial R State

Figure 15.19: PPCMEM First R Step

v2024.12.27a

350 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

that is shared by multiple hardware threads that are
writing to the same variable.

8. Write propagate to thread: d:W y=2 to
Thread 0. This is necessary to allow P1()’s sync
instruction to propagate to P0().

9. Barrier propagate to thread: e:Sync to
Thread 0.

10. Write reaching coherence point: a:W
x=1.

11. Write reaching coherence point: c:W
y=1.

12. Write reaching coherence point: d:W y=2.
These three operations were required in order to
allow P0() to acknowledge P1()’s sync instruction.

13. Acknowledge sync: Sync e:Sync.

14. Back down in thread P1()’s state, click on Read
i:W x=0, which loads the value zero, thus satisfying
the exists clause. All that remains is cleanup,
which can be carried out in any order.

15. Commit P1()’s lwz instruction.

16. Write propagate to thread: a:W x=1 to
Thread 1.

17. Barrier propagate to thread: b:Lwsync
to Thread 1.

At this point, you should see something like Fig-
ure 15.20. Note that the satisified exists clause is shown
in blue near the bottom, confirming that this counter-
intuitive really can happen. If you wish, you can click
on “Undo” to explore other options or click on “Reset” to
start over. It can be very helpful to carry out these steps in
different orders to better understand how a non-multicopy-
atomic architecture operates.

Quick Quiz 15.35: What happens if that lwsync instruction
is instead a sync instruction?

Although a full understanding of how this counter-
intuitive outcome happens would require hardware details
that are beyond the scope of this book, this exercise
should provide some helpful intuitions. Or perhaps more
accurately, destroy some counter-productive intuitions.

15.4 Compile-Time Consternation

Science increases our power in proportion as it

lowers our pride.

Claude Bernard

Most languages, including C, were developed on unipro-
cessor systems by people with little or no parallel-
programming experience. As a result, unless explicitly
told otherwise, these languages assume that the current
CPU is the only thing that is reading or writing mem-
ory. This in turn means that these languages’ compilers’
optimizers are ready, willing, and oh so able to make
dramatic changes to the order, number, and sizes of mem-
ory references that your program executes. In fact, the
reordering carried out by hardware can seem quite tame
by comparison.

This section will help you tame your compiler, thus
avoiding a great deal of compile-time consternation. Sec-
tion 15.4.1 describes how to keep the compiler from
destructively optimizing your code’s memory references,
Section 15.4.2 describes how to protect address and data
dependencies, and finally, Section 15.4.3 describes how
to protect those delicate control dependencies.

15.4.1 Memory-Reference Restrictions
As noted in Section 4.3.4, unless told otherwise, compilers
assume that nothing else is affecting the variables that
the code is accessing. Furthermore, this assumption is
not simply some design error, but is instead enshrined in
various standards.14 It is worth summarizing this material
in preparation for the following sections.

Plain accesses, as in plain-access C-language assign-
ment statements such as “r1 = a” or “b = 1” are sub-
ject to the shared-variable shenanigans described in Sec-
tion 4.3.4.1. Ways of avoiding these shenanigans are
described in Sections 4.3.4.2–4.3.4.4 starting on page 45:

1. Plain accesses can tear, for example, the compiler
could choose to access an eight-byte pointer one
byte at a time. Tearing of aligned machine-sized
accesses can be prevented by using READ_ONCE()
and WRITE_ONCE().

2. Plain loads can fuse, for example, if the results of
an earlier load from that same object are still in a
machine register, the compiler might opt to reuse

14 Or perhaps it is a standardized design error.

v2024.12.27a

15.4. COMPILE-TIME CONSTERNATION 351

Figure 15.20: PPCMEM Final R State

v2024.12.27a

352 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

the value in that register instead of reloading from
memory. Load fusing can be prevented by using
READ_ONCE() or by enforcing ordering between the
two loads using barrier(), smp_rmb(), and other
means shown in Table 15.3.

3. Plain stores can fuse, so that a store can be omit-
ted entirely if there is a later store to that same
variable. Store fusing can be prevented by using
WRITE_ONCE() or by enforcing ordering between
the two stores using barrier(), smp_wmb(), and
other means shown in Table 15.3.

4. Plain accesses can be reordered in surprising ways
by modern optimizing compilers. This reordering
can be prevented by enforcing ordering as called out
above.

5. Plain loads can be invented, for example, register
pressure might cause the compiler to discard a previ-
ously loaded value from its register, and then reload
it later on. Invented loads can be prevented by using
READ_ONCE() or by enforcing ordering as called out
above between the load and a later use of its value
using barrier().

6. Stores can be invented before a plain store, for ex-
ample, by using the stored-to location as temporary
storage. This can be prevented by use of WRITE_
ONCE().

7. Stores can be transformed into a load-check-store se-
quence, which can defeat control dependencies. This
can be prevented by use of smp_load_acquire().

Quick Quiz 15.36: Why not place a barrier() call im-
mediately before a plain store to prevent the compiler from
inventing stores?

Please note that all of these shared-memory shenanigans
can instead be avoided by avoiding data races on plain
accesses, as described in Section 4.3.4.4. After all, if
there are no data races, then each and every one of the
compiler optimizations mentioned above is perfectly safe.
But for code containing data races, this list is subject to
change without notice as compiler optimizations continue
becoming increasingly aggressive.

In short, use of READ_ONCE(), WRITE_ONCE(),
barrier(), volatile, and other primitives called out
in Table 15.3 on page 330 are valuable tools in preventing
the compiler from optimizing your parallel algorithm out

of existence. Compilers are starting to provide other mech-
anisms for avoiding load and store tearing, for example,
memory_order_relaxed atomic loads and stores, how-
ever, work is still needed [Cor16]. In addition, compiler
issues aside, volatile is still needed to avoid fusing and
invention of accesses, including C11 atomic accesses.

Please note that, it is possible to overdo use of READ_
ONCE() and WRITE_ONCE(). For example, if you have
prevented a given variable from changing (perhaps by
holding the lock guarding all updates to that variable),
there is no point in using READ_ONCE(). Similarly, if you
have prevented any other CPUs or threads from reading a
given variable (perhaps because you are initializing that
variable before any other CPU or thread has access to it),
there is no point in using WRITE_ONCE(). However, in
my experience, developers need to use things like READ_
ONCE() and WRITE_ONCE() more often than they think
that they do, and the overhead of unnecessary uses is quite
low. In contrast, the penalty for failing to use them when
needed can be quite high.

15.4.2 Address- and Data-Dependency Dif-
ficulties

The low overheads of the address and data dependen-
cies discussed in Sections 15.3.3 and 15.3.4, respectively,
makes their use extremely attractive. Unfortunately, com-
pilers do not understand either address or data dependen-
cies, although there are efforts underway to teach them,
or at the very least, standardize the process of teaching
them [MWB+17, MRP+17]. In the meantime, it is neces-
sary to be very careful in order to prevent your compiler
from breaking your dependencies.

15.4.2.1 Give your dependency chain a good start

The load that heads your dependency chain must use
proper ordering, for example rcu_dereference() or
READ_ONCE(). Failure to follow this rule can have serious
side effects:

1. On DEC Alpha, a dependent load might not be
ordered with the load heading the dependency chain,
as described in Section 15.6.1.

2. If the load heading the dependency chain is a C11 non-
volatile memory_order_relaxed load, the com-
piler could omit the load, for example, by using
a value that it loaded in the past.

v2024.12.27a

15.4. COMPILE-TIME CONSTERNATION 353

Listing 15.28: Breakable Dependencies With Comparisons
1 int reserve_int;
2 int *gp;
3 int *p;
4
5 p = rcu_dereference(gp);
6 if (p == &reserve_int)
7 handle_reserve(p);
8 do_something_with(*p); /* buggy! */

Listing 15.29: Broken Dependencies With Comparisons
1 int reserve_int;
2 int *gp;
3 int *p;
4
5 p = rcu_dereference(gp);
6 if (p == &reserve_int) {
7 handle_reserve(&reserve_int);
8 do_something_with(reserve_int); /* buggy! */
9 } else {

10 do_something_with(*p); /* OK! */
11 }

3. If the load heading the dependency chain is a plain
load, the compiler can omit the load, again by using
a value that it loaded in the past. Worse yet, it could
load twice instead of once, so that different parts of
your code use different values—and compilers really
do this, especially when under register pressure.

4. The value loaded by the head of the dependency
chain must be a pointer. In theory, yes, you could
load an integer, perhaps to use it as an array index. In
practice, the compiler knows too much about integers,
and thus has way too many opportunities to break
your dependency chain [MWB+17].

15.4.2.2 Avoid arithmetic dependency breakage

Although it is just fine to do some arithmetic operations on
a pointer in your dependency chain, you need to be careful
to avoid giving the compiler too much information. After
all, if the compiler learns enough to determine the exact
value of the pointer, it can use that exact value instead of
the pointer itself. As soon as the compiler does that, the
dependency is broken and all ordering is lost.

1. Although it is permissible to compute offsets from
a pointer, these offsets must not result in total can-
cellation. For example, given a char pointer cp,
cp-(uintptr_t)cp will cancel and can allow the
compiler to break your dependency chain. On the
other hand, canceling offset values with each other
is perfectly safe and legal. For example, if a and b
are equal, cp+a-b is an identity function, including
preserving the dependency.

2. Comparisons can break dependencies. Listing 15.28
shows how this can happen. Here global pointer gp
points to a dynamically allocated integer, but if mem-
ory is low, it might instead point to the reserve_int
variable. This reserve_int case might need spe-
cial handling, as shown on lines 6 and 7 of the listing.
But the compiler could reasonably transform this
code into the form shown in Listing 15.29, espe-
cially on systems where instructions with absolute
addresses run faster than instructions using addresses
supplied in registers. However, there is clearly no
ordering between the pointer load on line 5 and the
dereference on line 8. Please note that this is simply
an example: There are a great many other ways to
break dependency chains with comparisons.

Quick Quiz 15.37: Why can’t you simply dereference the
pointer before comparing it to &reserve_int on line 6 of
Listing 15.28?

Quick Quiz 15.38: But it should be safe to compare two
pointer variables, right? After all, the compiler doesn’t know
the value of either, so how can it possibly learn anything from
the comparison?

Note that a series of inequality comparisons might,
when taken together, give the compiler enough information
to determine the exact value of the pointer, at which point
the dependency is broken. Furthermore, the compiler
might be able to combine information from even a single
inequality comparison with other information to learn the
exact value, again breaking the dependency. Pointers to
elements in arrays are especially susceptible to this latter
form of dependency breakage.

15.4.2.3 Safe comparison of dependent pointers

It turns out that there are several safe ways to compare
dependent pointers:

1. Comparisons against the NULL pointer. In this case,
all the compiler can learn is that the pointer is NULL,
in which case you are not allowed to dereference it
anyway.

2. The dependent pointer is never dereferenced, whether
before or after the comparison.

3. The dependent pointer is compared to a pointer that
references objects that were last modified a very long
time ago, where the only unconditionally safe value

v2024.12.27a

354 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.30: Broken Dependencies With Pointer Comparisons
1 struct foo {
2 int a;
3 int b;
4 int c;
5 };
6 struct foo *gp1;
7 struct foo *gp2;
8
9 void updater(void)

10 {
11 struct foo *p;
12
13 p = malloc(sizeof(*p));
14 BUG_ON(!p);
15 p->a = 42;
16 p->b = 43;
17 p->c = 44;
18 rcu_assign_pointer(gp1, p);
19 WRITE_ONCE(p->b, 143);
20 WRITE_ONCE(p->c, 144);
21 rcu_assign_pointer(gp2, p);
22 }
23
24 void reader(void)
25 {
26 struct foo *p;
27 struct foo *q;
28 int r1, r2 = 0;
29
30 p = rcu_dereference(gp2);
31 if (p == NULL)
32 return;
33 r1 = READ_ONCE(p->b);
34 q = rcu_dereference(gp1);
35 if (p == q) {
36 r2 = READ_ONCE(p->c);
37 }
38 do_something_with(r1, r2);
39 }

of “a very long time ago” is “at compile time”. The
key point is that something other than the address or
data dependency guarantees ordering.

4. Comparisons between two pointers, each of which
carries an appropriate dependency. For example, you
have a pair of pointers, each carrying a dependency,
to data structures each containing a lock, and you
want to avoid deadlock by acquiring the locks in
address order.

5. The comparison is not-equal, and the compiler does
not have enough other information to deduce the
value of the pointer carrying the dependency.

Pointer comparisons can be quite tricky, and so it
is well worth working through the example shown in
Listing 15.30. This example uses a simple struct foo
shown on lines 1–5 and two global pointers, gp1 and
gp2, shown on lines 6 and 7, respectively. This example
uses two threads, namely updater() on lines 9–22 and
reader() on lines 24–39.

The updater() thread allocates memory on line 13,
and complains bitterly on line 14 if none is available.
Lines 15–17 initialize the newly allocated structure, and
then line 18 assigns the pointer to gp1. Lines 19 and 20
then update two of the structure’s fields, and does so after
line 18 has made those fields visible to readers. Please
note that unsynchronized update of reader-visible fields
often constitutes a bug. Although there are legitimate use
cases doing just this, such use cases require more care
than is exercised in this example.

Finally, line 21 assigns the pointer to gp2.
The reader() thread first fetches gp2 on line 30, with

lines 31 and 32 checking for NULL and returning if so.
Line 33 fetches field ->b and line 34 fetches gp1. If
line 35 sees that the pointers fetched on lines 30 and 34 are
equal, line 36 fetches p->c. Note that line 36 uses pointer
p fetched on line 30, not pointer q fetched on line 34.

But this difference might not matter. An equals com-
parison on line 35 might lead the compiler to (incorrectly)
conclude that both pointers are equivalent, when in fact
they carry different dependencies. This means that the
compiler might well transform line 36 to instead be r2
= READ_ONCE(q->c), which might well cause the value
44 to be loaded instead of the expected value 144.
Quick Quiz 15.39: But doesn’t the condition in line 35
supply a control dependency that would keep line 36 ordered
after line 34?

In short, great care is required to ensure that dependency
chains in your source code are still dependency chains in
the compiler-generated assembly code.

15.4.3 Control-Dependency Calamities
The control dependencies described in Section 15.3.5 are
attractive due to their low overhead, but are also especially
tricky because current compilers do not understand them
and can easily break them. The rules and examples in this
section are intended to help you prevent your compiler’s
ignorance from breaking your code.

A load-load control dependency requires a full read
memory barrier, not simply a data dependency barrier.
Consider the following bit of code:

1 q = READ_ONCE(x);
2 if (q) {
3 <data dependency barrier>
4 q = READ_ONCE(y);
5 }

This will not have the desired effect because there is no
actual data dependency, but rather a control dependency

v2024.12.27a

15.4. COMPILE-TIME CONSTERNATION 355

that the CPU may short-circuit by attempting to predict
the outcome in advance, so that other CPUs see the load
from y as having happened before the load from x. In
such a case what’s actually required is:

1 q = READ_ONCE(x);
2 if (q) {
3 <read barrier>
4 q = READ_ONCE(y);
5 }

However, stores are not speculated. This means that
ordering is provided for load-store control dependencies,
as in the following example:

1 q = READ_ONCE(x);
2 if (q)
3 WRITE_ONCE(y, 1);

Control dependencies pair normally with other types
of ordering operations. That said, please note that neither
READ_ONCE() nor WRITE_ONCE() are optional! Without
the READ_ONCE(), the compiler might fuse the load from x
with other loads from x. Without the WRITE_ONCE(),
the compiler might fuse the store to y with other stores
to y, or, worse yet, read the value, compare it, and only
conditionally do the store. Any of these can result in
highly counter-intuitive effects on ordering.

Worse yet, if the compiler is able to prove (say) that
the value of variable x is always non-zero, it would be
well within its rights to optimize the original example by
eliminating the “if” statement as follows:

1 q = READ_ONCE(x);
2 WRITE_ONCE(y, 1); /* BUG: CPU can reorder!!! */

Quick Quiz 15.40: But there is a READ_ONCE(), so how can
the compiler prove anything about the value of q?

It is tempting to try to enforce ordering on identical
stores on both branches of the “if” statement as follows:

1 q = READ_ONCE(x);
2 if (q) {
3 barrier();
4 WRITE_ONCE(y, 1);
5 do_something();
6 } else {
7 barrier();
8 WRITE_ONCE(y, 1);
9 do_something_else();

10 }

Unfortunately, current compilers will transform this as
follows at high optimization levels:

1 q = READ_ONCE(x);
2 barrier();
3 WRITE_ONCE(y, 1); /* BUG: No ordering!!! */
4 if (q)
5 do_something();
6 else
7 do_something_else();

Now there is no conditional between the load from x and
the store to y, which means that the CPU is within its rights
to reorder them: The conditional is absolutely required,
and must be present in the assembly code even after all
compiler optimizations have been applied. Therefore,
if you need ordering in this example, you need explicit
memory-ordering operations, for example, a release store:

1 q = READ_ONCE(x);
2 if (q) {
3 smp_store_release(&y, 1);
4 do_something();
5 } else {
6 smp_store_release(&y, 1);
7 do_something_else();
8 }

The initial READ_ONCE() is still required to prevent the
compiler from guessing the value of x. In addition, you
need to be careful what you do with the local variable q,
otherwise the compiler might be able to guess its value
and again remove the needed conditional. For example:

1 q = READ_ONCE(x);
2 if (q % MAX) {
3 WRITE_ONCE(y, 1);
4 do_something();
5 } else {
6 WRITE_ONCE(y, 2);
7 do_something_else();
8 }

If MAX is defined to be 1, then the compiler knows that
(q%MAX) is equal to zero, in which case the compiler
is within its rights to transform the above code into the
following:

1 q = READ_ONCE(x);
2 WRITE_ONCE(y, 2);
3 do_something_else();

Given this transformation, the CPU is not required to
respect the ordering between the load from variable x and
the store to variable y. It is tempting to add a barrier()
to constrain the compiler, but this does not help. The
conditional is gone, and the barrier() won’t bring it
back. Therefore, if you are relying on this ordering, you
should make sure that MAX is greater than one, perhaps as
follows:

v2024.12.27a

356 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

1 q = READ_ONCE(x);
2 BUILD_BUG_ON(MAX <= 1);
3 if (q % MAX) {
4 WRITE_ONCE(y, 1);
5 do_something();
6 } else {
7 WRITE_ONCE(y, 2);
8 do_something_else();
9 }

Please note once again that the stores to y differ. If they
were identical, as noted earlier, the compiler could pull
this store outside of the “if” statement.

You must also avoid excessive reliance on boolean
short-circuit evaluation. Consider this example:

1 q = READ_ONCE(x);
2 if (q || 1 > 0)
3 WRITE_ONCE(y, 1);

Because the first condition cannot fault and the second
condition is always true, the compiler can transform this
example as following, defeating the control dependency:

1 q = READ_ONCE(x);
2 WRITE_ONCE(y, 1);

This example underscores the need to ensure that the
compiler cannot out-guess your code. Never forget that,
although READ_ONCE() does force the compiler to actually
emit code for a given load, it does not force the compiler
to use the value loaded.

In addition, control dependencies apply only to the then-
clause and else-clause of the if-statement in question. In
particular, it does not necessarily apply to code following
the if-statement:

1 q = READ_ONCE(x);
2 if (q)
3 WRITE_ONCE(y, 1);
4 else
5 WRITE_ONCE(y, 2);
6 WRITE_ONCE(z, 1); /* BUG: No ordering. */

It is tempting to argue that there in fact is ordering
because the compiler cannot reorder volatile accesses and
also cannot reorder the writes to y with the condition.
Unfortunately for this line of reasoning, the compiler
might compile the two writes to y as conditional-move
instructions, as in this fanciful pseudo-assembly language:

1 ld r1,x
2 cmp r1,$0
3 cmov,ne r4,$1
4 cmov,eq r4,$2
5 st r4,y
6 st $1,z

Listing 15.31: LB Litmus Test With Control Dependency
1 C C-LB+o-cgt-o+o-cgt-o
2
3 {}
4
5 P0(int *x, int *y)
6 {
7 int r1;
8
9 r1 = READ_ONCE(*x);

10 if (r1 > 0)
11 WRITE_ONCE(*y, 1);
12 }
13
14 P1(int *x, int *y)
15 {
16 int r2;
17
18 r2 = READ_ONCE(*y);
19 if (r2 > 0)
20 WRITE_ONCE(*x, 1);
21 }
22
23 exists (0:r1=1 /\ 1:r2=1)

A weakly ordered CPU would have no dependency of
any sort between the load from x and the store to z. The
control dependencies would extend only to the pair of cmov
instructions and the store depending on them. In short,
control dependencies apply only to the stores in the “then”
and “else” of the “if” in question (including functions
invoked by those two clauses), and not necessarily to code
following that “if”.

Finally, control dependencies do not provide cumula-
tivity.15 This is demonstrated by two related litmus tests,
namely Listings 15.31 and 15.32 with the initial values
of x and y both being zero.

The exists clause in the two-thread example of
Listing 15.31 (C-LB+o-cgt-o+o-cgt-o.litmus) will
never trigger. If control dependencies guaranteed cumu-
lativity (which they do not), then adding a thread to the
example as in Listing 15.32 (C-WWC+o-cgt-o+o-cgt-
o+o.litmus) would guarantee the related exists clause
never to trigger.

But because control dependencies do not provide cu-
mulativity, the exists clause in the three-thread litmus
test can trigger. If you need the three-thread example to
provide ordering, you will need smp_mb() between the
load and store in P0(), that is, just before or just after
the “if” statements. Furthermore, the original two-thread
example is very fragile and should be avoided.

Quick Quiz 15.41: Can’t you instead add an smp_mb() to
P1() in Listing 15.32?

15 Refer to Section 15.3.7.1 for the meaning of cumulativity.

v2024.12.27a

15.5. HIGHER-LEVEL PRIMITIVES 357

Listing 15.32: WWC Litmus Test With Control Dependency
(Cumulativity?)

1 C C-WWC+o-cgt-o+o-cgt-o+o
2
3 {}
4
5 P0(int *x, int *y)
6 {
7 int r1;
8
9 r1 = READ_ONCE(*x);

10 if (r1 > 0)
11 WRITE_ONCE(*y, 1);
12 }
13
14 P1(int *x, int *y)
15 {
16 int r2;
17
18 r2 = READ_ONCE(*y);
19 if (r2 > 0)
20 WRITE_ONCE(*x, 1);
21 }
22
23 P2(int *x)
24 {
25 WRITE_ONCE(*x, 2);
26 }
27
28 exists (0:r1=2 /\ 1:r2=1 /\ x=2)

The following list of rules summarizes the lessons of
this section:

1. Compilers do not understand control dependencies,
so it is your job to make sure that the compiler cannot
break your code.

2. Control dependencies can order prior loads against
later stores. However, they do not guarantee any
other sort of ordering: Not prior loads against later
loads, nor prior stores against later anything. If you
need these other forms of ordering, use smp_rmb(),
smp_wmb(), or, in the case of prior stores and later
loads, smp_mb().

3. If both legs of the “if” statement begin with iden-
tical stores to the same variable, then the control
dependency will not order those stores. If ordering
is needed, precede both of them with smp_mb() or
use smp_store_release(). Please note that it is
not sufficient to use barrier() at beginning of each
leg of the “if” statement because, as shown by the
example above, optimizing compilers can destroy the
control dependency while respecting the letter of the
barrier() law.

4. Control dependencies require at least one run-time
conditional between the prior load and the subsequent

store, and this conditional must involve the prior load.
If the compiler is able to optimize the conditional
away, it will have also optimized away the ordering.
Careful use of READ_ONCE() and WRITE_ONCE()
can help to preserve the needed conditional.

5. Control dependencies require that the compiler
avoid reordering the dependency into nonexistence.
Careful use of READ_ONCE(), atomic_read(), or
atomic64_read() can help to preserve your control
dependency.

6. Control dependencies apply only to the “then” and
“else” of the “if” containing the control dependency,
including any functions that these two clauses call.
Control dependencies do not apply to code following
the end of the “if” statement containing the control
dependency.

7. Control dependencies pair normally with other types
of memory-ordering operations.

8. Control dependencies do not provide cumulativity. If
you need cumulativity, use something that provides
it, such as smp_store_release() or smp_mb().

Again, many popular languages were designed with
single-threaded use in mind. Successful multithreaded use
of these languages requires you to pay special attention to
your memory references and dependencies.

15.5 Higher-Level Primitives

Method will teach you to win time.

Johann Wolfgang von Goethe

The answer to one of the quick quizzes in Section 12.3.1
demonstrated exponential speedups due to verifying pro-
grams modeled at higher levels of abstraction. This section
will look into how higher levels of abstraction can also
provide a deeper understanding of the synchronization
primitives themselves. Section 15.5.1 takes a look at mem-
ory allocation, Section 15.5.2 examines the surprisingly
varied semantics of locking, and Section 15.5.3 digs more
deeply into RCU.

15.5.1 Memory Allocation
Section 6.4.3.2 touched upon memory allocation, and
this section expands upon the relevant memory-ordering
issues.

v2024.12.27a

358 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

The key requirement is that any access executed on a
given block of memory before freeing that block must be
ordered before any access executed after that same block
is reallocated. It would after all be a cruel and unusual
memory-allocator bug if a store preceding the free were to
be reordered after another store following the reallocation!
However, it would also be cruel and unusual to require
developers to use READ_ONCE() and WRITE_ONCE() to
access dynamically allocated memory. Full ordering must
therefore be provided for plain accesses, in spite of all the
shared-variable shenanigans called out in Section 4.3.4.1.

Of course, each CPU sees its own accesses in order
and the compiler always has fully accounted for intra-
CPU shenanigans, give or take the occasional compiler
bug. These facts are what enables the lockless fastpaths
in memblock_alloc() and memblock_free(), which
are shown in Listings 6.10 and 6.11, respectively. How-
ever, this is also why the developer is responsible for
providing appropriate ordering (for example, by using
smp_store_release()) when publishing a pointer to
a newly allocated block of memory. After all, in the
CPU-local case, the allocator has not necessarily provided
any cross-CPU ordering.

This means that the allocator must provide ordering
when rebalancing its per-thread pools. This ordering
is provided by the calls to spin_lock() and spin_
unlock() from memblock_alloc() and memblock_
free(). For any block that has migrated from one
thread to another, the old thread will have executed spin_
unlock(&globalmem.mutex) after placing the block in
the globalmem pool, and the new thread will have exe-
cuted spin_lock(&globalmem.mutex) before moving
that block to its per-thread pool. This spin_unlock()
and spin_lock() ensures that both the old and new
threads see the old thread’s accesses as having happened
before those of the new thread.
Quick Quiz 15.42: But doesn’t PowerPC have weak unlock-
lock ordering properties within the Linux kernel, allowing a
write before the unlock to be reordered with a read after the
lock?

Therefore, the ordering required by conventional uses of
memory allocation can be provided solely by non-fastpath
locking, allowing the fastpath to remain synchronization-
free.

15.5.2 Locking
Locking is a well-known synchronization primitive with
which the parallel-programming community has had

decades of experience. As such, locking’s semantics
are quite simple.

That is, they are quite simple until you start trying to
mathematically model them.

The simple part is that any CPU or thread holding a
given lock is guaranteed to see any accesses executed by
CPUs or threads while they were previously holding that
same lock. Similarly, any CPU or thread holding a given
lock is guaranteed not to see accesses that will be executed
by other CPUs or threads while subsequently holding that
same lock. And what else is there?

As it turns out, quite a bit:

1. Are CPUs, threads, or compilers allowed to pull
memory accesses into a given lock-based critical
section?

2. Will a CPU or thread holding a given lock also be
guaranteed to see accesses executed by CPUs and
threads before they last acquired that same lock, and
vice versa?

3. Suppose that a given CPU or thread executes one
access (call it “A”), releases a lock, reacquires that
same lock, then executes another access (call it “B”).
Is some other CPU or thread not holding that lock
guaranteed to see A and B in order?

4. As above, but with the lock reacquisition carried out
by some other CPU or thread?

5. As above, but with the lock reacquisition being some
other lock?

6. What ordering guarantees are provided by spin_
is_locked()?

The reaction to some or even all of these questions
might well be “Why would anyone do that?” However,
any complete mathematical definition of locking must
have answers to all of these questions. Therefore, the
following sections address these questions in the context
of the Linux kernel.

15.5.2.1 Accesses Into Critical Sections?

Can memory accesses be reordered into lock-based critical
sections?

Within the context of the Linux-kernel memory model,
the simple answer is “yes”. This may be verified by
running the litmus tests shown in Listings 15.33 and 15.34
(C-Lock-before-into.litmus and C-Lock-after-

v2024.12.27a

15.5. HIGHER-LEVEL PRIMITIVES 359

Listing 15.33: Prior Accesses Into Critical Section (Ordering?)
1 C Lock-before-into
2
3 {}
4
5 P0(int *x, int *y, spinlock_t *sp)
6 {
7 int r1;
8
9 WRITE_ONCE(*x, 1);

10 spin_lock(sp);
11 r1 = READ_ONCE(*y);
12 spin_unlock(sp);
13 }
14
15 P1(int *x, int *y)
16 {
17 int r1;
18
19 WRITE_ONCE(*y, 1);
20 smp_mb();
21 r1 = READ_ONCE(*x);
22 }
23
24 exists (0:r1=0 /\ 1:r1=0)

Listing 15.34: Subsequent Accesses Into Critical Section (Or-
dering?)

1 C Lock-after-into
2
3 {}
4
5 P0(int *x, int *y, spinlock_t *sp)
6 {
7 int r1;
8
9 spin_lock(sp);

10 WRITE_ONCE(*x, 1);
11 spin_unlock(sp);
12 r1 = READ_ONCE(*y);
13 }
14
15 P1(int *x, int *y)
16 {
17 int r1;
18
19 WRITE_ONCE(*y, 1);
20 smp_mb();
21 r1 = READ_ONCE(*x);
22 }
23
24 exists (0:r1=0 /\ 1:r1=0)

into.litmus, respectively), both of which will yield the
Sometimes result. This result indicates that the exists
clause can be satisfied, that is, that the final value of
both P0()’s and P1()’s r1 variable can be zero. This
means that neither spin_lock() nor spin_unlock()
are required to act as a full memory barrier.

However, other environments might make other choices.
For example, locking implementations that run only on
the x86 CPU family will have lock-acquisition primitives
that fully order the lock acquisition with any prior and
any subsequent accesses. Therefore, on such systems the
ordering shown in Listing 15.33 comes for free. There
are x86 lock-release implementations that are weakly
ordered, thus failing to provide the ordering shown in
Listing 15.34, but an implementation could nevertheless
choose to guarantee this ordering.

For their part, weakly ordered systems might well
choose to execute the memory-barrier instructions re-
quired to guarantee both orderings, possibly simpli-
fying code making advanced use of combinations of
locked and lockless accesses. However, as noted earlier,
LKMM chooses not to provide these additional order-
ings, in part to avoid imposing performance penalties on
the simpler and more prevalent locking use cases. In-
stead, the smp_mb__after_spinlock() and smp_mb__
after_unlock_lock() primitives are provided for those
more complex use cases, as discussed in Section 15.6.

Thus far, this section has discussed only hardware
reordering. Can the compiler also reorder memory refer-
ences into lock-based critical sections?

The answer to this question in the context of the Linux
kernel is a resounding “No!” One reason for this other-
wise inexplicable favoring of hardware reordering over
compiler optimizations is that the hardware will avoid
reordering a page-faulting access into a lock-based crit-
ical section. In contrast, compilers have no clue about
page faults, and would therefore happily reorder a page
fault into a critical section, which could crash the kernel.
The compiler is also unable to reliably determine which
accesses will result in cache misses, so that compiler re-
ordering into critical sections could also result in excessive
lock contention. Therefore, the Linux kernel prohibits the
compiler (but not the CPU) from moving accesses into
lock-based critical sections.

15.5.2.2 Accesses Outside of Critical Section?

If a given CPU or thread holds a given lock, it is guaranteed
to see accesses executed during all prior critical sections
for that same lock. Similarly, such a CPU or thread is

v2024.12.27a

360 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.35: Accesses Outside of Critical Sections
1 C Lock-outside-across
2
3 {}
4
5 P0(int *x, int *y, spinlock_t *sp)
6 {
7 int r1;
8
9 WRITE_ONCE(*x, 1);

10 spin_lock(sp);
11 r1 = READ_ONCE(*y);
12 spin_unlock(sp);
13 }
14
15 P1(int *x, int *y, spinlock_t *sp)
16 {
17 int r1;
18
19 spin_lock(sp);
20 WRITE_ONCE(*y, 1);
21 spin_unlock(sp);
22 r1 = READ_ONCE(*x);
23 }
24
25 exists (0:r1=0 /\ 1:r1=0)

guaranteed not to see accesses that will be executed during
all subsequent critical sections for that same lock.

But what about accesses preceding prior critical sections
and following subsequent critical sections?

This question can be answered for the Linux kernel by
referring to Listing 15.35 (C-Lock-outside-across.
litmus). Running this litmus test yields the Never result,
which means that accesses in code leading up to a prior
critical section is also visible to the current CPU or thread
holding that same lock. Similarly, code that is placed after
a subsequent critical section is never visible to the current
CPU or thread holding that same lock.

As a result, the Linux kernel cannot allow accesses to
be moved across the entirety of a given critical section.
Other environments might well wish to allow such code
motion, but please be advised that doing so is likely to
yield profoundly counter-intuitive results.

In short, the ordering provided by spin_lock() ex-
tends not only throughout the critical section, but also
indefinitely beyond the end of that critical section. Simi-
larly, the ordering provided by spin_unlock() extends
not only throughout the critical section, but also indefi-
nitely beyond the beginning of that critical section.

15.5.2.3 Ordering for Non-Lock Holders?

Does a CPU or thread that is not holding a given lock see
that lock’s critical sections as being ordered?

This question can be answered for the Linux kernel by
referring to Listing 15.36 (C-Lock-across-unlock-

Listing 15.36: Accesses Between Same-CPU Critical Sections
(Ordering?)

1 C Lock-across-unlock-lock-1
2
3 {}
4
5 P0(int *x, int *y, spinlock_t *sp)
6 {
7 int r1;
8
9 spin_lock(sp);

10 WRITE_ONCE(*x, 1);
11 spin_unlock(sp);
12 spin_lock(sp);
13 r1 = READ_ONCE(*y);
14 spin_unlock(sp);
15 }
16
17 P1(int *x, int *y, spinlock_t *sp)
18 {
19 int r1;
20
21 WRITE_ONCE(*y, 1);
22 smp_mb();
23 r1 = READ_ONCE(*x);
24 }
25
26 exists (0:r1=0 /\ 1:r1=0)

lock-1.litmus), which shows an example where P(0)
places its write and read in two different critical sections
for the same lock. Running this litmus test shows that
the exists can be satisfied, which means that the answer
is “no”, and that CPUs can reorder accesses across con-
secutive critical sections. In other words, not only are
spin_lock() and spin_unlock() weaker than a full
barrier when considered separately, they are also weaker
than a full barrier when taken together.

If the ordering of a given lock’s critical sections are to
be observed, then either the observer must hold that lock
on the one hand or either smp_mb__after_spinlock()
or smp_mb__after_unlock_lock() must be executed
just after the second lock acquisition on the other.

But what if the two critical sections run on different
CPUs or threads?

This question is answered for the Linux kernel by
referring to Listing 15.37 (C-Lock-across-unlock-
lock-2.litmus), in which the first lock acquisition is
executed by P0() and the second lock acquisition is
executed by P1(). Note that P1() must read x to reject
executions in which P1() executes before P0() does.
Running this litmus test shows that the exists can be
satisfied, which means that the answer is “no”, and that
CPUs can reorder accesses across consecutive critical
sections, even if each of those critical sections runs on a
different CPU or thread.

v2024.12.27a

15.5. HIGHER-LEVEL PRIMITIVES 361

Listing 15.37: Accesses Between Different-CPU Critical Sec-
tions (Ordering?)

1 C Lock-across-unlock-lock-2
2
3 {}
4
5 P0(int *x, spinlock_t *sp)
6 {
7 spin_lock(sp);
8 WRITE_ONCE(*x, 1);
9 spin_unlock(sp);

10 }
11
12 P1(int *x, int *y, spinlock_t *sp)
13 {
14 int r1;
15 int r2;
16
17 spin_lock(sp);
18 r1 = READ_ONCE(*x);
19 r2 = READ_ONCE(*y);
20 spin_unlock(sp);
21 }
22
23 P2(int *x, int *y, spinlock_t *sp)
24 {
25 int r1;
26
27 WRITE_ONCE(*y, 1);
28 smp_mb();
29 r1 = READ_ONCE(*x);
30 }
31
32 exists (1:r1=1 /\ 1:r2=0 /\ 2:r1=0)

Quick Quiz 15.43: But if there are three critical sections,
isn’t it true that CPUs not holding the lock will observe the
accesses from the first and the third critical section as being
ordered?

As before, if the ordering of a given lock’s critical
sections are to be observed, then either the observer must
hold that lock or either smp_mb__after_spinlock()
or smp_mb__after_unlock_lock() must be executed
just after P1()’s lock acquisition.

Given that ordering is not guaranteed when both crit-
ical sections are protected by the same lock, there is no
hope of any ordering guarantee when different locks are
used. However, readers are encouraged to construct the
corresponding litmus test and see this for themselves.

This situation can seem counter-intuitive, but it is rare
for code to care. This approach also allows certain weakly
ordered systems to implement locks more efficiently.

15.5.2.4 Ordering for spin_is_locked()?

The Linux kernel’s spin_is_locked() primitive returns
true if the specified lock is held and false otherwise.
Note that spin_is_locked() returns true when some
other CPU or thread holds the lock, not just when the cur-

rent CPU or thread holds that lock. This raises the question
of what ordering guarantees spin_is_locked() might
provide.

In the Linux kernel, the answer has varied over time.
Initially, spin_is_locked() was unordered, but a few
interesting use cases motivated strong ordering. Later
discussions surrounding the Linux-kernel memory model
concluded that spin_is_locked() should be used only
for debugging. Part of the reason for this is that even a fully
ordered spin_is_locked() might return true because
some other CPU or thread was just about to release the
lock in question. In this case, there is little that can be
learned from that return value of true, which means
that reliable use of spin_is_locked() is surprisingly
complex. Other approaches almost always work better,
for example, use of explicit shared variables or the spin_
trylock() primitive.

This situation resulted in the current state, namely that
spin_is_locked() provides no ordering guarantees,
except that if it returns false, the current CPU or thread
cannot be holding the corresponding lock.

Quick Quiz 15.44: But if spin_is_locked() returns
false, don’t we also know that no other CPU or thread is
holding the corresponding lock?

15.5.2.5 Why Mathematically Model Locking?

Given all these possible choices, why model locking in
general? Why not simply model a simple implementation?

One reason is modeling performance, as shown in
Table E.5 on page 555. Directly modeling locking in
general is orders of magnitude faster than emulating even
a trivial implementation. This should be no surprise, given
the combinatorial explosion experienced by present-day
formal-verification tools with increases in the number of
memory accesses executed by the code being modeled.
Splitting the modeling at API boundaries can therefore
result in combinatorial implosion.

Another reason is that a trivial implementation might
needlessly constrain either real implementations or real
use cases. In contrast, modeling a platonic lock allows
the widest variety of implementations while providing
specific guidance to locks’ users.

15.5.3 RCU
As described in Section 9.5.2, the fundamental property
of RCU grace periods is this straightforward two-part
guarantee: (1) If any part of a given RCU read-side

v2024.12.27a

362 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

..
.

th
e

n
 h

a
p

p
e

n
s

b
e
fo

re

If happens before ...

If happens before ...

..
.

th
e

n
 h

a
p

p
e

n
s
 b

e
fo

re

rcu_read_lock()

rcu_read_unlock()

rcu_read_lock()

rcu_read_unlock()

call_rcu()

callback invocation

Figure 15.21: RCU Grace-Period Ordering Guarantees

Listing 15.38: RCU Fundamental Property
1 C C-SB+o-rcusync-o+rl-o-o-rul
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 synchronize_rcu();
9 uintptr_t r2 = READ_ONCE(*x1);

10 }
11
12 P1(uintptr_t *x0, uintptr_t *x1)
13 {
14 rcu_read_lock();
15 WRITE_ONCE(*x1, 2);
16 uintptr_t r2 = READ_ONCE(*x0);
17 rcu_read_unlock();
18 }
19
20 exists (1:r2=0 /\ 0:r2=0)

critical section precedes the beginning of a given grace
period, then the entirety of that critical section precedes
the end of that grace period. (2) If any part of a given RCU
read-side critical section follows the end of a given grace
period, then the entirety of that critical section follows
the beginning of that grace period. These guarantees are
summarized in Figure 15.21, where the grace period is
denoted by the dashed arrow between the call_rcu()
invocation in the upper right and the corresponding RCU
callback invocation in the lower left.16

16 For more detail, please see Figures 9.11–9.13 starting on page 150.

Listing 15.39: RCU Fundamental Property and Reordering
1 C C-SB+o-rcusync-o+i-rl-o-o-rul
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 synchronize_rcu();
9 uintptr_t r2 = READ_ONCE(*x1);

10 }
11
12 P1(uintptr_t *x0, uintptr_t *x1)
13 {
14 rcu_read_lock();
15 uintptr_t r2 = READ_ONCE(*x0);
16 WRITE_ONCE(*x1, 2);
17 rcu_read_unlock();
18 }
19
20 exists (1:r2=0 /\ 0:r2=0)

In short, an RCU read-side critical section is guaran-
teed never to completely overlap an RCU grace period,
as demonstrated by Listing 15.38 (C-SB+o-rcusync-
o+rl-o-o-rul.litmus). Either or neither of the r2
registers can have the final value of zero, but at least one
of them must be non-zero (that is, the cycle identified
by the exists clause is prohibited), courtesy of RCU’s
fundamental grace-period guarantee, as can be seen by
running herd on this litmus test. Note that this guarantee
is insensitive to the ordering of the accesses within P1()’s
critical section, so the litmus test shown in Listing 15.3917

also forbids this same cycle.
However, this definition is incomplete, as can be seen

from the following list of questions:18

1. What ordering is provided by rcu_read_lock()
and rcu_read_unlock(), independent of RCU
grace periods?

2. What ordering is provided by synchronize_rcu()
and synchronize_rcu_expedited(), indepen-
dent of RCU read-side critical sections?

3. If the entirety of a given RCU read-side critical
section precedes the end of a given RCU grace period,
what about accesses preceding that critical section?

4. If the entirety of a given RCU read-side critical
section follows the beginning of a given RCU grace

17 Dependencies can of course limit the ability to reorder accesses
within RCU read-side critical sections.

18 Several of which were introduced to Paul by Jade Alglave during
early work on LKMM, and a few more of which came from other LKMM
participants [AMM+18].

v2024.12.27a

15.5. HIGHER-LEVEL PRIMITIVES 363

Listing 15.40: RCU Readers Provide No Lock-Like Ordering
1 C C-LB+rl-o-o-rul+rl-o-o-rul
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 rcu_read_lock();
8 uintptr_t r1 = READ_ONCE(*x0);
9 WRITE_ONCE(*x1, 1);

10 rcu_read_unlock();
11 }
12
13 P1(uintptr_t *x0, uintptr_t *x1)
14 {
15 rcu_read_lock();
16 uintptr_t r1 = READ_ONCE(*x1);
17 WRITE_ONCE(*x0, 1);
18 rcu_read_unlock();
19 }
20
21 exists (0:r1=1 /\ 1:r1=1)

period, what about accesses following that critical
section?

5. What happens in situations involving more than one
RCU read-side critical section and/or more than one
RCU grace period?

6. What happens when RCU is combined with other
memory-ordering mechanisms?

These questions are addressed in the following sections.

15.5.3.1 RCU Read-Side Ordering

On their own, RCU’s read-side primitives rcu_read_
lock() and rcu_read_unlock() provide no ordering
whatsoever. In particular, despite their names, they do
not act like locks, as can be seen in Listing 15.40 (C-
LB+rl-o-o-rul+rl-o-o-rul.litmus). This litmus
test’s cycle is allowed: Both instances of the r1 register
can have final values of 1.

Nor do these primitives have barrier-like ordering prop-
erties, at least not unless there is a grace period in the
mix, as can be seen in Listing 15.41 (C-LB+o-rl-rul-
o+o-rl-rul-o.litmus). This litmus test’s cycle is also
allowed. (Try it!)

Of course, lack of ordering in both these litmus tests
should be absolutely no surprise, given that both rcu_
read_lock() and rcu_read_unlock() are no-ops in
the QSBR implementation of RCU.

15.5.3.2 RCU Update-Side Ordering

In contrast with RCU readers, the RCU update-side func-
tions synchronize_rcu() and synchronize_rcu_

Listing 15.41: RCU Readers Provide No Barrier-Like Ordering
1 C C-LB+o-rl-rul-o+o-rl-rul-o
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 uintptr_t r1 = READ_ONCE(*x0);
8 rcu_read_lock();
9 rcu_read_unlock();

10 WRITE_ONCE(*x1, 1);
11 }
12
13 P1(uintptr_t *x0, uintptr_t *x1)
14 {
15 uintptr_t r1 = READ_ONCE(*x1);
16 rcu_read_lock();
17 rcu_read_unlock();
18 WRITE_ONCE(*x0, 1);
19 }
20
21 exists (0:r1=1 /\ 1:r1=1)

Listing 15.42: RCU Updaters Provide Full Ordering
1 C C-SB+o-rcusync-o+o-rcusync-o
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 synchronize_rcu();
9 uintptr_t r2 = READ_ONCE(*x1);

10 }
11
12 P1(uintptr_t *x0, uintptr_t *x1)
13 {
14 WRITE_ONCE(*x1, 2);
15 synchronize_rcu();
16 uintptr_t r2 = READ_ONCE(*x0);
17 }
18
19 exists (1:r2=0 /\ 0:r2=0)

expedited() provide memory ordering at least as strong
as smp_mb(),19 as can be seen by running herd on the
litmus test shown in Listing 15.42. This test’s cycle is pro-
hibited, just as it would with smp_mb(). This should be
no surprise given the information presented in Table 15.3.

15.5.3.3 RCU Readers: Before and After

Before reading this section, it would be well to reflect
on the distinction between guarantees that are available
and guarantees that maintainable software should rely on.
Keeping that firmly in mind, this section presents a few of
the more exotic RCU guarantees.

Listing 15.43 (C-SB+o-rcusync-o+o-rl-o-rul.
litmus) shows a litmus test similar to that in Listing 15.38,
but with the RCU reader’s first access preceding the RCU

19 And also way more expensive!

v2024.12.27a

364 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.43: What Happens Before RCU Readers?
1 C C-SB+o-rcusync-o+o-rl-o-rul
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 synchronize_rcu();
9 uintptr_t r2 = READ_ONCE(*x1);

10 }
11
12 P1(uintptr_t *x0, uintptr_t *x1)
13 {
14 WRITE_ONCE(*x1, 2);
15 rcu_read_lock();
16 uintptr_t r2 = READ_ONCE(*x0);
17 rcu_read_unlock();
18 }
19
20 exists (1:r2=0 /\ 0:r2=0)

read-side critical section, rather than the more conven-
tional (and maintainable!) approach of being contained
within it. Perhaps surprisingly, running herd on this lit-
mus test gives the same result as for that in Listing 15.38:
The cycle is forbidden.

Why would this be the case?
Because both of P1()’s accesses are volatile, as dis-

cussed in Section 4.3.4.2, the compiler is not permit-
ted to reorder them. This means that the code emitted
for P1()’s WRITE_ONCE() will precede that of P1()’s
READ_ONCE(). Therefore, RCU implementations that
place memory-barrier instructions in rcu_read_lock()
and rcu_read_unlock() will preserve the ordering of
P1()’s two accesses all the way down to the hardware
level. On the other hand, RCU implementations that rely
on interrupt-based state machines will also fully preserve
this ordering relative to the grace period due to the fact that
interrupts take place at a precise location in the execution
of the interrupted code.

This in turn means that if the WRITE_ONCE() follows
the end of a given RCU grace period, then the accesses
within and following that RCU read-side critical section
must follow the beginning of that same grace period.
Similarly, if the READ_ONCE() precedes the beginning of
the grace period, everything within and preceding that
critical section must precede the end of that same grace
period.

Listing 15.44 (C-SB+o-rcusync-o+rl-o-rul-o.
litmus) is similar, but instead looks at accesses after
the RCU read-side critical section. This test’s cycle is
also forbidden, as can be checked with the herd tool. The
reasoning is similar to that for Listing 15.43, and is left as
an exercise for the reader.

Listing 15.44: What Happens After RCU Readers?
1 C C-SB+o-rcusync-o+rl-o-rul-o
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 synchronize_rcu();
9 uintptr_t r2 = READ_ONCE(*x1);

10 }
11
12 P1(uintptr_t *x0, uintptr_t *x1)
13 {
14 rcu_read_lock();
15 WRITE_ONCE(*x1, 2);
16 rcu_read_unlock();
17 uintptr_t r2 = READ_ONCE(*x0);
18 }
19
20 exists (1:r2=0 /\ 0:r2=0)

Listing 15.45: What Happens With Empty RCU Readers?
1 C C-SB+o-rcusync-o+o-rl-rul-o
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 synchronize_rcu();
9 uintptr_t r2 = READ_ONCE(*x1);

10 }
11
12 P1(uintptr_t *x0, uintptr_t *x1)
13 {
14 WRITE_ONCE(*x1, 2);
15 rcu_read_lock();
16 rcu_read_unlock();
17 uintptr_t r2 = READ_ONCE(*x0);
18 }
19
20 exists (1:r2=0 /\ 0:r2=0)

v2024.12.27a

15.5. HIGHER-LEVEL PRIMITIVES 365

Listing 15.46: What Happens With No RCU Readers?
1 C C-SB+o-rcusync-o+o-o
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 synchronize_rcu();
9 uintptr_t r2 = READ_ONCE(*x1);

10 }
11
12 P1(uintptr_t *x0, uintptr_t *x1)
13 {
14 WRITE_ONCE(*x1, 2);
15 uintptr_t r2 = READ_ONCE(*x0);
16 }
17
18 exists (1:r2=0 /\ 0:r2=0)

Listing 15.45 (C-SB+o-rcusync-o+o-rl-rul-o.
litmus) takes things one step farther, moving P1()’s
WRITE_ONCE() to precede the RCU read-side critical
section and moving P1()’s READ_ONCE() to follow it,
resulting in an empty RCU read-side critical section.

Perhaps surprisingly, despite the empty critical section,
RCU nevertheless still manages to forbid the cycle. This
can again be checked using the herd tool. Furthermore,
the reasoning is once again similar to that for Listing 15.43.
Recapping, if P1()’s WRITE_ONCE() follows the end of
a given grace period, then P1()’s RCU read-side critical
section—and everything following it—must follow the
beginning of that same grace period. Similarly, if P1()’s
READ_ONCE() precedes the beginning of a given grace
period, then P1()’s RCU read-side critical section—and
everything preceding it—must precede the end of that
same grace period. In both cases, the critical section’s
emptiness is irrelevant.

Quick Quiz 15.45: Wait a minute! In QSBR implementations
of RCU, no code is emitted for rcu_read_lock() and rcu_
read_unlock(). This means that the RCU read-side critical
section in Listing 15.45 isn’t just empty, it is completely
nonexistent!!! So how can something that doesn’t exist at all
possibly have any effect whatsoever on ordering???

This situation leads to the question of what hap-
pens if rcu_read_lock() and rcu_read_unlock() are
omitted entirely, as shown in Listing 15.46 (C-SB+o-
rcusync-o+o-o.litmus). As can be checked with
herd, this litmus test’s cycle is allowed, that is, both
instances of r2 can have final values of zero.

This might seem strange in light of the fact that empty
RCU read-side critical sections can provide ordering. And
it is true that QSBR implementations of RCU would in
fact forbid this outcome, due to the fact that there is

Listing 15.47: One RCU Grace Period and Two Readers
1 C C-SB+o-rcusync-o+rl-o-o-rul+rl-o-o-rul
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 synchronize_rcu();
9 uintptr_t r2 = READ_ONCE(*x1);

10 }
11
12 P1(uintptr_t *x1, uintptr_t *x2)
13 {
14 rcu_read_lock();
15 WRITE_ONCE(*x1, 2);
16 uintptr_t r2 = READ_ONCE(*x2);
17 rcu_read_unlock();
18 }
19
20 P2(uintptr_t *x2, uintptr_t *x0)
21 {
22 rcu_read_lock();
23 WRITE_ONCE(*x2, 2);
24 uintptr_t r2 = READ_ONCE(*x0);
25 rcu_read_unlock();
26 }
27
28 exists (2:r2=0 /\ 0:r2=0 /\ 1:r2=0)

no quiescent state anywhere in P1()’s function body,
so that P1() would run within an implicit RCU read-
side critical section. However, RCU also has non-QSBR
implementations, which have no implied RCU read-side
critical section, and in turn no way for RCU to enforce
ordering. Therefore, this litmus test’s cycle is allowed.

Quick Quiz 15.46: Can P1()’s accesses be reordered in the
litmus tests shown in Listings 15.43, 15.44, and 15.45 in the
same way that they were reordered going from Listing 15.38
to Listing 15.39?

15.5.3.4 Multiple RCU Readers and Updaters

Because synchronize_rcu() has ordering semantics
that are at least as strong as smp_mb(), no matter how
many processes there are in an SB litmus test (such as
Listing 15.42), placing synchronize_rcu() between
each process’s accesses prohibits the cycle. In addi-
tion, the cycle is prohibited in an SB test where one
process uses synchronize_rcu() and the other uses
rcu_read_lock() and rcu_read_unlock(), as shown
by Listing 15.38. However, if both processes use rcu_
read_lock() and rcu_read_unlock(), the cycle will
be allowed, as shown by Listing 15.40.

Is it possible to say anything general about which RCU-
protected litmus tests will be prohibited and which will
be allowed? This section takes up that question.

v2024.12.27a

366 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.48: Two RCU Grace Periods and Two Readers
1 C C-SB+o-rcusync-o+o-rcusync-o+rl-o-o-rul+rl-o-o-rul
2
3 {}
4
5 P0(uintptr_t *x0, uintptr_t *x1)
6 {
7 WRITE_ONCE(*x0, 2);
8 synchronize_rcu();
9 uintptr_t r2 = READ_ONCE(*x1);

10 }
11
12 P1(uintptr_t *x1, uintptr_t *x2)
13 {
14 WRITE_ONCE(*x1, 2);
15 synchronize_rcu();
16 uintptr_t r2 = READ_ONCE(*x2);
17 }
18
19 P2(uintptr_t *x2, uintptr_t *x3)
20 {
21 rcu_read_lock();
22 WRITE_ONCE(*x2, 2);
23 uintptr_t r2 = READ_ONCE(*x3);
24 rcu_read_unlock();
25 }
26
27 P3(uintptr_t *x0, uintptr_t *x3)
28 {
29 rcu_read_lock();
30 WRITE_ONCE(*x3, 2);
31 uintptr_t r2 = READ_ONCE(*x0);
32 rcu_read_unlock();
33 }
34
35 exists (3:r2=0 /\ 0:r2=0 /\ 1:r2=0 /\ 2:r2=0)

More specifically, what if the litmus test has one RCU
grace period and two RCU readers, as shown in List-
ing 15.47? The herd tool says that this cycle is allowed,
but it would be good to know why.20

The key point is that even strongly ordered CPUs such
as x86 can and will reorder P1()’s and P2()’s WRITE_
ONCE() and READ_ONCE(). With that reordering, Fig-
ure 15.22 shows how the cycle forms:

1. P0()’s read from x1 precedes P1()’s write, as de-
picted by the dashed arrow near the bottom of the
diagram.

2. Because P1()’s write follows the end of P0()’s
grace period, P1()’s read from x2 cannot precede
the beginning of P0()’s grace period.

3. P1()’s read from x2 precedes P2()’s write.

4. Because P2()’s write to x2 precedes the end of
P0()’s grace period, it is completely legal for P2()’s

20 Especially given that Paul changed his mind several times about
this particular litmus test when working with Jade Alglave to generalize
RCU ordering semantics.

read from x0 to precede the beginning of P0()’s
grace period.

5. Therefore, P2()’s read from x0 can precede P0()’s
write, thus allowing the cycle to form.

But what happens when another grace period is added?
This situation is shown in Listing 15.48, an SB litmus
test in which P0() and P1() have RCU grace periods
and P2() and P3() have RCU readers. Again, the CPUs
can reorder the accesses within RCU read-side critical
sections, as shown in Figure 15.23. For this cycle to form,
P2()’s critical section must end after P1()’s grace period
and P3()’s must end after the beginning of that same
grace period, which happens to also be after the end of
P0()’s grace period. Therefore, P3()’s critical section
must start after the beginning of P0()’s grace period,
which in turn means that P3()’s read from x0 cannot
possibly precede P0()’s write. Therefore, the cycle is
forbidden because RCU read-side critical sections cannot
span full RCU grace periods.

However, a closer look at Figure 15.23 makes it clear
that adding a third reader would allow the cycle. This
is because this third reader could end before the end of
P0()’s grace period, and thus start before the beginning of
that same grace period. This in turn suggests the general
rule, which is: In these sorts of RCU-only litmus tests, if
there are at least as many RCU grace periods as there are
RCU read-side critical sections, the cycle is forbidden.21

15.5.3.5 RCU and Other Ordering Mechanisms

But what about litmus tests that combine RCU with other
ordering mechanisms?

The general rule is that it takes only one mechanism to
forbid a cycle.

For example, refer back to Listing 15.40. Applying
the general rule from the previous section, because this
litmus test has two RCU read-side critical sections and
no RCU grace periods, the cycle is allowed. But what
if P0()’s WRITE_ONCE() is replaced by an smp_store_
release() and P1()’s READ_ONCE() is replaced by an
smp_load_acquire()?

RCU would still allow the cycle, but the release-acquire
pair would forbid it. Because it only takes one mechanism
to forbid a cycle, the release-acquire pair would prevail,
thus forbidding the cycle.

21 Interestingly enough, Alan Stern proved that within the context
of LKMM, the two-part fundamental property of RCU expressed in
Section 9.5.2 actually implies this seemingly more general result, which
is called the RCU axiom [AMM+18].

v2024.12.27a

15.5. HIGHER-LEVEL PRIMITIVES 367

WRITE_ONCE(x0, 2);

synchronize_rcu();

r2 = READ_ONCE(x1);

P0()

rcu_read_lock();

r2 = READ_ONCE(x2);

WRITE_ONCE(x1, 2);

P1()

rcu_read_unlock();

rcu_read_lock();

r2 = READ_ONCE(x0);

WRITE_ONCE(x2, 2);

P2()

rcu_read_unlock();

Figure 15.22: Cycle for One RCU Grace Period and Two RCU Readers

WRITE_ONCE(x0, 2);

synchronize_rcu();

r2 = READ_ONCE(x1);

P0()

rcu_read_lock();

r2 = READ_ONCE(x3);

WRITE_ONCE(x2, 2);

P1()

rcu_read_unlock();

rcu_read_lock();

r2 = READ_ONCE(x0);

WRITE_ONCE(x3, 2);

P2()

rcu_read_unlock();

WRITE_ONCE(x1, 2);

synchronize_rcu();

r2 = READ_ONCE(x2);

P3()

Figure 15.23: No Cycle for Two RCU Grace Periods and Two RCU Readers

v2024.12.27a

368 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

WRITE_ONCE(x0, 2);

synchronize_rcu();

r2 = READ_ONCE(x1);

P0()

rcu_read_lock();

r2 = READ_ONCE(x2);

WRITE_ONCE(x1, 2);

P1()

rcu_read_unlock();

rcu_read_lock();

r2 = READ_ONCE(x0);

WRITE_ONCE(x2, 2);

P2()

rcu_read_unlock();

smp_mb();

Figure 15.24: Cycle for One RCU Grace Period, Two RCU Readers, and Memory Barrier

For another example, refer back to Listing 15.47. Be-
cause this litmus test has two RCU readers but only one
grace period, its cycle is allowed. But suppose that an
smp_mb() was placed between P1()’s pair of accesses.
In this new litmus test, because of the addition of the smp_
mb(), P2()’s as well as P1()’s critical sections would
extend beyond the end of P0()’s grace period, which in
turn would prevent P2()’s read from x0 from preceding
P0()’s write, as depicted by the red dashed arrow in Fig-
ure 15.24. In this case, RCU and the full memory barrier
work together to forbid the cycle, with RCU preserving
ordering between P0() and both P1() and P2(), and
with the smp_mb() preserving ordering between P1()
and P2().
Quick Quiz 15.47: What would happen if the smp_mb() was
instead added between P2()’s accesses in Listing 15.47?

In short, where RCU’s semantics were once purely prag-
matic, they are now fully formalized [MW05, DMS+12a,
GRY13, AMM+18].

15.5.4 Higher-Level Primitives: Discussion
It is quite beneficial to verify code in terms of a higher-
level primitive instead of in terms of the low-level memory
accesses used in a particular implementation of that prim-
itive. First, this allows code using‘those primitives to
be verified against an abstract representation of those
primitives, thus making that code less vulnerable to imple-
mentation changes. Second, partitioning the verification

at API boundaries results in combinatorial implosion,
greatly reducing the overhead of formal verification.

It is hoped that verifying against detailed semantics for
higher-level primitives will greatly increase the effective-
ness of static analysis and model checking.

15.6 Hardware Specifics

Rock beats paper!

Derek Williams

Each CPU family has its own peculiar approach to memory
ordering, which can make portability a challenge, as you
can see in Table 15.5.

In fact, some software environments simply prohibit
direct use of memory-ordering operations, restricting the
programmer to mutual-exclusion primitives that incor-
porate them to the extent that they are required. Please
note that this section is not intended to be a reference
manual covering all (or even most) aspects of each CPU
family, but rather a high-level overview providing a rough
comparison. For full details, see the reference manual for
the CPU of interest.

Getting back to Table 15.5, the first group of rows look
at memory-ordering properties and the second group looks
at instruction properties. Please note that these properties
hold at the machine-instruction level. Compilers can
and do reorder far more aggressively than does hardware.

v2024.12.27a

15.6. HARDWARE SPECIFICS 369

Table 15.5: Summary of Memory Ordering

CPU Family

Property A
lp

ha

A
rm

v7
-A

/R

A
rm

v8

Ita
ni

um

M
IP

S

PO
W

ER

SP
A

RC
TS

O

x8
6

z
Sy

ste
m

s

Memory Ordering Loads Reordered After Loads or Stores? Y Y Y Y Y Y
Stores Reordered After Stores? Y Y Y Y Y Y
Stores Reordered After Loads? Y Y Y Y Y Y Y Y Y
Atomic Instructions Reordered With
Loads or Stores?

Y Y Y Y Y

Dependent Loads Reordered? Y
Dependent Stores Reordered?
Non-Sequentially Consistent? Y Y Y Y Y Y Y Y Y
Non-Multicopy Atomic? Y Y Y Y Y Y Y Y
Non-Other-Multicopy Atomic? Y Y Y Y Y
Non-Cache Coherent? Y

Instructions Load-Acquire/Store-Release? F F i I F b
Atomic RMW Instruction Type? L L L C L L C C C
Incoherent Instruction Cache/Pipeline? Y Y Y Y Y Y Y Y Y

Key: Load-Acquire/Store-Release?
b: Lightweight memory barrier
F: Full memory barrier
i: Instruction with lightweight ordering
I: Instruction with heavyweight ordering

Atomic RMW Instruction Type?
C: Compare-and-exchange instruction
L: Load-linked/store-conditional instruction

Use marked accesses such as READ_ONCE() and WRITE_
ONCE() to constrain the compiler’s optimizations and
prevent undesireable reordering.

The first three rows indicate whether a given CPU al-
lows the four possible combinations of loads and stores
to be reordered, as discussed in Section 15.2 and Sec-
tions 15.3.2.1–15.3.2.3. The next row (“Atomic Instruc-
tions Reordered With Loads or Stores?”) indicates whether
a given CPU allows loads and stores to be reordered with
atomic instructions.

The fifth and sixth rows cover reordering and depen-
dencies, which was covered in Sections 15.3.3–15.3.5
and which is explained in more detail in Section 15.6.1.
The short version is that Alpha requires memory barriers
for readers as well as updaters of linked data structures,

however, these memory barriers are provided by the Alpha
architecture-specific code in v4.15 and later Linux kernels.

The next row, “Non-Sequentially Consistent”, indicates
whether the CPU’s normal load and store instructions
are constrained by sequential consistency. Performance
considerations have dictated that no modern mainstream
system is sequentially consistent.

The next three rows cover multicopy atomicity, which
was defined in Section 15.3.7. The first is full-up (and
rare) multicopy atomicity, the second is the weaker other-
multicopy atomicity, and the third is the weakest non-
multicopy atomicity.

The next row, “Non-Cache Coherent”, covers accesses
from multiple threads to a single variable, which was
discussed in Section 15.3.6.

v2024.12.27a

370 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

The final three rows cover instruction-level choices and
issues. The first row indicates how each CPU implements
load-acquire and store-release, the second row classifies
CPUs by atomic-instruction type, and the third and final
row indicates whether a given CPU has an incoherent
instruction cache and pipeline. Such CPUs require special
instructions be executed for self-modifying code.

The common “just say no” approach to memory-
ordering operations can be eminently reasonable where
it applies, but there are environments, such as the Linux
kernel, where direct use of memory-ordering operations
is required. Therefore, Linux provides a carefully cho-
sen least-common-denominator set of memory-ordering
primitives, which are as follows:

smp_mb() (full memory barrier) that orders both loads
and stores. This means that loads and stores preced-
ing the memory barrier will be committed to memory
before any loads and stores following the memory
barrier.

smp_rmb() (read memory barrier) that orders only loads.

smp_wmb() (write memory barrier) that orders only
stores.

smp_mb__before_atomic() that forces ordering of ac-
cesses preceding the smp_mb__before_atomic()
against accesses following a later RMW atomic op-
eration. This is a noop on systems that fully order
atomic RMW operations.

smp_mb__after_atomic() that forces ordering of ac-
cesses preceding an earlier RMW atomic operation
against accesses following the smp_mb__after_
atomic(). This is also a noop on systems that fully
order atomic RMW operations.

smp_mb__after_spinlock() that forces ordering of
accesses preceding a lock acquisition against ac-
cesses following the smp_mb__after_spinlock().
This is also a noop on systems that fully order lock
acquisitions.

mmiowb() that forces ordering on MMIO writes that
are guarded by global spinlocks, and is more
thoroughly described in a 2016 LWN article on
MMIO [MDR16].

The smp_mb(), smp_rmb(), and smp_wmb() primitives
also force the compiler to eschew any optimizations that
would have the effect of reordering memory optimizations
across the barriers.

Quick Quiz 15.48: What happens to code between an atomic
operation and an smp_mb__after_atomic()?

These primitives generate code only in SMP kernels,
however, several have UP versions (mb(), rmb(), and
wmb(), respectively) that generate a memory barrier even
in UP kernels. The smp_ versions should be used in most
cases. However, these latter primitives are useful when
writing drivers, because MMIO accesses must remain
ordered even in UP kernels. In absence of memory-
ordering operations, both CPUs and compilers would
happily rearrange these accesses, which at best would
make the device act strangely, and could crash your kernel
or even damage your hardware.

So most kernel programmers need not worry about the
memory-ordering peculiarities of each and every CPU,
as long as they stick to these interfaces and to the fully
ordered atomic operations.22 If you are working deep in a
given CPU’s architecture-specific code, of course, all bets
are off.

Furthermore, all of Linux’s locking primitives (spin-
locks, reader-writer locks, semaphores, RCU, . . .) include
any needed ordering primitives. So if you are working
with code that uses these primitives properly, you need
not worry about Linux’s memory-ordering primitives.

That said, deep knowledge of each CPU’s memory-
consistency model can be very helpful when debugging,
to say nothing of when writing architecture-specific code
or synchronization primitives.

Besides, they say that a little knowledge is a very
dangerous thing. Just imagine the damage you could do
with a lot of knowledge! For those who wish to understand
more about individual CPUs’ memory consistency models,
the next sections describe those of a few popular and
prominent CPUs. Although there is no substitute for
actually reading a given CPU’s documentation, these
sections do give a good overview.

15.6.1 Alpha
It may seem strange to say much of anything about a CPU
whose end of life has long since passed, but Alpha is inter-
esting because it is the only mainstream CPU that reorders
dependent loads, and has thus had outsized influence on
concurrency APIs, including within the Linux kernel. The
need for core Linux-kernel code to accommodate Alpha
ended with version v4.15 of the Linux kernel, and all
traces of this accommodation were removed in v5.9 with

22 For a full list, expand the patterns in Documentation/atomic_
t.txt.

v2024.12.27a

15.6. HARDWARE SPECIFICS 371

Listing 15.49: Insert and Lock-Free Search (No Ordering)
1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GFP_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_store_release(&head.next, p);

10 spin_unlock(&mutex);
11 }
12
13 struct el *search(long searchkey)
14 {
15 struct el *p;
16 p = READ_ONCE_OLD(head.next);
17 while (p != &head) {
18 /* Prior to v4.15, BUG ON ALPHA!!! */
19 if (p->key == searchkey) {
20 return (p);
21 }
22 p = READ_ONCE_OLD(p->next);
23 };
24 return (NULL);
25 }

the removal of the smp_read_barrier_depends() and
read_barrier_depends() APIs. This section is never-
theless retained in the Third Edition because here in early
2023 there are still a few Linux kernel hackers still work-
ing on pre-v4.15 versions of the Linux kernel. In addition,
the modifications to READ_ONCE() that permitted these
APIs to be removed have not necessarily propagated to all
userspace projects that might still support Alpha.

The dependent-load difference between Alpha and the
other CPUs is illustrated by the code shown in List-
ing 15.49. This smp_store_release() guarantees that
the element initialization in lines 6–8 is executed before
the element is added to the list on line 9, so that the
lock-free search will work correctly. That is, it makes this
guarantee on all CPUs except Alpha.

Given the pre-v4.15 implementation of READ_ONCE(),
indicated by READ_ONCE_OLD() in the listing, Alpha
actually allows the code on line 19 of Listing 15.49 to
see the old garbage values that were present before the
initialization on lines 6–8.

Figure 15.25 shows how this can happen on an aggres-
sively parallel machine with partitioned caches, so that
alternating cache lines are processed by the different parti-
tions of the caches. For example, the load of head.next
on line 16 of Listing 15.49 might access cache bank 0, and
the load of p->key on line 19 and of p->next on line 22
might access cache bank 1. On Alpha, the smp_store_
release() will guarantee that the cache invalidations
performed by lines 6–8 of Listing 15.49 (for p->next,
p->key, and p->data) will reach the interconnect before

Writing CPU Core Reading CPU Core

Cache
Bank 0

Cache
Bank 1

Cache
Bank 0
(Idle)

p->data = key;
smp_wmb();
head.next = p;

p = READ_ONCE_OLD(head.next);
BUG_ON(p && p->key != key);

Cache
Bank 1
(Busy)

head.next p->key
p->data
p->next

Figure 15.25: Why smp_read_barrier_depends() is
Required in Pre-v4.15 Linux Kernels

that of line 9 (for head.next), but makes absolutely no
guarantee about the order of propagation through the read-
ing CPU’s cache banks. For example, it is possible that the
reading CPU’s cache bank 1 is very busy, but cache bank 0
is idle. This could result in the cache invalidations for
the new element (p->next, p->key, and p->data) being
delayed, so that the reading CPU loads the new value for
head.next, but loads the old cached values for p->key
and p->next. Yes, this does mean that Alpha can in effect
fetch the data pointed to before it fetches the pointer itself,
strange but true. See the documentation [Com01, Pug00]
called out earlier for more information, or if you think
that I am just making all this up.23 The benefit of this
unusual approach to ordering is that Alpha can use sim-
pler cache hardware, which in turn permitted higher clock
frequencies in Alpha’s heyday.

One could place an smp_rmb() primitive between the
pointer fetch and dereference in order to force Alpha
to order the pointer fetch with the later dependent load.
However, this imposes unneeded overhead on systems
(such as Arm, Itanium, PPC, and SPARC) that respect
address dependencies on the read side. A smp_read_
barrier_depends() primitive was therefore added to
the Linux kernel to eliminate overhead on these systems,
but was removed in v5.9 of the Linux kernel in favor of
augmenting Alpha’s definition of READ_ONCE(). Thus,
as of v5.9, core kernel code no longer needs to concern
itself with this aspect of DEC Alpha. However, it is better
to use rcu_dereference() as shown on lines 16 and 21
of Listing 15.50, which works safely and efficiently for all
recent kernel versions.

23 Of course, the astute reader will have already recognized that
Alpha is nowhere near as mean and nasty as it could be, the (thankfully)
mythical architecture in Appendix C.6.1 being a case in point.

v2024.12.27a

372 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Listing 15.50: Safe Insert and Lock-Free Search
1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GFP_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_store_release(&head.next, p);

10 spin_unlock(&mutex);
11 }
12
13 struct el *search(long searchkey)
14 {
15 struct el *p;
16 p = rcu_dereference(head.next);
17 while (p != &head) {
18 if (p->key == searchkey) {
19 return (p);
20 }
21 p = rcu_dereference(p->next);
22 };
23 return (NULL);
24 }

It is also possible to implement a software mechanism
that could be used in place of smp_store_release() to
force all reading CPUs to see the writing CPU’s writes
in order. This software barrier could be implemented
by sending inter-processor interrupts (IPIs) to all other
CPUs. Upon receipt of such an IPI, a CPU would execute a
memory-barrier instruction, implementing a system-wide
memory barrier similar to that provided by the Linux
kernel’s sys_membarrier() system call. Additional
logic is required to avoid deadlocks. Of course, CPUs
that respect address dependencies would define such a
barrier to simply be smp_store_release(). However,
this approach was deemed by the Linux community to
impose excessive overhead [McK01], and to their point
would be completely inappropriate for systems having
aggressive real-time response requirements.

The Linux memory-barrier primitives took their names
from the Alpha instructions, so smp_mb() is mb, smp_
rmb() is rmb, and smp_wmb() is wmb. Alpha is the only
CPU whose READ_ONCE() includes an smp_mb().

Quick Quiz 15.49: Why does Alpha’s READ_ONCE() include
an mb() rather than rmb()?

Quick Quiz 15.50: Isn’t DEC Alpha significant as having
the weakest possible memory ordering?

For more on Alpha, see its reference manual [Cor02].

15.6.2 Armv7-A/R
The Arm family of CPUs is popular in deep embedded
applications, particularly for power-constrained microcon-
trollers. Its memory model is similar to that of POWER
(see Section 15.6.6), but Arm uses a different set of
memory-barrier instructions [ARM10]:

DMB (data memory barrier) causes the specified type
of operations to appear to have completed before
any subsequent operations of the same type. The
“type” of operations can be all operations or can be
restricted to only writes (similar to the Alpha wmb
and the POWER eieio instructions). In addition,
Arm allows cache coherence to have one of three
scopes: Single processor, a subset of the processors
(“inner”) and global (“outer”).

DSB (data synchronization barrier) causes the specified
type of operations to actually complete before any
subsequent operations (of any type) are executed.
The “type” of operations is the same as that of DMB.
The DSB instruction was called DWB (drain write
buffer or data write barrier, your choice) in early
versions of the Arm architecture.

ISB (instruction synchronization barrier) flushes the CPU
pipeline, so that all instructions following the ISB are
fetched only after the ISB completes. For example, if
you are writing a self-modifying program (such as a
JIT), you should execute an ISB between generating
the code and executing it.

None of these instructions exactly match the semantics
of Linux’s rmb() primitive, which must therefore be
implemented as a full DMB. The DMB and DSB instructions
have a recursive definition of accesses ordered before and
after the barrier, which has an effect similar to that of
POWER’s cumulativity, both of which are stronger than
LKMM’s cumulativity described in Section 15.3.7.1.

Arm also implements control dependencies, so that if
a conditional branch depends on a load, then any store
executed after that conditional branch will be ordered after
the load. However, loads following the conditional branch
will not be guaranteed to be ordered unless there is an ISB
instruction between the branch and the load. Consider the
following example:

1 r1 = x;
2 if (r1 == 0)
3 nop();
4 y = 1;
5 r2 = z;

v2024.12.27a

15.6. HARDWARE SPECIFICS 373

LDLAR

Figure 15.26: Half Memory Barrier

6 ISB();
7 r3 = z;

In this example, load-store control dependency ordering
causes the load from x on line 1 to be ordered before the
store to y on line 4. However, Arm does not respect
load-load control dependencies, so that the load on line 1
might well happen after the load on line 5. On the other
hand, the combination of the conditional branch on line 2
and the ISB instruction on line 6 ensures that the load on
line 7 happens after the load on line 1. Note that inserting
an additional ISB instruction somewhere between lines 2
and 5 would enforce ordering between lines 1 and 5.

15.6.3 Armv8
Arm’s Armv8 CPU family [ARM17] includes 64-bit capa-
bilities, in contrast to their 32-bit-only CPU described in
Section 15.6.2. Armv8’s memory model closely resembles
its Armv7 counterpart, but adds load-acquire (LDLARB,
LDLARH, and LDLAR) and store-release (STLLRB, STLLRH,
and STLLR) instructions. These instructions act as “half
memory barriers”, so that Armv8 CPUs can reorder pre-
vious accesses with a later LDLAR instruction, but are
prohibited from reordering an earlier LDLAR instruction
with later accesses, as fancifully depicted in Figure 15.26.
Similarly, Armv8 CPUs can reorder an earlier STLLR
instruction with a subsequent access, but are prohibited
from reordering previous accesses with a later STLLR
instruction. As one might expect, this means that these in-
structions directly support the C11 notion of load-acquire
and store-release.

However, Armv8 goes well beyond the C11 memory
model by mandating that the combination of a store-release
and load-acquire act as a full barrier under certain circum-
stances. For example, in Armv8, given a store followed
by a store-release followed a load-acquire followed by a
load, all to different variables and all from a single CPU,
all CPUs would agree that the initial store preceded the
final load. Interestingly enough, most TSO architectures
(including x86 and the mainframe) do not make this guar-
antee, as the two loads could be reordered before the two
stores.

Armv8 is one of only two architectures that needs
the smp_mb__after_spinlock() primitive to be a full
barrier, due to its relatively weak lock-acquisition imple-
mentation in the Linux kernel.

Armv8 also has the distinction of being the first CPU
whose vendor publicly defined its memory ordering with
an executable formal model [ARM17].

15.6.4 Itanium
Itanium offers a weak consistency model, so that in absence
of explicit memory-barrier instructions or dependencies,
Itanium is within its rights to arbitrarily reorder mem-
ory references [Int02a]. Itanium has a memory-fence
instruction named mf, but also has “half-memory fence”
modifiers to loads, stores, and to some of its atomic
instructions [Int02b]. The acq modifier prevents subse-
quent memory-reference instructions from being reordered
before the acq, but permits prior memory-reference in-
structions to be reordered after the acq, similar to the
Armv8 load-acquire instructions. Similarly, the rel mod-
ifier prevents prior memory-reference instructions from
being reordered after the rel, but allows subsequent
memory-reference instructions to be reordered before the
rel.

These half-memory fences are useful for critical sec-
tions, since it is safe to push operations into a critical
section, but can be fatal to allow them to bleed out. How-
ever, as one of the few CPUs with this property, Itanium at
one time defined Linux’s semantics of memory ordering
associated with lock acquisition and release.24 Oddly
enough, actual Itanium hardware is rumored to implement
both load-acquire and store-release instructions as full bar-
riers. Nevertheless, Itanium was the first mainstream CPU
to introduce the concept (if not the reality) of load-acquire
and store-release into its instruction set.

24 PowerPC is now the architecture with this dubious privilege.

v2024.12.27a

374 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

Quick Quiz 15.51: Given that hardware can have a half mem-
ory barrier, why don’t locking primitives allow the compiler to
move memory-reference instructions into lock-based critical
sections?

The Itanium mf instruction is used for the smp_rmb(),
smp_mb(), and smp_wmb() primitives in the Linux ker-
nel. Despite persistent rumors to the contrary, the “mf”
mnemonic stands for “memory fence”.

Itanium also offers a global total order for release op-
erations, including the mf instruction. This provides the
notion of transitivity, where if a given code fragment sees
a given access as having happened, any later code frag-
ment will also see that earlier access as having happened.
Assuming, that is, that all the code fragments involved
correctly use memory barriers.

Finally, Itanium is the only architecture supporting the
Linux kernel that can reorder normal loads to the same
variable. The Linux kernel avoids this issue because
READ_ONCE() emits a volatile load, which is compiled
as a ld,acq instruction, which forces ordering of all
READ_ONCE() invocations by a given CPU, including
those to the same variable.

15.6.5 MIPS
The MIPS memory model [Wav16, page 479] appears
to resemble that of Arm, Itanium, and POWER, being
weakly ordered by default, but respecting dependencies.
MIPS has a wide variety of memory-barrier instructions,
but ties them not to hardware considerations, but rather
to the use cases provided by the Linux kernel and the
C++11 standard [Smi19] in a manner similar to the Armv8
additions:

SYNC
Full barrier for a number of hardware operations
in addition to memory references, which is used to
implement the v4.13 Linux kernel’s smp_mb() for
OCTEON systems.

SYNC_WMB
Write memory barrier, which can be used on
OCTEON systems to implement the smp_wmb()
primitive in the v4.13 Linux kernel via the syncw
mnemonic. Other systems use plain sync.

SYNC_MB
Full memory barrier, but only for memory operations.
This may be used to implement the C++ atomic_
thread_fence(memory_order_seq_cst).

SYNC_ACQUIRE
Acquire memory barrier, which could be used to im-
plement C++’s atomic_thread_fence(memory_
order_acquire). In theory, it could also be used
to implement the v4.13 Linux-kernel smp_load_
acquire() primitive, but in practice sync is used
instead.

SYNC_RELEASE
Release memory barrier, which may be used to im-
plement C++’s atomic_thread_fence(memory_
order_release). In theory, it could also be used
to implement the v4.13 Linux-kernel smp_store_
release() primitive, but in practice sync is used
instead.

SYNC_RMB
Read memory barrier, which could in theory be used
to implement the smp_rmb() primitive in the Linux
kernel, except that current MIPS implementations
supported by the v4.13 Linux kernel do not need
an explicit instruction to force ordering. Therefore,
smp_rmb() instead simply constrains the compiler.

SYNCI
Instruction-cache synchronization, which is used
in conjunction with other instructions to allow self-
modifying code, such as that produced by just-in-time
(JIT) compilers.

Informal discussions with MIPS architects indicates
that MIPS has a definition of transitivity or cumulativity
similar to that of Arm and POWER. However, it appears
that different MIPS implementations can have different
memory-ordering properties, so it is important to consult
the documentation for the specific MIPS implementation
you are using.

15.6.6 POWER / PowerPC
The POWER and PowerPC CPU families have a wide
variety of memory-barrier instructions [IBM94, LHF05]:

sync causes all preceding operations to appear to have
completed before any subsequent operations are
started. This instruction is therefore quite expen-
sive.

lwsync (lightweight sync) orders loads with respect to
subsequent loads and stores, and also orders stores.
However, it does not order stores with respect to sub-
sequent loads. The lwsync instruction may be used

v2024.12.27a

15.6. HARDWARE SPECIFICS 375

to implement load-acquire and store-release opera-
tions. Interestingly enough, the lwsync instruction
enforces the same within-CPU ordering as does x86,
z Systems, and coincidentally, SPARC TSO. How-
ever, placing the lwsync instruction between each
pair of memory-reference instructions will not result
in x86, z Systems, or SPARC TSO memory ordering.
On these other systems, if a pair of CPUs indepen-
dently execute stores to different variables, all other
CPUs will agree on the order of these stores. Not
so on PowerPC, even with an lwsync instruction
between each pair of memory-reference instructions,
because PowerPC is non-multicopy atomic.

eieio (enforce in-order execution of I/O, in case you were
wondering) causes all preceding cacheable stores to
appear to have completed before all subsequent stores.
However, stores to cacheable memory are ordered
separately from stores to non-cacheable memory,
which means that eieio will not force an MMIO
store to precede a spinlock release. This instruction
may well be unique in having a five-vowel mnemonic.

isync forces all preceding instructions to appear to have
completed before any subsequent instructions start
execution. This means that the preceding instructions
must have progressed far enough that any traps they
might generate have either happened or are guaran-
teed not to happen, and that any side-effects of these
instructions (for example, page-table changes) are
seen by the subsequent instructions. However, it does
not force all memory references to be ordered, only
the actual execution of the instruction itself. Thus,
the loads might return old still-cached values and the
isync instruction does not force values previously
stored to be flushed from the store buffers.

Unfortunately, none of these instructions line up ex-
actly with Linux’s wmb() primitive, which requires all
stores to be ordered, but does not require the other high-
overhead actions of the sync instruction. The rmb()
primitive doesn’t have a matching light-weight instruction
either. But there is no choice: ppc64 versions of wmb(),
rmb(), and mb() are defined to be the heavyweight sync
instruction. However, Linux’s smp_wmb() primitive is
never used for MMIO (since a driver must carefully order
MMIOs in UP as well as SMP kernels, after all), so it is
defined to be the lighter weight eieio or lwsync instruc-
tion [MDR16]. The smp_mb() primitive is also defined
to be the sync instruction, while smp_rmb() is defined
to be the lighter-weight lwsync instruction.

POWER features “cumulativity”, which can be used
to obtain transitivity. When used properly, any code
seeing the results of an earlier code fragment will also
see the accesses that this earlier code fragment itself
saw. Much more detail is available from McKenney and
Silvera [MS09].

POWER respects control dependencies in much the
same way that Arm does, with the exception that the
POWER isync instruction is substituted for the Arm ISB
instruction.

Like Armv8, POWER requires smp_mb__after_
spinlock() to be a full memory barrier. In addition,
POWER is the only architecture requiring smp_mb__
after_unlock_lock() to be a full memory barrier. In
both cases, this is because of the weak ordering prop-
erties of POWER’s locking primitives, due to the use
of the lwsync instruction to provide ordering for both
acquisition and release.

Many members of the POWER architecture have in-
coherent instruction caches, so that a store to memory
will not necessarily be reflected in the instruction cache.
Thankfully, few people write self-modifying code these
days, but JITs and compilers do it all the time. Further-
more, recompiling a recently run program looks just like
self-modifying code from the CPU’s viewpoint. The icbi
instruction (instruction cache block invalidate) invalidates
a specified cache line from the instruction cache, and may
be used in these situations.

15.6.7 SPARC TSO
Although SPARC’s TSO (total-store order) is used by
both Linux and Solaris, the architecture also defines PSO
(partial store order) and RMO (relaxed-memory order).
Any program that runs in RMO will also run in either PSO
or TSO, and similarly, a program that runs in PSO will also
run in TSO. Moving a shared-memory parallel program
in the other direction may require careful insertion of
memory barriers.

Although SPARC’s PSO and RMO modes are not used
much these days, they did give rise to a very flexible
memory-barrier instruction [SPA94] that permits fine-
grained control of ordering:

StoreStore orders preceding stores before subsequent
stores. (This option is used by the Linux smp_wmb()
primitive.)

LoadStore orders preceding loads before subsequent
stores.

v2024.12.27a

376 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

StoreLoad orders preceding stores before subsequent
loads.

LoadLoad orders preceding loads before subsequent
loads. (This option is used by the Linux smp_rmb()
primitive.)

Sync fully completes all preceding operations before
starting any subsequent operations.

MemIssue completes preceding memory operations be-
fore subsequent memory operations, important for
some instances of memory-mapped I/O.

Lookaside does the same as MemIssue, but only applies
to preceding stores and subsequent loads, and even
then only for stores and loads that access the same
memory location.

So, why is “membar #MemIssue” needed? Because
a “membar #StoreLoad” could permit a subsequent
load to get its value from a store buffer, which would
be disastrous if the write was to an MMIO register
that induced side effects on the value to be read. In
contrast, “membar #MemIssue” would wait until the
store buffers were flushed before permitting the loads
to execute, thereby ensuring that the load actually gets
its value from the MMIO register. Drivers could
instead use “membar #Sync”, but the lighter-weight
“membar #MemIssue” is preferred in cases where the ad-
ditional function of the more-expensive “membar #Sync”
are not required.

The “membar #Lookaside” is a lighter-weight version
of “membar #MemIssue”, which is useful when writing
to a given MMIO register affects the value that will next
be read from that register. However, the heavier-weight
“membar #MemIssue” must be used when a write to a
given MMIO register affects the value that will next be
read from some other MMIO register.

SPARC requires a flush instruction be used between
the time that the instruction stream is modified and the
time that any of these instructions are executed [SPA94].
This is needed to flush any prior value for that location
from the SPARC’s instruction cache. Note that flush
takes an address, and will flush only that address from the
instruction cache. On SMP systems, all CPUs’ caches are
flushed, but there is no convenient way to determine when
the off-CPU flushes complete, though there is a reference
to an implementation note.

But again, the Linux kernel runs SPARC in TSO mode,
so all of the above membar variants are strictly of historical

interest. In particular, the smp_mb() primitive only needs
to use #StoreLoad because the other three reorderings
are prohibited by TSO.

15.6.8 x86
Historically, the x86 CPUs provided “process ordering”
so that all CPUs agreed on the order of a given CPU’s
writes to memory. This allowed the smp_wmb() primitive
to be a no-op for the CPU [Int04b]. Of course, a compiler
directive was also required to prevent optimizations that
would reorder across the smp_wmb() primitive. In ancient
times, certain x86 CPUs gave no ordering guarantees
for loads, so the smp_mb() and smp_rmb() primitives
expanded to lock;addl. This atomic instruction acts as
a barrier to both loads and stores.

But those were ancient times. More recently, Intel
has published a memory model for x86 [Int07]. It turns
out that Intel’s modern CPUs enforce tighter ordering
than was claimed in the previous specifications, so this
model simply mandates this modern behavior. Even more
recently, Intel published an updated memory model for
x86 [Int11, Section 8.2], which mandates a total global
order for stores, although individual CPUs are still permit-
ted to see their own stores as having happened earlier than
this total global order would indicate. This exception to
the total ordering is needed to allow important hardware
optimizations involving store buffers. In addition, x86
provides other-multicopy atomicity, for example, so that if
CPU 0 sees a store by CPU 1, then CPU 0 is guaranteed to
see all stores that CPU 1 saw prior to its store. Software
may use atomic operations to override these hardware opti-
mizations, which is one reason that atomic operations tend
to be more expensive than their non-atomic counterparts.

It is also important to note that atomic instructions oper-
ating on a given memory location should all be of the same
size [Int16, Section 8.1.2.2]. For example, if you write
a program where one CPU atomically increments a byte
while another CPU executes a 4-byte atomic increment
on that same location, you are on your own.

Some SSE instructions are weakly ordered (clflush
and non-temporal move instructions [Int04a]). Code
that uses these non-temporal move instructions can use
mfence for mb(), lfence for rmb(), and sfence for
wmb().25 A few older variants of the x86 CPU have a
mode bit that enables out-of-order stores, and for these
CPUs, smp_wmb() must also be defined to be lock;addl.

25 smp_mb(), smp_rmb(), and smp_wmb() don’t suffice for ordering
non-temporal move instructions since Linux v4.15.

v2024.12.27a

15.6. HARDWARE SPECIFICS 377

A 2017 kernel commit by Michael S. Tsirkin replaced
mfence with lock;addl in smp_mb(), achieving a 60
percent performance boost [Tsi17]. The change used a 4-
byte negative offset from SP to avoid slowness due to false
data dependencies, instead of directly accessing memory
pointed to by SP. clflush users still need to use mfence
for ordering. Therefore, they were converted to use mb(),
which uses mfence as before, instead of smp_mb().

Although newer x86 implementations accommodate
self-modifying code without any special instructions, to
be fully compatible with past and potential future x86
implementations, a given CPU must execute a jump in-
struction or a serializing instruction (e.g., cpuid) between
modifying the code and executing it [Int11, Section 8.1.3].

15.6.9 z Systems

The z Systems machines make up the IBM mainframe
family, previously known as the 360, 370, 390 and
zSeries [Int04c]. Parallelism came late to z Systems, but
given that these mainframes first shipped in the mid 1960s,
this is not saying much. The “bcr 15,0” instruction is
used for the Linux smp_mb() primitives, but compiler
constraints suffices for both the smp_rmb() and smp_
wmb() primitives. It also has strong memory-ordering
semantics, as shown in Table 15.5. In particular, all CPUs
will agree on the order of unrelated stores from different
CPUs, that is, the z Systems CPU family is fully multicopy
atomic, and is the only commercially available system
with this property.

As with most CPUs, the z Systems architecture does
not guarantee a cache-coherent instruction stream, hence,
self-modifying code must execute a serializing instruction
between updating the instructions and executing them.
That said, many actual z Systems machines do in fact
accommodate self-modifying code without serializing
instructions. The z Systems instruction set provides a
large set of serializing instructions, including compare-
and-swap, some types of branches (for example, the afore-
mentioned “bcr 15,0” instruction), and test-and-set.

15.6.10 Hardware Specifics: Discussion

There is considerable variation among these CPU families,
and this section only scratched the surface of a few families
that are either heavily used or historically significant.
Those wishing more detail are invited to consult the
reference manuals.

However, perhaps the biggest benefit of the Linux-
kernel memory model is that you can ignore these details
when writing architecture-independent Linux-kernel code.

v2024.12.27a

378 CHAPTER 15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING

v2024.12.27a

Creating a perfect API is like committing the perfect

crime. There are at least fifty things that can go

wrong, and if you are a genius, you might be able to

anticipate twenty-five of them.

With apologies to any Kathleen Turner fans who
might still be alive.

Chapter 16

Ease of Use

16.1 What is Easy?

When someone says “I want a programming

language in which I need only say what I wish done,”

give them a lollipop.

Alan J. Perlis, updated

If you are tempted to look down on ease-of-use require-
ments, please consider that an ease-of-use bug in Linux-
kernel RCU resulted in an exploitable Linux-kernel secu-
rity bug in a use of RCU [McK19a]. It is therefore clearly
important that even in-kernel APIs be easy to use.

Unfortunately, “easy” is a relative term. For example,
many people would consider a 15-hour airplane flight to
be a bit of an ordeal—unless they stopped to consider
alternative modes of transportation, especially swimming.
This means that creating an easy-to-use API requires that
you understand your intended users well enough to know
what is easy for them. Which might or might not have
anything to do with what is easy for you.

The following question illustrates this point: “Given
a randomly chosen person among everyone alive today,
what one change would improve that person’s life?”

There is no single change that would be guaranteed to
help everyone’s life. After all, there is an extremely wide
range of people, with a correspondingly wide range of
needs, wants, desires, and aspirations. A starving person
might need food, but additional food might well hasten
the death of a morbidly obese person. The high level of
excitement so fervently desired by many young people
might well be fatal to someone recovering from a heart
attack. Information critical to the success of one person
might contribute to the failure of someone suffering from
information overload. In short, if you are working on a
software project that is intended to help people you know

nothing about, you should not be surprised when those
people find fault with your project.

If you really want to help a given group of people, there
is simply no substitute for working closely with them over
an extended period of time, as in years. Nevertheless,
there are some simple things that you can do to increase
the odds of your users being happy with your software,
and some of these things are covered in the next section.

16.2 Rusty Scale for API Design

Finding the appropriate measurement is thus not a

mathematical exercise. It is a risk-taking judgment.

Peter Drucker

This section is adapted from portions of Rusty Russell’s
2003 Ottawa Linux Symposium keynote address [Rus03,
Slides 39–57]. Rusty’s key point is that the goal should
not be merely to make an API easy to use, but rather to
make the API hard to misuse. To that end, Rusty proposed
his “Rusty Scale” in decreasing order of this important
hard-to-misuse property.

The following list attempts to generalize the Rusty Scale
beyond the Linux kernel:

1. It is impossible to get wrong. Although this is the
standard to which all API designers should strive,
only the mythical dwim()1 command manages to
come close.

2. The compiler or linker won’t let you get it wrong.

3. The compiler or linker will warn you if you get it
wrong. BUILD_BUG_ON() is your users’ friend.

1 The dwim() function is an acronym that expands to “do what I
mean”.

379

v2024.12.27a

380 CHAPTER 16. EASE OF USE

4. The simplest use is the correct one.

5. The name tells you how to use it. But names can
be two-edged swords. Although rcu_read_lock()
is plain enough for someone converting code from
reader-writer locking, it might cause some conster-
nation for someone converting code from reference
counting.

6. Do it right or it will always break at runtime. WARN_
ON_ONCE() is your users’ friend.

7. Follow common convention and you will get it right.
The malloc() library function is a good example.
Although it is easy to get memory allocation wrong, a
great many projects do manage to get it right, at least
most of the time. Using malloc() in conjunction
with Valgrind [The11] moves malloc() almost up
to the “do it right or it will always break at runtime”
point on the scale.

8. Read the documentation and you will get it right.

9. Read the implementation and you will get it right.

10. Read the right mailing-list archive and you will get it
right.

11. Read the right mailing-list archive and you will get it
wrong.

12. Read the implementation and you will get it wrong.
The original non-CONFIG_PREEMPT implementation
of rcu_read_lock() [McK07a] is an infamous ex-
ample of this point on the scale.

13. Read the documentation and you will get it wrong.
For example, the DEC Alpha wmb instruction’s doc-
umentation [Cor02] fooled a number of developers
into thinking that this instruction had much stronger
memory-order semantics than it actually does. Later
documentation clarified this point [Com01, Pug00],
moving the wmb instruction up to the “read the doc-
umentation and you will get it right” point on the
scale.

14. Follow common convention and you will get it wrong.
The printf() statement is an example of this point
on the scale because developers almost always fail to
check printf()’s error return.

15. Do it right and it will break at runtime.

16. The name tells you how not to use it.

Figure 16.1: Mandelbrot Set (Courtesy of Wikipedia)

17. The obvious use is wrong. The Linux kernel smp_
mb() function is an example of this point on the
scale. Many developers assume that this function
has much stronger ordering semantics than it actually
possesses. Chapter 15 contains the information
needed to avoid this mistake, as does the Linux-kernel
source tree’s Documentation and tools/memory-
model directories.

18. The compiler or linker will warn you if you get it
right.

19. The compiler or linker won’t let you get it right.

20. It is impossible to get right. The gets() function
is a famous example of this point on the scale. In
fact, gets() can perhaps best be described as an
unconditional buffer-overflow security hole.

16.3 Shaving the Mandelbrot Set

Simplicity does not precede complexity,

but follows it.

Alan J. Perlis

The set of useful programs resembles the Mandelbrot set
(shown in Figure 16.1) in that it does not have a clear-cut
smooth boundary—if it did, the halting problem would
be solvable. But we need APIs that real people can use,
not ones that require a Ph.D. dissertation be completed
for each and every potential use. So, we “shave the
Mandelbrot set”,2 restricting the use of the API to an
easily described subset of the full set of potential uses.

2 Due to Josh Triplett.

v2024.12.27a

16.3. SHAVING THE MANDELBROT SET 381

Such shaving may seem counterproductive. After all,
if an algorithm works, why shouldn’t it be used?

To see why at least some shaving is absolutely necessary,
consider a locking design that avoids deadlock, but in
perhaps the worst possible way. This design uses a circular
doubly linked list, which contains one element for each
thread in the system along with a header element. When
a new thread is spawned, the parent thread must insert a
new element into this list, which requires some sort of
synchronization.

One way to protect the list is to use a global lock.
However, this might be a bottleneck if threads were being
created and deleted frequently.3 Another approach would
be to use a hash table and to lock the individual hash
buckets, but this can perform poorly when scanning the
list in order.

A third approach is to lock the individual list elements,
and to require the locks for both the predecessor and
successor to be held during the insertion. Since both
locks must be acquired, we need to decide which order to
acquire them in. Two conventional approaches would be
to acquire the locks in address order, or to acquire them
in the order that they appear in the list, so that the header
is always acquired first when it is one of the two elements
being locked. However, both of these methods require
special checks and branches.

The to-be-shaven solution is to unconditionally acquire
the locks in list order. But what about deadlock?

Deadlock cannot occur.
To see this, number the elements in the list starting

with zero for the header up to 𝑁 for the last element in
the list (the one preceding the header, given that the list
is circular). Similarly, number the threads from zero to
𝑁 − 1. If each thread attempts to lock some consecutive
pair of elements, at least one of the threads is guaranteed
to be able to acquire both locks.

Why?
Because there are not enough threads to reach all the

way around the list. Suppose thread 0 acquires element 0’s
lock. To be blocked, some other thread must have already
acquired element 1’s lock, so let us assume that thread 1
has done so. Similarly, for thread 1 to be blocked, some
other thread must have acquired element 2’s lock, and so
on, up through thread 𝑁 −1, who acquires element 𝑁 −1’s
lock. For thread 𝑁 − 1 to be blocked, some other thread
must have acquired element 𝑁’s lock. But there are no

3 Those of you with strong operating-system backgrounds, please
suspend disbelief. Those unable to suspend disbelief are encouraged to
provide better examples.

Figure 16.2: Shaving the Mandelbrot Set

more threads, and so thread 𝑁 − 1 cannot be blocked.
Therefore, deadlock cannot occur.

So why should we prohibit use of this delightful little
algorithm?

The fact is that if you really want to use it, we cannot
stop you. We can, however, recommend against such code
being included in any project that we care about.

But, before you use this algorithm, please think through
the following Quick Quiz.

Quick Quiz 16.1: Can a similar algorithm be used when
deleting elements?

The fact is that this algorithm is extremely specialized
(it only works on certain sized lists), and also quite fragile.
Any bug that accidentally failed to add a node to the list
could result in deadlock. In fact, simply adding the node
a bit too late could result in deadlock, as could increasing
the number of threads.

In addition, the other algorithms described above are
“good and sufficient”. For example, simply acquiring the
locks in address order is fairly simple and quick, while
allowing the use of lists of any size. Just be careful of the
special cases presented by empty lists and lists containing
only one element!

Quick Quiz 16.2: Yetch! What ever possessed someone to
come up with an algorithm that deserves to be shaved as much
as this one does???

In summary, we do not use algorithms simply because
they happen to work. We instead restrict ourselves to
algorithms that are useful enough to make it worthwhile
learning about them. The more difficult and complex the
algorithm, the more generally useful it must be in order for
the pain of learning it and fixing its bugs to be worthwhile.

Quick Quiz 16.3: Give an exception to this rule.

v2024.12.27a

382 CHAPTER 16. EASE OF USE

Exceptions aside, we must continue to shave the soft-
ware “Mandelbrot set” so that our programs remain main-
tainable, as shown in Figure 16.2.

v2024.12.27a

Prediction is very difficult, especially about the

future.

Niels BohrChapter 17

Conflicting Visions of the Future

This chapter presents some conflicting visions of the future
of parallel programming. It is not clear which of these
will come to pass, in fact, it is not clear that any of them
will. They are nevertheless important because each vision
has its devoted adherents, and if enough people believe in
something fervently enough, you will need to deal with
that thing’s existence in the form of its influence on the
thoughts, words, and deeds of its adherents. Besides
which, one or more of these visions will actually come to
pass. But most are bogus. Tell which is which and you’ll
be rich [Spi77]!

Therefore, the following sections give an overview
of transactional memory, hardware transactional mem-
ory, formal verification in regression testing, and parallel
functional programming. But first, a cautionary tale on
prognostication taken from the early 2000s.

17.1 The Future of CPU Technology
Ain’t What it Used to Be

A great future behind him.

David Maraniss

Years past always seem so simple and innocent when
viewed through the lens of many years of experience.
And the early 2000s were for the most part innocent
of the impending failure of Moore’s Law to continue
delivering the then-traditional increases in CPU clock
frequency. Oh, there were the occasional warnings about
the limits of technology, but such warnings had been
sounded for decades. With that in mind, consider the
following scenarios:

1. Uniprocessor Über Alles (Figure 17.1),

Figure 17.1: Uniprocessor Über Alles

2. Multithreaded Mania (Figure 17.2),

3. More of the Same (Figure 17.3), and

4. Crash Dummies Slamming into the Memory Wall
(Figure 17.4).

5. Astounding Accelerators (Figure 17.5).

Each of these scenarios is covered in the following
sections.

17.1.1 Uniprocessor Über Alles
As was said in 2004 [McK04]:

383

v2024.12.27a

384 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Figure 17.2: Multithreaded Mania

Figure 17.3: More of the Same

Figure 17.4: Crash Dummies Slamming into the Memory
Wall

Figure 17.5: Astounding Accelerators

v2024.12.27a

17.1. THE FUTURE OF CPU TECHNOLOGY AIN’T WHAT IT USED TO BE 385

In this scenario, the combination of Moore’s-
Law increases in CPU clock rate and continued
progress in horizontally scaled computing ren-
der SMP systems irrelevant. This scenario is
therefore dubbed “Uniprocessor Über Alles”,
literally, uniprocessors above all else.

These uniprocessor systems would be subject
only to instruction overhead, since memory
barriers, cache thrashing, and contention do not
affect single-CPU systems. In this scenario,
RCU is useful only for niche applications, such
as interacting with NMIs. It is not clear that an
operating system lacking RCU would see the
need to adopt it, although operating systems
that already implement RCU might continue to
do so.

However, recent progress with multithreaded
CPUs seems to indicate that this scenario is
quite unlikely.

Unlikely indeed! But the larger software community
was reluctant to accept the fact that they would need to
embrace parallelism, and so it was some time before this
community concluded that the “free lunch” of Moore’s-
Law-induced CPU core-clock frequency increases was
well and truly finished. Never forget: Belief is an emotion,
not necessarily the result of a rational technical thought
process!

17.1.2 Multithreaded Mania
Also from 2004 [McK04]:

A less-extreme variant of Uniprocessor Über
Alles features uniprocessors with hardware mul-
tithreading, and in fact multithreaded CPUs
are now standard for many desktop and lap-
top computer systems. The most aggressively
multithreaded CPUs share all levels of cache hi-
erarchy, thereby eliminating CPU-to-CPU mem-
ory latency, in turn greatly reducing the perfor-
mance penalty for traditional synchronization
mechanisms. However, a multithreaded CPU
would still incur overhead due to contention
and to pipeline stalls caused by memory barri-
ers. Furthermore, because all hardware threads
share all levels of cache, the cache available to
a given hardware thread is a fraction of what
it would be on an equivalent single-threaded

CPU, which can degrade performance for ap-
plications with large cache footprints. There is
also some possibility that the restricted amount
of cache available will cause RCU-based algo-
rithms to incur performance penalties due to
their grace-period-induced additional memory
consumption. Investigating this possibility is
future work.

However, in order to avoid such performance
degradation, a number of multithreaded CPUs
and multi-CPU chips partition at least some of
the levels of cache on a per-hardware-thread
basis. This increases the amount of cache avail-
able to each hardware thread, but re-introduces
memory latency for cachelines that are passed
from one hardware thread to another.

And we all know how this story has played out, with
multiple multi-threaded cores on a single die plugged
into a single socket, with varying degrees of optimization
for lower numbers of active threads per core. The ques-
tion then becomes whether or not future shared-memory
systems will always fit into a single socket.

17.1.3 More of the Same

Again from 2004 [McK04]:

The More-of-the-Same scenario assumes that
the memory-latency ratios will remain roughly
where they are today.

This scenario actually represents a change, since
to have more of the same, interconnect perfor-
mance must begin keeping up with the Moore’s-
Law increases in core CPU performance. In this
scenario, overhead due to pipeline stalls, mem-
ory latency, and contention remains significant,
and RCU retains the high level of applicability
that it enjoys today.

And the change has been the ever-increasing levels of
integration that Moore’s Law is still providing. But longer
term, which will it be? More CPUs per die? Or more I/O,
cache, and memory?

Servers seem to be choosing the former, while em-
bedded systems on a chip (SoCs) continue choosing the
latter.

v2024.12.27a

386 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

0.1

1

10

100

1000

10000

82 84 86 88 90 92 94 96 98 00 02

In
s
tr

u
c
ti
o

n
s
 p

e
r

M
e

m
o

ry
 R

e
fe

re
n

c
e

 T
im

e

Year

Figure 17.6: Instructions per Local Memory Reference
for Sequent Computers

17.1.4 Crash Dummies Slamming into the
Memory Wall

And one more quote from 2004 [McK04]:

If the memory-latency trends shown in Fig-
ure 17.6 continue, then memory latency will con-
tinue to grow relative to instruction-execution
overhead. Systems such as Linux that have sig-
nificant use of RCU will find additional use of
RCU to be profitable, as shown in Figure 17.7.
As can be seen in this figure, if RCU is heavily
used, increasing memory-latency ratios give
RCU an increasing advantage over other syn-
chronization mechanisms. In contrast, systems
with minor use of RCU will require increasingly
high degrees of read intensity for use of RCU to
pay off, as shown in Figure 17.8. As can be seen
in this figure, if RCU is lightly used, increasing
memory-latency ratios put RCU at an increasing
disadvantage compared to other synchronization
mechanisms. Since Linux has been observed
with over 1,600 callbacks per grace period under
heavy load [SM04b], it seems safe to say that
Linux falls into the former category.

On the one hand, this passage failed to anticipate the
cache-warmth issues that RCU can suffer from in work-
loads with significant update intensity, in part because it
seemed unlikely that RCU would really be used for such

0.1

1

1 10 100 1000

B
re

a
k
e

v
e

n
 U

p
d

a
te

 F
ra

c
ti
o

n

Memory-Latency Ratio

RCU

spinlock

Figure 17.7: Breakevens vs. 𝑟 , 𝜆 Large, Four CPUs

0.0001

0.001

0.01

0.1

1

1 10 100 1000

B
re

a
k
e

v
e

n
 U

p
d

a
te

 F
ra

c
ti
o

n

Memory-Latency Ratio

RCU

drw

spinlock

Figure 17.8: Breakevens vs. 𝑟, 𝜆 Small, Four CPUs

v2024.12.27a

17.2. TRANSACTIONAL MEMORY 387

workloads. In the event, the SLAB_TYPESAFE_BY_RCU
has been pressed into service in a number of instances
where these cache-warmth issues would otherwise be
problematic, as has sequence locking. On the other hand,
this passage also failed to anticipate that RCU would be
used to reduce scheduling latency or for security.

Much of the data generated for this book was collected
on an eight-socket system with 28 cores per socket and
two hardware threads per core, for a total of 448 hardware
threads. The idle-system memory latencies are less than
one microsecond, which are no worse than those of similar-
sized systems of the year 2004. Some claim that these
latencies approach a microsecond only because of the
x86 CPU family’s relatively strong memory ordering, but
it may be some time before that particular argument is
settled.

17.1.5 Astounding Accelerators
The potential of hardware accelerators was not quite as
clear in 2004 as it is in 2021, so this section has no quote.
However, the November 2020 Top 500 list [MDSS20]
features a great many accelerators, so one could argue
that this section is a view of the present rather than of the
future. The same could be said of most of the preceding
sections.

Hardware accelerators are being put to many other uses,
including encryption, compression, and machine learning.

In short, beware of prognostications, including those in
the remainder of this chapter.

17.2 Transactional Memory

Everything should be as simple as it can be, but not

simpler.

Albert Einstein, by way of Louis Zukofsky

The idea of using transactions outside of databases goes
back many decades [Lom77, Kni86, HM93], with the
key difference between database and non-database trans-
actions being that non-database transactions drop the
“D” in the “ACID”1 properties defining database transac-
tions. The idea of supporting memory-based transactions,
or “transactional memory” (TM), in hardware is more
recent [HM93], but unfortunately, support for such trans-
actions in commodity hardware was not immediately
forthcoming, despite other somewhat similar proposals

1 Atomicity, consistency, isolation, and durability.

being put forward [SSHT93]. Not long after, Shavit
and Touitou proposed a software-only implementation of
transactional memory (STM) that was capable of running
on commodity hardware, give or take memory-ordering
issues [ST95]. This proposal languished for many years,
perhaps due to the fact that the research community’s
attention was absorbed by non-blocking synchronization
(see Section 14.2).

But by the turn of the century, TM started receiving
more attention [MT01, RG01], and by the middle of
the decade, the level of interest can only be termed “in-
candescent” [Her05, Gro07], with only a few voices of
caution [BLM05, MMW07].

The basic idea behind TM is to execute a section of
code atomically, so that other threads see no interme-
diate state. As such, the semantics of TM could be
implemented by simply replacing each transaction with a
recursively acquirable global lock acquisition and release,
albeit with abysmal performance and scalability. Much of
the complexity inherent in TM implementations, whether
hardware or software, is efficiently detecting when concur-
rent transactions can safely run in parallel. Because this
detection is done dynamically, conflicting transactions can
be aborted or “rolled back”, and in some implementations,
this failure mode is visible to the programmer.

Because transaction roll-back is increasingly unlikely
as transaction size decreases, TM might become quite
attractive for small memory-based operations, such as
linked-list manipulations used for stacks, queues, hash
tables, and search trees. However, it is currently much
more difficult to make the case for large transactions, par-
ticularly those containing non-memory operations such
as I/O and process creation. The following sections look
at current challenges to the grand vision of “Transac-
tional Memory Everywhere” [McK09b]. Section 17.2.1
examines the challenges faced interacting with the outside
world, Section 17.2.2 looks at interactions with process
modification primitives, Section 17.2.3 explores interac-
tions with other synchronization primitives, and finally
Section 17.2.6 closes with some discussion.

17.2.1 Outside World
In the wise words of Donald Knuth:

Many computer users feel that input and output
are not actually part of “real programming,”
they are merely things that (unfortunately) must
be done in order to get information in and out
of the machine.

v2024.12.27a

388 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Whether or not we believe that input and output are “real
programming”, the fact is that software absolutely must
deal with the outside world. This section therefore cri-
tiques transactional memory’s outside-world capabilities,
focusing on I/O operations, time delays, and persistent
storage.

And these interactions with the outside world are the
rock upon which the claims of unconditional TM compos-
ability are shattered. Yes, you can compose transactions,
but only as long as there are no intervening TM-unfriendly
operations. Just as you can compose lock-based critical
sections, but only as long as doing so does not introduce
deadlocks.

In the end, it is unclear whether TM really provides
better composability than does locking in real-world code.

17.2.1.1 I/O Operations

One can execute I/O operations within a lock-based crit-
ical section, while holding a hazard pointer, within a
sequence-locking read-side critical section, and from
within a userspace-RCU read-side critical section, and
even all at the same time, if need be. What happens when
you attempt to execute an I/O operation from within a
transaction?

The underlying problem is that transactions may be
rolled back, for example, due to conflicts. Roughly speak-
ing, this requires that all operations within any given
transaction be revocable, so that executing the operation
twice has the same effect as executing it once. Unfor-
tunately, I/O is in general the prototypical irrevocable
operation, making it difficult to include general I/O opera-
tions in transactions. In fact, general I/O is irrevocable:
Once you have pushed the proverbial button launching the
nuclear warheads, there is no turning back.

Here are some options for handling of I/O within trans-
actions:

1. Restrict I/O within transactions to buffered I/O with
in-memory buffers. These buffers may then be in-
cluded in the transaction in the same way that any
other memory location might be included. This
seems to be the mechanism of choice, and it does
work well in many common cases of situations such
as stream I/O and mass-storage I/O. However, spe-
cial handling is required in cases where multiple
record-oriented output streams are merged onto a
single file from multiple processes, as might be done
using the “a+” option to fopen() or the O_APPEND
flag to open(). In addition, as will be seen in the

next section, common networking operations cannot
be handled via buffering.

2. Prohibit I/O within transactions, so that any attempt to
execute an I/O operation aborts the enclosing transac-
tion (and perhaps multiple nested transactions). This
approach seems to be the conventional TM approach
for unbuffered I/O, but requires that TM interoperate
with other synchronization primitives tolerating I/O.

3. Prohibit I/O within transactions, but enlist the com-
piler’s aid in enforcing this prohibition.

4. Permit only one special irrevocable transac-
tion [SMS08] to proceed at any given time, thus
allowing irrevocable transactions to contain I/O op-
erations.2 This works in general, but severely limits
the scalability and performance of I/O operations.
Given that scalability and performance is a first-class
goal of parallelism, this approach’s generality seems
a bit self-limiting. Worse yet, use of irrevocability
to tolerate I/O operations seems to greatly restrict
use of manual transaction-abort operations.3 Finally,
if there is an irrevocable transaction manipulating
a given data item, any other transaction manipulat-
ing that same data item cannot have non-blocking
semantics.

5. Create new hardware and protocols such that I/O op-
erations can be pulled into the transactional substrate.
In the case of input operations, the hardware would
need to correctly predict the result of the operation,
and to abort the transaction if the prediction failed.

I/O operations are a well-known weakness of TM,
and it is not clear that the problem of supporting I/O in
transactions has a reasonable general solution, at least
if “reasonable” is to include usable performance and
scalability. Nevertheless, continued time and attention to
this problem will likely produce additional progress.

17.2.1.2 RPC Operations

One can execute RPCs within a lock-based critical section,
while holding a hazard pointer, within a sequence-locking
read-side critical section, and from within a userspace-
RCU read-side critical section, and even all at the same

2 In earlier literature, irrevocable transactions are termed inevitable
transactions.

3 This difficulty was pointed out by Michael Factor. To see the
problem, think through what TM should do in response to an attempt to
abort a transaction after it has executed an irrevocable operation.

v2024.12.27a

17.2. TRANSACTIONAL MEMORY 389

time, if need be. What happens when you attempt to
execute an RPC from within a transaction?

If both the RPC request and its response are to be
contained within the transaction, and if some part of the
transaction depends on the result returned by the response,
then it is not possible to use the memory-buffer tricks that
can be used in the case of buffered I/O. Any attempt to take
this buffering approach would deadlock the transaction, as
the request could not be transmitted until the transaction
was guaranteed to succeed, but the transaction’s success
might not be knowable until after the response is received,
as is the case in the following example:

1 begin_trans();
2 rpc_request();
3 i = rpc_response();
4 a[i]++;
5 end_trans();

The transaction’s memory footprint cannot be deter-
mined until after the RPC response is received, and until
the transaction’s memory footprint can be determined, it
is impossible to determine whether the transaction can
be allowed to commit. The only action consistent with
transactional semantics is therefore to unconditionally
abort the transaction, which is, to say the least, unhelpful.

Here are some options available to TM:

1. Prohibit RPC within transactions, so that any attempt
to execute an RPC operation aborts the enclosing
transaction (and perhaps multiple nested transac-
tions). Alternatively, enlist the compiler to enforce
RPC-free transactions. This approach does work, but
will require TM to interact with other synchronization
primitives.

2. Permit only one special irrevocable transac-
tion [SMS08] to proceed at any given time, thus
allowing irrevocable transactions to contain RPC
operations. This works in general, but severely limits
the scalability and performance of RPC operations.
Given that scalability and performance is a first-class
goal of parallelism, this approach’s generality seems
a bit self-limiting. Furthermore, use of irrevoca-
ble transactions to permit RPC operations restricts
manual transaction-abort operations once the RPC
operation has started. Finally, if there is an irrevoca-
ble transaction manipulating a given data item, any
other transaction manipulating that same data item
must have blocking semantics.

3. Identify special cases where the success of the trans-
action may be determined before the RPC response

is received, and automatically convert these to irrev-
ocable transactions immediately before sending the
RPC request. Of course, if several concurrent trans-
actions attempt RPC calls in this manner, it might be
necessary to roll all but one of them back, with con-
sequent degradation of performance and scalability.
This approach nevertheless might be valuable given
long-running transactions ending with an RPC. This
approach must still restrict manual transaction-abort
operations.

4. Identify special cases where the RPC response may
be moved out of the transaction, and then proceed
using techniques similar to those used for buffered
I/O.

5. Extend the transactional substrate to include the RPC
server as well as its client. This is in theory possible,
as has been demonstrated by distributed databases.
However, it is unclear whether the requisite perfor-
mance and scalability requirements can be met by
distributed-database techniques, given that memory-
based TM has no slow disk drives behind which to
hide such latencies. Of course, given the advent of
solid-state disks, it is also quite possible that data-
bases will need to redesign their approach to latency
hiding.

As noted in the prior section, I/O is a known weakness
of TM, and RPC is simply an especially problematic case
of I/O.

17.2.1.3 Time Delays

An important special case of interaction with extra-
transactional accesses involves explicit time delays within
a transaction. Of course, the idea of a time delay within a
transaction flies in the face of TM’s atomicity property,
but this sort of thing is arguably what weak atomicity is
all about. Furthermore, correct interaction with memory-
mapped I/O sometimes requires carefully controlled tim-
ing, and applications often use time delays for varied
purposes. Finally, one can execute time delays within a
lock-based critical section, while holding a hazard pointer,
within a sequence-locking read-side critical section, and
from within a userspace-RCU read-side critical section,
and even all at the same time, if need be. Doing so might
not be wise from a contention or scalability viewpoint,
but then again, doing so does not raise any fundamental
conceptual issues.

v2024.12.27a

390 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

So, what can TM do about time delays within transac-
tions?

1. Ignore time delays within transactions. This has
an appearance of elegance, but like too many other
“elegant” solutions, fails to survive first contact with
legacy code. Such code, which might well have
important time delays in critical sections, would fail
upon being transactionalized.

2. Abort transactions upon encountering a time-delay
operation. This is attractive, but it is unfortunately
not always possible to automatically detect a time-
delay operation. Is that tight loop carrying out a
critical computation, or is it simply waiting for time
to elapse?

3. Enlist the compiler to prohibit time delays within
transactions.

4. Let the time delays execute normally. Unfortunately,
some TM implementations publish modifications
only at commit time, which could defeat the purpose
of the time delay.

It is not clear that there is a single correct answer. TM
implementations featuring weak atomicity that publish
changes immediately within the transaction (rolling these
changes back upon abort) might be reasonably well served
by the last alternative. Even in this case, the code (or
possibly even hardware) at the other end of the transaction
may require a substantial redesign to tolerate aborted
transactions. This need for redesign would make it more
difficult to apply transactional memory to legacy code.

17.2.1.4 Persistence

There are many different types of locking primitives.
One interesting distinction is persistence, in other words,
whether the lock can exist independently of the address
space of the process using the lock.

Non-persistent locks include pthread_mutex_
lock(), pthread_rwlock_rdlock(), and most kernel-
level locking primitives. If the memory locations instan-
tiating a non-persistent lock’s data structures disappear,
so does the lock. For typical use of pthread_mutex_
lock(), this means that when the process exits, all of
its locks vanish. This property can be exploited in order
to trivialize lock cleanup at program shutdown time, but
makes it more difficult for unrelated applications to share
locks, as such sharing requires the applications to share
memory.

Quick Quiz 17.1: But suppose that an application exits
while holding a pthread_mutex_lock() that happens to be
located in a file-mapped region of memory?

Persistent locks help avoid the need to share memory
among unrelated applications. Persistent locking APIs
include the flock family, lockf(), System V semaphores,
or the O_CREAT flag to open(). These persistent APIs
can be used to protect large-scale operations spanning
runs of multiple applications, and, in the case of O_CREAT
even surviving operating-system reboot. If need be, locks
can even span multiple computer systems via distributed
lock managers and distributed filesystems—and persist
across reboots of any or all of those computer systems.

Persistent locks can be used by any application, in-
cluding applications written using multiple languages
and software environments. In fact, a persistent lock
might well be acquired by an application written in C and
released by an application written in Python.

How could a similar persistent functionality be provided
for TM?

1. Restrict persistent transactions to special-purpose
environments designed to support them, for example,
SQL. This clearly works, given the decades-long
history of database systems, but does not provide
the same degree of flexibility provided by persistent
locks.

2. Use snapshot facilities provided by some storage de-
vices and/or filesystems. Unfortunately, this does not
handle network communication, nor does it handle
I/O to devices that do not provide snapshot capabili-
ties, for example, memory sticks.

3. Build a time machine.

4. Avoid the problem entirely by using existing persis-
tent facilities, presumably avoiding such use within
transactions.

Of course, the fact that it is called transactional memory
should give us pause, as the name itself conflicts with
the concept of a persistent transaction. It is nevertheless
worthwhile to consider this possibility as an important
test case probing the inherent limitations of transactional
memory.

17.2.2 Process Modification
Processes are not eternal: They are created and destroyed,
their memory mappings are modified, they are linked to

v2024.12.27a

17.2. TRANSACTIONAL MEMORY 391

dynamic libraries, and they are debugged. These sections
look at how transactional memory can handle an ever-
changing execution environment.

17.2.2.1 Multithreaded Transactions

It is perfectly legal to create processes and threads while
holding a lock or, for that matter, while holding a hazard
pointer, within a sequence-locking read-side critical sec-
tion, and from within a userspace-RCU read-side critical
section, and even all at the same time, if need be. Not
only is it legal, but it is quite simple, as can be seen from
the following code fragment:

1 pthread_mutex_lock(...);
2 for (i = 0; i < ncpus; i++)
3 pthread_create(&tid[i], ...);
4 for (i = 0; i < ncpus; i++)
5 pthread_join(tid[i], ...);
6 pthread_mutex_unlock(...);

This pseudo-code fragment uses pthread_create()
to spawn one thread per CPU, then uses pthread_join()
to wait for each to complete, all under the protection of
pthread_mutex_lock(). The effect is to execute a lock-
based critical section in parallel, and one could obtain a
similar effect using fork() and wait(). Of course, the
critical section would need to be quite large to justify the
thread-spawning overhead, but there are many examples
of large critical sections in production software.

What might TM do about thread spawning within a
transaction?

1. Declare pthread_create() to be illegal within
transactions, preferably by aborting the transac-
tion. Alternatively, enlist the compiler to enforce
pthread_create()-free transactions.

2. Permit pthread_create() to be executed within a
transaction, but only the parent thread will be con-
sidered to be part of the transaction. This approach
seems to be reasonably compatible with existing and
posited TM implementations, but seems to be a trap
for the unwary. This approach raises further ques-
tions, such as how to handle conflicting child-thread
accesses.

3. Convert the pthread_create()s to function calls.
This approach is also an attractive nuisance, as it does
not handle the not-uncommon cases where the child
threads communicate with one another. In addition,
it does not permit concurrent execution of the body
of the transaction.

4. Extend the transaction to cover the parent and all
child threads. This approach raises interesting ques-
tions about the nature of conflicting accesses, given
that the parent and children are presumably permit-
ted to conflict with each other, but not with other
threads. It also raises interesting questions as to
what should happen if the parent thread does not wait
for its children before committing the transaction.
Even more interesting, what happens if the parent
conditionally executes pthread_join() based on
the values of variables participating in the transac-
tion? The answers to these questions are reasonably
straightforward in the case of locking. The answers
for TM are left as an exercise for the reader.

Given that parallel execution of transactions is com-
monplace in the database world, it is perhaps surprising
that current TM proposals do not provide for it. On the
other hand, the example above is a fairly sophisticated use
of locking that is not normally found in simple textbook
examples, so perhaps its omission is to be expected. That
said, some researchers are using transactions to autoparal-
lelize code [RKM+10], and there are rumors that other TM
researchers are investigating fork/join parallelism within
transactions, so perhaps this topic will soon be addressed
more thoroughly.

17.2.2.2 The exec() System Call

One can execute an exec() system call within a lock-
based critical section, while holding a hazard pointer,
within a sequence-locking read-side critical section, and
from within a userspace-RCU read-side critical section,
and even all at the same time, if need be. The exact
semantics depends on the type of primitive.

In the case of non-persistent primitives (in-
cluding pthread_mutex_lock(), pthread_rwlock_
rdlock(), and userspace RCU), if the exec() succeeds,
the whole address space vanishes, along with any locks
being held. Of course, if the exec() fails, the address
space still lives, so any associated locks would also still
live. A bit strange perhaps, but well defined.

On the other hand, persistent primitives (including
the flock family, lockf(), System V semaphores, and
the O_CREAT flag to open()) would survive regardless
of whether the exec() succeeded or failed, so that the
exec()ed program might well release them.

Quick Quiz 17.2: What about non-persistent primitives
represented by data structures in mmap() regions of memory?

v2024.12.27a

392 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

What happens when there is an exec() within a critical section
of such a primitive?

What happens when you attempt to execute an exec()
system call from within a transaction?

1. Disallow exec() within transactions, so that the
enclosing transactions abort upon encountering the
exec(). This is well defined, but clearly requires
non-TM synchronization primitives for use in con-
junction with exec().

2. Disallow exec() within transactions, with the com-
piler enforcing this prohibition. There is a draft
specification for TM in C++ that takes this ap-
proach, allowing functions to be decorated with the
transaction_safe and transaction_unsafe at-
tributes.4 This approach has some advantages over
aborting the transaction at runtime, but again re-
quires non-TM synchronization primitives for use in
conjunction with exec(). One disadvantage is the
need to decorate a great many library functions with
transaction_safe and transaction_unsafe at-
tributes.

3. Treat the transaction in a manner similar to non-
persistent locking primitives, so that the transaction
survives if exec() fails, and silently commits if
the exec() succeeds. The case where only some
of the variables affected by the transaction reside
in mmap()ed memory (and thus could survive a
successful exec() system call) is left as an exercise
for the reader.

4. Abort the transaction (and the exec() system call)
if the exec() system call would have succeeded,
but allow the transaction to continue if the exec()
system call would fail. This is in some sense the
“correct” approach, but it would require considerable
work for a rather unsatisfying result.

The exec() system call is perhaps the strangest example
of an obstacle to universal TM applicability, as it is
not completely clear what approach makes sense, and
some might argue that this is merely a reflection of the
perils of real-life interaction with exec(). That said, the
two options prohibiting exec() within transactions are
perhaps the most logical of the group.

4 Thanks to Mark Moir for pointing me at this spec, and to Michael
Wong for having pointed me at an earlier revision some time back.

Similar issues surround the exit() and kill() sys-
tem calls, as well as a longjmp() or an exception that
would exit the transaction. (Where did the longjmp() or
exception come from?)

17.2.2.3 Dynamic Linking and Loading

Lock-based critical section, code holding a hazard
pointer, sequence-locking read-side critical sections, and
userspace-RCU read-side critical sections can (separately
or in combination) legitimately contain code that invokes
dynamically linked and loaded functions, including C/C++
shared libraries and Java class libraries. Of course, the
code contained in these libraries is by definition unknow-
able at compile time. So, what happens if a dynamically
loaded function is invoked within a transaction?

This question has two parts: (a) How do you dynam-
ically link and load a function within a transaction and
(b) What do you do about the unknowable nature of the
code within this function? To be fair, item (b) poses
some challenges for locking and userspace-RCU as well,
at least in theory. For example, the dynamically linked
function might introduce a deadlock for locking or might
(erroneously) introduce a quiescent state into a userspace-
RCU read-side critical section. The difference is that
while the class of operations permitted in locking and
userspace-RCU critical sections is well-understood, there
appears to still be considerable uncertainty in the case of
TM. In fact, different implementations of TM seem to
have different restrictions.

So what can TM do about dynamically linked and
loaded library functions? Options for part (a), the actual
loading of the code, include the following:

1. Treat the dynamic linking and loading in a manner
similar to a page fault, so that the function is loaded
and linked, possibly aborting the transaction in the
process. If the transaction is aborted, the retry will
find the function already present, and the transaction
can thus be expected to proceed normally.

2. Disallow dynamic linking and loading of functions
from within transactions.

Options for part (b), the inability to detect TM-
unfriendly operations in a not-yet-loaded function, possi-
bilities include the following:

1. Just execute the code: If there are any TM-unfriendly
operations in the function, simply abort the transac-
tion. Unfortunately, this approach makes it impos-
sible for the compiler to determine whether a given

v2024.12.27a

17.2. TRANSACTIONAL MEMORY 393

group of transactions may be safely composed. One
way to permit composability regardless is irrevocable
transactions, however, current implementations per-
mit only a single irrevocable transaction to proceed
at any given time, which can severely limit perfor-
mance and scalability. Irrevocable transactions also
to restrict use of manual transaction-abort opera-
tions. Finally, if there is an irrevocable transaction
manipulating a given data item, any other transac-
tion manipulating that same data item cannot have
non-blocking semantics.

2. Decorate the function declarations indicating which
functions are TM-friendly. These decorations can
then be enforced by the compiler’s type system.
Of course, for many languages, this requires lan-
guage extensions to be proposed, standardized, and
implemented, with the corresponding time delays,
and also with the corresponding decoration of a
great many otherwise uninvolved library functions.
That said, the standardization effort is already in
progress [ATS09, ATSG12].

3. As above, disallow dynamic linking and loading of
functions from within transactions.

I/O operations are of course a known weakness of
TM, and dynamic linking and loading can be thought
of as yet another special case of I/O. Nevertheless, the
proponents of TM must either solve this problem, or resign
themselves to a world where TM is but one tool of several
in the parallel programmer’s toolbox. (To be fair, a number
of TM proponents have long since resigned themselves to
a world containing more than just TM.)

17.2.2.4 Memory-Mapping Operations

It is perfectly legal to execute memory-mapping operations
(including mmap(), shmat(), and munmap() [Gro01])
within a lock-based critical section, while holding a haz-
ard pointer, within a sequence-locking read-side critical
section, and from within a userspace-RCU read-side crit-
ical section, and even all at the same time, if need be.
What happens when you attempt to execute such an op-
eration from within a transaction? More to the point,
what happens if the memory region being remapped con-
tains some variables participating in the current thread’s
transaction? And what if this memory region contains
variables participating in some other thread’s transaction?

It should not be necessary to consider cases where
the TM system’s metadata is remapped, given that most

locking primitives do not define the outcome of remapping
their lock variables.

Here are some TM memory-mapping options:

1. Memory remapping is illegal within a transaction,
and will result in all enclosing transactions being
aborted. This does simplify things somewhat, but
also requires that TM interoperate with synchro-
nization primitives that do tolerate remapping from
within their critical sections.

2. Memory remapping is illegal within a transaction,
and the compiler is enlisted to enforce this prohibi-
tion.

3. Memory mapping is legal within a transaction, but
aborts all other transactions having variables in the
region mapped over.

4. Memory mapping is legal within a transaction, but
the mapping operation will fail if the region being
mapped overlaps with the current transaction’s foot-
print.

5. All memory-mapping operations, whether within or
outside a transaction, check the region being mapped
against the memory footprint of all transactions in the
system. If there is overlap, then the memory-mapping
operation fails.

6. The effect of memory-mapping operations that over-
lap the memory footprint of any transaction in the
system is determined by the TM conflict manager,
which might dynamically determine whether to fail
the memory-mapping operation or abort any conflict-
ing transactions.

It is interesting to note that munmap() leaves the relevant
region of memory unmapped, which could have additional
interesting implications.5

17.2.2.5 Debugging

The usual debugging operations such as breakpoints
work normally within lock-based critical sections and
from usespace-RCU read-side critical sections. However,
in initial transactional-memory hardware implementa-
tions [DLMN09] an exception within a transaction will
abort that transaction, which in turn means that break-
points abort all enclosing transactions.

So how can transactions be debugged?
5 This difference between mapping and unmapping was noted by

Josh Triplett.

v2024.12.27a

394 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

1. Use software emulation techniques within transac-
tions containing breakpoints. Of course, it might
be necessary to emulate all transactions any time a
breakpoint is set within the scope of any transaction.
If the runtime system is unable to determine whether
or not a given breakpoint is within the scope of a
transaction, then it might be necessary to emulate all
transactions just to be on the safe side. However, this
approach might impose significant overhead, which
might in turn obscure the bug being pursued.

2. Use only hardware TM implementations that are
capable of handling breakpoint exceptions. Unfor-
tunately, as of this writing (March 2021), all such
implementations are research prototypes.

3. Use only software TM implementations, which are
(very roughly speaking) more tolerant of exceptions
than are the simpler of the hardware TM implemen-
tations. Of course, software TM tends to have higher
overhead than hardware TM, so this approach may
not be acceptable in all situations.

4. Program more carefully, so as to avoid having bugs
in the transactions in the first place. As soon as you
figure out how to do this, please do let everyone know
the secret!

There is some reason to believe that transactional mem-
ory will deliver productivity improvements compared to
other synchronization mechanisms, but it does seem quite
possible that these improvements could easily be lost if
traditional debugging techniques cannot be applied to
transactions. This seems especially true if transactional
memory is to be used by novices on large transactions. In
contrast, macho “top-gun” programmers might be able to
dispense with such debugging aids, especially for small
transactions.

Therefore, if transactional memory is to deliver on
its productivity promises to novice programmers, the
debugging problem does need to be solved.

17.2.3 Synchronization
If transactional memory someday proves that it can be
everything to everyone, it will not need to interact with
any other synchronization mechanism. Until then, it
will need to work with synchronization mechanisms that
can do what it cannot, or that work more naturally in a
given situation. The following sections outline the current
challenges in this area.

17.2.3.1 Locking

It is commonplace to acquire locks while holding other
locks, which works quite well, at least as long as the
usual well-known software-engineering techniques are
employed to avoid deadlock. It is not unusual to acquire
locks from within RCU read-side critical sections, which
eases deadlock concerns because RCU read-side prim-
itives cannot participate in lock-based deadlock cycles.
It is also possible to acquire locks while holding hazard
pointers and within sequence-lock read-side critical sec-
tions. But what happens when you attempt to acquire a
lock from within a transaction?

In theory, the answer is trivial: Simply manipulate the
data structure representing the lock as part of the trans-
action, and everything works out perfectly. In practice, a
number of non-obvious complications [VGS08] can arise,
depending on implementation details of the TM system.
These complications can be resolved, but at the cost of a
45 % increase in overhead for locks acquired outside of
transactions and a 300 % increase in overhead for locks
acquired within transactions. Although these overheads
might be acceptable for transactional programs contain-
ing small amounts of locking, they are often completely
unacceptable for production-quality lock-based programs
wishing to use the occasional transaction.

Here are some options available to TM:

1. Use only locking-friendly TM implementa-
tions [DSS06]. Unfortunately, the locking-unfriendly
implementations have some attractive properties, in-
cluding low overhead for successful transactions and
the ability to accommodate extremely large transac-
tions.

2. Use TM only “in the small” when introducing TM
to lock-based programs, thereby accommodating the
limitations of locking-friendly TM implementations.

3. Set aside locking-based legacy systems entirely, re-
implementing everything in terms of transactions.
This approach has no shortage of advocates, but this
requires that all the issues described in this series be
resolved. During the time it takes to resolve these
issues, competing synchronization mechanisms will
of course also have the opportunity to improve.

4. Use TM strictly as an optimization in lock-based
systems, as was done by the TxLinux [RHP+07]
group and by a great many transactional lock elision
projects [PD11, Kle14, FIMR16, PMDY20]. This

v2024.12.27a

17.2. TRANSACTIONAL MEMORY 395

approach seems sound, but leaves the locking design
constraints (such as the need to avoid deadlock) firmly
in place.

5. Strive to reduce the overhead imposed on locking
primitives.

The fact that there could possibly be a problem inter-
facing TM and locking came as a surprise to many, which
underscores the need to try out new mechanisms and prim-
itives in real-world production software. Fortunately, the
advent of open source means that a huge quantity of such
software is now freely available to everyone, including
researchers.

17.2.3.2 Reader-Writer Locking

It is commonplace to read-acquire reader-writer locks
while holding other locks, which just works, at least as long
as the usual well-known software-engineering techniques
are employed to avoid deadlock. Read-acquiring reader-
writer locks from within RCU read-side critical sections
also works, and doing so eases deadlock concerns because
RCU read-side primitives cannot participate in lock-based
deadlock cycles. It is also possible to acquire locks
while holding hazard pointers and within sequence-lock
read-side critical sections. But what happens when you
attempt to read-acquire a reader-writer lock from within a
transaction?

Unfortunately, the straightforward approach to read-
acquiring the traditional counter-based reader-writer lock
within a transaction defeats the purpose of the reader-
writer lock. To see this, consider a pair of transactions
concurrently attempting to read-acquire the same reader-
writer lock. Because read-acquisition involves modifying
the reader-writer lock’s data structures, a conflict will
result, which will roll back one of the two transactions.
This behavior is completely inconsistent with the reader-
writer lock’s goal of allowing concurrent readers.

Here are some options available to TM:

1. Use per-CPU or per-thread reader-writer lock-
ing [HW92], which allows a given CPU (or thread,
respectively) to manipulate only local data when
read-acquiring the lock. This would avoid the con-
flict between the two transactions concurrently read-
acquiring the lock, permitting both to proceed, as
intended. Unfortunately, (1) the write-acquisition
overhead of per-CPU/thread locking can be extremely
high, (2) the memory overhead of per-CPU/thread

locking can be prohibitive, and (3) this transforma-
tion is available only when you have access to the
source code in question. Other more-recent scalable
reader-writer locks [LLO09] might avoid some or all
of these problems.

2. Use TM only “in the small” when introducing
TM to lock-based programs, thereby avoiding read-
acquiring reader-writer locks from within transac-
tions.

3. Set aside locking-based legacy systems entirely, re-
implementing everything in terms of transactions.
This approach has no shortage of advocates, but this
requires that all the issues described in this series be
resolved. During the time it takes to resolve these
issues, competing synchronization mechanisms will
of course also have the opportunity to improve.

4. Use TM strictly as an optimization in lock-based
systems, as was done by the TxLinux [RHP+07]
group, and as has been done by more recent work
using TM to elide reader-writer locks [FIMR16].
This approach seems sound, at least on POWER8
CPUs [LGW+15], but leaves the locking design con-
straints (such as the need to avoid deadlock) firmly
in place.

Of course, there might well be other non-obvious issues
surrounding combining TM with reader-writer locking,
as there in fact were with exclusive locking.

17.2.3.3 Deferred Reclamation

This section focuses mainly on RCU. Similar issues
and possible resolutions arise when combining TM with
other deferred-reclamation mechanisms such as reference
counters and hazard pointers. In the text below, known
differences are specifically called out.

Reference counting, hazard pointers, and RCU are all
heavily used, as noted in Sections 9.5.5 and 9.6.3. This
means that any TM implementation that chooses not to
surmount each and every challenge called out in this
section needs to interoperate cleanly and efficiently with
all of these synchronization mechanisms.

The TxLinux group from the University of Texas at
Austin appears to be the group to take on the challenge
of RCU/TM interoperability [RHP+07]. Because they
applied TM to the Linux 2.6 kernel, which uses RCU,
they had no choice but to integrate TM and RCU, with

v2024.12.27a

396 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

TM taking the place of locking for RCU updates. Un-
fortunately, although the paper does state that the RCU
implementation’s locks (e.g., rcu_ctrlblk.lock) were
converted to transactions, it is silent about what was done
with those locks used by RCU-based updates (for example,
dcache_lock).

More recently, Dimitrios Siakavaras et al. have ap-
plied HTM and RCU to search trees [SNGK17, SBN+20],
Christina Giannoula et al. have used HTM and RCU to
color graphs [GGK18], and SeongJae Park et al. have
used HTM and RCU to optimize high-contention locking
on NUMA systems [PMDY20].

It is important to note that RCU permits readers and
updaters to run concurrently, further permitting RCU
readers to access data that is in the act of being updated.
Of course, this property of RCU, whatever its performance,
scalability, and real-time-response benefits might be, flies
in the face of the underlying atomicity properties of
TM, although the POWER8 CPU family’s suspended-
transaction facility [LGW+15] makes it an exception to
this rule.

So how should TM-based updates interact with concur-
rent RCU readers? Some possibilities are as follows:

1. RCU readers abort concurrent conflicting TM up-
dates. This is in fact the approach taken by the
TxLinux project. This approach does preserve RCU
semantics, and also preserves RCU’s read-side perfor-
mance, scalability, and real-time-response properties,
but it does have the unfortunate side-effect of unnec-
essarily aborting conflicting updates. In the worst
case, a long sequence of RCU readers could poten-
tially starve all updaters, which could in theory result
in system hangs. In addition, not all TM implementa-
tions offer the strong atomicity required to implement
this approach, and for good reasons.

2. RCU readers that run concurrently with conflicting
TM updates get old (pre-transaction) values from any
conflicting RCU loads. This preserves RCU seman-
tics and performance, and also prevents RCU-update
starvation. However, not all TM implementations
can provide timely access to old values of variables
that have been tentatively updated by an in-flight
transaction. In particular, log-based TM implemen-
tations that maintain old values in the log (thus
providing excellent TM commit performance) are
not likely to be happy with this approach. Perhaps the
rcu_dereference() primitive can be leveraged to
permit RCU to access the old values within a greater

range of TM implementations, though performance
might still be an issue. Nevertheless, there are pop-
ular TM implementations that have been integrated
with RCU in this manner [PW07, HW11, HW14].

3. If an RCU reader executes an access that conflicts
with an in-flight transaction, then that RCU access
is delayed until the conflicting transaction either
commits or aborts. This approach preserves RCU
semantics, but not RCU’s performance or real-time
response, particularly in presence of long-running
transactions. In addition, not all TM implementa-
tions are capable of delaying conflicting accesses.
Nevertheless, this approach seems eminently reason-
able for hardware TM implementations that support
only small transactions.

4. RCU readers are converted to transactions. This ap-
proach pretty much guarantees that RCU is compati-
ble with any TM implementation, but it also imposes
TM’s rollbacks on RCU read-side critical sections,
destroying RCU’s real-time response guarantees, and
also degrading RCU’s read-side performance. Fur-
thermore, this approach is infeasible in cases where
any of the RCU read-side critical sections contains
operations that the TM implementation in question
is incapable of handling. This approach is more
difficult to apply to hazard pointers and reference
counters, which do not have a sharply defined notion
of a reader as a section of code.

5. Many update-side uses of RCU modify a single
pointer to publish a new data structure. In some
of these cases, RCU can safely be permitted to see
a transactional pointer update that is subsequently
rolled back, as long as the transaction respects mem-
ory ordering and as long as the roll-back process uses
call_rcu() to free up the corresponding structure.
Unfortunately, not all TM implementations respect
memory barriers within a transaction. Apparently,
the thought is that because transactions are supposed
to be atomic, the ordering of the accesses within the
transaction is not supposed to matter.

6. Prohibit use of TM in RCU updates. This is guaran-
teed to work, but restricts use of TM.

It seems likely that additional approaches will be un-
covered, especially given the advent of user-level RCU
and hazard-pointer implementations.6 It is interesting

6 Kudos to the TxLinux group, Maged Michael, and Josh Triplett
for coming up with a number of the above alternatives.

v2024.12.27a

17.2. TRANSACTIONAL MEMORY 397

to note that many of the better performing and scaling
STM implementations make use of RCU-like techniques
internally [Fra04, FH07, GYW+19, KMK+19].

Quick Quiz 17.3: MV-RLU looks pretty good! Doesn’t it
beat RCU hands down?

17.2.3.4 Extra-Transactional Accesses

Within a lock-based critical section, it is perfectly legal
to manipulate variables that are concurrently accessed or
even modified outside that lock’s critical section, with one
common example being statistical counters. The same
thing is possible within RCU read-side critical sections,
and is in fact the common case.

Given mechanisms such as the so-called “dirty reads”
that are prevalent in production database systems, it is not
surprising that extra-transactional accesses have received
serious attention from the proponents of TM, with the
concept of weak atomicity [BLM06] being but one case
in point.

Here are some extra-transactional options:

1. Conflicts due to extra-transactional accesses always
abort transactions. This is strong atomicity.

2. Conflicts due to extra-transactional accesses are ig-
nored, so only conflicts among transactions can abort
transactions. This is weak atomicity.

3. Transactions are permitted to carry out non-
transactional operations in special cases, such as
when allocating memory or interacting with lock-
based critical sections.

4. Produce hardware extensions that permit some op-
erations (for example, addition) to be carried out
concurrently on a single variable by multiple trans-
actions.

5. Introduce weak semantics to transactional memory.
One approach is the combination with RCU de-
scribed in Section 17.2.3.3, while Gramoli and Guer-
raoui survey a number of other weak-transaction
approaches [GG14], for example, restricted parti-
tioning of large “elastic” transactions into smaller
transactions, thus reducing conflict probabilities (al-
beit with tepid performance and scalability). Per-
haps further experience will show that some uses of
extra-transactional accesses can be replaced by weak
transactions.

It appears that transactions were conceived in a vacuum,
with no interaction required with any other synchronization
mechanism. If so, it is no surprise that much confusion
and complexity arises when combining transactions with
non-transactional accesses. But unless transactions are to
be confined to small updates to isolated data structures, or
alternatively to be confined to new programs that do not
interact with the huge body of existing parallel code, then
transactions absolutely must be so combined if they are to
have large-scale practical impact in the near term.

17.2.4 Other Transactions

Because transactions are to appear atomic with respect
to each other, something must be done when multiple
transactions attempt to access the same variable at the
same time. If all the transactions are reading that variable
and none of them are updating it, then that something
can be “nothing”, but otherwise the transactions must be
at least partially serialized. This serialization is often
achieved by aborting and rolling back some subset of
those transactions.

How to choose which to abort and roll back?
There has been much work on this question. The answer

is “use a contention manager”, but that simply shifts this
question to “what should a contention manager do?” A
full exposition on contention managers is beyond the scope
of this section. This section will therefore limit itself to a
few seminal papers in this area.

Herlihy et al. [HLMS03] have writing transactions
unconditionally abort reading transactions, which has
the virtue of simplicity, but which can result in reader
starvation. This paper also introduces the concept of
early release, which can allow a long traversal to proceed
concurrently with small updates. From this viewpoint,
one might characterize RCU readers as “instant release”,
but this is a property that causes RCU readers to behave
in a decidedly non-STM manner.

Hammond et al. [HCW+04] advise using small transac-
tions, which does reduce contention-manager complexity,
but which also fails to deliver on the full STM promise
of automated concurrency. This paper also introduced
annotations to identify different types of transactions.

Scherer and Scott [SS05] describe a number of STM
contention-management strategies. This paper defined
“visible” and “invisible” readers for extra-transactional
accesses, and discuss a number of contention-management
strategies, including:

v2024.12.27a

398 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

1. Exponential backoff, which they conclude required
manual tuning.

2. Preferentially abort transactions that have done the
least work, where the work of an aborted prior attempt
to complete a transactions is counted for the next retry
of that transaction. This has nice fairness properties,
but can cause huge transactions to hog the system for
an extended time.

3. Preferentially abort transactions that have done the
least work, but also credit a given transaction with the
work done by any other transactions blocked waiting
for that transaction to complete. This adds a form of
priority inheritance to the mix.

4. Track how many times a given transaction has been
aborted by another transaction as another way to
promote some notion of fairness.

5. Use transaction-start timestamps in order to prefer-
entially abort transactions that started most recently.

6. Use transaction-start timestamps, but also add an
indication of when a given transaction last ran to
prevent preempted transactions from aborting other
transactions running in higher-priority processes.

This 2005 paper thus gave an early indication of the
complexity inherent in contention management.

Porter and Witchel [PW07, RRW08] considered loos-
ening STM consistency requirements in order to simplify
contention management. They noted RCU as a case in
which an update will cause concurrent reads to access old
versions of the data.

Contention management is also an issue in HTM, and
will be discussed in Sections 17.3.2.2 and 17.3.2.3.
Quick Quiz 17.4: Why not get with the times and apply
machine learning to contention management?

17.2.5 Case Study: Sequence Locking
Sequence locking, described in Section 9.4, is sometimes
thought of as a trivial form of STM. The sequence-locking
read-side critical section is normally restricted to doing
loads, and it is retried whenever there is a conflict with
a sequence-locking updater. Crucially, sequence-locking
read-side critical section do not conflict with each other. It
is therefore instructive to consider how sequence locking
handles the STM challenges called out in the preceding
sections.

Sequence locking handles interactions with the out-
side world (Section 17.2.1) by simply executing the TM-
unfriendly operation on each pass through its read-side
critical section. For example, if the critical section doing
an I/O write is retried three times, it will execute that I/O
write four times, once for the original pass through the
critical section and once each for the three retries.

Doing I/O operations within a sequence-locking read-
side critical section might seem a bit unconventional. It
nevertheless makes a good deal of sense to do an I/O write
(Section 17.2.1.1) to a log for historical, debugging, or
auditing purposes. An RPC operation (Section 17.2.1.2)
might gather needed data. A time delay (Section 17.2.1.3)
might serve valuable debugging purposes such as exer-
cising the retry code path. Even persistent operations
(Section 17.2.1.4) are potentially useful, for example, to
carry out cross-application mutual exclusion. Alterna-
tively, just as with STM, users of sequence locking may
choose to buffer I/O and execute it just after the end of the
read-side critical section.

Sequence locking handles process modifications (Sec-
tion 17.2.2) in the same way, by simply executing the
process-modification operation on each pass through its
read-side critical section.

Creating processes and threads within a critical section
(Section 17.2.2.1) operates normally, though care should
be taken in order to prevent an often-retried critical section
from becoming a “fork bomb”. The exec() system
call (Section 17.2.2.2) has perfectly reasonable (if rather
drastic) semantics. Calls to functions within dynamic
libraries (Section 17.2.2.3), such as Linux-kernel loadable
modules, work just as well as do calls to built-in functions.
Of course, if such a call were cause a module to load,
this might result in a high retry probability on the first
pass through the critical section. Remapping memory
(Section 17.2.2.4) behaves intuitively, as least assuming
that neither the code making up the critical section nor
the sequence lock itself are remapped. Note that these
same restrictions also apply to normal locks. Debuggers
(Section 17.2.2.5) work normally within sequence-locking
read-side critical sections, just as they do within the critical
sections for normal locks.

Synchronization primitives (Section 17.2.3) can be used
freely within sequence-locking read-side critical sections.
Locking (Section 17.2.3.1), reader-writer locking (Sec-
tion 17.2.3.2), deferred reclamation (Section 17.2.3.3),
and extra-transactional accesses (Section 17.2.3.4) may
all be used within sequence-locking read-side critical
sections, and all give the expected results.

v2024.12.27a

17.2. TRANSACTIONAL MEMORY 399

Sequence locking uses a trivial contention manager
(Section 17.2.4). Sequence-locking readers are always
rolled back in case of a concurrent updater (as do Herlihy
et al. [HLMS03]), sequence-locking updaters typically
delegate their contention management to some form of
mutual exclusion, and sequence-locking readers never
conflict, and thus never need their non-existent contention
to be managed. This rough-and-ready approach means
that sequence-locking updaters can starve readers, and
users of sequence locking must therefore take care to avoid
frequent updates.

In short, sequence locking handles these STM chal-
lenges quite well. This might be one reason that sequence
locking is heavily used in production. However, a key
enabler of sequence locking is the pushing of a number
of these challenges back onto the user. This approach is
reasonable because sequence locking has no ambitions
to be the one synchronization mechanism to rule them
all. So perhaps the greatest impediment to widespread
STM adoption is its proponents’ overweening desire for
full generality.

17.2.6 Discussion
The obstacles to universal TM adoption lead to the follow-
ing conclusions:

1. One interesting property of TM is the fact that transac-
tions are subject to rollback and retry. This property
underlies TM’s difficulties with irreversible oper-
ations, including unbuffered I/O, RPCs, memory-
mapping operations, time delays, and the exec()
system call. This property also has the unfortu-
nate consequence of introducing all the complexi-
ties inherent in the possibility of failure, often in a
developer-visible manner.

2. Another interesting property of TM, noted by Sh-
peisman et al. [SATG+09], is that TM intertwines
the synchronization with the data it protects. This
property underlies TM’s issues with I/O, memory-
mapping operations, extra-transactional accesses,
and debugging breakpoints. In contrast, conven-
tional synchronization primitives, including locking
and RCU, maintain a clear separation between the
synchronization primitives and the data that they
protect.

3. One of the stated goals of many workers in the TM
area is to ease parallelization of large sequential

programs. As such, individual transactions are com-
monly expected to execute serially, which might do
much to explain TM’s issues with multithreaded
transactions.

Quick Quiz 17.5: Given things like spin_trylock(), how
does it make any sense at all to claim that TM introduces the
concept of failure???

What should TM researchers and developers do about
all of this?

One approach is to focus on TM in the small, focusing
on small transactions where hardware assist potentially
provides substantial advantages over other synchronization
primitives and on small programs where there is some
evidence for increased productivity for a combined TM-
locking approach [PAT11]. Sun took the small-transaction
approach with its Rock research CPU [DLMN09]. Some
TM researchers seem to agree with these two small-is-
beautiful approaches [SSHT93], others have much higher
hopes for TM, and yet others hint that high TM aspirations
might be TM’s worst enemy [Att10, Section 6]. It is
nonetheless quite possible that TM will be able to take on
larger problems, and this section has listed a few of the
issues that must be resolved if TM is to achieve this lofty
goal.

Of course, everyone involved should treat this as a
learning experience. It would seem that TM researchers
have great deal to learn from practitioners who have
successfully built large software systems using traditional
synchronization primitives.

And vice versa.
Quick Quiz 17.6: What is to learn? Why not just use TM
for memory-based data structures and locking for those rare
cases featuring the many silly corner cases listed in this silly
section???

But for the moment, the current state of STM can best be
summarized with a series of cartoons. First, Figure 17.9
shows the STM vision. As always, the reality is a bit more
nuanced, as fancifully depicted by Figures 17.10, 17.11,
and 17.12.7 Less fanciful STM retrospectives are also
available [Duf10a, Duf10b].

Alternatively, one might argue that sequence locking
constitutes a restricted form of STM that is heavily used
in practice, as discussed in Section 17.2.5.

7 Recent academic work-in-progress has investigated lock-based
STM systems for real-time use [And19, NA18], albeit without any
performance results, and with some indications that real-time hybrid
STM/HTM systems must choose between fast common-case performance
and worst-case forward-progress guarantees [AKK+14, SBV10].

v2024.12.27a

400 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Figure 17.9: The STM Vision

Figure 17.10: The STM Reality: Conflicts

Figure 17.11: The STM Reality: Irrevocable Operations

Figure 17.12: The STM Reality: Realtime Response

v2024.12.27a

17.3. HARDWARE TRANSACTIONAL MEMORY 401

Whether or not sequence locking is considered to be
the standard bearer for STM in actual practice, some com-
mercially available hardware supports restricted variants
of HTM, which are addressed in the following section.

17.3 Hardware Transactional Mem-
ory

Make sure your report system is reasonably clean

and efficient before you automate. Otherwise, your

new computer will just speed up the mess.

Robert Townsend

As of 2021, hardware transactional memory (HTM)
has been available for many years on several types
of commercially available commodity computer sys-
tems [YHLR13, Mer11, JSG12, Hay20]. This section
makes an attempt to identify HTM’s place in the parallel
programmer’s toolbox.

From a conceptual viewpoint, HTM uses processor
caches and speculative execution to make a designated
group of statements (a “transaction”) take effect atomi-
cally from the viewpoint of any other transactions running
on other processors. This transaction is initiated by a
begin-transaction machine instruction and completed by
a commit-transaction machine instruction. There is typi-
cally also an abort-transaction machine instruction, which
squashes the speculation (as if the begin-transaction in-
struction and all following instructions had not executed)
and commences execution at a failure handler. The lo-
cation of the failure handler is typically specified by
the begin-transaction instruction, either as an explicit
failure-handler address or via a condition code set by the
instruction itself. Each transaction executes atomically
with respect to all other transactions.

HTM has a number of important benefits, including au-
tomatic dynamic partitioning of data structures, reducing
synchronization-primitive cache misses, and supporting a
fair number of practical applications.

However, it always pays to read the fine print, and
HTM is no exception. A major point of this section
is determining under what conditions HTM’s benefits
outweigh the complications hidden in its fine print. To
this end, Section 17.3.1 describes HTM’s benefits and
Section 17.3.2 describes its weaknesses. This is the same

approach used in earlier papers [MMW07, MMTW10]
and also in the previous section.8

Section 17.3.3 then describes HTM’s weaknesses with
respect to the combination of synchronization primitives
used in the Linux kernel (and in many user-space applica-
tions). Section 17.3.4 looks at where HTM might best fit
into the parallel programmer’s toolbox, and Section 17.3.5
lists some events that might greatly increase HTM’s scope
and appeal. Finally, Section 17.3.6 presents concluding
remarks.

17.3.1 HTM Benefits WRT Locking
The primary benefits of HTM are (1) its avoidance of the
cache misses that are often incurred by other synchro-
nization primitives, (2) its ability to dynamically partition
data structures, and (3) the fact that it has a fair number
of practical applications. I break from TM tradition by
not listing ease of use separately for two reasons. First,
ease of use should stem from HTM’s primary benefits,
which this section focuses on. Second, there has been
considerable controversy surrounding attempts to test for
raw programming talent [Bor06, DBA09, PBCE20] and
even around the use of small programming exercises in
job interviews [Bra07]. This indicates that we really do
not have a firm grasp on what makes programming easy
or hard. Therefore, the remainder of this section focuses
on the three benefits listed above.

17.3.1.1 Avoiding Synchronization Cache Misses

Most synchronization mechanisms are based on data struc-
tures that are operated on by atomic instructions. Because
these atomic instructions normally operate by first causing
the relevant cache line to be owned by the CPU that they are
running on, a subsequent execution of the same instance of
that synchronization primitive on some other CPU will re-
sult in a cache miss. These communications cache misses
severely degrade both the performance and scalability
of conventional synchronization mechanisms [ABD+97,
Section 4.2.3].

In contrast, HTM synchronizes by using the CPU’s
cache, avoiding the need for a separate synchronization
data structure and resultant cache misses. HTM’s advan-
tage is greatest in cases where a lock data structure is
placed in a separate cache line, in which case, convert-
ing a given critical section to an HTM transaction can

8 I gratefully acknowledge many stimulating discussions with the
other authors, Maged Michael, Josh Triplett, and Jonathan Walpole, as
well as with Andi Kleen.

v2024.12.27a

402 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

reduce that critical section’s overhead by a full cache miss.
These savings can be quite significant for the common
case of short critical sections, at least for those situations
where the elided lock does not share a cache line with an
oft-written variable protected by that lock.
Quick Quiz 17.7: Why would it matter that oft-written
variables shared the cache line with the lock variable?

17.3.1.2 Dynamic Partitioning of Data Structures

A major obstacle to the use of some conventional synchro-
nization mechanisms is the need to statically partition data
structures. There are a number of data structures that are
trivially partitionable, with the most prominent example
being hash tables, where each hash chain constitutes a
partition. Allocating a lock for each hash chain then triv-
ially parallelizes the hash table for operations confined to
a given chain.9 Partitioning is similarly trivial for arrays,
radix trees, skiplists, and several other data structures.

However, partitioning for many types of trees and
graphs is quite difficult, and the results are often quite
complex [Ell80]. Although it is possible to use two-
phased locking and hashed arrays of locks to partition
general data structures, other techniques have proven
preferable [Mil06], as will be discussed in Section 17.3.3.
Given its avoidance of synchronization cache misses,
HTM is therefore a very real possibility for large non-
partitionable data structures, at least assuming relatively
small updates.
Quick Quiz 17.8: Why are relatively small updates important
to HTM performance and scalability?

17.3.1.3 Practical Value

Some evidence of HTM’s practical value has been demon-
strated in a number of hardware platforms, including
Sun Rock [DLMN09], Azul Vega [Cli09], IBM Blue
Gene/Q [Mer11], Intel Haswell TSX [RD12], and IBM
System z [JSG12].

Expected practical benefits include:

1. Lock elision for in-memory data access and up-
date [MT01, RG02].

2. Concurrent access and small random updates to large
non-partitionable data structures.

9 And it is also easy to extend this scheme to operations accessing
multiple hash chains by having such operations acquire the locks for all
relevant chains in hash order.

However, HTM also has some very real shortcomings,
which will be discussed in the next section.

17.3.2 HTM Weaknesses WRT Locking
The concept of HTM is quite simple: A group of accesses
and updates to memory occurs atomically. However, as
is the case with many simple ideas, complications arise
when you apply it to real systems in the real world. These
complications are as follows:

1. Transaction-size limitations.

2. Conflict handling.

3. Aborts and rollbacks.

4. Lack of forward-progress guarantees.

5. Irrevocable operations.

6. Semantic differences.

Each of these complications is covered in the following
sections, followed by a summary.

17.3.2.1 Transaction-Size Limitations

The transaction-size limitations of current HTM imple-
mentations stem from the use of the processor caches to
hold the data affected by the transaction. Although this
allows a given CPU to make the transaction appear atomic
to other CPUs by executing the transaction within the
confines of its cache, it also means that any transaction
that does not fit cannot commit. Furthermore, events that
change execution context, such as interrupts, system calls,
exceptions, traps, and context switches either must abort
any ongoing transaction on the CPU in question or must
further restrict transaction size due to the cache footprint
of the other execution context.

Of course, modern CPUs tend to have large caches, and
the data required for many transactions would fit easily
in a one-megabyte cache. Unfortunately, with caches,
sheer size is not all that matters. The problem is that
most caches can be thought of hash tables implemented
in hardware. However, hardware caches do not chain
their buckets (which are normally called sets), but rather
provide a fixed number of cachelines per set. The number
of elements provided for each set in a given cache is
termed that cache’s associativity.

Although cache associativity varies, the eight-way as-
sociativity of the level-0 cache on the laptop I am typing

v2024.12.27a

17.3. HARDWARE TRANSACTIONAL MEMORY 403

this on is not unusual. What this means is that if a given
transaction needed to touch nine cache lines, and if all
nine cache lines mapped to the same set, then that trans-
action cannot possibly complete, never mind how many
megabytes of additional space might be available in that
cache. Yes, given randomly selected data elements in a
given data structure, the probability of that transaction
being able to commit is quite high, but there can be no
guarantee [McK11c].

There has been some research work to alleviate this
limitation. Fully associative victim caches would alleviate
the associativity constraints, but there are currently strin-
gent performance and energy-efficiency constraints on the
sizes of victim caches. That said, HTM victim caches for
unmodified cache lines can be quite small, as they need to
retain only the address: The data itself can be written to
memory or shadowed by other caches, while the address
itself is sufficient to detect a conflicting write [RD12].

Unbounded-transactional-memory (UTM)
schemes [AAKL06, MBM+06] use DRAM as an
extremely large victim cache, but integrating such
schemes into a production-quality cache-coherence
mechanism is still an unsolved problem. In addition,
use of DRAM as a victim cache may have unfortunate
performance and energy-efficiency consequences,
particularly if the victim cache is to be fully associative.
Finally, the “unbounded” aspect of UTM assumes that all
of DRAM could be used as a victim cache, while in reality
the large but still fixed amount of DRAM assigned to a
given CPU would limit the size of that CPU’s transactions.
Other schemes use a combination of hardware and
software transactional memory [KCH+06] and one could
imagine using STM as a fallback mechanism for HTM.

However, to the best of my knowledge, with the ex-
ception of abbreviating representation of TM read sets,
currently available systems do not implement any of these
research ideas, and perhaps for good reason.

17.3.2.2 Conflict Handling

The first complication is the possibility of conflicts. For
example, suppose that transactions A and B are defined
as follows:

Transaction A Transaction B

x = 1; y = 2;
y = 3; x = 4;

Suppose that each transaction executes concurrently on
its own processor. If transaction A stores to x at the same

time that transaction B stores to y, neither transaction can
progress. To see this, suppose that transaction A executes
its store to y. Then transaction A will be interleaved
within transaction B, in violation of the requirement that
transactions execute atomically with respect to each other.
Allowing transaction B to execute its store to x similarly
violates the atomic-execution requirement. This situation
is termed a conflict, which happens whenever two concur-
rent transactions access the same variable where at least
one of the accesses is a store. The system is therefore
obligated to abort one or both of the transactions in order
to allow execution to progress. The choice of exactly
which transaction to abort is an interesting topic that will
very likely retain the ability to generate Ph.D. dissertations
for some time to come, see for example [ATC+11].10 For
the purposes of this section, we can assume that the system
makes a random choice.

Another complication is conflict detection, which is
comparatively straightforward, at least in the simplest case.
When a processor is executing a transaction, it marks every
cache line touched by that transaction. If the processor’s
cache receives a request involving a cache line that has been
marked as touched by the current transaction, a potential
conflict has occurred. More sophisticated systems might
try to order the current processors’ transaction to precede
that of the processor sending the request, and optimizing
this process will likely also retain the ability to generate
Ph.D. dissertations for quite some time. However this
section assumes a very simple conflict-detection strategy.

However, for HTM to work effectively, the probability
of conflict must be quite low, which in turn requires
that the data structures be organized so as to maintain a
sufficiently low probability of conflict. For example, a
red-black tree with simple insertion, deletion, and search
operations fits this description, but a red-black tree that
maintains an accurate count of the number of elements
in the tree does not.11 For another example, a red-black
tree that enumerates all elements in the tree in a single
transaction will have high conflict probabilities, degrading
performance and scalability. As a result, many serial
programs will require some restructuring before HTM can
work effectively. In some cases, practitioners will prefer
to take the extra steps (in the red-black-tree case, perhaps
switching to a partitionable data structure such as a radix
tree or a hash table), and just use locking, particularly

10 Liu’s and Spear’s paper entitled “Toxic Transactions” [LS11] is
particularly instructive.

11 The need to update the count would result in additions to and
deletions from the tree conflicting with each other, resulting in strong
non-commutativity [AGH+11a, AGH+11b, McK11b].

v2024.12.27a

404 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

until such time as HTM is readily available on all relevant
architectures [Cli09].

Quick Quiz 17.9: How could a red-black tree possibly
efficiently enumerate all elements of the tree regardless of
choice of synchronization mechanism???

Furthermore, the potential for conflicting accesses
among concurrent transactions can result in failure. Han-
dling such failure is discussed in the next section.

17.3.2.3 Aborts and Rollbacks

Because any transaction might be aborted at any time,
it is important that transactions contain no statements
that cannot be rolled back. This means that transactions
cannot do I/O, system calls, or debugging breakpoints (no
single stepping in the debugger for HTM transactions!!!).
Instead, transactions must confine themselves to accessing
normal cached memory. Furthermore, on some systems,
interrupts, exceptions, traps, TLB misses, and other events
will also abort transactions. Given the number of bugs that
have resulted from improper handling of error conditions,
it is fair to ask what impact aborts and rollbacks have on
ease of use.
Quick Quiz 17.10: But why can’t a debugger emulate
single stepping by setting breakpoints at successive lines of
the transaction, relying on the retry to retrace the steps of the
earlier instances of the transaction?

Of course, aborts and rollbacks raise the question of
whether HTM can be useful for hard real-time systems.
Do the performance benefits of HTM outweigh the costs
of the aborts and rollbacks, and if so under what condi-
tions? Can transactions use priority boosting? Or should
transactions for high-priority threads instead preferentially
abort those of low-priority threads? If so, how is the hard-
ware efficiently informed of priorities? The literature on
real-time use of HTM is quite sparse, perhaps because
there are more than enough problems in making HTM
work well in non-real-time environments.

Because current HTM implementations might determin-
istically abort a given transaction, software must provide
fallback code. This fallback code must use some other
form of synchronization, for example, locking. If a lock-
based fallback is ever used, then all the limitations of
locking, including the possibility of deadlock, reappear.
One can of course hope that the fallback isn’t used of-
ten, which might allow simpler and less deadlock-prone
locking designs to be used. But this raises the question
of how the system transitions from using the lock-based

fallbacks back to transactions.12 One approach is to use a
test-and-test-and-set discipline [MT02], so that everyone
holds off until the lock is released, allowing the system to
start from a clean slate in transactional mode at that point.
However, this could result in quite a bit of spinning, which
might not be wise if the lock holder has blocked or been
preempted. Another approach is to allow transactions to
proceed in parallel with a thread holding a lock [MT02],
but this raises difficulties in maintaining atomicity, espe-
cially if the reason that the thread is holding the lock is
because the corresponding transaction would not fit into
cache.

Finally, dealing with the possibility of aborts and roll-
backs seems to put an additional burden on the developer,
who must correctly handle all combinations of possible
error conditions.

It is clear that users of HTM must put considerable
validation effort into testing both the fallback code paths
and transition from fallback code back to transactional
code. Nor is there any reason to believe that the validation
requirements of HTM hardware are any less daunting.

17.3.2.4 Lack of Forward-Progress Guarantees

Even though transaction size, conflicts, and aborts/roll-
backs can all cause transactions to abort, one might hope
that sufficiently small and short-duration transactions
could be guaranteed to eventually succeed. This would per-
mit a transaction to be unconditionally retried, in the same
way that compare-and-swap (CAS) and load-linked/store-
conditional (LL/SC) operations are unconditionally retried
in code that uses these instructions to implement atomic
operations.

Unfortunately, other than low-clock-rate academic re-
search prototypes [SBV10], currently available HTM im-
plementations refuse to make any sort of forward-progress
guarantee. As noted earlier, HTM therefore cannot be
used to avoid deadlock on those systems. Hopefully fu-
ture implementations of HTM will provide some sort of
forward-progress guarantees. Until that time, HTM must
be used with extreme caution in real-time applications.

The one exception to this gloomy picture as of 2021 is
the IBM mainframe, which provides constrained trans-
actions [JSG12]. The constraints are quite severe, and
are presented in Section 17.3.5.1. It will be interesting
to see if HTM forward-progress guarantees migrate from
the mainframe to commodity CPU families.

12 The possibility of an application getting stuck in fallback mode
has been termed the “lemming effect”, a term that Dave Dice has been
credited with coining.

v2024.12.27a

17.3. HARDWARE TRANSACTIONAL MEMORY 405

17.3.2.5 Irrevocable Operations

Another consequence of aborts and rollbacks is that HTM
transactions cannot accommodate irrevocable operations.
Current HTM implementations typically enforce this lim-
itation by requiring that all of the accesses in the trans-
action be to cacheable memory (thus prohibiting MMIO
accesses) and aborting transactions on interrupts, traps,
and exceptions (thus prohibiting system calls).

Note that buffered I/O can be accommodated by HTM
transactions as long as the buffer fill/flush operations
occur extra-transactionally. The reason that this works is
that adding data to and removing data from the buffer is
revocable: Only the actual buffer fill/flush operations are
irrevocable. Of course, this buffered-I/O approach has the
effect of including the I/O in the transaction’s footprint,
increasing the size of the transaction and thus increasing
the probability of failure.

17.3.2.6 Semantic Differences

Although HTM can in many cases be used as a drop-in
replacement for locking (hence the name transactional
lock elision (TLE) [DHL+08]), there are subtle differences
in semantics. A particularly nasty example involving
coordinated lock-based critical sections that results in
deadlock or livelock when executed transactionally was
given by Blundell [BLM06], but a much simpler example
is the empty critical section.

In a lock-based program, an empty critical section will
guarantee that all processes that had previously been hold-
ing that lock have now released it. This idiom was used
by the 2.4 Linux kernel’s networking stack to coordinate
changes in configuration. But if this empty critical section
is translated to a transaction, the result is a no-op. The
guarantee that all prior critical sections have terminated
is lost. In other words, transactional lock elision pre-
serves the data-protection semantics of locking, but loses
locking’s time-based messaging semantics.

Quick Quiz 17.11: But why would anyone need an empty
lock-based critical section???

Quick Quiz 17.12: Can’t transactional lock elision trivially
handle locking’s time-based messaging semantics by simply
choosing not to elide empty lock-based critical sections?

Quick Quiz 17.13: Given modern hardware [MOZ09], how
can anyone possibly expect parallel software relying on timing
to work?

Listing 17.1: Exploiting Priority Boosting
1 void boostee(void)
2 {
3 int i = 0;
4
5 acquire_lock(&boost_lock[i]);
6 for (;;) {
7 acquire_lock(&boost_lock[!i]);
8 release_lock(&boost_lock[i]);
9 i = i ^ 1;

10 do_something();
11 }
12 }
13
14 void booster(void)
15 {
16 int i = 0;
17
18 for (;;) {
19 usleep(500); /* sleep 0.5 ms. */
20 acquire_lock(&boost_lock[i]);
21 release_lock(&boost_lock[i]);
22 i = i ^ 1;
23 }
24 }

One important semantic difference between locking
and transactions is the priority boosting that is used to
avoid priority inversion in lock-based real-time programs.
One way in which priority inversion can occur is when
a low-priority thread holding a lock is preempted by a
medium-priority CPU-bound thread. If there is at least one
such medium-priority thread per CPU, the low-priority
thread will never get a chance to run. If a high-priority
thread now attempts to acquire the lock, it will block.
It cannot acquire the lock until the low-priority thread
releases it, the low-priority thread cannot release the lock
until it gets a chance to run, and it cannot get a chance to
run until one of the medium-priority threads gives up its
CPU. Therefore, the medium-priority threads are in effect
blocking the high-priority process, which is the rationale
for the name “priority inversion.”

One way to avoid priority inversion is priority inheri-
tance, in which a high-priority thread blocked on a lock
temporarily donates its priority to the lock’s holder, which
is also called priority boosting. However, priority boost-
ing can be used for things other than avoiding priority
inversion, as shown in Listing 17.1. Lines 1–12 of this
listing show a low-priority process that must nevertheless
run every millisecond or so, while lines 14–24 of this
same listing show a high-priority process that uses priority
boosting to ensure that boostee() runs periodically as
needed.

The boostee() function arranges this by always
holding one of the two boost_lock[] locks, so that
lines 20–21 of booster() can boost priority as needed.

v2024.12.27a

406 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Quick Quiz 17.14: But the boostee() function in List-
ing 17.1 alternatively acquires its locks in reverse order! Won’t
this result in deadlock?

This arrangement requires that boostee() acquire its
first lock on line 5 before the system becomes busy, but
this is easily arranged, even on modern hardware.

Unfortunately, this arrangement can break down in
presence of transactional lock elision. The boostee()
function’s overlapping critical sections become one infinite
transaction, which will sooner or later abort, for example,
on the first time that the thread running the boostee()
function is preempted. At this point, boostee() will fall
back to locking, but given its low priority and that the
quiet initialization period is now complete (which after
all is why boostee() was preempted), this thread might
never again get a chance to run.

And if the boostee() thread is not holding the lock,
then the booster() thread’s empty critical section on
lines 20 and 21 of Listing 17.1 will become an empty
transaction that has no effect, so that boostee() never
runs. This example illustrates some of the subtle con-
sequences of transactional memory’s rollback-and-retry
semantics.

Given that experience will likely uncover additional
subtle semantic differences, application of HTM-based
lock elision to large programs should be undertaken with
caution. That said, where it does apply, HTM-based
lock elision can eliminate the cache misses associated
with the lock variable, which has resulted in tens of
percent performance increases in large real-world software
systems as of early 2015. We can therefore expect to see
substantial use of this technique on hardware providing
reliable support for it.

Quick Quiz 17.15: So a bunch of people set out to supplant
locking, and they mostly end up just optimizing locking???

17.3.2.7 Summary

Although it seems likely that HTM will have com-
pelling use cases, current implementations have serious
transaction-size limitations, conflict-handling complica-
tions, abort-and-rollback issues, and semantic differences
that will require careful handling. HTM’s current situa-
tion relative to locking is summarized in Table 17.1. As
can be seen, although the current state of HTM alleviates
some serious shortcomings of locking,13 it does so by

13 In fairness, it is important to emphasize that locking’s shortcomings
do have well-known and heavily used engineering solutions, including

introducing a significant number of shortcomings of its
own. These shortcomings are acknowledged by leaders in
the TM community [MS12].14

In addition, this is not the whole story. Locking is not
normally used by itself, but is instead typically augmented
by other synchronization mechanisms, including reference
counting, atomic operations, non-blocking data structures,
hazard pointers [Mic04a, HLM02], and RCU [MS98a,
MAK+01, HMBW07, McK12b]. The next section looks
at how such augmentation changes the equation.

17.3.3 HTM Weaknesses WRT Locking
When Augmented

Practitioners have long used reference counting, atomic
operations, non-blocking data structures, hazard pointers,
and RCU to avoid some of the shortcomings of locking.
For example, deadlock can be avoided in many cases
by using reference counts, hazard pointers, or RCU to
protect data structures, particularly for read-only crit-
ical sections [Mic04a, HLM02, DMS+12a, GMTW08,
HMBW07]. These approaches also reduce the need to
partition data structures, as was seen in Chapter 10. RCU
further provides contention-free bounded wait-free read-
side primitives [MS98a, DMS+12a], while hazard pointers
provides lock-free read-side primitives [Mic02, HLM02,
Mic04a]. Adding these considerations to Table 17.1
results in the updated comparison between augmented
locking and HTM shown in Table 17.2. A summary of
the differences between the two tables is as follows:

1. Use of non-blocking read-side mechanisms alleviates
deadlock issues.

2. Read-side mechanisms such as hazard pointers and
RCU can operate efficiently on non-partitionable
data.

3. Hazard pointers and RCU do not contend with each
other or with updaters, allowing excellent perfor-
mance and scalability for read-mostly workloads.

deadlock detectors [Cor06a], a wealth of data structures that have been
adapted to locking, and a long history of augmentation, as discussed in
Section 17.3.3. In addition, if locking really were as horrible as a quick
skim of many academic papers might reasonably lead one to believe,
where did all the large lock-based parallel programs (both FOSS and
proprietary) come from, anyway?

14 In addition, in early 2011, I was invited to deliver a critique of
some of the assumptions underlying transactional memory [McK11e].
The audience was surprisingly non-hostile, though perhaps they were
taking it easy on me due to the fact that I was heavily jet-lagged while
giving the presentation.

v2024.12.27a

17.3. HARDWARE TRANSACTIONAL MEMORY 407

Table 17.1: Comparison of Locking and HTM (Advantage , Disadvantage , Strong Disadvantage)

Locking Hardware Transactional Memory

Basic Idea Allow only one thread at a time to access a given
set of objects.

Cause a given operation over a set of objects to
execute atomically.

Scope Handles all operations. Handles revocable operations.

Irrevocable operations force fallback (typically to
locking).

Composability Limited by deadlock. Limited by irrevocable operations, transaction size,
and deadlock (assuming lock-based fallback code).

Scalability & Per-
formance

Data must be partitionable to avoid lock contention. Data must be partitionable to avoid conflicts.

Partioning must typically be fixed at design time. Dynamic adjustment of partitioning carried out
automatically down to cacheline boundaries.

Partitioning required for fallbacks (less important
for rare fallbacks).

Locking primitives typically result in expensive
cache misses and memory-barrier instructions.

Transactions begin/end instructions typically do
not result in cache misses, but do have memory-
ordering and overhead consequences.

Contention effects are focused on acquisition and
release, so that the critical section runs at full speed.

Contention aborts conflicting transactions, even if
they have been running for a long time.

Privatization operations are simple, intuitive, per-
formant, and scalable.

Privatized data contributes to transaction size.

Hardware Support Commodity hardware suffices. New hardware required (and is starting to become
available).

Performance is insensitive to cache-geometry de-
tails.

Performance depends critically on cache geometry.

Software Support APIs exist, large body of code and experience,
debuggers operate naturally.

APIs emerging, little experience outside of DBMS,
breakpoints mid-transaction can be problematic.

Interaction With
Other Mechanisms

Long experience of successful interaction. Just beginning investigation of interaction.

Practical Apps Yes. Yes.

Wide Applicability Yes. Jury still out.

v2024.12.27a

408 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Table 17.2: Comparison of Locking (Augmented by RCU or Hazard Pointers) and HTM (Advantage , Disadvantage ,
Strong Disadvantage)

Locking with Userspace RCU or Hazard Pointers Hardware Transactional Memory

Basic Idea Allow only one thread at a time to access a given set
of objects.

Cause a given operation over a set of objects to execute
atomically.

Scope Handles all operations. Handles revocable operations.
Irrevocable operations force fallback (typically to lock-
ing).

Composability Readers limited only by grace-period-wait operations. Limited by irrevocable operations, transaction size,
and deadlock. (Assuming lock-based fallback code.)

Updaters limited by deadlock. Readers reduce dead-
lock.

Scalability & Per-
formance

Data must be partitionable to avoid lock contention
among updaters.

Data must be partitionable to avoid conflicts.

Partitioning not needed for readers.

Partitioning for updaters must typically be fixed at
design time.

Dynamic adjustment of partitioning carried out auto-
matically down to cacheline boundaries.

Partitioning not needed for readers. Partitioning required for fallbacks (less important for
rare fallbacks).

Updater locking primitives typically result in expensive
cache misses and memory-barrier instructions.

Transactions begin/end instructions typically do not
result in cache misses, but do have memory-ordering
and overhead consequences.

Update-side contention effects are focused on acquisi-
tion and release, so that the critical section runs at full
speed.

Contention aborts conflicting transactions, even if they
have been running for a long time.

Readers do not contend with updaters or with each
other.

Read-side primitives are typically bounded wait-free
with low overhead. (Lock-free with low overhead for
hazard pointers.)

Read-only transactions subject to conflicts and roll-
backs. No forward-progress guarantees other than
those supplied by fallback code.

Privatization operations are simple, intuitive, perfor-
mant, and scalable when data is visible only to updaters.

Privatized data contributes to transaction size.

Privatization operations are expensive (though still
intuitive and scalable) for reader-visible data.

Hardware Support Commodity hardware suffices. New hardware required (and is starting to become
available).

Performance is insensitive to cache-geometry details. Performance depends critically on cache geometry.

Software Support APIs exist, large body of code and experience, debug-
gers operate naturally.

APIs emerging, little experience outside of DBMS,
breakpoints mid-transaction can be problematic.

Interaction With
Other Mechanisms

Long experience of successful interaction. Just beginning investigation of interaction.

Practical Apps Yes. Yes.

Wide Applicability Yes. Jury still out.

v2024.12.27a

17.3. HARDWARE TRANSACTIONAL MEMORY 409

4. Hazard pointers and RCU provide forward-progress
guarantees (lock freedom and bounded wait-freedom,
respectively).

5. Privatization operations for hazard pointers and RCU
are straightforward.

For those with good eyesight, Table 17.3 combines
Tables 17.1 and 17.2.
Quick Quiz 17.16: Tables 17.1 and 17.2 state that hardware
is only starting to become available. But hasn’t HTM hardware
support been widely available for almost a full decade?

Of course, it is also possible to augment HTM, as
discussed in the next section.

17.3.4 Where Does HTM Best Fit In?
Although it will likely be some time before HTM’s area
of applicability can be as crisply delineated as that shown
for RCU in Figure 9.33 on page 180, that is no reason not
to start moving in that direction.

HTM seems best suited to update-heavy workloads
involving relatively small changes to disparate portions
of relatively large in-memory data structures running on
large multiprocessors, as this meets the size restrictions
of current HTM implementations while minimizing the
probability of conflicts and attendant aborts and rollbacks.
This scenario is also one that is relatively difficult to handle
given current synchronization primitives.

Use of locking in conjunction with HTM seems likely
to overcome HTM’s difficulties with irrevocable opera-
tions, while use of RCU or hazard pointers might alle-
viate HTM’s transaction-size limitations for read-only
operations that traverse large fractions of the data struc-
ture [PMDY20]. Current HTM implementations uncondi-
tionally abort an update transaction that conflicts with an
RCU or hazard-pointer reader, but perhaps future HTM
implementations will interoperate more smoothly with
these synchronization mechanisms. In the meantime, the
probability of an update conflicting with a large RCU or
hazard-pointer read-side critical section should be much
smaller than the probability of conflicting with the equiv-
alent read-only transaction.15 Nevertheless, it is quite
possible that a steady stream of RCU or hazard-pointer

15 It is quite ironic that strictly transactional mechanisms are ap-
pearing in shared-memory systems at just about the time that NoSQL
databases are relaxing the traditional database-application reliance on
strict transactions. Nevertheless, HTM has in fact realized the ease-of-
use promise of TM, albeit for black-hat attacks on the Linux kernel’s
address-space randomization defense mechanism [JLK16a, JLK16b].

readers might starve updaters due to a corresponding
steady stream of conflicts. This vulnerability could be
eliminated (at significant hardware cost and complexity)
by giving extra-transactional reads the pre-transaction
copy of the memory location being loaded.

The fact that HTM transactions must have fallbacks
might in some cases force static partitionability of data
structures back onto HTM. This limitation might be
alleviated if future HTM implementations provide forward-
progress guarantees, which might eliminate the need for
fallback code in some cases, which in turn might allow
HTM to be used efficiently in situations with higher
conflict probabilities.

In short, although HTM is likely to have important
uses and applications, it is another tool in the parallel
programmer’s toolbox, not a replacement for the toolbox
in its entirety.

17.3.5 Potential Game Changers
Game changers that could greatly increase the need for
HTM include the following:

1. Forward-progress guarantees.

2. Transaction-size increases.

3. Improved debugging support.

4. Weak atomicity.

These are expanded upon in the following sections.

17.3.5.1 Forward-Progress Guarantees

As was discussed in Section 17.3.2.4, current HTM im-
plementations lack forward-progress guarantees, which
requires that fallback software is available to handle HTM
failures. Of course, it is easy to demand guarantees, but
not always easy to provide them. In the case of HTM,
obstacles to guarantees can include cache size and asso-
ciativity, TLB size and associativity, transaction duration
and interrupt frequency, and scheduler implementation.

Cache size and associativity was discussed in Sec-
tion 17.3.2.1, along with some research intended to work
around current limitations. However, HTM forward-
progress guarantees would come with size limits, large
though these limits might one day be. So why don’t
current HTM implementations provide forward-progress
guarantees for small transactions, for example, limited
to the associativity of the cache? One potential reason

v2024.12.27a

410 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE
Table

17.3:
C

om
parison

ofLocking
(Plain

and
A

ugm
ented)and

H
TM

(A
dvantage

,
D

isadvantage
,

Strong
D

isadvantage
)

Locking
Locking

w
ith

U
serspace

RC
U

orH
azard

Pointers
H

ardw
are

TransactionalM
em

ory

B
asic

Idea
A

llow
only

one
thread

ata
tim

e
to

accessa
given

set
ofobjects.

A
llow

only
one

thread
ata

tim
e

to
accessa

given
set

ofobjects.
Causeagiven

operation
overasetofobjectsto

execute
atom

ically.

Scope
H

andlesalloperations.
H

andlesalloperations.
H

andlesrevocable
operations.

Irrevocable
operationsforce

fallback
(typically

to
lock-

ing).

C
om

posability
Lim

ited
by

deadlock.
Readerslim

ited
only

by
grace-period-w

aitoperations.
Lim

ited
by

irrevocable
operations,transaction

size,
and

deadlock.(A
ssum

ing
lock-based

fallback
code.)

U
pdaters

lim
ited

by
deadlock.

Readers
reduce

dead-
lock.

Scalability
&

Per-
form

ance
D

ata
m

ustbe
partitionable

to
avoid

lock
contention.

D
ata

m
ustbe

partitionable
to

avoid
lock

contention
am

ong
updaters.

D
ata

m
ustbe

partitionable
to

avoid
conflicts.

Partitioning
notneeded

forreaders.

Partitioning
m

usttypically
be

fixed
atdesign

tim
e.

Partitioning
for

updaters
m

usttypically
be

fixed
at

design
tim

e.
D

ynam
ic

adjustm
entofpartitioning

carried
outauto-

m
atically

dow
n

to
cacheline

boundaries.
Partitioning

notneeded
forreaders.

Partitioning
required

forfallbacks(lessim
portantfor

rare
fallbacks).

Locking
prim

itivestypically
resultin

expensive
cache

m
issesand

m
em

ory-barrierinstructions.
U

pdaterlocking
prim

itivestypically
resultin

expensive
cache

m
issesand

m
em

ory-barrierinstructions.
Transactions

begin/end
instructions

typically
do

not
resultin

cache
m

isses,butdo
have

m
em

ory-ordering
and

overhead
consequences.

C
ontention

effectsare
focused

on
acquisition

and
re-

lease,so
thatthe

criticalsection
runsatfullspeed.

U
pdate-side

contention
effectsare

focused
on

acquisi-
tion

and
release,so

thatthe
criticalsection

runsatfull
speed.

Contention
abortsconflicting

transactions,even
ifthey

have
been

running
fora

long
tim

e.

Readers
do

notcontend
w

ith
updaters

or
w

ith
each

other.

Read-side
prim

itivesare
typically

bounded
w

ait-free
w

ith
low

overhead.(Lock-free
w

ith
low

overhead
for

hazard
pointers.)

Read-only
transactions

subjectto
conflicts

and
roll-

backs.
N

o
forw

ard-progress
guarantees

other
than

those
supplied

by
fallback

code.

Privatization
operations

are
sim

ple,intuitive,perfor-
m

ant,and
scalable.

Privatization
operations

are
sim

ple,intuitive,perfor-
m

ant,andscalablew
hendataisvisibleonlytoupdaters.

Privatized
data

contributesto
transaction

size.

Privatization
operations

are
expensive

(though
still

intuitive
and

scalable)forreader-visible
data.

H
ardw

are
Support

C
om

m
odity

hardw
are

suffi
ces.

C
om

m
odity

hardw
are

suffi
ces.

N
ew

hardw
are

required
(and

is
starting

to
becom

e
available).

Perform
ance

isinsensitive
to

cache-geom
etry

details.
Perform

ance
isinsensitive

to
cache-geom

etry
details.

Perform
ance

dependscritically
on

cache
geom

etry.

Softw
are

Support
A

PIsexist,large
body

ofcode
and

experience,debug-
gersoperate

naturally.
A

PIsexist,large
body

ofcode
and

experience,debug-
gersoperate

naturally.
A

PIs
em

erging,little
experience

outside
of

D
B

M
S,

breakpointsm
id-transaction

can
be

problem
atic.

Interaction
W

ith
O

therM
echanism

s
Long

experience
ofsuccessfulinteraction.

Long
experience

ofsuccessfulinteraction.
Justbeginning

investigation
ofinteraction.

PracticalA
pps

Yes.
Yes.

Yes.

W
ide

A
pplicability

Yes.
Yes.

Jury
stillout.

v2024.12.27a

17.3. HARDWARE TRANSACTIONAL MEMORY 411

might be the need to deal with hardware failure. For
example, a failing cache SRAM cell might be handled
by deactivating the failing cell, thus reducing the associa-
tivity of the cache and therefore also the maximum size
of transactions that can be guaranteed forward progress.
Given that this would simply decrease the guaranteed
transaction size, it seems likely that other reasons are at
work. Perhaps providing forward progress guarantees on
production-quality hardware is more difficult than one
might think, an entirely plausible explanation given the
difficulty of making forward-progress guarantees in soft-
ware. Moving a problem from software to hardware does
not necessarily make it easier to solve [JSG12].

Given a physically tagged and indexed cache, it is
not enough for the transaction to fit in the cache. Its
address translations must also fit in the TLB. Any forward-
progress guarantees must therefore also take TLB size and
associativity into account.

Given that interrupts, traps, and exceptions abort trans-
actions in current HTM implementations, it is necessary
that the execution duration of a given transaction be shorter
than the expected interval between interrupts. No matter
how little data a given transaction touches, if it runs too
long, it will be aborted. Therefore, any forward-progress
guarantees must be conditioned not only on transaction
size, but also on transaction duration.

Forward-progress guarantees depend critically on the
ability to determine which of several conflicting trans-
actions should be aborted. It is all too easy to imagine
an endless series of transactions, each aborting an earlier
transaction only to itself be aborted by a later transac-
tions, so that none of the transactions actually commit.
The complexity of conflict handling is evidenced by the
large number of HTM conflict-resolution policies that
have been proposed [ATC+11, LS11]. Additional com-
plications are introduced by extra-transactional accesses,
as noted by Blundell [BLM06]. It is easy to blame the
extra-transactional accesses for all of these problems, but
the folly of this line of thinking is easily demonstrated by
placing each of the extra-transactional accesses into its
own single-access transaction. It is the pattern of accesses
that is the issue, not whether or not they happen to be
enclosed in a transaction.

Finally, any forward-progress guarantees for transac-
tions also depend on the scheduler, which must let the
thread executing the transaction run long enough to suc-
cessfully commit.

So there are significant obstacles to HTM vendors of-
fering forward-progress guarantees. However, the impact

of any of them doing so would be enormous. It would
mean that HTM transactions would no longer need soft-
ware fallbacks, which would mean that HTM could finally
deliver on the TM promise of deadlock elimination.

However, in late 2012, the IBM Mainframe announced
an HTM implementation that includes constrained trans-
actions in addition to the usual best-effort HTM imple-
mentation [JSG12]. A constrained transaction starts with
the tbeginc instruction instead of the tbegin instruction
that is used for best-effort transactions. Constrained trans-
actions are guaranteed to always complete (eventually), so
if a transaction aborts, rather than branching to a fallback
path (as is done for best-effort transactions), the hardware
instead restarts the transaction at the tbeginc instruction.

The Mainframe architects needed to take extreme mea-
sures to deliver on this forward-progress guarantee. If a
given constrained transaction repeatedly fails, the CPU
might disable branch prediction, force in-order execution,
and even disable pipelining. If the repeated failures are
due to high contention, the CPU might disable specula-
tive fetches, introduce random delays, and even serialize
execution of the conflicting CPUs. “Interesting” forward-
progress scenarios involve as few as two CPUs or as many
as one hundred CPUs. Perhaps these extreme measures
provide some insight as to why other CPUs have thus far
refrained from offering constrained transactions.

As the name implies, constrained transactions are in
fact severely constrained:

1. The maximum data footprint is four blocks of mem-
ory, where each block can be no larger than 32 bytes.

2. The maximum code footprint is 256 bytes.

3. If a given 4K page contains a constrained transaction’s
code, then that page may not contain that transaction’s
data.

4. The maximum number of assembly instructions that
may be executed is 32.

5. Backwards branches are forbidden.

Nevertheless, these constraints support a number of
important data structures, including linked lists, stacks,
queues, and arrays. Constrained HTM therefore seems
likely to become an important tool in the parallel program-
mer’s toolbox.

Note that these forward-progress guarantees need not
be absolute. For example, suppose that a use of HTM
uses a global lock as fallback. Assuming that the fall-
back mechanism has been carefully designed to avoid the

v2024.12.27a

412 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

“lemming effect” discussed in Section 17.3.2.3, then if
HTM rollbacks are sufficiently infrequent, the global lock
will not be a bottleneck. That said, the larger the system,
the longer the critical sections, and the longer the time
required to recover from the “lemming effect”, the more
rare “sufficiently infrequent” needs to be.

17.3.5.2 Transaction-Size Increases

Forward-progress guarantees are important, but as we saw,
they will be conditional guarantees based on transaction
size and duration. There has been some progress, for exam-
ple, some commercially available HTM implementations
use approximation techniques to support extremely large
HTM read sets [RD12]. For another example, POWER8
HTM supports suspended transations, which avoid adding
irrelevant accesses to the suspended transation’s read and
write sets [LGW+15]. This capability has been used to
produce a high performance reader-writer lock [FIMR16].

It is important to note that even small-sized guarantees
will be quite useful. For example, a guarantee of two
cache lines is sufficient for a stack, queue, or dequeue.
However, larger data structures require larger guarantees,
for example, traversing a tree in order requires a guarantee
equal to the number of nodes in the tree. Therefore, even
modest increases in the size of the guarantee also increases
the usefulness of HTM, thereby increasing the need for
CPUs to either provide it or provide good-and-sufficient
workarounds.

17.3.5.3 Improved Debugging Support

Another inhibitor to transaction size is the need to debug
the transactions. The problem with current mechanisms
is that a single-step exception aborts the enclosing trans-
action. There are a number of workarounds for this issue,
including emulating the processor (slow!), substituting
STM for HTM (slow and slightly different semantics!),
playback techniques using repeated retries to emulate for-
ward progress (strange failure modes!), and full support
of debugging HTM transactions (complex!).

Should one of the HTM vendors produce an HTM sys-
tem that allows straightforward use of classical debugging
techniques within transactions, including breakpoints, sin-
gle stepping, and print statements, this will make HTM
much more compelling. Some transactional-memory
researchers started to recognize this problem in 2013,
with at least one proposal involving hardware-assisted
debugging facilities [GKP13]. Of course, this proposal
depends on readily available hardware gaining such facili-

ties [Hay20, Int20b]. Worse yet, some cutting-edge debug-
ging facilities are incompatible with HTM [OHOC20].

17.3.5.4 Weak Atomicity

Given that HTM is likely to face some sort of size limi-
tations for the foreseeable future, it will be necessary for
HTM to interoperate smoothly with other mechanisms.
HTM’s interoperability with read-mostly mechanisms
such as hazard pointers and RCU would be improved if
extra-transactional reads did not unconditionally abort
transactions with conflicting writes—instead, the read
could simply be provided with the pre-transaction value.
In this way, hazard pointers and RCU could be used to
allow HTM to handle larger data structures and to reduce
conflict probabilities.

This is not necessarily simple, however. The most
straightforward way of implementing this requires an ad-
ditional state in each cache line and on the bus, which is
a non-trivial added expense. The benefit that goes along
with this expense is permitting large-footprint readers
without the risk of starving updaters due to continual
conflicts. An alternative approach, applied to great effect
to binary search trees by Siakavaras et al. [SNGK17], is
to use RCU for read-only traversals and HTM only for
the actual updates themselves. This combination outper-
formed other transactional-memory techniques by up to
220 %, a speedup similar to that observed by Howard and
Walpole [HW11] when they combined RCU with STM. In
both cases, the weak atomicity is implemented in software
rather than in hardware. It would nevertheless be inter-
esting to see what additional speedups could be obtained
by implementing weak atomicity in both hardware and
software.

17.3.6 Conclusions
Although current HTM implementations have delivered
real performance benefits in some situations, they also
have significant shortcomings. The most significant short-
comings appear to be limited transaction sizes, the need
for conflict handling, the need for aborts and rollbacks,
the lack of forward-progress guarantees, the inability
to handle irrevocable operations, and subtle semantic
differences from locking. There are also reasons for
lingering concerns surrounding HTM-implementation
reliability [JSG12, Was14, Int20a, Int21, Lar21, Int20c].

Some of these shortcomings might be alleviated in
future implementations, but it appears that there will
continue to be a strong need to make HTM work well

v2024.12.27a

17.4. FORMAL REGRESSION TESTING? 413

with the many other types of synchronization mech-
anisms, as noted earlier [MMW07, MMTW10]. Al-
though there has been some work using HTM with
RCU [SNGK17, SBN+20, GGK18, PMDY20], there has
been little evidence of progress towards HTM work better
with RCU and with other deferred-reclamation mecha-
nisms.

In short, current HTM implementations appear to be
welcome and useful additions to the parallel programmer’s
toolbox, and much interesting and challenging work is
required to make use of them. However, they cannot be
considered to be a magic wand with which to wave away
all parallel-programming problems.

Quick Quiz 17.17: But given continued work, isn’t it
inevitable that HTM will eventually deliver on the full TM
vision?

17.4 Formal Regression Testing?

Theory without experiments: Have we gone too far?

Michael Mitzenmacher

Formal verification has long proven useful in a number
of production environments [LBD+04, BBC+10, Coo18,
SAE+18, DFLO19]. However, it is an open question as to
whether hard-core formal verification will ever be included
in the automated regression-test suites used for continuous
integration within complex concurrent codebases, such
as the Linux kernel. Although there is already a proof of
concept for Linux-kernel SRCU [Roy17], this test is for a
small portion of one of the simplest RCU implementations,
and has proven difficult to keep it current with the ever-
changing Linux kernel. It is therefore worth asking what
would be required to incorporate formal verification as
first-class members of the Linux kernel’s regression tests.

The following list is a good start [McK15a, slide 34]:

1. Any required translation must be automated.

2. The environment (including memory ordering) must
be correctly handled.

3. The memory and CPU overhead must be acceptably
modest.

4. Specific information leading to the location of the
bug must be provided.

5. Information beyond the source code and inputs must
be modest in scope.

6. The bugs located must be relevant to the code’s users.

This list builds on, but is somewhat more modest
than, Richard Bornat’s dictum: “Formal-verification re-
searchers should verify the code that developers write, in
the language they write it in, running in the environment
that it runs in, as they write it.” The following sections
discuss each of the above requirements, followed by a
section presenting a scorecard of how well a few tools
stack up against these requirements.

Quick Quiz 17.18: This list is ridiculously utopian! Why
not stick to the current state of the formal-verification art?

17.4.1 Automatic Translation
Although Promela and spin are invaluable design aids, if
you need to formally regression-test your C-language pro-
gram, you must hand-translate to Promela each time you
would like to re-verify your code. If your code happens to
be in the Linux kernel, which releases every 60–90 days,
you will need to hand-translate from four to six times
each year. Over time, human error will creep in, which
means that the verification won’t match the source code,
rendering the verification useless. Repeated verification
clearly requires either that the formal-verification tooling
input your code directly, or that there be bug-free auto-
matic translation of your code to the form required for
verification.

PPCMEM and herd can in theory directly input as-
sembly language and C++ code, but these tools work
only on very small litmus tests, which normally means
that you must extract the core of your mechanism—by
hand. As with Promela and spin, both PPCMEM and
herd are extremely useful, but they are not well-suited
for regression suites.

In contrast, cbmc and Nidhugg can input C programs
of reasonable (though still quite limited) size, and if
their capabilities continue to grow, could well become
excellent additions to regression suites. The Coverity
static-analysis tool also inputs C programs, and of very
large size, including the Linux kernel. Of course, Cover-
ity’s static analysis is quite simple compared to that of
cbmc and Nidhugg. On the other hand, Coverity had an
all-encompassing definition of “C program” that posed
special challenges [BBC+10]. Amazon Web Services uses
a variety of formal-verification tools, including cbmc, and

v2024.12.27a

414 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

applies some of these tools to regression testing [Coo18].
Google uses a number of relatively simple static analy-
sis tools directly on large Java code bases, which are
arguably less diverse than C code bases [SAE+18]. Face-
book uses more aggressive forms of formal verifica-
tion against its code bases, including analysis of con-
currency [DFLO19, O’H19], though not yet on the Linux
kernel. Finally, Microsoft has long used static analysis on
its code bases [LBD+04].

Given this list, it is clearly possible to create sophis-
ticated formal-verification tools that directly consume
production-quality source code.

However, one shortcoming of taking C code as input is
that it assumes that the compiler is correct. An alternative
approach is to take the binary produced by the C compiler
as input, thereby accounting for any relevant compiler bugs.
This approach has been used in a number of verification
efforts, perhaps most notably by the seL4 project [SM13].

Quick Quiz 17.19: Given the groundbreaking nature of the
various verifiers used in the seL4 project, why doesn’t this
chapter cover them in more depth?

However, verifying directly from either the source or
binary both have the advantage of eliminating human
translation errors, which is critically important for reliable
regression testing.

This is not to say that tools with special-purpose lan-
guages are useless. On the contrary, they can be quite
helpful for design-time verification, as was discussed in
Chapter 12. However, such tools are not particularly
helpful for automated regression testing, which is in fact
the topic of this section.

17.4.2 Environment
It is critically important that formal-verification tools
correctly model their environment. One all-too-common
omission is the memory model, where a great many formal-
verification tools, including Promela/spin, are restricted
to sequential consistency. The QRCU experience related
in Section 12.1.4.6 is an important cautionary tale.

Promela and spin assume sequential consistency,
which is not a good match for modern computer sys-
tems, as was seen in Chapter 15. In contrast, one of
the great strengths of PPCMEM and herd is their de-
tailed modeling of various CPU families memory models,
including x86, Arm, Power, and, in the case of herd,
a Linux-kernel memory model [AMM+18], which was
accepted into Linux-kernel version v4.17.

The cbmc and Nidhugg tools provide some ability to
select memory models, but do not provide the variety that
PPCMEM and herd do. However, it is likely that the
larger-scale tools will adopt a greater variety of memory
models as time goes on.

In the longer term, it would be helpful for formal-
verification tools to include I/O [MDR16], but it may be
some time before this comes to pass.

Nevertheless, tools that fail to match the environment
can still be useful. For example, a great many concur-
rency bugs would still be bugs on a mythical sequentially
consistent system, and these bugs could be located by a
tool that over-approximates the system’s memory model
with sequential consistency. Nevertheless, these tools
will fail to find bugs involving missing memory-ordering
directives, as noted in the aforementioned cautionary tale
of Section 12.1.4.6.

17.4.3 Overhead
Almost all hard-core formal-verification tools are expo-
nential in nature, which might seem discouraging until
you consider that many of the most interesting software
questions are in fact undecidable. However, there are
differences in degree, even among exponentials.

PPCMEM by design is unoptimized, in order to provide
greater assurance that the memory models of interest are
accurately represented. The herd tool optimizes more
aggressively, as described in Section 12.3, and is thus
orders of magnitude faster than PPCMEM. Nevertheless,
both PPCMEM and herd target very small litmus tests
rather than larger bodies of code.

In contrast, Promela/spin, cbmc, and Nidhugg
are designed for (somewhat) larger bodies of code.
Promela/spin was used to verify the Curiosity rover’s
filesystem [GHH+14] and, as noted earlier, both cbmc and
Nidhugg were appled to Linux-kernel RCU.

If advances in heuristics continue at the rate of the past
three decades, we can look forward to large reductions in
overhead for formal verification. That said, combinatorial
explosion is still combinatorial explosion, which would be
expected to sharply limit the size of programs that could
be verified, with or without continued improvements in
heuristics.

However, the flip side of combinatorial explosion is
Philip II of Macedon’s timeless advice: “Divide and rule.”
If a large program can be divided and the pieces verified,
the result can be combinatorial implosion [McK11e]. One
natural place to divide is on API boundaries, for example,
those of locking primitives. One verification pass can

v2024.12.27a

17.4. FORMAL REGRESSION TESTING? 415

Listing 17.2: Emulating Locking with cmpxchg_acquire()
1 C C-SB+l-o-o-u+l-o-o-u-C
2
3 {}
4
5 P0(int *sl, int *x0, int *x1)
6 {
7 int r2;
8 int r1;
9

10 r2 = cmpxchg_acquire(sl, 0, 1);
11 WRITE_ONCE(*x0, 1);
12 r1 = READ_ONCE(*x1);
13 smp_store_release(sl, 0);
14 }
15
16 P1(int *sl, int *x0, int *x1)
17 {
18 int r2;
19 int r1;
20
21 r2 = cmpxchg_acquire(sl, 0, 1);
22 WRITE_ONCE(*x1, 1);
23 r1 = READ_ONCE(*x0);
24 smp_store_release(sl, 0);
25 }
26
27 filter (0:r2=0 /\ 1:r2=0)
28 exists (0:r1=0 /\ 1:r1=0)

Table 17.4: Emulating Locking: Performance (s)

Threads Locking cmpxchg_acquire

2 0.004 0.022
3 0.041 0.743
4 0.374 59.565
5 4.905

then verify that the locking implementation is correct, and
additional verification passes can verify correct use of the
locking APIs.

The performance benefits of this approach can
be demonstrated using the Linux-kernel memory
model [AMM+18]. This model provides spin_lock()
and spin_unlock() primitives, but these primitives can
also be emulated using cmpxchg_acquire() and smp_
store_release(), as shown in Listing 17.2 (C-SB+l-
o-o-u+l-o-o-*u.litmus and C-SB+l-o-o-u+l-o-
o-u*-C.litmus). Table 17.4 compares the performance
and scalability of using the model’s spin_lock() and
spin_unlock() against emulating these primitives as
shown in the listing. The difference is not insignificant:
At four processes, the model is more than two orders of
magnitude faster than emulation!

Quick Quiz 17.20: Why bother with a separate filter
command on line 27 of Listing 17.2 instead of just adding the

condition to the exists clause? And wouldn’t it be simpler to
use xchg_acquire() instead of cmpxchg_acquire()?

It would of course be quite useful for tools to automat-
ically divide up large programs, verify the pieces, and
then verify the combinations of pieces. In the meantime,
verification of large programs will require significant
manual intervention. This intervention will preferably
mediated by scripting, the better to reliably carry out
repeated verifications on each release, and preferably
eventually in a manner well-suited for continuous inte-
gration. And Facebook’s Infer tool has taken important
steps towards doing just that, via compositionality and
abstraction [BGOS18, DFLO19].

In any case, we can expect formal-verification capa-
bilities to continue to increase over time, and any such
increases will in turn increase the applicability of formal
verification to regression testing.

17.4.4 Locate Bugs
Any software artifact of any size contains bugs. Therefore,
a formal-verification tool that reports only the presence or
absence of bugs is not particularly useful. What is needed
is a tool that gives at least some information as to where
the bug is located and the nature of that bug.

The cbmc output includes a traceback mapping back
to the source code, similar to Promela/spin’s, as does
Nidhugg. Of course, these tracebacks can be quite long,
and analyzing them can be quite tedious. However, doing
so is usually quite a bit faster and more pleasant than
locating bugs the old-fashioned way.

In addition, one of the simplest tests of formal-
verification tools is bug injection. After all, not only
could any of us write printf("VERIFIED\n"), but the
plain fact is that developers of formal-verification tools are
just as bug-prone as are the rest of us. Therefore, formal-
verification tools that just proclaim that a bug exists are
fundamentally less trustworthy because it is more difficult
to verify them on real-world code.

All that aside, people writing formal-verification tools
are permitted to leverage existing tools. For example, a
tool designed to determine only the presence or absence
of a serious but rare bug might leverage bisection. If an
old version of the program under test did not contain the
bug, but a new version did, then bisection could be used
to quickly locate the commit that inserted the bug, which
might be sufficient information to find and fix the bug.
Of course, this sort of strategy would not work well for
common bugs because in this case bisection would fail

v2024.12.27a

416 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

due to all commits having at least one instance of the
common bug.

Therefore, the execution traces provided by many
formal-verification tools will continue to be valuable,
particularly for complex and difficult-to-understand bugs.
In addition, recent work applies incorrectness-logic for-
malism reminiscent of the traditional Hoare logic used for
full-up correctness proofs, but with the sole purpose of
finding bugs [O’H19].

17.4.5 Minimal Scaffolding
In the old days, formal-verification researchers demanded
a full specification against which the software would
be verified. Unfortunately, a mathematically rigorous
specification might well be larger than the actual code, and
each line of specification is just as likely to contain bugs as
is each line of code. A formal verification effort proving
that the code faithfully implemented the specification
would be a proof of bug-for-bug compatibility between
the two, which might not be all that helpful.

Worse yet, the requirements for a number of software
artifacts, including Linux-kernel RCU, are empirical in
nature [McK15h, McK15e, McK15f].16 For this common
type of software, a complete specification is a polite fiction.
Nor are complete specifications any less fictional for
hardware, as was made clear by the late-2017 Meltdown
and Spectre side-channel attacks [Hor18].

This situation might cause one to give up all hope of
formal verification of real-world software and hardware
artifacts, but it turns out that there is quite a bit that can
be done. For example, design and coding rules can act
as a partial specification, as can assertions contained in
the code. And in fact formal-verification tools such as
cbmc and Nidhugg both check for assertions that can be
triggered, implicitly treating these assertions as part of
the specification. However, the assertions are also part
of the code, which makes it less likely that they will
become obsolete, especially if the code is also subjected
to stress tests.17 The cbmc tool also checks for array-out-
of-bound references, thus implicitly adding them to the
specification. The aforementioned incorrectness logic can
also be thought of as using an implicit bugs-not-present
specification [O’H19].

This implicit-specification approach makes quite a bit of
sense, particularly if you look at formal verification not as

16 Or, in formal-verification parlance, Linux-kernel RCU has an
incomplete specification.

17 And you do stress-test your code, don’t you?

a full proof of correctness, but rather an alternative form of
validation with a different set of strengths and weaknesses
than the common case, that is, testing. From this viewpoint,
software will always have bugs, and therefore any tool of
any kind that helps to find those bugs is a very good thing
indeed.

17.4.6 Relevant Bugs
Finding bugs—and fixing them—is of course the whole
point of any type of validation effort. Clearly, false
positives are to be avoided. But even in the absence of
false positives, there are bugs and there are bugs.

For example, suppose that a software artifact had exactly
100 remaining bugs, each of which manifested on average
once every million years of runtime. Suppose further
that an omniscient formal-verification tool located all 100
bugs, which the developers duly fixed. What happens to
the reliability of this software artifact?

The answer is that the reliability decreases.
To see this, keep in mind that historical experience indi-

cates that about 7 % of fixes introduce a new bug [BJ12].
Therefore, fixing the 100 bugs, which had a combined
mean time to failure (MTBF) of about 10,000 years, will
introduce seven more bugs. Historical statistics indicate
that each new bug will have an MTBF much less than
70,000 years. This in turn suggests that the combined
MTBF of these seven new bugs will most likely be much
less than 10,000 years, which in turn means that the
well-intentioned fixing of the original 100 bugs actually
decreased the reliability of the overall software.

Quick Quiz 17.21: How do we know that the MTBFs of
known bugs is a good estimate of the MTBFs of bugs that have
not yet been located?

Quick Quiz 17.22: But the formal-verification tools should
immediately find all the bugs introduced by the fixes, so why
is this a problem?

Worse yet, imagine another software artifact with one
bug that fails once every day on average and 99 more
that fail every million years each. Suppose that a formal-
verification tool located the 99 million-year bugs, but
failed to find the one-day bug. Fixing the 99 bugs located
will take time and effort, decrease reliability, and do
nothing at all about the pressing each-day failure that is
likely causing embarrassment and perhaps much worse
besides.

Therefore, it would be best to have a validation tool
that preferentially located the most troublesome bugs.

v2024.12.27a

17.5. FUNCTIONAL PROGRAMMING FOR PARALLELISM 417

However, as noted in Section 17.4.4, it is permissible
to leverage additional tools. One powerful tool is none
other than plain old testing. Given knowledge of the
bug, it should be possible to construct specific tests for
it, possibly also using some of the techniques described
in Section 11.6.4 to increase the probability of the bug
manifesting. These techniques should allow calculation
of a rough estimate of the bug’s raw failure rate, which
could in turn be used to prioritize bug-fix efforts.

Quick Quiz 17.23: But many formal-verification tools can
only find one bug at a time, so that each bug must be fixed
before the tool can locate the next. How can bug-fix efforts be
prioritized given such a tool?

There has been some recent formal-verification work
that prioritizes executions having fewer preemptions, un-
der that reasonable assumption that smaller numbers of
preemptions are more likely.

Identifying relevant bugs might sound like too much to
ask, but it is what is really required if we are to actually
increase software reliability.

17.4.7 Formal Regression Scorecard
Table 17.5 shows a rough-and-ready scorecard for the
formal-verification tools covered in this chapter. Shorter
wavelengths are better than longer wavelengths.

Promela requires hand translation and supports only
sequential consistency, so its first two cells are red. It
has reasonable overhead (for formal verification, anyway)
and provides a traceback, so its next two cells are yel-
low. Despite requiring hand translation, Promela handles
assertions in a natural way, so its fifth cell is green.

PPCMEM usually requires hand translation due to the
small size of litmus tests that it supports, so its first cell is
orange. It handles several memory models, so its second
cell is green. Its overhead is quite high, so its third
cell is red. It provides a graphical display of relations
among operations, which is not as helpful as a traceback,
but is still quite useful, so its fourth cell is yellow. It
requires constructing an exists clause and cannot take
intra-process assertions, so its fifth cell is also yellow.

The herd tool has size restrictions similar to those of
PPCMEM, so herd’s first cell is also orange. It supports a
wide variety of memory models, so its second cell is blue.
It has reasonable overhead, so its third cell is yellow. Its
bug-location and assertion capabilities are quite similar to
those of PPCMEM, so herd also gets yellow for the next
two cells.

The cbmc tool inputs C code directly, so its first cell
is blue. It supports a few memory models, so its second
cell is yellow. It has reasonable overhead, so its third cell
is also yellow, however, perhaps SAT-solver performance
will continue improving. It provides a traceback, so its
fourth cell is green. It takes assertions directly from the C
code, so its fifth cell is blue.

Nidhugg also inputs C code directly, so its first cell is
also blue. It supports only a couple of memory models,
so its second cell is orange. Its overhead is quite low (for
formal-verification), so its third cell is green. It provides
a traceback, so its fourth cell is green. It takes assertions
directly from the C code, so its fifth cell is blue.

So what about the sixth and final row? It is too early to
tell how any of the tools do at finding the right bugs, so
they are all yellow with question marks.

Quick Quiz 17.24: How would testing stack up in the
scorecard shown in Table 17.5?

Quick Quiz 17.25: But aren’t there a great many more
formal-verification systems than are shown in Table 17.5?

Once again, please note that this table rates these tools
for use in regression testing. Just because many of them
are a poor fit for regression testing does not at all mean
that they are useless, in fact, many of them have proven
their worth many times over.18 Just not for regression
testing.

However, this might well change. After all, formal
verification tools made impressive strides in the 2010s.
If that progress continues, formal verification might well
become an indispensable tool in the parallel programmer’s
validation toolbox.

17.5 Functional Programming for
Parallelism

The curious failure of functional programming for

parallel applications.

Malte Skarupke

When I took my first-ever functional-programming class
in the early 1980s, the professor asserted that the side-
effect-free functional-programming style was well-suited
to trivial parallelization and analysis. Thirty years later,

18 For but one example, Promela was used to verify the file system
of none other than the Curiosity Rover. Was your formal verification
tool used on software that currently runs on Mars???

v2024.12.27a

418 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

Table 17.5: Formal Regression Scorecard

Promela PPCMEM herd cbmc Nidhugg

(1) Automated
(2) Environment (MM) (MM) (MM)
(3) Overhead (SAT)
(4) Locate Bugs
(5) Minimal Scaffolding
(6) Relevant Bugs ??? ??? ??? ??? ???

this assertion remains, but mainstream production use
of parallel functional languages is minimal, a state of
affairs that might not be entirely unrelated to professor’s
additional assertion that programs should neither maintain
state nor do I/O. There is niche use of functional languages
such as Erlang, and multithreaded support has been added
to several other functional languages, but mainstream
production usage remains the province of procedural
languages such as C, C++, Java, and Fortran (usually
augmented with OpenMP, MPI, or coarrays).

This situation naturally leads to the question “If analysis
is the goal, why not transform the procedural language into
a functional language before doing the analysis?” There
are of course a number of objections to this approach, of
which I list but three:

1. Procedural languages often make heavy use of global
variables, which can be updated independently by
different functions, or, worse yet, by multiple threads.
Note that Haskell’s monads were invented to deal
with single-threaded global state, and that multi-
threaded access to global state inflicts additional
violence on the functional model.

2. Multithreaded procedural languages often use syn-
chronization primitives such as locks, atomic opera-
tions, and transactions, which inflict added violence
upon the functional model.

3. Procedural languages can alias function arguments,
for example, by passing a pointer to the same structure
via two different arguments to the same invocation
of a given function. This can result in the function
unknowingly updating that structure via two different
(and possibly overlapping) code sequences, which
greatly complicates analysis.

Of course, given the importance of global state, syn-
chronization primitives, and aliasing, clever functional-

programming experts have proposed any number of at-
tempts to reconcile the function programming model to
them, monads being but one case in point.

Another approach is to compile the parallel procedural
program into a functional program, then to use functional-
programming tools to analyze the result. But it is possible
to do much better than this, given that any real computation
is a large finite-state machine with finite input that runs for
a finite time interval. This means that any real program
can be transformed into an expression, possibly albeit an
impractically large one [DHK12].

However, a number of the low-level kernels of paral-
lel algorithms transform into expressions that are small
enough to fit easily into the memories of modern comput-
ers. If such an expression is coupled with an assertion,
checking to see if the assertion would ever fire becomes a
satisfiability problem. Even though satisfiability problems
are NP-complete, they can often be solved in much less
time than would be required to generate the full state
space. In addition, the solution time appears to be only
weakly dependent on the underlying memory model, so
that algorithms running on weakly ordered systems can
also be checked [AKT13].

The general approach is to transform the program into
single-static-assignment (SSA) form, so that each assign-
ment to a variable creates a separate version of that variable.
This applies to assignments from all the active threads,
so that the resulting expression embodies all possible
executions of the code in question. The addition of an
assertion entails asking whether any combination of inputs
and initial values can result in the assertion firing, which,
as noted above, is exactly the satisfiability problem.

One possible objection is that it does not gracefully
handle arbitrary looping constructs. However, in many
cases, this can be handled by unrolling the loop a finite
number of times. In addition, perhaps some loops will
also prove amenable to collapse via inductive methods.

v2024.12.27a

17.6. SUMMARY 419

Another possible objection is that spinlocks involve
arbitrarily long loops, and any finite unrolling would fail
to capture the full behavior of the spinlock. It turns out
that this objection is easily overcome. Instead of modeling
a full spinlock, model a trylock that attempts to obtain
the lock, and aborts if it fails to immediately do so. The
assertion must then be crafted so as to avoid firing in
cases where a spinlock aborted due to the lock not being
immediately available. Because the logic expression is
independent of time, all possible concurrency behaviors
will be captured via this approach.

A final objection is that this technique is unlikely to
be able to handle a full-sized software artifact such as
the millions of lines of code making up the Linux kernel.
This is likely the case, but the fact remains that exhaustive
validation of each of the much smaller parallel primitives
within the Linux kernel would be quite valuable. And
in fact the researchers spearheading this approach have
applied it to non-trivial real-world code, including the
Tree RCU implementation in the Linux kernel [LMKM16,
KS17a].

It remains to be seen how widely applicable this tech-
nique is, but it is one of the more interesting innovations
in the field of formal verification. Although it might well
be that the functional-programming advocates are at long
last correct in their assertion of the inevitable dominance
of functional programming, it is clearly the case that
this long-touted methodology is starting to see credible
competition on its formal-verification home turf. There
is therefore continued reason to doubt the inevitability of
functional-programming dominance.

17.6 Summary

Life can only be understood backwards; but it must

be lived forwards.

Søren Kierkegaard

This chapter has taken a quick tour of a number of possible
futures, including multicore, transactional memory, formal
verification as a regression test, and concurrent functional
programming. Any of these futures might come true, but
it is more likely that, as in the past, the future will be far
stranger than we can possibly imagine.

v2024.12.27a

420 CHAPTER 17. CONFLICTING VISIONS OF THE FUTURE

v2024.12.27a

History is the sum total of things that could have

been avoided.

Konrad AdenauerChapter 18

Looking Forward and Back

You have arrived at the end of this book, well done! I hope
that your journey was a pleasant but challenging and
worthwhile one.

For your editor and contributors, this is the end of the
journey to the Second Edition, but for those willing to join
in, it is also the start of the journey to the Third Edition.
Either way, it is good to recap this past journey.

Chapter 1 covered what this book is about, along with
some alternatives for those interested in something other
than low-level parallel programming.

Chapter 2 covered parallel-programming challenges and
high-level approaches for addressing them. It also touched
on ways of avoiding these challenges while nevertheless
still gaining most of the benefits of parallelism.

Chapter 3 gave a high-level overview of multicore
hardware, especially those aspects that pose challenges
for concurrent software. This chapter puts the blame
for these challenges where it belongs, very much on the
laws of physics and rather less on intransigent hardware
architects and designers. However, there might be some
things that hardware architects and engineers can do, and
this chapter discusses a few of them. In the meantime,
software architects and engineers must do their part to
meet these challenges, as discussed in the rest of the book.

Chapter 4 gave a quick overview of the tools of the
low-level concurrency trade. Chapter 5 then demon-
strated use of those tools—and, more importantly, use of
parallel-programming design techniques—on the simple
but surprisingly challenging task of concurrent counting.
So challenging, in fact, that a number of concurrent count-
ing algorithms are in common use, each specialized for a
different use case.

Chapter 6 dug more deeply into the most important
parallel-programming design technique, namely partition-
ing the problem at the highest possible level. This chapter
also overviewed a number of points in this design space.

Chapter 7 expounded on that parallel-programming
workhorse (and villain), locking. This chapter covered
a number of types of locking and presented some engi-
neering solutions to many well-known and aggressively
advertised shortcomings of locking.

Chapter 8 discussed the uses of data ownership, where
synchronization is supplied by the association of a given
data item with a specific thread. Where it applies, this
approach combines excellent performance and scalability
with profound simplicity.

Chapter 9 showed how a little procrastination can greatly
improve performance and scalability, while in a surpris-
ingly large number of cases also simplifying the code.
A number of the mechanisms presented in this chapter
take advantage of the ability of CPU caches to replicate
read-only data, thus sidestepping the laws of physics that
cruelly limit the speed of light and the smallness of atoms.
Chapter 10 looked at concurrent data structures, with
emphasis on hash tables, which have a long and honorable
history in parallel programs.

Chapter 11 dug into code-review and testing methods,
and Chapter 12 overviewed formal verification. Whichever
side of the formal-verification/testing divide you might be
on, if code has not been thoroughly validated, it does not
work. And that goes at least double for concurrent code.

Chapter 13 presented a number of situations where com-
bining concurrency mechanisms with each other or with
other design tricks can greatly ease parallel programmers’
lives. Chapter 14 looked at advanced synchronization
methods, including lockless programming, non-blocking
synchronization, and parallel real-time computing. Chap-
ter 15 dug into the critically important topic of memory
ordering, presenting techniques and tools to help you not
only solve memory-ordering problems, but also to avoid
them completely. Chapter 16 presented a brief overview
of the surprisingly important topic of ease of use.

421

v2024.12.27a

422 CHAPTER 18. LOOKING FORWARD AND BACK

Last, but definitely not least, Chapter 17 expounded on
a number of conflicting visions of the future, including
CPU-technology trends, transactional memory, hardware
transactional memory, use of formal verification in re-
gression testing, and the long-standing prediction that
the future of parallel programming belongs to functional-
programming languages.

But now that we have recapped the contents of this
Second Edition, how did this book get started?

Paul’s parallel-programming journey started in earnest
in 1990, when he joined Sequent Computer Systems, Inc.
Sequent used an apprenticeship-like program in which
newly hired engineers were placed in cubicles surrounded
by experienced engineers, who mentored them, reviewed
their code, and gave copious quantities of advice on a
variety of topics. A few of the newly hired engineers
were greatly helped by the fact that there were no on-chip
caches in those days, which meant that logic analyzers
could easily display a given CPU’s instruction stream
and memory accesses, complete with accurate timing
information. Of course, the downside of this transparency
was that CPU core clock frequencies were 100 times
slower than those of the twenty-first century. Between
apprenticeship and hardware performance transparency,
these newly hired engineers became productive parallel
programmers within two or three months, and some were
doing ground-breaking work within a couple of years.

Sequent understood that its ability to quickly train new
engineers in the mysteries of parallelism was unusual, so
it produced a slim volume that crystalized the company’s
parallel-programming wisdom [Seq88], which joined a
pair of groundbreaking papers that had been written a few
years earlier [BK85, Inm85]. People already steeped in
these mysteries saluted this book and these papers, but
novices were usually unable to benefit much from them,
invariably making highly creative and quite destructive
errors that were not explicitly prohibited by either the
book or the papers.1 This situation of course caused Paul
to start thinking in terms of writing an improved book,
but his efforts during this time were limited to internal
training materials and to published papers.

By the time Sequent was acquired by IBM in 1999,
many of the world’s largest database instances ran on
Sequent hardware. But times change, and by 2001 many
of Sequent’s parallel programmers had shifted their focus
to the Linux kernel. After some initial reluctance, the
Linux kernel community embraced concurrency both
enthusiastically and effectively [BWCM+10, McK12a],

1 “But why on earth would you do that???” “Well, why not?”

with many excellent innovations and improvements from
throughout the community. The thought of writing a book
occurred to Paul from time to time, but life was flowing
fast, so he made no progress on this project.

In 2006, Paul was invited to a conference on Linux
scalability, and was granted the privilege of asking the
last question of panel of esteemed parallel-programming
experts. Paul began his question by noting that in the
15 years from 1991 to 2006, the price of a parallel system
had dropped from that of a house to that of a mid-range
bicycle, and it was clear that there was much more room for
additional dramatic price decreases over the next 15 years
extending to the year 2021. He also noted that decreasing
price should result in greater familiarity and faster progress
in solving parallel-programming problems. This led to
his question: “In the year 2021, why wouldn’t parallel
programming have become routine?”

The first panelist seemed quite disdainful of anyone who
would ask such an absurd question, and quickly responded
with a soundbite answer. To which Paul gave a soundbite
response. They went back and forth for some time, for
example, the panelist’s sound-bite answer “Deadlock”
provoked Paul’s sound-bite response “Lock dependency
checker”.

The panelist eventually ran out of soundbites, impro-
vising a final “People like you should be hit over the head
with a hammer!”

Paul’s response was of course “You will have to get in
line for that!”

Paul turned his attention to the next panelist, who
seemed torn between agreeing with the first panelist and
not wishing to have to deal with Paul’s series of responses.
He therefore have a short non-committal speech. And so
it went through the rest of the panel.

Until it was the turn of the last panelist, who was
someone you might have heard of who goes by the name
of Linus Torvalds. Linus noted that three years earlier (that
is, 2003), the initial version of any concurrency-related
patch was usually quite poor, having design flaws and
many bugs. And even when it was cleaned up enough
to be accepted, bugs still remained. Linus contrasted
this with the then-current situation in 2006, in which
he said that it was not unusual for the first version of a
concurrency-related patch to be well-designed with few or
even no bugs. He then suggested that if tools continued to
improve, then maybe parallel programming would become
routine by the year 2021.2

2 Tools have in fact continued to improve, including fuzzers, lock
dependency checkers, static analyzers, formal verification, memory

v2024.12.27a

423

Figure 18.1: The Most Important Lesson

The conference then concluded. Paul was not surprised
to be given wide berth by many audience members, es-
pecially those who saw the world in the same way as
did the first panelist. Paul was also not surprised that
a few audience members thanked him for the question.
However, he was quite surprised when one man came up
to say “thank you” with tears streaming down his face,
sobbing so hard that he could barely speak.

You see, this man had worked several years at Sequent,
and thus very well understood parallel programming.
Furthermore, he was currently assigned to a group whose
job it was to write parallel code. Which was not going well.
You see, it wasn’t that they had trouble understanding his
explanations of parallel programming.

It was that they refused to listen to him at all.
In short, his group was treating this man in the same

way that the first panelist attempted to treat Paul. And so
in that moment, Paul went from “I should write a book
some day” to “I will do whatever it takes to write this
book”. Paul is embarrassed to admit that he does not
remember the man’s name, if in fact he ever knew it.

This book is nevertheless for that man.
And this book is also for everyone else who would

like to add low-level concurrency to their skillset. If you
remember nothing else from this book, let it be the lesson
of Figure 18.1.

And this book is also a salute to that unnamed panelist’s
unnamed employer. Some years later, this employer
choose to appoint someone with more useful experience
and fewer sound bites. That someone was also on a panel,
and during that session he looked directly at me when he

models, and code-modification tools such as coccinelle. Therefore,
those who wish to assert that year-2021 parallel programming is not
routine should refer to Chapter 2’s epigraph.

stated that parallel programming was perhaps 5% more
difficult than sequential programming.

For the rest of us, when someone tries to show us a
solution to pressing problem, perhaps we should at the
very least do them the courtesy of listening!

v2024.12.27a

424 CHAPTER 18. LOOKING FORWARD AND BACK

v2024.12.27a

Ask me no questions, and I’ll tell you no fibs.

She Stoops to Conquer, Oliver GoldsmithAppendix A

Important Questions

The following sections discuss some important questions
relating to SMP programming. Each section also shows
how to avoid worrying about the corresponding question,
which can be extremely important if your goal is to simply
get your SMP code working as quickly and painlessly as
possible—which is an excellent goal, by the way!

Although the answers to these questions are often less
intuitive than they would be in a single-threaded setting,
with a bit of work, they are not that difficult to understand.
If you managed to master recursion, there is nothing here
that should pose an overwhelming challenge.

With that, here are the questions:

1. Why aren’t parallel programs always faster? (Appen-
dix A.1)

2. Why not remove locking? (Appendix A.2)

3. What time is it? (Appendix A.3)

4. What does “after” mean? (Appendix A.4)

5. How much ordering is needed? (Appendix A.5)

6. What is the difference between “concurrent” and
“parallel”? (Appendix A.6)

7. Why is software buggy? (Appendix A.7)

Read on to learn some answers. Improve upon these
answers if you can!

A.1 Why Aren’t Parallel Programs
Always Faster?

There is nothing quite so complicated as simplicity.

Charles Poore

The short answer is “because parallel execution often
requires communication, and communication is not free”.

For more information on this question, see Chapter 3,
Section 5.1, and especially Chapter 6, each of which
present ways of slowing down your code by ineptly paral-
lelizing it. Of course, much of this book deals with ways
of ensuring that your parallel programs really are faster
than their sequential counterparts.

However, never forget that parallel programs can be
quite fast while at the same time being quite simple, with
the example in Section 4.1 being a case in point. Also
never forget that parallel execution is but one optimiza-
tion of many, and there are programs for which other
optimizations produce better results.

A.2 Why Not Remove Locking?

A great number of people think they are thinking

when they are merely rearranging their prejudices.

William James

There can be no doubt that many have cast locking as
the evil villain of parallel programming, and not entirely
without reason. And there are important examples where
lockless code does much better than its locked counterpart,
a few of which are discussed in Section 14.2.

425

v2024.12.27a

426 APPENDIX A. IMPORTANT QUESTIONS

However, lockless algorithms are not guaranteed to
perform and scale well, as shown by Figure 5.1 on page 52.
Furthermore, as a general rule, the more complex the
algorithm, the greater the advantage of combining locking
with selected lockless techniques, even with significant
hardware support, as shown in Table 17.3 on page 410.
Section 14.2 looks more deeply at non-blocking synchro-
nization, which is a popular lockless methodology.

As a more general rule, a sound-bite approach to parallel
programming is not likely to end well. Some would argue
that this is also true of many other fields of endeavor,
especially those fields most prominently featuring sound
bites.

A.3 What Time Is It?

Time is a game played beautifully by children.

Heraclitus

A key issue with timekeeping on multicore computer
systems is illustrated by Figure A.1. One problem is
that it takes time to read out the time. An instruction
might read from a hardware clock, and might have to
go off-core (or worse yet, off-socket) to complete this
read operation. It might also be necessary to do some
computation on the value read out, for example, to convert
it to the desired format, to apply network time protocol
(NTP) adjustments, and so on. So does the time eventually
returned correspond to the beginning of the resulting time
interval, the end, or somewhere in between?

Worse yet, the thread reading the time might be inter-
rupted or preempted. Furthermore, there will likely be
some computation between reading out the time and the
actual use of the time that has been read out. Both of these
possibilities further extend the interval of uncertainty.

One approach is to read the time twice, and take the
arithmetic mean of the two readings, perhaps one on each
side of the operation being timestamped. The difference
between the two readings is then a measure of uncertainty
of the time at which the intervening operation occurred.

Of course, in many cases, the exact time is not necessary.
For example, when printing the time for the benefit of
a human user, we can rely on slow human reflexes to
render internal hardware and software delays irrelevant.
Similarly, if a server needs to timestamp the response to a
client, any time between the reception of the request and
the transmission of the response will do equally well.

Uh. When did

you ask?

What time is it?

Figure A.1: What Time Is It?

There is an old saying that those who have but one clock
always know the time, but those who have several clocks
can never be sure. And there was a time when the typical
low-end computer’s sole software-visible clock was its
program counter, but those days are long gone. This is not
a bad thing, considering that on modern computer systems,
the program counter is a truly horrible clock [MOZ09].

In addition, different clocks provide different tradeoffs
of performance, accuracy, precision, and ordering. For
example, in the Linux kernel, the jiffies counter1

provides high-speed access to a course-grained counter (at
best one-millisecond accuracy and precision) that imposes
very little ordering on either the compiler or the hardware.
In contrast, the x86 HPET hardware provides an accurate
and precise clock, but at the price of slow access. The
x86 time-stamp counter (TSC) has a checkered past, but is
more recently held out as providing a good combination
of precision, accuracy, and performance. Unfortunately,
for all of these counters, ordering against all effects of
prior and subsequent code requires expensive memory-
barrier instructions. And this expense appears to be
an unavoidable consequence of the complex superscalar
nature of modern computer systems.

Quick Quiz A.1: Wait!!! Why should reading out of a
timestamp register be more expensive than reading out of any
other machine register???

1 The jiffies variable is a location in normal memory that is
incremented by software in response to events such as the scheduling-
clock interrupt.

v2024.12.27a

A.4. WHAT DOES “AFTER” MEAN? 427

 0

 50

 100

 150

 200

 250

 300

-100 -80 -60 -40 -20 0 20 40 60

Fr
eq

ue
nc

y

Nanoseconds Deviation

Figure A.2: clock_gettime(CLOCK_REALTIME)
Deviation From Immediately Preceding
clock_gettime(CLOCK_MONOTONIC)

In addition, each clock source provides its own timebase.
Figure A.2 shows a histogram of the value returned by a
call to clock_gettime(CLOCK_MONOTONIC) subtracted
from that returned by an immediately following clock_
gettime(CLOCK_REALTIME) (timeskew.c). Because
some time passes between these two function calls, it is no
surprise that there are positive deviations, but the negative
deviations should give us some pause. Nevertheless, such
deviations are possible, if for no other reason than the
machinations of network time protocol (NTP) [Wei22f].

Worse yet, identical clocksources on different systems
are not necessarily compatible with that of another. For
example, the jiffies counters on a pair of systems very
likely started counting at different times, and worse yet
might well be counting at different rates. This brings up
the topic of synchronizing a given system’s counters with
some real-world notion of time such as the aforementioned
NTP, but that topic is beyond the scope of this book.

In short, time is a slippery topic that causes untold
confusion to parallel programmers and to their code.

Listing A.1: “After” Producer Function
1 /* WARNING: BUGGY CODE. */
2 void *producer(void *ignored)
3 {
4 int i = 0;
5
6 producer_ready = 1;
7 while (!goflag)
8 sched_yield();
9 while (goflag) {

10 ss.t = dgettimeofday();
11 ss.a = ss.c + 1;
12 ss.b = ss.a + 1;
13 ss.c = ss.b + 1;
14 i++;
15 }
16 printf("producer exiting: %d samples\n", i);
17 producer_done = 1;
18 return (NULL);
19 }

A.4 What Does “After” Mean?

There is no future. There is no past.

Alan Moore

“After” is an intuitive, but surprisingly difficult concept. An
important non-intuitive issue is that code can be delayed
at any point for any amount of time. Consider a producing
and a consuming thread that communicate using a global
struct with a timestamp “t” and integer fields “a”, “b”,
and “c”. The producer loops recording the current time
(in seconds since 1970 in decimal), then updating the
values of “a”, “b”, and “c”, as shown in Listing A.1. The
consumer code loops, also recording the current time,
but also copying the producer’s timestamp along with the
fields “a”, “b”, and “c”, as shown in Listing A.2. At the
end of the run, the consumer outputs a list of anomalous
recordings, e.g., where time has appeared to go backwards.

Quick Quiz A.2: What SMP coding errors can you see in
these examples? See time.c for full code.

One might intuitively expect that the difference between
the producer and consumer timestamps would be quite
small, as it should not take much time for the producer
to record the timestamps or the values. An excerpt of
some sample output on a dual-core 1 GHz x86 is shown
in Table A.1. Here, the “seq” column is the number of
times through the loop, the “time” column is the time
of the anomaly in seconds, the “delta” column is the
number of seconds the consumer’s timestamp follows that
of the producer (where a negative value indicates that the
consumer has collected its timestamp before the producer
did), and the columns labelled “a”, “b”, and “c” show

v2024.12.27a

428 APPENDIX A. IMPORTANT QUESTIONS

Listing A.2: “After” Consumer Function
1 /* WARNING: BUGGY CODE. */
2 void *consumer(void *ignored)
3 {
4 struct snapshot_consumer curssc;
5 int i = 0;
6 int j = 0;
7
8 consumer_ready = 1;
9 while (ss.t == 0.0) {

10 sched_yield();
11 }
12 while (goflag) {
13 curssc.tc = dgettimeofday();
14 curssc.t = ss.t;
15 curssc.a = ss.a;
16 curssc.b = ss.b;
17 curssc.c = ss.c;
18 curssc.sequence = curseq;
19 curssc.iserror = 0;
20 if ((curssc.t > curssc.tc) ||
21 modgreater(ssc[i].a, curssc.a) ||
22 modgreater(ssc[i].b, curssc.b) ||
23 modgreater(ssc[i].c, curssc.c) ||
24 modgreater(curssc.a, ssc[i].a + maxdelta) ||
25 modgreater(curssc.b, ssc[i].b + maxdelta) ||
26 modgreater(curssc.c, ssc[i].c + maxdelta)) {
27 i++;
28 curssc.iserror = 1;
29 } else if (ssc[i].iserror)
30 i++;
31 ssc[i] = curssc;
32 curseq++;
33 if (i + 1 >= NSNAPS)
34 break;
35 }
36 printf("consumer exited loop, collected %d items %d\n",
37 i, curseq);
38 if (ssc[0].iserror)
39 printf("0/%ld: %.6f %.6f (%.3f) %ld %ld %ld\n",
40 ssc[0].sequence,
41 ssc[j].t, ssc[j].tc,
42 (ssc[j].tc - ssc[j].t) * 1000000,
43 ssc[j].a, ssc[j].b, ssc[j].c);
44 for (j = 0; j <= i; j++)
45 if (ssc[j].iserror)
46 printf("%d/%ld: %.6f (%.3f) %ld %ld %ld\n",
47 j, ssc[j].sequence,
48 ssc[j].t, (ssc[j].tc - ssc[j].t) * 1000000,
49 ssc[j].a - ssc[j - 1].a,
50 ssc[j].b - ssc[j - 1].b,
51 ssc[j].c - ssc[j - 1].c);
52 consumer_done = 1;
53 }

Table A.1: “After” Program Sample Output

seq time (seconds) delta a b c

17563: 1152396.251585 (−16.928) 27 27 27
18004: 1152396.252581 (−12.875) 24 24 24
18163: 1152396.252955 (−19.073) 18 18 18
18765: 1152396.254449 (−148.773) 216 216 216
19863: 1152396.256960 (−6.914) 18 18 18
21644: 1152396.260959 (−5.960) 18 18 18
23408: 1152396.264957 (−20.027) 15 15 15

the amount that these variables increased since the prior
snapshot collected by the consumer.

Why is time going backwards? The number in parenthe-
ses is the difference in microseconds, with a large number
exceeding 10 microseconds, and one exceeding even 100
microseconds! Please note that this CPU can potentially
execute more than 100,000 instructions in that time.

One possible reason is given by the following sequence
of events:

1. Consumer obtains timestamp (Listing A.2, line 13).

2. Consumer is preempted.

3. An arbitrary amount of time passes.

4. Producer obtains timestamp (Listing A.1, line 10).

5. Consumer starts running again, and picks up the
producer’s timestamp (Listing A.2, line 14).

In this scenario, the producer’s timestamp might be an
arbitrary amount of time after the consumer’s timestamp.

How do you avoid agonizing over the meaning of “after”
in your SMP code?

Simply use SMP primitives as designed.
In this example, the easiest fix is to use locking, for

example, acquire a lock in the producer before line 10
in Listing A.1 and in the consumer before line 13 in
Listing A.2. This lock must also be released after line 13
in Listing A.1 and after line 17 in Listing A.2. These locks
cause the code segments in lines 10–13 of Listing A.1
and in lines 13–17 of Listing A.2 to exclude each other, in
other words, to run atomically with respect to each other.
This is represented in Figure A.3: The locking prevents
any of the boxes of code from overlapping in time, so that
the consumer’s timestamp must be collected after the prior
producer’s timestamp. The segments of code in each box
in this figure are termed “critical sections”; only one such
critical section may be executing at a given time.

This addition of locking results in output as shown in
Table A.2. Here there are no instances of time going

v2024.12.27a

A.5. HOW MUCH ORDERING IS NEEDED? 429

ss.t = dgettimeofday();

ss.b = ss.a + 1;
ss.c = ss.b + 1;

ss.a = ss.c + 1;

curssc.c = ss.c;

curssc.tc = gettimeofday();
curssc.t = ss.t;
curssc.a = ss.a;
curssc.b = ss.b;

ss.t = dgettimeofday();

ss.b = ss.a + 1;
ss.c = ss.b + 1;

ss.a = ss.c + 1;

Time

Producer

Consumer

Producer

Figure A.3: Effect of Locking on Snapshot Collection

Table A.2: Locked “After” Program Sample Output

seq time (seconds) delta a b c

58597: 1156521.556296 (3.815) 1485 1485 1485
403927: 1156523.446636 (2.146) 2583 2583 2583

backwards, instead, there are only cases with more than
1,000 counts difference between consecutive reads by the
consumer.
Quick Quiz A.3: How could there be such a large gap
between successive consumer reads? See timelocked.c for
full code.

In summary, if you acquire an exclusive lock, you know
that anything you do while holding that lock will appear
to happen after anything done by any prior holder of that
lock, at least give or take transactional lock elision (see
Section 17.3.2.6). No need to worry about which CPU
did or did not execute a memory barrier, no need to worry
about the CPU or compiler reordering operations—life is
simple. Of course, the fact that this locking prevents these
two pieces of code from running concurrently might limit
the program’s ability to gain increased performance on
multiprocessors, possibly resulting in a “safe but slow” sit-
uation. Chapter 6 describes ways of gaining performance
and scalability in many situations.

In short, in many parallel programs, the really important
definition of “after” is ordering of operations, which is
covered in dazzling detail in Chapter 15.

However, in most cases, if you find yourself worrying
about what happens before or after a given piece of code,
you should take this as a hint to make better use of the
standard primitives. Let these primitives do the worrying
for you.

A.5 How Much Ordering Is Needed?

A lost inch of gold may be found, a lost inch of time,

never.

Chinese proverb

Perhaps you have carefully constructed a strongly ordered
concurrent system, only to find that it neither performs
nor scales well. Or perhaps you threw caution to the
wind, only to find that your brilliantly fast and scalable
software is also unreliable. Is there a happy medium
with both robust reliability on the one hand and powerful
performance augmented by scintellating scalability on the
other?

The answer, as is so often the case, is “it depends”.
One approach is to construct a strongly ordered system,

then examine its performance and scalability. If these
suffice, the system is good and sufficient, and no more
need be done. Otherwise, undertake careful analysis (see
Section 11.7) and attack each bottleneck until the system’s
performance is good and sufficient.

This approach can work very well, especially in contrast
to the all-too-common approach of optimizing random
components of the system in the hope of achieving sig-
nificant system-wide benefits. However, starting with
strong ordering can also be quite wasteful, given that
weakening ordering of the system’s bottleneck can require
that large portions of the rest of the system be redesigned
and rewritten to accommodate the weakening. Worse
yet, eliminating one bottleneck often exposes another,
which in turn needs to be weakened and which in turn can
result in wholesale redesigns and rewrites of other parts
of the system. Perhaps even worse is the approach, also
common, of starting with a fast but unreliable system and
then playing whack-a-mole with an endless succession of
concurrency bugs, though in the latter case, Chapters 11
and 12 are always there for you.

It would be better to have design-time tools to determine
which portions of the system could use weak ordering,
and at the same time, which portions actually benefit from
weak ordering. These tasks are taken up by the following
sections.

v2024.12.27a

430 APPENDIX A. IMPORTANT QUESTIONS

A.5.1 Where is the Defining Data?
One way to do this is to keep firmly in mind that the region
of consistency engendered by strong ordering cannot
extend out past the boundaries of the system.2 Portions of
the system whose role is to track the state of the outside
world can usually feature weak ordering, given that speed-
of-light delays will force the within-system state to lag that
of the outside world. There is often no point in incurring
large overheads to force a consistent view of data that
is inherently out of date. In these cases, the methods of
Chapter 9 can be quite helpful, as can some of the data
structures described in Chapter 10.

Nevertheless, it is wise to adopt some meaningful
semantics that are visible to those accessing the data, for
example, a given function’s return value might be:

1. Some value between the conceptual value at the time
of the call to the function and the conceptual value
at the time of the return from that function. For
example, see the statistical counters discussed in
Section 5.2, keeping in mind that such counters are
normally monotonic, at least between consecutive
overflows.

2. The actual value at some time between the call to and
the return from that function. For example, see the
single-variable atomic counter shown in Listing 5.2.

3. If the values used by that function remain unchanged
during the time between that function’s call and
return, the expected value, otherwise some approxi-
mation to the expected value. Precise specification
of the bounds on the approximation can be quite chal-
lenging. For example, consider a function combining
values from different elements of an RCU-protected
linked data structure, as described in Section 10.3.

Weaker ordering usually implies weaker semantics, and
you should be able to give some sort of promise to your
users as to how this weakening affects them. At the same
time, unless the caller holds a lock across both the function
call and the use of any values computed by that function,
even fully ordered implementations normally cannot do
any better than the semantics given by the options above.

Quick Quiz A.4: But if fully ordered implementations cannot
offer stronger guarantees than the better performing and more
scalable weakly ordered implementations, why bother with
full ordering?

2 Which might well be a distributed system.

Some might argue that useful computing deals only
with the outside world, and therefore that all computing
can use weak ordering. Such arguments are incorrect. For
example, the value of your bank account is defined within
your bank’s computers, and people often prefer exact
computations involving their account balances, especially
those who might suspect that any such approximations
would be in the bank’s favor.

In short, although data tracking external state can be
an attractive candidate for weakly ordered access, please
think carefully about exactly what is being tracked and
what is doing the tracking.

A.5.2 Consistent Data Used Consistently?
Another hint that weakening is safe can appear in the
guise of data that is computed while holding a lock,
but then used after the lock is released. The computed
result clearly becomes at best an approximation as soon
as the lock is released, which suggests computing an
approximate result in the first place, possibly permitting
use of weaker ordering. To this end, Chapter 5 covers
numerous approximate methods for counting.

Great care is required, however. Is the use of data
following lock release a hint that weak-ordering optimiza-
tions might be helpful? Or is instead a bug in which the
lock was released too soon?

A.5.3 Is the Problem Partitionable?
Suppose that the system holds the defining instance of
the data, or that using a computed value past lock release
proved to be a bug. What then?

One approach is to partition the system, as discussed in
Chapter 6. Partititioning can provide excellent scalability
and in its more extreme form, per-CPU performance
rivaling that of a sequential program, as discussed in
Chapter 8. Partial partitioning is often mediated by
locking, which is the subject of Chapter 7.

A.5.4 None of the Above?
The previous sections described the easier ways to gain
performance and scalability, sometimes using weaker
ordering and sometimes not. But the plain fact is that
multicore systems are under no compunction to make
life easy. But perhaps the advanced topics covered in
Chapters 14 and 15 will prove helpful.

But please proceed with care, as it is all too easy to
destabilize your codebase optimizing non-bottlenecks.

v2024.12.27a

A.6. WHAT IS THE DIFFERENCE BETWEEN “CONCURRENT” AND “PARALLEL”? 431

Once again, Section 11.7 can help. It might also be worth
your time to review other portions of this book, as it
contains much information on handling a number of tricky
situations.

A.6 What is the Difference Between
“Concurrent” and “Parallel”?

If you cannot make a difference, make a distinction!

Unknown

From a classic computing perspective, “concurrent” and
“parallel” are clearly synonyms. However, this has not
stopped many people from drawing distinctions between
the two, and it turns out that these distinctions can be
understood from a couple of different perspectives.

The first perspective treats “parallel” as an abbreviation
for “data parallel”, and treats “concurrent” as pretty much
everything else. From this perspective, in parallel com-
puting, each partition of the overall problem can proceed
completely independently, with no communication with
other partitions. In this case, little or no coordination
among partitions is required. In contrast, concurrent com-
puting might well have tight interdependencies, in the form
of contended locks, transactions, or other synchronization
mechanisms.
Quick Quiz A.5: Suppose a portion of a program uses RCU
read-side primitives as its only synchronization mechanism.
Is this parallelism or concurrency?

This of course begs the question of why such a distinc-
tion matters, which brings us to the second perspective,
that of the underlying scheduler. Schedulers come in a
wide range of complexities and capabilities, and as a rough
rule of thumb, the more tightly and irregularly a set of
parallel processes communicate, the higher the level of
sophistication required from the scheduler. As such, par-
allel computing’s avoidance of interdependencies means
that parallel-computing programs run well on the least-
capable schedulers. In fact, a pure data-parallel program
can run successfully after being arbitrarily subdivided and
interleaved onto a uniprocessor.3 In contrast, concurrent-
computing programs might well require extreme subtlety
on the part of the scheduler.

One could argue that we should simply demand a
reasonable level of competence from the scheduler, so

3 Yes, this does mean that data-parallel programs are best-suited for
sequential execution. Why did you ask?

that we could simply ignore any distinctions between
parallelism and concurrency. Although this is often a good
strategy, there are important situations where efficiency,
performance, and scalability concerns sharply limit the
level of competence that the scheduler can reasonably
offer. One important example is when the scheduler is
implemented in hardware, as it often is in SIMD units or
GPGPUs. Another example is a workload where the units
of work are quite short, so that even a software-based
scheduler must make hard choices between subtlety on
the one hand and efficiency on the other.

Now, this second perspective can be thought of as
making the workload match the available scheduler, with
parallel workloads able to use simple schedulers and
concurrent workloads requiring sophisticated schedulers.

Unfortunately, this perspective does not always align
with the dependency-based distinction put forth by the
first perspective. For example, a highly interdependent
lock-based workload with one thread per CPU can make
do with a trivial scheduler because no scheduler decisions
are required. In fact, some workloads of this type can
even be run one after another on a sequential machine.
Therefore, such a workload would be labeled “concurrent”
by the first perspective and “parallel” by many taking the
second perspective.

Quick Quiz A.6: In what part of the second (scheduler-
based) perspective would the lock-based single-thread-per-
CPU workload be considered “concurrent”?

A third perspective considers concurrency to a logical
manifestation of the source code and parallelism to be a
physical manifestation of running that code on actual hard-
ware. But then what should we make of user applications
that spawn variable numbers of threads based on the num-
ber of CPUs available? Are these applications concurrent
when running on a single CPU and parallel when running
on multiple CPUs? If those applications are still concur-
rent rather than parallel even on multiple CPUs, what if
they use facilities such as sched_setaffinity() to bind
each of their threads to specified CPUs? And then does
it make a difference whether such applications hard-code
the CPU numbers on the one hand or compute the CPU
numbers based on the available CPUs on the other? And if
those applications are still merely concurrent, what if they
refuse to run if fewer than (say) four CPUs are available?
And what if the bottleneck is something other than CPUs,
as discussed in Section 10.2.3? While these questions
and variations on them are being carefully considered
in the light of experience running such applications in

v2024.12.27a

432 APPENDIX A. IMPORTANT QUESTIONS

production, please note that the scalability graphs in this
book fully justify the word “Parallel” in the title.

In short, this perspective might have the virtue of being
easy to teach, but it seems to be a bit lacking from a
practical viewpoint.

Which is just fine. After all, no human perspective
carries any weight against the objective universe.

This categorization failure does not necessarily mean
such perspectives are useless, but rather that you should
take on a suitably skeptical frame of mind when con-
sidering whether or not to attempt to apply them. As
always, use a give perspective where it applies and ignore
it otherwise.

In fact, it is likely that new perspectives will arise in
addition to parallel, concurrent, map-reduce, task-based,
and so on. Some will stand the test of time, and some will
not. Best wishes in your quest to guess which is which!

A.7 Why Is Software Buggy?

There is no perfection, only beautiful versions of

brokenness.

Shannon L. Alder

The short answer is “because it was written by humans,
and to err is human”. This does not necessarily mean
that automated code generation is the answer, because
the program that does the code generation will have
been written by humans. In addition, one of the biggest
problems in producing software is working out what that
software is supposed to do, and this task has thus far
proven rather resistant to automation.

Nevertheless, automation is an important part of the
process of reducing the number of bugs in software. For
but one example, despite their many flaws, it is almost
always better to use a compiler than to write in assembly
language.

Furthermore, careful validation can be very helpful in
finding bugs, as discussed in Chapters 11–12.

v2024.12.27a

The only difference between men and boys is the

price of their toys.

M. HébertAppendix B

“Toy” RCU Implementations

The toy RCU implementations in this appendix are de-
signed not for high performance, practicality, or any kind
of production use,1 but rather for clarity. Nevertheless,
you will need a thorough understanding of Chapters 2, 3,
4, 6, and 9 for even these toy RCU implementations to be
easily understandable.

This appendix provides a series of RCU implemen-
tations in order of increasing sophistication, from the
viewpoint of solving the existence-guarantee problem.
Appendix B.1 presents a rudimentary RCU implemen-
tation based on simple locking, while Appendices B.2
through B.9 present a series of simple RCU implemen-
tations based on locking, reference counters, and free-
running counters. Finally, Appendix B.10 provides a
summary and a list of desirable RCU properties.

B.1 Lock-Based RCU
Perhaps the simplest RCU implementation leverages
locking, as shown in Listing B.1 (rcu_lock.h and
rcu_lock.c).

In this implementation, rcu_read_lock() acquires
a global spinlock, rcu_read_unlock() releases it, and
synchronize_rcu() acquires it then immediately re-
leases it.

Because synchronize_rcu() does not return until
it has acquired (and released) the lock, it cannot return
until all prior RCU read-side critical sections have com-
pleted, thus faithfully implementing RCU semantics. Of
course, only one RCU reader may be in its read-side
critical section at a time, which almost entirely defeats the
purpose of RCU. In addition, the lock operations in rcu_
read_lock() and rcu_read_unlock() are extremely

1 However, production-quality user-level RCU implementations are
available [Des09b, DMS+12a].

Listing B.1: Lock-Based RCU Implementation
1 static void rcu_read_lock(void)
2 {
3 spin_lock(&rcu_gp_lock);
4 }
5
6 static void rcu_read_unlock(void)
7 {
8 spin_unlock(&rcu_gp_lock);
9 }

10
11 void synchronize_rcu(void)
12 {
13 spin_lock(&rcu_gp_lock);
14 spin_unlock(&rcu_gp_lock);
15 }

heavyweight, with read-side overhead ranging from about
100 nanoseconds on a single POWER5 CPU up to more
than 17 microseconds on a 64-CPU system. Worse yet,
these same lock operations permit rcu_read_lock() to
participate in deadlock cycles. Furthermore, in absence
of recursive locks, RCU read-side critical sections cannot
be nested, and, finally, although concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.
Quick Quiz B.1: Why wouldn’t any deadlock in the RCU
implementation in Listing B.1 also be a deadlock in any other
RCU implementation?

Quick Quiz B.2: Why not simply use reader-writer locks in
the RCU implementation in Listing B.1 in order to allow RCU
readers to proceed in parallel?

It is hard to imagine this implementation being useful
in a production setting, though it does have the virtue of
being implementable in almost any user-level application.
Furthermore, similar implementations having one lock
per CPU or using reader-writer locks have been used in
production in the 2.4 Linux kernel.

433

v2024.12.27a

434 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

Listing B.2: Per-Thread Lock-Based RCU Implementation
1 static void rcu_read_lock(void)
2 {
3 spin_lock(&__get_thread_var(rcu_gp_lock));
4 }
5
6 static void rcu_read_unlock(void)
7 {
8 spin_unlock(&__get_thread_var(rcu_gp_lock));
9 }

10
11 void synchronize_rcu(void)
12 {
13 int t;
14
15 for_each_running_thread(t) {
16 spin_lock(&per_thread(rcu_gp_lock, t));
17 spin_unlock(&per_thread(rcu_gp_lock, t));
18 }
19 }

A modified version of this one-lock-per-CPU approach,
but instead using one lock per thread, is described in the
next section.

B.2 Per-Thread Lock-Based RCU
Listing B.2 (rcu_lock_percpu.h and rcu_lock_
percpu.c) shows an implementation based on one lock
per thread. The rcu_read_lock() and rcu_read_
unlock() functions acquire and release, respectively,
the current thread’s lock. The synchronize_rcu()
function acquires and releases each thread’s lock in turn.
Therefore, all RCU read-side critical sections running
when synchronize_rcu() starts must have completed
before synchronize_rcu() can return.

This implementation does have the virtue of permitting
concurrent RCU readers, and does avoid the deadlock
condition that can arise with a single global lock. Further-
more, the read-side overhead, though high at roughly 140
nanoseconds, remains at about 140 nanoseconds regard-
less of the number of CPUs. However, the update-side
overhead ranges from about 600 nanoseconds on a single
POWER5 CPU up to more than 100 microseconds on 64
CPUs.
Quick Quiz B.3: Wouldn’t it be cleaner to acquire all the
locks, and then release them all in the loop from lines 15–18
of Listing B.2? After all, with this change, there would be a
point in time when there were no readers, simplifying things
greatly.

Quick Quiz B.4: Is the implementation shown in Listing B.2
free from deadlocks? Why or why not?

Listing B.3: RCU Implementation Using Single Global Refer-
ence Counter

1 atomic_t rcu_refcnt;
2
3 static void rcu_read_lock(void)
4 {
5 atomic_inc(&rcu_refcnt);
6 smp_mb();
7 }
8
9 static void rcu_read_unlock(void)

10 {
11 smp_mb();
12 atomic_dec(&rcu_refcnt);
13 }
14
15 void synchronize_rcu(void)
16 {
17 smp_mb();
18 while (atomic_read(&rcu_refcnt) != 0) {
19 poll(NULL, 0, 10);
20 }
21 smp_mb();
22 }

Quick Quiz B.5: Isn’t one advantage of the RCU algorithm
shown in Listing B.2 that it uses only primitives that are widely
available, for example, in POSIX pthreads?

This approach could be useful in some situations, given
that a similar approach was used in the Linux 2.4 ker-
nel [MM00].

The counter-based RCU implementation described next
overcomes some of the shortcomings of the lock-based
implementation.

B.3 Simple Counter-Based RCU
A slightly more sophisticated RCU implementation is
shown in Listing B.3 (rcu_rcg.h and rcu_rcg.c). This
implementation makes use of a global reference counter
rcu_refcnt defined on line 1. The rcu_read_lock()
primitive atomically increments this counter, then exe-
cutes a memory barrier to ensure that the RCU read-side
critical section is ordered after the atomic increment. Sim-
ilarly, rcu_read_unlock() executes a memory barrier
to confine the RCU read-side critical section, then atomi-
cally decrements the counter. The synchronize_rcu()
primitive spins waiting for the reference counter to reach
zero, surrounded by memory barriers. The poll() on
line 19 merely provides pure delay, and from a pure RCU-
semantics point of view could be omitted. Again, once
synchronize_rcu() returns, all prior RCU read-side
critical sections are guaranteed to have completed.

In happy contrast to the lock-based implementation
shown in Appendix B.1, this implementation allows par-

v2024.12.27a

B.4. STARVATION-FREE COUNTER-BASED RCU 435

allel execution of RCU read-side critical sections. In
happy contrast to the per-thread lock-based implemen-
tation shown in Appendix B.2, it also allows them to
be nested. In addition, the rcu_read_lock() primitive
cannot possibly participate in deadlock cycles, as it never
spins nor blocks.

Quick Quiz B.6: But what if you hold a lock across a call to
synchronize_rcu(), and then acquire that same lock within
an RCU read-side critical section?

However, this implementation still has some serious
shortcomings. First, the atomic operations in rcu_
read_lock() and rcu_read_unlock() are still quite
heavyweight, with read-side overhead ranging from about
100 nanoseconds on a single POWER5 CPU up to almost
40 microseconds on a 64-CPU system. This means that
the RCU read-side critical sections have to be extremely
long in order to get any real read-side parallelism. On
the other hand, in the absence of readers, grace periods
elapse in about 40 nanoseconds, many orders of magni-
tude faster than production-quality implementations in the
Linux kernel.

Quick Quiz B.7: How can the grace period possibly elapse
in 40 nanoseconds when synchronize_rcu() contains a
10-millisecond delay?

Second, if there are many concurrent rcu_read_
lock() and rcu_read_unlock() operations, there will
be extreme memory contention on rcu_refcnt, resulting
in expensive cache misses. Both of these first two short-
comings largely defeat a major purpose of RCU, namely
to provide low-overhead read-side synchronization primi-
tives.

Finally, a large number of RCU readers with long read-
side critical sections could prevent synchronize_rcu()
from ever completing, as the global counter might never
reach zero. This could result in starvation of RCU updates,
which is of course unacceptable in production settings.

Quick Quiz B.8: Why not simply make rcu_read_lock()
wait when a concurrent synchronize_rcu() has been wait-
ing too long in the RCU implementation in Listing B.3?
Wouldn’t that prevent synchronize_rcu() from starving?

Therefore, it is still hard to imagine this implementation
being useful in a production setting, though it has a
bit more potential than the lock-based mechanism, for
example, as an RCU implementation suitable for a high-
stress debugging environment. The next section describes

Listing B.4: RCU Global Reference-Count Pair Data
1 DEFINE_SPINLOCK(rcu_gp_lock);
2 atomic_t rcu_refcnt[2];
3 atomic_t rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Listing B.5: RCU Read-Side Using Global Reference-Count
Pair

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = atomic_read(&rcu_idx);
9 __get_thread_var(rcu_read_idx) = i;

10 atomic_inc(&rcu_refcnt[i]);
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 atomic_dec(&rcu_refcnt[i]);
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

a variation on the reference-counting scheme that is more
favorable to writers.

B.4 Starvation-Free Counter-Based
RCU

Listing B.5 (rcu_rcpg.h) shows the read-side primitives
of an RCU implementation that uses a pair of reference
counters (rcu_refcnt[]), along with a global index
that selects one counter out of the pair (rcu_idx), a
per-thread nesting counter (rcu_nesting), a per-thread
snapshot of the global index (rcu_read_idx), and a
global lock (rcu_gp_lock), which are themselves shown
in Listing B.4.

Design It is the two-element rcu_refcnt[] array that
provides the freedom from starvation. The key point
is that synchronize_rcu() is only required to wait
for pre-existing readers. If a new reader starts after
a given instance of synchronize_rcu() has already

v2024.12.27a

436 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

begun execution, then that instance of synchronize_
rcu() need not wait on that new reader. At any given
time, when a given reader enters its RCU read-side critical
section via rcu_read_lock(), it increments the element
of the rcu_refcnt[] array indicated by the rcu_idx
variable. When that same reader exits its RCU read-side
critical section via rcu_read_unlock(), it decrements
whichever element it incremented, ignoring any possible
subsequent changes to the rcu_idx value.

This arrangement means that synchronize_rcu()
can avoid starvation by complementing the value of rcu_
idx, as in rcu_idx = !rcu_idx. Suppose that the
old value of rcu_idx was zero, so that the new value
is one. New readers that arrive after the complement
operation will increment rcu_refcnt[1], while the old
readers that previously incremented rcu_refcnt[0] will
decrement rcu_refcnt[0] when they exit their RCU
read-side critical sections. This means that the value of
rcu_refcnt[0] will no longer be incremented, and thus
will be monotonically decreasing.2 This means that all
that synchronize_rcu() need do is wait for the value
of rcu_refcnt[0] to reach zero.

With the background, we are ready to look at the
implementation of the actual primitives.

Implementation The rcu_read_lock() primitive
atomically increments the member of the rcu_refcnt[]
pair indexed by rcu_idx, and keeps a snapshot of this in-
dex in the per-thread variable rcu_read_idx. The rcu_
read_unlock() primitive then atomically decrements
whichever counter of the pair that the corresponding rcu_
read_lock() incremented. However, because only one
value of rcu_idx is remembered per thread, additional
measures must be taken to permit nesting. These addi-
tional measures use the per-thread rcu_nesting variable
to track nesting.

To make all this work, line 6 of rcu_read_lock()
in Listing B.5 picks up the current thread’s instance of
rcu_nesting, and if line 7 finds that this is the outermost
rcu_read_lock(), then lines 8–10 pick up the current
value of rcu_idx, save it in this thread’s instance of
rcu_read_idx, and atomically increment the selected
element of rcu_refcnt. Regardless of the value of
rcu_nesting, line 12 increments it. Line 13 executes a
memory barrier to ensure that the RCU read-side critical

2 There is a race condition that this “monotonically decreasing”
statement ignores. This race condition will be dealt with by the code for
synchronize_rcu(). In the meantime, I suggest suspending disbelief.

Listing B.6: RCU Update Using Global Reference-Count Pair
1 void synchronize_rcu(void)
2 {
3 int i;
4
5 smp_mb();
6 spin_lock(&rcu_gp_lock);
7 i = atomic_read(&rcu_idx);
8 atomic_set(&rcu_idx, !i);
9 smp_mb();

10 while (atomic_read(&rcu_refcnt[i]) != 0) {
11 poll(NULL, 0, 10);
12 }
13 smp_mb();
14 atomic_set(&rcu_idx, i);
15 smp_mb();
16 while (atomic_read(&rcu_refcnt[!i]) != 0) {
17 poll(NULL, 0, 10);
18 }
19 spin_unlock(&rcu_gp_lock);
20 smp_mb();
21 }

section does not bleed out before the rcu_read_lock()
code.

Similarly, the rcu_read_unlock() function executes
a memory barrier at line 21 to ensure that the RCU
read-side critical section does not bleed out after the rcu_
read_unlock() code. Line 22 picks up this thread’s
instance of rcu_nesting, and if line 23 finds that this is
the outermost rcu_read_unlock(), then lines 24 and 25
pick up this thread’s instance of rcu_read_idx (saved by
the outermost rcu_read_lock()) and atomically decre-
ments the selected element of rcu_refcnt. Regardless of
the nesting level, line 27 decrements this thread’s instance
of rcu_nesting.

Listing B.6 (rcu_rcpg.c) shows the corresponding
synchronize_rcu() implementation. Lines 6 and 19
acquire and release rcu_gp_lock in order to prevent
more than one concurrent instance of synchronize_
rcu(). Lines 7 and 8 pick up the value of rcu_idx and
complement it, respectively, so that subsequent instances
of rcu_read_lock() will use a different element of
rcu_refcnt than did preceding instances. Lines 10–12
then wait for the prior element of rcu_refcnt to reach
zero, with the memory barrier on line 9 ensuring that
the check of rcu_refcnt is not reordered to precede
the complementing of rcu_idx. Lines 13–18 repeat
this process, and line 20 ensures that any subsequent
reclamation operations are not reordered to precede the
checking of rcu_refcnt.

Quick Quiz B.9: Why the memory barrier on line 5 of
synchronize_rcu() in Listing B.6 given that there is a
spin-lock acquisition immediately after?

v2024.12.27a

B.5. SCALABLE COUNTER-BASED RCU 437

Quick Quiz B.10: Why is the counter flipped twice in List-
ing B.6? Shouldn’t a single flip-and-wait cycle be sufficient?

This implementation avoids the update-starvation issues
that could occur in the single-counter implementation
shown in Listing B.3.

Discussion There are still some serious shortcomings.
First, the atomic operations in rcu_read_lock() and
rcu_read_unlock() are still quite heavyweight. In fact,
they are more complex than those of the single-counter
variant shown in Listing B.3, with the read-side primitives
consuming about 150 nanoseconds on a single POWER5
CPU and almost 40 microseconds on a 64-CPU system.
The update-side synchronize_rcu() primitive is more
costly as well, ranging from about 200 nanoseconds on
a single POWER5 CPU to more than 40 microseconds
on a 64-CPU system. This means that the RCU read-side
critical sections have to be extremely long in order to get
any real read-side parallelism.

Second, if there are many concurrent rcu_read_
lock() and rcu_read_unlock() operations, there will
be extreme memory contention on the rcu_refcnt ele-
ments, resulting in expensive cache misses. This further
extends the RCU read-side critical-section duration re-
quired to provide parallel read-side access. These first
two shortcomings defeat the purpose of RCU in most
situations.

Third, the need to flip rcu_idx twice imposes sub-
stantial overhead on updates, especially if there are large
numbers of threads.

Finally, despite the fact that concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Quick Quiz B.11: Given that atomic increment and decrement
are so expensive, why not just use non-atomic increment on
line 10 and a non-atomic decrement on line 25 of Listing B.5?

Despite these shortcomings, one could imagine this
variant of RCU being used on small tightly coupled multi-
processors, perhaps as a memory-conserving implementa-
tion that maintains API compatibility with more complex
implementations. However, it would not likely scale well
beyond a few CPUs.

The next section describes yet another variation on the
reference-counting scheme that provides greatly improved
read-side performance and scalability.

Listing B.7: RCU Per-Thread Reference-Count Pair Data
1 DEFINE_SPINLOCK(rcu_gp_lock);
2 DEFINE_PER_THREAD(int [2], rcu_refcnt);
3 atomic_t rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Listing B.8: RCU Read-Side Using Per-Thread Reference-Count
Pair

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = atomic_read(&rcu_idx);
9 __get_thread_var(rcu_read_idx) = i;

10 __get_thread_var(rcu_refcnt)[i]++;
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 __get_thread_var(rcu_refcnt)[i]--;
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

B.5 Scalable Counter-Based RCU
Listing B.8 (rcu_rcpl.h) shows the read-side primitives
of an RCU implementation that uses per-thread pairs of
reference counters. This implementation is quite similar
to that shown in Listing B.5, the only difference being
that rcu_refcnt is now a per-thread array (as shown
in Listing B.7). As with the algorithm in the previous
section, use of this two-element array prevents readers
from starving updaters. One benefit of per-thread rcu_
refcnt[] array is that the rcu_read_lock() and rcu_
read_unlock() primitives no longer perform atomic
operations.

Quick Quiz B.12: Come off it! We can see the atomic_
read() primitive in rcu_read_lock()!!! So why are you
trying to pretend that rcu_read_lock() contains no atomic
operations???

Listing B.9 (rcu_rcpl.c) shows the implementa-
tion of synchronize_rcu(), along with a helper
function named flip_counter_and_wait(). The

v2024.12.27a

438 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

Listing B.9: RCU Update Using Per-Thread Reference-Count
Pair

1 static void flip_counter_and_wait(int i)
2 {
3 int t;
4
5 atomic_set(&rcu_idx, !i);
6 smp_mb();
7 for_each_thread(t) {
8 while (per_thread(rcu_refcnt, t)[i] != 0) {
9 poll(NULL, 0, 10);

10 }
11 }
12 smp_mb();
13 }
14
15 void synchronize_rcu(void)
16 {
17 int i;
18
19 smp_mb();
20 spin_lock(&rcu_gp_lock);
21 i = atomic_read(&rcu_idx);
22 flip_counter_and_wait(i);
23 flip_counter_and_wait(!i);
24 spin_unlock(&rcu_gp_lock);
25 smp_mb();
26 }

synchronize_rcu() function resembles that shown in
Listing B.6, except that the repeated counter flip is re-
placed by a pair of calls on lines 22 and 23 to the new
helper function.

The new flip_counter_and_wait() function up-
dates the rcu_idx variable on line 5, executes a memory
barrier on line 6, then lines 7–11 spin on each thread’s
prior rcu_refcnt element, waiting for it to go to zero.
Once all such elements have gone to zero, it executes
another memory barrier on line 12 and returns.

This RCU implementation imposes important new re-
quirements on its software environment, namely, (1) that
it be possible to declare per-thread variables, (2) that these
per-thread variables be accessible from other threads, and
(3) that it is possible to enumerate all threads. These
requirements can be met in almost all software envi-
ronments, but often result in fixed upper bounds on the
number of threads. More-complex implementations might
avoid such bounds, for example, by using expandable hash
tables. Such implementations might dynamically track
threads, for example, by adding them on their first call to
rcu_read_lock().

Quick Quiz B.13: Great, if we have 𝑁 threads, we can have
2𝑁 ten-millisecond waits (one set per flip_counter_and_
wait() invocation, and even that assumes that we wait only
once for each thread). Don’t we need the grace period to
complete much more quickly?

Listing B.10: RCU Read-Side Using Per-Thread Reference-
Count Pair and Shared Update Data

1 DEFINE_SPINLOCK(rcu_gp_lock);
2 DEFINE_PER_THREAD(int [2], rcu_refcnt);
3 long rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

This implementation still has several shortcomings.
First, the need to flip rcu_idx twice imposes substantial
overhead on updates, especially if there are large numbers
of threads.

Second, synchronize_rcu() must now examine a
number of variables that increases linearly with the number
of threads, imposing substantial overhead on applications
with large numbers of threads.

Third, as before, although concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Finally, as noted in the text, the need for per-thread
variables and for enumerating threads may be problematic
in some software environments.

That said, the read-side primitives scale very nicely,
requiring about 115 nanoseconds regardless of whether
running on a single-CPU or a 64-CPU POWER5 system.
As noted above, the synchronize_rcu() primitive does
not scale, ranging in overhead from almost a microsecond
on a single POWER5 CPU up to almost 200 microseconds
on a 64-CPU system. This implementation could con-
ceivably form the basis for a production-quality user-level
RCU implementation.

The next section describes an algorithm permitting
more efficient concurrent RCU updates.

B.6 Scalable Counter-Based RCU
With Shared Grace Periods

Listing B.11 (rcu_rcpls.h) shows the read-side prim-
itives for an RCU implementation using per-thread ref-
erence count pairs, as before, but permitting updates to
share grace periods. The main difference from the earlier
implementation shown in Listing B.8 is that rcu_idx
is now a long that counts freely, so that line 8 of List-
ing B.11 must mask off the low-order bit. We also switched
from using atomic_read() and atomic_set() to using
READ_ONCE(). The data is also quite similar, as shown
in Listing B.10, with rcu_idx now being a long instead
of an atomic_t.

v2024.12.27a

B.6. SCALABLE COUNTER-BASED RCU WITH SHARED GRACE PERIODS 439

Listing B.11: RCU Read-Side Using Per-Thread Reference-
Count Pair and Shared Update

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = READ_ONCE(rcu_idx) & 0x1;
9 __get_thread_var(rcu_read_idx) = i;

10 __get_thread_var(rcu_refcnt)[i]++;
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 __get_thread_var(rcu_refcnt)[i]--;
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

Listing B.12 (rcu_rcpls.c) shows the implementation
of synchronize_rcu() and its helper function flip_
counter_and_wait(). These are similar to those in
Listing B.9. The differences in flip_counter_and_
wait() include:

1. Line 6 uses WRITE_ONCE() instead of atomic_
set(), and increments rather than complementing.

2. A new line 7 masks the counter down to its bottom
bit.

The changes to synchronize_rcu() are more perva-
sive:

1. There is a new oldctr local variable that captures
the pre-lock-acquisition value of rcu_idx on line 20.

2. Line 23 uses READ_ONCE() instead of atomic_
read().

3. Lines 27–30 check to see if at least three counter flips
were performed by other threads while the lock was
being acquired, and, if so, releases the lock, does a
memory barrier, and returns. In this case, there were
two full waits for the counters to go to zero, so those
other threads already did all the required work.

4. At lines 33–34, flip_counter_and_wait() is
only invoked a second time if there were fewer than

Listing B.12: RCU Shared Update Using Per-Thread Reference-
Count Pair

1 static void flip_counter_and_wait(int ctr)
2 {
3 int i;
4 int t;
5
6 WRITE_ONCE(rcu_idx, ctr + 1);
7 i = ctr & 0x1;
8 smp_mb();
9 for_each_thread(t) {

10 while (per_thread(rcu_refcnt, t)[i] != 0) {
11 poll(NULL, 0, 10);
12 }
13 }
14 smp_mb();
15 }
16
17 void synchronize_rcu(void)
18 {
19 int ctr;
20 int oldctr;
21
22 smp_mb();
23 oldctr = READ_ONCE(rcu_idx);
24 smp_mb();
25 spin_lock(&rcu_gp_lock);
26 ctr = READ_ONCE(rcu_idx);
27 if (ctr - oldctr >= 3) {
28 spin_unlock(&rcu_gp_lock);
29 smp_mb();
30 return;
31 }
32 flip_counter_and_wait(ctr);
33 if (ctr - oldctr < 2)
34 flip_counter_and_wait(ctr + 1);
35 spin_unlock(&rcu_gp_lock);
36 smp_mb();
37 }

two counter flips while the lock was being acquired.
On the other hand, if there were two counter flips,
some other thread did one full wait for all the counters
to go to zero, so only one more is required.

With this approach, if an arbitrarily large number of
threads invoke synchronize_rcu() concurrently, with
one CPU for each thread, there will be a total of only three
waits for counters to go to zero.

Despite the improvements, this implementation of RCU
still has a few shortcomings. First, as before, the need
to flip rcu_idx twice imposes substantial overhead on
updates, especially if there are large numbers of threads.

Second, each updater still acquires rcu_gp_lock, even
if there is no work to be done. This can result in a
severe scalability limitation if there are large numbers of
concurrent updates. There are ways of avoiding this, as
was done in a production-quality real-time implementation
of RCU for the Linux kernel [McK07a].

Third, this implementation requires per-thread variables
and the ability to enumerate threads, which again can be
problematic in some software environments.

v2024.12.27a

440 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

Finally, on 32-bit machines, a given update thread might
be preempted long enough for the rcu_idx counter to
overflow. This could cause such a thread to force an
unnecessary pair of counter flips. However, even if each
grace period took only one microsecond, the offending
thread would need to be preempted for more than an hour,
in which case an extra pair of counter flips is likely the
least of your worries.

As with the implementation described in Appendix B.3,
the read-side primitives scale extremely well, incurring
roughly 115 nanoseconds of overhead regardless of the
number of CPUs. The synchronize_rcu() primitive
is still expensive, ranging from about one microsecond
up to about 16 microseconds. This is nevertheless much
cheaper than the roughly 200 microseconds incurred by
the implementation in Appendix B.5. So, despite its short-
comings, one could imagine this RCU implementation
being used in production in real-life applications.

Quick Quiz B.14: All of these toy RCU implementations
have either atomic operations in rcu_read_lock() and rcu_
read_unlock(), or synchronize_rcu() overhead that in-
creases linearly with the number of threads. Under what cir-
cumstances could an RCU implementation enjoy lightweight
implementations for all three of these primitives, all having
deterministic (O (1)) overheads and latencies?

Referring back to Listing B.11, we see that there is
one global-variable access and no fewer than four ac-
cesses to thread-local variables. Given the relatively
high cost of thread-local accesses on systems implement-
ing POSIX threads, it is tempting to collapse the three
thread-local variables into a single structure, permitting
rcu_read_lock() and rcu_read_unlock() to access
their thread-local data with a single thread-local-storage
access. However, an even better approach would be to
reduce the number of thread-local accesses to one, as is
done in the next section.

B.7 RCU Based on Free-Running
Counter

Listing B.14 (rcu.h and rcu.c) shows an RCU imple-
mentation based on a single global free-running counter
that takes on only even-numbered values, with data shown
in Listing B.13.

The resulting rcu_read_lock() implementation is
extremely straightforward. Lines 3 and 4 simply add
the value one to the global free-running rcu_gp_ctr
variable and stores the resulting odd-numbered value into

Listing B.13: Data for Free-Running Counter Using RCU
1 DEFINE_SPINLOCK(rcu_gp_lock);
2 long rcu_gp_ctr = 0;
3 DEFINE_PER_THREAD(long, rcu_reader_gp);
4 DEFINE_PER_THREAD(long, rcu_reader_gp_snap);

Listing B.14: Free-Running Counter Using RCU
1 static inline void rcu_read_lock(void)
2 {
3 __get_thread_var(rcu_reader_gp) =
4 READ_ONCE(rcu_gp_ctr) + 1;
5 smp_mb();
6 }
7
8 static inline void rcu_read_unlock(void)
9 {

10 smp_mb();
11 __get_thread_var(rcu_reader_gp) =
12 READ_ONCE(rcu_gp_ctr);
13 }
14
15 void synchronize_rcu(void)
16 {
17 int t;
18
19 smp_mb();
20 spin_lock(&rcu_gp_lock);
21 WRITE_ONCE(rcu_gp_ctr, rcu_gp_ctr + 2);
22 smp_mb();
23 for_each_thread(t) {
24 while ((per_thread(rcu_reader_gp, t) & 0x1) &&
25 ((per_thread(rcu_reader_gp, t) -
26 rcu_gp_ctr) < 0)) {
27 poll(NULL, 0, 10);
28 }
29 }
30 spin_unlock(&rcu_gp_lock);
31 smp_mb();
32 }

the rcu_reader_gp per-thread variable. Line 5 executes
a memory barrier to prevent the content of the subsequent
RCU read-side critical section from “leaking out”.

The rcu_read_unlock() implementation is similar.
Line 10 executes a memory barrier, again to prevent the
prior RCU read-side critical section from “leaking out”.
Lines 11 and 12 then copy the rcu_gp_ctr global variable
to the rcu_reader_gp per-thread variable, leaving this
per-thread variable with an even-numbered value so that a
concurrent instance of synchronize_rcu() will know
to ignore it.

Quick Quiz B.15: If any even value is sufficient to tell
synchronize_rcu() to ignore a given task, why don’t
lines 11 and 12 of Listing B.14 simply assign zero to rcu_
reader_gp?

Thus, synchronize_rcu() could wait for all of the
per-thread rcu_reader_gp variables to take on even-
numbered values. However, it is possible to do much better
than that because synchronize_rcu() need only wait

v2024.12.27a

B.8. NESTABLE RCU BASED ON FREE-RUNNING COUNTER 441

on pre-existing RCU read-side critical sections. Line 19
executes a memory barrier to prevent prior manipulations
of RCU-protected data structures from being reordered (by
either the CPU or the compiler) to follow the increment on
line 21. Line 20 acquires the rcu_gp_lock (and line 30
releases it) in order to prevent multiple synchronize_
rcu() instances from running concurrently. Line 21 then
increments the global rcu_gp_ctr variable by two, so
that all pre-existing RCU read-side critical sections will
have corresponding per-thread rcu_reader_gp variables
with values less than that of rcu_gp_ctr, modulo the
machine’s word size. Recall also that threads with even-
numbered values of rcu_reader_gp are not in an RCU
read-side critical section, so that lines 23–29 scan the rcu_
reader_gp values until they all are either even (line 24)
or are greater than the global rcu_gp_ctr (lines 25–26).
Line 27 blocks for a short period of time to wait for a
pre-existing RCU read-side critical section, but this can be
replaced with a spin-loop if grace-period latency is of the
essence. Finally, the memory barrier at line 31 ensures
that any subsequent destruction will not be reordered into
the preceding loop.

Quick Quiz B.16: Why are the memory barriers on lines 19
and 31 of Listing B.14 needed? Aren’t the memory barriers
inherent in the locking primitives on lines 20 and 30 sufficient?

This approach achieves much better read-side perfor-
mance, incurring roughly 63 nanoseconds of overhead
regardless of the number of POWER5 CPUs. Updates in-
cur more overhead, ranging from about 500 nanoseconds
on a single POWER5 CPU to more than 100 microseconds
on 64 such CPUs.
Quick Quiz B.17: Couldn’t the update-side batching opti-
mization described in Appendix B.6 be applied to the imple-
mentation shown in Listing B.14?

This implementation suffers from some serious short-
comings in addition to the high update-side overhead
noted earlier. First, it is no longer permissible to nest
RCU read-side critical sections, a topic that is taken up
in the next section. Second, if a reader is preempted at
line 3 of Listing B.14 after fetching from rcu_gp_ctr
but before storing to rcu_reader_gp, and if the rcu_
gp_ctr counter then runs through more than half but less
than all of its possible values, then synchronize_rcu()
will ignore the subsequent RCU read-side critical section.
Third and finally, this implementation requires that the
enclosing software environment be able to enumerate
threads and maintain per-thread variables.

Listing B.15: Data for Nestable RCU Using a Free-Running
Counter

1 DEFINE_SPINLOCK(rcu_gp_lock);
2 #define RCU_GP_CTR_SHIFT 7
3 #define RCU_GP_CTR_BOTTOM_BIT (1 << RCU_GP_CTR_SHIFT)
4 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)
5 #define MAX_GP_ADV_DISTANCE (RCU_GP_CTR_NEST_MASK << 8)
6 unsigned long rcu_gp_ctr = 0;
7 DEFINE_PER_THREAD(unsigned long, rcu_reader_gp);

Quick Quiz B.18: Is the possibility of readers being pre-
empted in lines 3–4 of Listing B.14 a real problem, in other
words, is there a real sequence of events that could lead to
failure? If not, why not? If so, what is the sequence of events,
and how can the failure be addressed?

B.8 Nestable RCU Based on Free-
Running Counter

Listing B.16 (rcu_nest.h and rcu_nest.c) shows an
RCU implementation based on a single global free-running
counter, but that permits nesting of RCU read-side critical
sections. This nestability is accomplished by reserving the
low-order bits of the global rcu_gp_ctr to count nesting,
using the definitions shown in Listing B.15. This is a
generalization of the scheme in Appendix B.7, which can
be thought of as having a single low-order bit reserved for
counting nesting depth. Two C-preprocessor macros are
used to arrange this, RCU_GP_CTR_NEST_MASK and RCU_
GP_CTR_BOTTOM_BIT. These are related: RCU_GP_CTR_
NEST_MASK=RCU_GP_CTR_BOTTOM_BIT-1. The RCU_
GP_CTR_BOTTOM_BIT macro contains a single bit that
is positioned just above the bits reserved for counting
nesting, and the RCU_GP_CTR_NEST_MASK has all one
bits covering the region of rcu_gp_ctr used to count
nesting. Obviously, these two C-preprocessor macros
must reserve enough of the low-order bits of the counter
to permit the maximum required nesting of RCU read-
side critical sections, and this implementation reserves
seven bits, for a maximum RCU read-side critical-section
nesting depth of 127, which should be well in excess of
that needed by most applications.

The resulting rcu_read_lock() implementation is
still reasonably straightforward. Line 6 places a pointer
to this thread’s instance of rcu_reader_gp into the local
variable rrgp, minimizing the number of expensive calls
to the pthreads thread-local-state API. Line 7 records
the current value of rcu_reader_gp into another local
variable tmp, and line 8 checks to see if the low-order bits

v2024.12.27a

442 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

Listing B.16: Nestable RCU Using a Free-Running Counter
1 static void rcu_read_lock(void)
2 {
3 unsigned long tmp;
4 unsigned long *rrgp;
5
6 rrgp = &__get_thread_var(rcu_reader_gp);
7 tmp = *rrgp;
8 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0)
9 tmp = READ_ONCE(rcu_gp_ctr);

10 tmp++;
11 WRITE_ONCE(*rrgp, tmp);
12 smp_mb();
13 }
14
15 static void rcu_read_unlock(void)
16 {
17 smp_mb();
18 __get_thread_var(rcu_reader_gp)--;
19 }
20
21 void synchronize_rcu(void)
22 {
23 int t;
24
25 smp_mb();
26 spin_lock(&rcu_gp_lock);
27 WRITE_ONCE(rcu_gp_ctr, rcu_gp_ctr +
28 RCU_GP_CTR_BOTTOM_BIT);
29 smp_mb();
30 for_each_thread(t) {
31 while (rcu_gp_ongoing(t) &&
32 ((READ_ONCE(per_thread(rcu_reader_gp, t)) -
33 rcu_gp_ctr) < 0)) {
34 poll(NULL, 0, 10);
35 }
36 }
37 spin_unlock(&rcu_gp_lock);
38 smp_mb();
39 }

are zero, which would indicate that this is the outermost
rcu_read_lock(). If so, line 9 places the global rcu_
gp_ctr into tmp because the current value previously
fetched by line 7 is likely to be obsolete. In either case,
line 10 increments the nesting depth, which you will
recall is stored in the seven low-order bits of the counter.
Line 11 stores the updated counter back into this thread’s
instance of rcu_reader_gp, and, finally, line 12 executes
a memory barrier to prevent the RCU read-side critical
section from bleeding out into the code preceding the call
to rcu_read_lock().

In other words, this implementation of rcu_read_
lock() picks up a copy of the global rcu_gp_ctr unless
the current invocation of rcu_read_lock() is nested
within an RCU read-side critical section, in which case it
instead fetches the contents of the current thread’s instance
of rcu_reader_gp. Either way, it increments whatever
value it fetched in order to record an additional nesting
level, and stores the result in the current thread’s instance
of rcu_reader_gp.

Interestingly enough, despite their rcu_read_lock()
differences, the implementation of rcu_read_unlock()
is broadly similar to that shown in Appendix B.7. Line 17
executes a memory barrier in order to prevent the RCU
read-side critical section from bleeding out into code
following the call to rcu_read_unlock(), and line 18
decrements this thread’s instance of rcu_reader_gp,
which has the effect of decrementing the nesting count
contained in rcu_reader_gp’s low-order bits. Debug-
ging versions of this primitive would check (before decre-
menting!) that these low-order bits were non-zero.

The implementation of synchronize_rcu() is quite
similar to that shown in Appendix B.7. There are two
differences. The first is that lines 27 and 28 adds RCU_
GP_CTR_BOTTOM_BIT to the global rcu_gp_ctr instead
of adding the constant “2”, and the second is that the
comparison on line 31 has been abstracted out to a separate
function, where it checks the bits indicated by RCU_GP_
CTR_NEST_MASK instead of unconditionally checking the
low-order bit.

This approach achieves read-side performance almost
equal to that shown in Appendix B.7, incurring roughly
65 nanoseconds of overhead regardless of the number
of POWER5 CPUs. Updates again incur more overhead,
ranging from about 600 nanoseconds on a single POWER5
CPU to more than 100 microseconds on 64 such CPUs.

Quick Quiz B.19: Why not simply maintain a separate per-
thread nesting-level variable, as was done in previous section,
rather than having all this complicated bit manipulation?

This implementation suffers from the same shortcom-
ings as does that of Appendix B.7, except that nesting
of RCU read-side critical sections is now permitted. In
addition, on 32-bit systems, this approach shortens the
time required to overflow the global rcu_gp_ctr variable.
The following section shows one way to greatly increase
the time required for overflow to occur, while greatly
reducing read-side overhead.

Quick Quiz B.20: Given the algorithm shown in Listing B.16,
how could you double the time required to overflow the global
rcu_gp_ctr?

Quick Quiz B.21: Again, given the algorithm shown in
Listing B.16, is counter overflow fatal? Why or why not? If it
is fatal, what can be done to fix it?

v2024.12.27a

B.9. RCU BASED ON QUIESCENT STATES 443

Listing B.17: Data for Quiescent-State-Based RCU
1 DEFINE_SPINLOCK(rcu_gp_lock);
2 long rcu_gp_ctr = 0;
3 DEFINE_PER_THREAD(long, rcu_reader_qs_gp);

B.9 RCU Based on Quiescent States
Listing B.18 (rcu_qs.h) shows the read-side primitives
used to construct a user-level implementation of RCU
based on quiescent states, with the data shown in List-
ing B.17. As can be seen from lines 1–7 in the listing,
the rcu_read_lock() and rcu_read_unlock() prim-
itives do nothing, and can in fact be expected to be inlined
and optimized away, as they are in server builds of the
Linux kernel. This is due to the fact that quiescent-state-
based RCU implementations approximate the extents of
RCU read-side critical sections using the aforementioned
quiescent states. Each of these quiescent states contains a
call to rcu_quiescent_state(), which is shown from
lines 9–15 in the listing. Threads entering extended quies-
cent states (for example, when blocking) may instead call
rcu_thread_offline() (lines 17–23) when entering
an extended quiescent state and then call rcu_thread_
online() (lines 25–28) when leaving it. As such,
rcu_thread_online() is analogous to rcu_read_
lock() and rcu_thread_offline() is analogous to
rcu_read_unlock(). In addition, rcu_quiescent_
state() can be thought of as a rcu_thread_online()
immediately followed by a rcu_thread_offline().3
It is illegal to invoke rcu_quiescent_state(), rcu_
thread_offline(), or rcu_thread_online() from
an RCU read-side critical section.

In rcu_quiescent_state(), line 11 executes a mem-
ory barrier to prevent any code prior to the quiescent state
(including possible RCU read-side critical sections) from
being reordered into the quiescent state. Lines 12–13 pick
up a copy of the global rcu_gp_ctr, using READ_ONCE()
to ensure that the compiler does not employ any optimiza-
tions that would result in rcu_gp_ctr being fetched more
than once, and then adds one to the value fetched and
stores it into the per-thread rcu_reader_qs_gp variable,
so that any concurrent instance of synchronize_rcu()
will see an odd-numbered value, thus becoming aware that
a new RCU read-side critical section has started. Instances
of synchronize_rcu() that are waiting on older RCU

3 Although the code in the listing is consistent with rcu_
quiescent_state() being the same as rcu_thread_online() im-
mediately followed by rcu_thread_offline(), this relationship is
obscured by performance optimizations.

Listing B.18: Quiescent-State-Based RCU Read Side
1 static void rcu_read_lock(void)
2 {
3 }
4
5 static void rcu_read_unlock(void)
6 {
7 }
8
9 static void rcu_quiescent_state(void)

10 {
11 smp_mb();
12 __get_thread_var(rcu_reader_qs_gp) =
13 READ_ONCE(rcu_gp_ctr) + 1;
14 smp_mb();
15 }
16
17 static void rcu_thread_offline(void)
18 {
19 smp_mb();
20 __get_thread_var(rcu_reader_qs_gp) =
21 READ_ONCE(rcu_gp_ctr);
22 smp_mb();
23 }
24
25 static void rcu_thread_online(void)
26 {
27 rcu_quiescent_state();
28 }

read-side critical sections will thus know to ignore this
new one. Finally, line 14 executes a memory barrier,
which prevents subsequent code (including a possible
RCU read-side critical section) from being re-ordered
with the lines 12–13.

Quick Quiz B.22: Doesn’t the additional memory barrier
shown on line 14 of Listing B.18 greatly increase the overhead
of rcu_quiescent_state()?

Some applications might use RCU only occasionally,
but use it very heavily when they do use it. Such ap-
plications might choose to use rcu_thread_online()
when starting to use RCU and rcu_thread_offline()
when no longer using RCU. The time between a call
to rcu_thread_offline() and a subsequent call to
rcu_thread_online() is an extended quiescent state,
so that RCU will not expect explicit quiescent states to be
registered during this time.

The rcu_thread_offline() function simply sets the
per-thread rcu_reader_qs_gp variable to the current
value of rcu_gp_ctr, which has an even-numbered value.
Any concurrent instances of synchronize_rcu() will
thus know to ignore this thread.

Quick Quiz B.23: Why are the two memory barriers on
lines 11 and 14 of Listing B.18 needed?

v2024.12.27a

444 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

Listing B.19: RCU Update Side Using Quiescent States
1 void synchronize_rcu(void)
2 {
3 int t;
4
5 smp_mb();
6 spin_lock(&rcu_gp_lock);
7 WRITE_ONCE(rcu_gp_ctr, rcu_gp_ctr + 2);
8 smp_mb();
9 for_each_thread(t) {

10 while (rcu_gp_ongoing(t) &&
11 ((per_thread(rcu_reader_qs_gp, t)
12 - rcu_gp_ctr) < 0)) {
13 poll(NULL, 0, 10);
14 }
15 }
16 spin_unlock(&rcu_gp_lock);
17 smp_mb();
18 }

The rcu_thread_online() function simply invokes
rcu_quiescent_state(), thus marking the end of the
extended quiescent state.

Listing B.19 (rcu_qs.c) shows the implementation of
synchronize_rcu(), which is quite similar to that of
the preceding sections.

This implementation has blazingly fast read-side primi-
tives, with an rcu_read_lock()–rcu_read_unlock()
round trip incurring an overhead of roughly 50 picosec-
onds. The synchronize_rcu() overhead ranges from
about 600 nanoseconds on a single-CPU POWER5 system
up to more than 100 microseconds on a 64-CPU system.

Quick Quiz B.24: To be sure, the clock frequencies of
POWER systems in 2008 were quite high, but even a 5 GHz
clock frequency is insufficient to allow loops to be executed in
50 picoseconds! What is going on here?

However, this implementation requires that each thread
either invoke rcu_quiescent_state() periodically or
to invoke rcu_thread_offline() for extended quies-
cent states. The need to invoke these functions periodically
can make this implementation difficult to use in some sit-
uations, such as for certain types of library functions.

Quick Quiz B.25: Why would the fact that the code is in a
library make any difference for how easy it is to use the RCU
implementation shown in Listings B.18 and B.19?

Quick Quiz B.26: But what if you hold a lock across a
call to synchronize_rcu(), and then acquire that same lock
within an RCU read-side critical section? This should be a
deadlock, but how can a primitive that generates absolutely no
code possibly participate in a deadlock cycle?

In addition, this implementation does not permit concur-
rent calls to synchronize_rcu() to share grace periods.

That said, one could easily imagine a production-quality
RCU implementation based on this version of RCU.

B.10 Summary of Toy RCU Imple-
mentations

If you made it this far, congratulations! You should
now have a much clearer understanding not only of RCU
itself, but also of the requirements of enclosing software
environments and applications. Those wishing an even
deeper understanding are invited to read descriptions
of production-quality RCU implementations [DMS+12a,
McK07a, McK08b, McK09a].

The preceding sections listed some desirable properties
of the various RCU primitives. The following list is
provided for easy reference for those wishing to create a
new RCU implementation.

1. There must be read-side primitives (such as
rcu_read_lock() and rcu_read_unlock()) and
grace-period primitives (such as synchronize_
rcu() and call_rcu()), such that any RCU read-
side critical section in existence at the start of a grace
period has completed by the end of the grace period.

2. RCU read-side primitives should have minimal over-
head. In particular, expensive operations such as
cache misses, atomic instructions, memory barriers,
and branches should be avoided.

3. RCU read-side primitives should have O (1) compu-
tational complexity to enable real-time use. (This
implies that readers run concurrently with updaters.)

4. RCU read-side primitives should be usable in all
contexts (in the Linux kernel, they are permitted
everywhere except in the idle loop). An important
special case is that RCU read-side primitives be
usable within an RCU read-side critical section, in
other words, that it be possible to nest RCU read-side
critical sections.

5. RCU read-side primitives should be unconditional,
with no failure returns. This property is extremely
important, as failure checking increases complexity
and complicates testing and validation.

6. Any operation other than a quiescent state (and thus
a grace period) should be permitted in an RCU
read-side critical section. In particular, irrevocable
operations such as I/O should be permitted.

v2024.12.27a

B.10. SUMMARY OF TOY RCU IMPLEMENTATIONS 445

7. It should be possible to update an RCU-protected data
structure while executing within an RCU read-side
critical section.

8. Both RCU read-side and update-side primitives
should be independent of memory allocator design
and implementation, in other words, the same RCU
implementation should be able to protect a given
data structure regardless of how the data elements
are allocated and freed.

9. RCU grace periods should not be blocked by threads
that halt outside of RCU read-side critical sections.
(But note that most quiescent-state-based implemen-
tations violate this desideratum.)

Quick Quiz B.27: Given that grace periods are prohibited
within RCU read-side critical sections, how can an RCU data
structure possibly be updated while in an RCU read-side critical
section?

v2024.12.27a

446 APPENDIX B. “TOY” RCU IMPLEMENTATIONS

v2024.12.27a

Order! Order in the court!

UnknownAppendix C

Why Memory Barriers?

So what possessed CPU designers to cause them to inflict
memory barriers on poor unsuspecting SMP software
designers?

In short, because reordering memory references allows
much better performance, courtesy of the finite speed of
light and the non-zero size of atoms noted in Section 3.2,
and particularly in the hardware-performance question
posed by Quick Quiz 3.9. Therefore, memory barriers are
needed to force ordering in things like synchronization
primitives whose correct operation depends on ordered
memory references.

Getting a more detailed answer to this question requires
a good understanding of how CPU caches work, and
especially what is required to make caches really work
well. The following sections:

1. Present the structure of a cache,

2. Describe how cache-coherency protocols ensure that
CPUs agree on the value of each location in memory,
and, finally,

3. Outline how store buffers and invalidate queues help
caches and cache-coherency protocols achieve high
performance.

We will see that memory barriers are a necessary evil that
is required to enable good performance and scalability,
an evil that stems from the fact that CPUs are orders of
magnitude faster than are both the interconnects between
them and the memory they are attempting to access.

C.1 Cache Structure
Modern CPUs are much faster than are modern memory
systems. A 2006 CPU might be capable of executing ten
instructions per nanosecond, but will require many tens of

CPU 0 CPU 1

CacheCache

Memory

Interconnect

Figure C.1: Modern Computer System Cache Structure

nanoseconds to fetch a data item from main memory. This
disparity in speed—more than two orders of magnitude—
has resulted in the multi-megabyte caches found on modern
CPUs. These caches are associated with the CPUs as
shown in Figure C.1, and can typically be accessed in a
few cycles.1

Data flows among the CPUs’ caches and memory in
fixed-length blocks called “cache lines”, which are nor-
mally a power of two in size, ranging from 16 to 256 bytes.
When a given data item is first accessed by a given CPU,
it will be absent from that CPU’s cache, meaning that a
“cache miss” (or, more specifically, a “warm-up” cache
miss) has occurred. The cache miss means that the CPU
will have to wait (or be “stalled”) for hundreds of cycles
while the item is fetched from memory. However, the item
will be loaded into that CPU’s cache, so that subsequent

1 It is standard practice to use multiple levels of cache, with a small
level-one cache close to the CPU with single-cycle access time, and a
larger level-two cache with a longer access time, perhaps roughly ten
clock cycles. Higher-performance CPUs often have three or even four
levels of cache.

447

v2024.12.27a

448 APPENDIX C. WHY MEMORY BARRIERS?

0xF
0xE
0xD
0xC
0xB
0xA
0x9
0x8
0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0

Way 0

0x12345E00
0x12345D00
0x12345C00
0x12345B00
0x12345A00
0x12345900
0x12345800
0x12345700
0x12345600
0x12345500
0x12345400
0x12345300
0x12345200
0x12345100
0x12345000

Way 1

0x43210E00

Figure C.2: CPU Cache Structure

accesses will find it in the cache and therefore run at full
speed.

After some time, the CPU’s cache will fill, and subse-
quent misses will likely need to eject an item from the
cache in order to make room for the newly fetched item.
Such a cache miss is termed a “capacity miss”, because it
is caused by the cache’s limited capacity. However, most
caches can be forced to eject an old item to make room
for a new item even when they are not yet full. This is due
to the fact that large caches are implemented as hardware
hash tables with fixed-size hash buckets (or “sets”, as
CPU designers call them) and no chaining, as shown in
Figure C.2.

This cache has sixteen “sets” and two “ways” for a total
of 32 “lines”, each entry containing a single 256-byte
“cache line”, which is a 256-byte-aligned block of memory.
This cache line size is a little on the large size, but makes
the hexadecimal arithmetic much simpler. In hardware
parlance, this is a two-way set-associative cache, and is
analogous to a software hash table with sixteen buckets,
where each bucket’s hash chain is limited to at most two
elements. The size (32 cache lines in this case) and the
associativity (two in this case) are collectively called the
cache’s “geometry”. Since this cache is implemented in
hardware, the hash function is extremely simple: Extract
four bits from the memory address.

In Figure C.2, each box corresponds to a cache entry,
which can contain a 256-byte cache line. However, a
cache entry can be empty, as indicated by the empty boxes
in the figure. The rest of the boxes are flagged with the
memory address of the cache line that they contain. Since
the cache lines must be 256-byte aligned, the low eight

bits of each address are zero, and the choice of hardware
hash function means that the next-higher four bits match
the hash line number.

The situation depicted in the figure might arise if the pro-
gram’s code were located at address 0x43210E00 through
0x43210EFF, and this program accessed data sequentially
from 0x12345000 through 0x12345EFF. Suppose that
the program were now to access location 0x12345F00.
This location hashes to line 0xF, and both ways of this
line are empty, so the corresponding 256-byte line can be
accommodated. If the program were to access location
0x1233000, which hashes to line 0x0, the corresponding
256-byte cache line can be accommodated in way 1. How-
ever, if the program were to access location 0x1233E00,
which hashes to line 0xE, one of the existing lines must
be ejected from the cache to make room for the new cache
line. If this ejected line were accessed later, a cache miss
would result. Such a cache miss is termed an “associativity
miss”.

Thus far, we have been considering only cases where
a CPU reads a data item. What happens when it does a
write? Because it is important that all CPUs agree on
the value of a given data item, before a given CPU writes
to that data item, it must first cause it to be removed,
or “invalidated”, from other CPUs’ caches. Once this
invalidation has completed, the CPU may safely modify
the data item. If the data item was present in this CPU’s
cache, but was read-only, this process is termed a “write
miss”. Once a given CPU has completed invalidating a
given data item from other CPUs’ caches, that CPU may
repeatedly write (and read) that data item.

Later, if one of the other CPUs attempts to access the
data item, it will incur a cache miss, this time because
the first CPU invalidated the item in order to write to
it. This type of cache miss is termed a “communication
miss”, since it is usually due to several CPUs using the
data items to communicate (for example, a lock is a data
item that is used to communicate among CPUs using a
mutual-exclusion algorithm).

Clearly, much care must be taken to ensure that all CPUs
maintain a coherent view of the data. With all this fetching,
invalidating, and writing, it is easy to imagine data being
lost or (perhaps worse) different CPUs having conflicting
values for the same data item in their respective caches.
These problems are prevented by “cache-coherency proto-
cols”, described in the next section.

v2024.12.27a

C.2. CACHE-COHERENCE PROTOCOLS 449

C.2 Cache-Coherence Protocols
Cache-coherence protocols manage cache-line states so
as to prevent inconsistent or lost data. These protocols
can be quite complex, with many tens of states,2 but for
our purposes we need only concern ourselves with the
four-state MESI cache-coherence protocol.

C.2.1 MESI States
MESI stands for “modified”, “exclusive”, “shared”, and
“invalid”, the four states a given cache line can take on
using this protocol. Caches using this protocol therefore
maintain a two-bit state “tag” on each cache line in addition
to that line’s physical address and data.

A line in the “modified” state has been subject to a
recent memory store from the corresponding CPU, and
the corresponding memory is guaranteed not to appear
in any other CPU’s cache. Cache lines in the “modified”
state can thus be said to be “owned” by the CPU. Because
this cache holds the only up-to-date copy of the data, this
cache is ultimately responsible for either writing it back to
memory or handing it off to some other cache, and must
do so before reusing this line to hold other data.

The “exclusive” state is very similar to the “modified”
state, the single exception being that the cache line has
not yet been modified by the corresponding CPU, which
in turn means that the copy of the cache line’s data that
resides in memory is up-to-date. However, since the CPU
can store to this line at any time, without consulting other
CPUs, a line in the “exclusive” state can still be said to be
owned by the corresponding CPU. That said, because the
corresponding value in memory is up to date, this cache
can discard this data without writing it back to memory
or handing it off to some other CPU.

A line in the “shared” state might be replicated in at
least one other CPU’s cache, so that this CPU is not
permitted to store to the line without first consulting with
other CPUs. As with the “exclusive” state, because the
corresponding value in memory is up to date, this cache
can discard this data without writing it back to memory
or handing it off to some other CPU.

A line in the “invalid” state is empty, in other words,
it holds no data. When new data enters the cache, it is
placed into a cache line that was in the “invalid” state if
possible. This approach is preferred because replacing a

2 See Culler et al. [CSG99] pages 670 and 671 for the nine-state
and 26-state diagrams for SGI Origin2000 and Sequent (now IBM)
NUMA-Q, respectively. Both diagrams are significantly simpler than
real life.

line in any other state could result in an expensive cache
miss should the replaced line be referenced in the future.

Since all CPUs must maintain a coherent view of the
data carried in the cache lines, the cache-coherence proto-
col provides messages that coordinate the movement of
cache lines through the system.

C.2.2 MESI Protocol Messages
Many of the transitions described in the previous section
require communication among the CPUs. If the CPUs are
on a single shared bus, the following messages suffice:

Read:
The “read” message contains the physical address of
the cache line to be read.

Read Response:
The “read response” message contains the data re-
quested by an earlier “read” message. This “read
response” message might be supplied either by mem-
ory or by one of the other caches. For example, if one
of the caches has the desired data in “modified” state,
that cache must supply the “read response” message.

Invalidate:
The “invalidate” message contains the physical ad-
dress of the cache line to be invalidated. All other
caches must remove the corresponding data from
their caches and respond.

Invalidate Acknowledge:
A CPU receiving an “invalidate” message must re-
spond with an “invalidate acknowledge” message
after removing the specified data from its cache.

Read Invalidate:
The “read invalidate” message contains the physical
address of the cache line to be read, while at the
same time directing other caches to remove the data.
Hence, it is a combination of a “read” and an “invali-
date”, as indicated by its name. A “read invalidate”
message requires both a “read response” and a set of
“invalidate acknowledge” messages in reply.

Writeback:
The “writeback” message contains both the address
and the data to be written back to memory (and
perhaps “snooped” into other CPUs’ caches along
the way). This message permits caches to eject lines
in the “modified” state as needed to make room for
other data.

v2024.12.27a

450 APPENDIX C. WHY MEMORY BARRIERS?

M

E S

I

a

c d e

f

g

h

j k

l

b

i

Figure C.3: MESI Cache-Coherency State Diagram

Quick Quiz C.1: Where does a writeback message originate
from and where does it go to?

Interestingly enough, a shared-memory multiprocessor
system really is a message-passing computer under the
covers. This means that clusters of SMP machines that
use distributed shared memory are using message passing
to implement shared memory at two different levels of the
system architecture.

Quick Quiz C.2: What happens if two CPUs attempt to
invalidate the same cache line concurrently?

Quick Quiz C.3: When an “invalidate” message appears in
a large multiprocessor, every CPU must give an “invalidate
acknowledge” response. Wouldn’t the resulting “storm” of
“invalidate acknowledge” responses totally saturate the system
bus?

Quick Quiz C.4: If SMP machines are really using message
passing anyway, why bother with SMP at all?

C.2.3 MESI State Diagram
A given cache line’s state changes as protocol messages
are sent and received, as shown in Figure C.3.

The transition arcs in this figure are as follows:

Transition (a):
A cache line is written back to memory, but the CPU
retains it in its cache and further retains the right
to modify it. This transition requires a “writeback”
message.

Transition (b):
The CPU writes to the cache line that it already had
exclusive access to. This transition does not require
any messages to be sent or received.

Transition (c):
The CPU receives a “read invalidate” message for
a cache line that it has modified. The CPU must
invalidate its local copy, then respond with both
a “read response” and an “invalidate acknowledge”
message, both sending the data to the requesting CPU
and indicating that it no longer has a local copy.

Transition (d):
The CPU does an atomic read-modify-write operation
on a data item that was not present in its cache. It
transmits a “read invalidate”, receiving the data via a
“read response”. The CPU can complete the transition
once it has also received a full set of “invalidate
acknowledge” responses.

Transition (e):
The CPU does an atomic read-modify-write operation
on a data item that was previously read-only in its
cache. It must transmit “invalidate” messages, and
must wait for a full set of “invalidate acknowledge”
responses before completing the transition.

Transition (f):
Some other CPU reads the cache line, and it is
supplied from this CPU’s cache, which retains a read-
only copy, possibly also writing it back to memory.
This transition is initiated by the reception of a
“read” message, and this CPU responds with a “read
response” message containing the requested data.

Transition (g):
Some other CPU reads a data item in this cache line,
and it is supplied either from this CPU’s cache or
from memory. In either case, this CPU retains a read-
only copy. This transition is initiated by the reception
of a “read” message, and this CPU responds with
a “read response” message containing the requested
data.

Transition (h):
This CPU realizes that it will soon need to write to
some data item in this cache line, and thus transmits
an “invalidate” message. The CPU cannot complete
the transition until it receives a full set of “invalidate
acknowledge” responses, indicating that no other

v2024.12.27a

C.2. CACHE-COHERENCE PROTOCOLS 451

CPU has this cacheline in its cache. In other words,
this CPU is the only CPU caching it.

Transition (i):
Some other CPU does an atomic read-modify-write
operation on a data item in a cache line held only in
this CPU’s cache, so this CPU invalidates it from its
cache. This transition is initiated by the reception of
a “read invalidate” message, and this CPU responds
with both a “read response” and an “invalidate ac-
knowledge” message.

Transition (j):
This CPU does a store to a data item in a cache line
that was not in its cache, and thus transmits a “read
invalidate” message. The CPU cannot complete the
transition until it receives the “read response” and a
full set of “invalidate acknowledge” messages. The
cache line will presumably transition to “modified”
state via transition (b) as soon as the actual store
completes.

Transition (k):
This CPU loads a data item in a cache line that
was not in its cache. The CPU transmits a “read”
message, and completes the transition upon receiving
the corresponding “read response”.

Transition (l):
Some other CPU does a store to a data item in this
cache line, but holds this cache line in read-only state
due to its being held in other CPUs’ caches (such as
the current CPU’s cache). This transition is initiated
by the reception of an “invalidate” message, and
this CPU responds with an “invalidate acknowledge”
message.

Quick Quiz C.5: How does the hardware handle the delayed
transitions described above?

C.2.4 MESI Protocol Example
Let’s now look at this from the perspective of a couple of
cache lines’ worth of data, initially residing in memory
at address 0 and 8, as they travel through the various
single-line direct-mapped caches in a four-CPU system.
Table C.1 shows this flow of data, with the first column
showing the steps each operation takes, the second the
CPU performing the operation, the third the operation
being performed, the next four the state of each CPU’s
cache line (memory address followed by MESI state), and

the final two columns whether the corresponding memory
contents are valid (“V”) or invalid (“I”). As we will see,
a single machine instructions can require several steps in
order to keep the cache and memory state consistent.

Please note that this is a conceptual example. Different
hardware implementations can and do make different
choices, and most implementations are far more complex
than this simple example might lead you to believe.

Initially, the CPU cache lines in which the data could
reside are in the “invalid” state, and the data is valid in
memory, as shown in the first row. In step 1.1, CPU 0
loads the data at address 0, incurring a cache miss, loading
the value into its cache, and transitioning that cache line to
the “shared” state. The contents of memory at address 0
remain valid. In step 2.1, CPU 2 also loads the data at
address 0, also incurring a cache miss, loading the data
into its cache, and transitioning that cache line to the
“shared” state. The cache line corresponding to address 0
is now in “shared” state in both CPUs’ caches, and the
contents of memory at address 0 remain valid.

In step 3.1, CPU 0 loads the data at address 8. However,
its cache still contains the value from address 0, and its
single-line direct-mapped cache cannot accommodate two
values at once. The CPU therefore forces the data at
address 0 out of its cache via an invalidation, and then
step 3.2 then replaces it with the data at address 8. The
cache line corresponding to address 8 is now in “shared”
state in CPU 0’s cache, and the contents of memory at
both addresses remain valid.

In step 4.1, CPU 3 loads the data at address 0, incurring
a cache miss and loading the data from either memory
or from CPU 2’s cache. The data at address 8 is now
in CPU 0’s cache and that of address 0 in both CPU 2’s
and 3’s caches, and memory state remains unchanged.

In step 5.1, CPU 3 commences a CAS operation on
the data at address 0, enjoying a cache hit. However,
in step 5.2, CPU 3 incurs what can be thought of as a
cache write miss: The data is there, but CPU 3 does not
have the necessary permissions to complete the memory-
write portion of its CAS operation. So it causes CPU 2
to invalidate this address from its cache, transitioning
CPU 3’s cache line to the “exclusive” state. This ensures
that CPU 3’s cache contains the only copy of the data
at address 0, permitting step 5.3 to complete CPU 3’s
CAS, transitioning its cache line to the “modified” state.
Note that the data residing in memory at address 0 is now
invalid.

In step 6.1, CPU 1 commences a single-byte store
to address 8, which must leave the other seven bytes

v2024.12.27a

452 APPENDIX C. WHY MEMORY BARRIERS?

Table C.1: Cache Coherence Example

CPU Cache Memory

Step # CPU # Operation 0 1 2 3 0 8

Initial State −/I −/I −/I −/I V V
1.1 0 Load 0 (read miss) 0/S −/I −/I −/I V V
2.1 2 Load 0 (read miss) 0/S −/I 0/S −/I V V
3.1 0 Load 8 (collision, invalidation) −/I −/I 0/S −/I V V
3.2 0 Load 8 (read miss) 8/S −/I 0/S −/I V V
4.1 3 Load 0 (read miss) 8/S −/I 0/S 0/S V V
5.1 3 CAS 0 (cache hit) 8/S −/I 0/S 0/S V V
5.2 3 CAS 0 (write miss) 8/S −/I −/I 0/E V V
5.3 3 CAS 0 8/S −/I −/I 0/M I V
6.1 1 Store 8 (read miss and also write miss) −/I 8/E −/I 0/M I V
6.2 1 Store 8 −/I 8/M −/I 0/M I I
7.1 3 CAS 0 −/I 8/M −/I 0/M I I
8.1 1 Load 0 (collision, flush) −/I −/I −/I 0/M I V
8.2 1 Load 0 (cache miss) −/I 0/S −/I 0/S I V
9.1 3 Load 0 (cache hit) −/I 0/S −/I 0/S I V

unchanged. CPU 1 must therefore load this data (either
from CPU 0 or from memory), incurring a cache miss,
loading the data into its cache (obtaining the data from
either CPU 0 or from memory), and transitioning that
cache line directly to the exclusive state, while at the
same time invalidating CPU 0’s cache. This again ensures
that CPU 1’s cache contains the only copy of the data at
address 8, permitting step 6.2 to complete CPU 1’s store,
transitioning its cache line to the “modified” state. Note
that the data residing in memory at both address 0 and
address 8 is now invalid.

In step 7.1, CPU 3 does another CAS operation on
the data at address 0. However, because its cache holds
that data in the “modified” state, CPU 3 can immediately
execute that CAS without any change to cache or memory
state.

In step 8.1, CPU 1 loads the data at address 0, incurring
a cache miss that is also a write miss. Because the data
from address 8 is modified in its cache, it must first flush
that data to memory, transitioning its cache line to “shared”
state and causing the memory at address 8 to once again
become valid. Step 8.2 must obtain the value from CPU 3,
keeping in mind that the data in memory at address 0 is
invalid. Both CPUs 1 and 3 transition their cache state to
“shared”, and the contents of memory at address 0 remain
invalid.

Finally, in step 9.1, CPU 0 loads the data at address 0,
but because this data is already in its cache, the load
completes without any change to cache or memory state.

Note that we end with data in some of the CPU’s caches.
Quick Quiz C.6: What sequence of operations would put the
CPUs’ caches all back into the “invalid” state?

C.3 Stores Result in Unnecessary
Stalls

Although the cache structure shown in Figure C.1 provides
good performance for repeated reads and writes from a
given CPU to a given item of data, its performance for the
first write to a given cache line is quite poor. To see this,
consider Figure C.4, which shows a timeline of a write by
CPU 0 to a cacheline held in CPU 1’s cache. Since CPU 0
must wait for the cache line to arrive before it can write to
it, CPU 0 must stall for an extended period of time.3

But there is no real reason to force CPU 0 to stall for
so long—after all, regardless of what data happens to be

3 The time required to transfer a cache line from one CPU’s cache to
another’s is typically a few orders of magnitude more than that required
to execute a simple register-to-register instruction.

v2024.12.27a

C.3. STORES RESULT IN UNNECESSARY STALLS 453

CPU 0 CPU 1

Write

Acknowledgement

Invalidate

S
ta

ll

Figure C.4: Writes See Unnecessary Stalls

in the cache line that CPU 1 sends it, CPU 0 is going to
unconditionally overwrite it.

C.3.1 Store Buffers
One way to prevent this unnecessary stalling of writes is
to add “store buffers” between each CPU and its cache,
as shown in Figure C.5. With the addition of these store
buffers, CPU 0 can simply record its write in its store
buffer and continue executing. When the cache line does
finally make its way from CPU 1 to CPU 0, the data will
be moved from the store buffer to the cache line.
Quick Quiz C.7: But then why do uniprocessors also have
store buffers?

Please note that the store buffer does not necessarily
operate on full cache lines. The reason for this is that a
given store-buffer entry need only contain the value stored,
not the other data contained in the corresponding cache
line. Which is a good thing, because the CPU doing the
store has no idea what that other data might be! But once
the corresponding cache line arrives, any values from the
store buffer that update that cache line can be merged into
it, and the corresponding entries can then be removed
from the store buffer. Any other data in that cache line is
of course left intact.
Quick Quiz C.8: So store-buffer entries are variable length?
Isn’t that difficult to implement in hardware?

These store buffers are local to a given CPU or, on
systems with hardware multithreading, local to a given
core. Either way, a given CPU is permitted to access

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Memory

Interconnect

Figure C.5: Caches With Store Buffers

only the store buffer assigned to it. For example, in Fig-
ure C.5, CPU 0 cannot access CPU 1’s store buffer and
vice versa. This restriction simplifies the hardware by
separating concerns: The store buffer improves perfor-
mance for consecutive writes, while the responsibility for
communicating among CPUs (or cores, as the case may
be) is fully shouldered by the cache-coherence protocol.
However, even given this restriction, there are complica-
tions that must be addressed, which are covered in the
next two sections.

C.3.2 Store Forwarding
To see the first complication, a violation of self-
consistency, consider the following code with variables
“a” and “b” both initially zero, and with the cache line
containing variable “a” initially owned by CPU 1 and that
containing “b” initially owned by CPU 0:

1 a = 1;
2 b = a + 1;
3 assert(b == 2);

One would not expect the assertion to fail. However, if
one were foolish enough to use the very simple architecture
shown in Figure C.5, one would be surprised. Such a
system could potentially see the following sequence of
events:

1 CPU 0 starts executing the a = 1.

v2024.12.27a

454 APPENDIX C. WHY MEMORY BARRIERS?

2 CPU 0 looks “a” up in the cache, and finds that it is
missing.

3 CPU 0 therefore sends a “read invalidate” message
in order to get exclusive ownership of the cache line
containing “a”.

4 CPU 0 records the store to “a” in its store buffer.

5 CPU 1 receives the “read invalidate” message, and
responds by transmitting the cache line and removing
that cacheline from its cache.

6 CPU 0 starts executing the b = a + 1.

7 CPU 0 receives the cache line from CPU 1, which
still has a value of zero for “a”.

8 CPU 0 loads “a” from its cache, finding the value
zero.

9 CPU 0 applies the entry from its store buffer to the
newly arrived cache line, setting the value of “a” in
its cache to one.

10 CPU 0 adds one to the value zero loaded for “a”
above, and stores it into the cache line containing “b”
(which we will assume is already owned by CPU 0).

11 CPU 0 executes assert(b == 2), which fails.

The problem is that we have two copies of “a”, one in
the cache and the other in the store buffer.

This example breaks a very important guarantee, namely
that each CPU will always see its own operations as if they
happened in program order. Breaking this guarantee is
violently counter-intuitive to software types, so much so
that the hardware guys took pity and implemented “store
forwarding”, where each CPU refers to (or “snoops”) its
store buffer as well as its cache when performing loads, as
shown in Figure C.6. In other words, a given CPU’s stores
are directly forwarded to its subsequent loads, without
having to pass through the cache.

With store forwarding in place, item 8 in the above
sequence would have found the correct value of 1 for “a”
in the store buffer, so that the final value of “b” would
have been 2, as one would hope.

C.3.3 Store Buffers and Memory Barriers
To see the second complication, a violation of global
memory ordering, consider the following code sequences
with variables “a” and “b” initially zero:

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Memory

Interconnect

Figure C.6: Caches With Store Forwarding

1 void foo(void)
2 {
3 a = 1;
4 b = 1;
5 }
6

7 void bar(void)
8 {
9 while (b == 0) continue;

10 assert(a == 1);
11 }

Suppose CPU 0 executes foo() and CPU 1 executes
bar(). Suppose further that the cache line containing
“a” resides only in CPU 1’s cache, and that the cache line
containing “b” is owned by CPU 0. Then the sequence of
operations might be as follows:

1 CPU 0 executes a = 1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value of
“a” in its store buffer and transmits a “read invalidate”
message.

2 CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3 CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

v2024.12.27a

C.3. STORES RESULT IN UNNECESSARY STALLS 455

4 CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in
its own cache (but only after writing back the line
containing “b” to main memory).

5 CPU 1 receives the cache line containing “b” and
installs it in its cache.

6 CPU 1 can now finish executing while (b ==
0)continue, and since it finds that the value of “b”
is 1, it proceeds to the next statement.

7 CPU 1 executes the assert(a == 1), and, since
CPU 1 is working with the old value of “a”, this
assertion fails.

8 CPU 1 receives the “read invalidate” message, and
transmits the cache line containing “a” to CPU 0 and
invalidates this cache line from its own cache. But it
is too late.

9 CPU 0 receives the cache line containing “a” and
applies the buffered store just in time to fall victim
to CPU 1’s failed assertion.

Quick Quiz C.9: In step 1 above, why does CPU 0 need
to issue a “read invalidate” rather than a simple “invalidate”?
After all, foo() will overwrite the variable a in any case, so
why should it care about the old value of a?

Quick Quiz C.10: In step 4 above, don’t systems avoid that
store to memory?

Quick Quiz C.11: In step 9 above, did bar() read a stale
value from a, or did its reads of b and a get reordered?

The hardware designers cannot help directly here, since
the CPUs have no idea which variables are related, let
alone how they might be related. Therefore, the hardware
designers provide memory-barrier instructions to allow
the software to tell the CPU about such relations. The
program fragment must be updated to contain the memory
barrier:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7

8 void bar(void)
9 {

10 while (b == 0) continue;
11 assert(a == 1);
12 }

The memory barrier smp_mb() will cause the CPU to
flush its store buffer before applying each subsequent store
to its variable’s cache line. The CPU could either simply
stall until the store buffer was empty before proceeding,
or it could use the store buffer to hold subsequent stores
until all of the prior entries in the store buffer had been
applied.

With this latter approach the sequence of operations
might be as follows:

1 CPU 0 executes a = 1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value of
“a” in its store buffer and transmits a “read invalidate”
message.

2 CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3 CPU 0 executes smp_mb(), and marks all current
store-buffer entries (namely, the a = 1).

4 CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in
either the “modified” or the “exclusive” state), but
there is a marked entry in the store buffer. Therefore,
rather than store the new value of “b” in the cache
line, it instead places it in the store buffer (but in an
unmarked entry).

5 CPU 0 receives the “read” message, and transmits
the cache line containing the original value of “b” to
CPU 1. It also marks its own copy of this cache line
as “shared”.

6 CPU 1 receives the cache line containing “b” and
installs it in its cache.

7 CPU 1 can now load the value of “b”, but since it
finds that the value of “b” is still 0, it repeats the

v2024.12.27a

456 APPENDIX C. WHY MEMORY BARRIERS?

while statement. The new value of “b” is safely
hidden in CPU 0’s store buffer.

8 CPU 1 receives the “read invalidate” message, and
transmits the cache line containing “a” to CPU 0 and
invalidates this cache line from its own cache.

9 CPU 0 receives the cache line containing “a” and
applies the buffered store, placing this line into the
“modified” state.

10 Since the store to “a” was the only entry in the store
buffer that was marked by the smp_mb(), CPU 0 can
also store the new value of “b”—except for the fact
that the cache line containing “b” is now in “shared”
state.

11 CPU 0 therefore sends an “invalidate” message to
CPU 1.

12 CPU 1 receives the “invalidate” message, invalidates
the cache line containing “b” from its cache, and
sends an “acknowledgement” message to CPU 0.

13 CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message to CPU 0.

14 CPU 0 receives the “acknowledgement” message, and
puts the cache line containing “b” into the “exclusive”
state. CPU 0 now stores the new value of “b” into
the cache line.

15 CPU 0 receives the “read” message, and transmits
the cache line containing the new value of “b” to
CPU 1. It also marks its own copy of this cache line
as “shared”.

16 CPU 1 receives the cache line containing “b” and
installs it in its cache.

17 CPU 1 can now load the value of “b”, and since it
finds that the value of “b” is 1, it exits the while
loop and proceeds to the next statement.

18 CPU 1 executes the assert(a == 1), but the cache
line containing “a” is no longer in its cache. Once
it gets this cache from CPU 0, it will be working
with the up-to-date value of “a”, and the assertion
therefore passes.

Quick Quiz C.12: After step 15 in Appendix C.3.3 on
page 456, both CPUs might drop the cache line containing the

new value of “b”. Wouldn’t that cause this new value to be
lost?

As you can see, this process involves no small amount
of bookkeeping. Even something intuitively simple, like
“load the value of a” can involve lots of complex steps in
silicon.

C.4 Store Sequences Result in Un-
necessary Stalls

Unfortunately, each store buffer must be relatively small,
which means that a CPU executing a modest sequence
of stores can fill its store buffer (for example, if all of
them result in cache misses). At that point, the CPU must
once again wait for invalidations to complete in order
to drain its store buffer before it can continue executing.
This same situation can arise immediately after a memory
barrier, when all subsequent store instructions must wait
for invalidations to complete, regardless of whether or not
these stores result in cache misses.

This situation can be improved by making invalidate
acknowledge messages arrive more quickly. One way of
accomplishing this is to use per-CPU queues of invalidate
messages, or “invalidate queues”.

C.4.1 Invalidate Queues
One reason that invalidate acknowledge messages can take
so long is that they must ensure that the corresponding
cache line is actually invalidated, and this invalidation can
be delayed if the cache is busy, for example, if the CPU is
intensively loading and storing data, all of which resides
in the cache. In addition, if a large number of invalidate
messages arrive in a short time period, a given CPU might
fall behind in processing them, thus possibly stalling all
the other CPUs.

However, the CPU need not actually invalidate the cache
line before sending the acknowledgement. It could instead
queue the invalidate message with the understanding that
the message will be processed before the CPU sends any
further messages regarding that cache line.

C.4.2 Invalidate Queues and Invalidate Ac-
knowledge

Figure C.7 shows a system with invalidate queues. A CPU
with an invalidate queue may acknowledge an invalidate
message as soon as it is placed in the queue, instead

v2024.12.27a

C.4. STORE SEQUENCES RESULT IN UNNECESSARY STALLS 457

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Invalidate
Queue

Memory

Interconnect

Invalidate
Queue

Figure C.7: Caches With Invalidate Queues

of having to wait until the corresponding line is actually
invalidated. Of course, the CPU must refer to its invalidate
queue when preparing to transmit invalidation messages—
if an entry for the corresponding cache line is in the
invalidate queue, the CPU cannot immediately transmit
the invalidate message; it must instead wait until the
invalidate-queue entry has been processed.

Placing an entry into the invalidate queue is essentially
a promise by the CPU to process that entry before trans-
mitting any MESI protocol messages regarding that cache
line. As long as the corresponding data structures are not
highly contended, the CPU will rarely be inconvenienced
by such a promise.

However, the fact that invalidate messages can be
buffered in the invalidate queue provides additional oppor-
tunity for memory-misordering, as discussed in the next
section.

C.4.3 Invalidate Queues and Memory Bar-
riers

Let us suppose that CPUs queue invalidation requests, but
respond to them immediately. This approach minimizes
the cache-invalidation latency seen by CPUs doing stores,
but can defeat memory barriers, as seen in the following
example.

Suppose the values of “a” and “b” are initially zero, that
“a” is replicated read-only (MESI “shared” state), and that
“b” is owned by CPU 0 (MESI “exclusive” or “modified”
state). Then suppose that CPU 0 executes foo() while
CPU 1 executes function bar() in the following code
fragment:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7

8 void bar(void)
9 {

10 while (b == 0) continue;
11 assert(a == 1);
12 }

Then the sequence of operations might be as follows:

1 CPU 0 executes a = 1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and trans-
mits an “invalidate” message in order to flush the
corresponding cache line from CPU 1’s cache.

2 CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3 CPU 1 receives CPU 0’s “invalidate” message,
queues it, and immediately responds to it.

4 CPU 0 receives the response from CPU 1, and is
therefore free to proceed past the smp_mb() on line 4
above, moving the value of “a” from its store buffer
to its cache line.

5 CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

6 CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

7 CPU 1 receives the cache line containing “b” and
installs it in its cache.

8 CPU 1 can now finish executing while (b ==
0)continue, and since it finds that the value of “b”
is 1, it proceeds to the next statement.

v2024.12.27a

458 APPENDIX C. WHY MEMORY BARRIERS?

9 CPU 1 executes the assert(a == 1), and, since
the old value of “a” is still in CPU 1’s cache, this
assertion fails.

10 Despite the assertion failure, CPU 1 processes the
queued “invalidate” message, and (tardily) invali-
dates the cache line containing “a” from its own
cache.

Quick Quiz C.13: In step 1 of the first scenario in Ap-
pendix C.4.3, why is an “invalidate” sent instead of a ”read
invalidate” message? Doesn’t CPU 0 need the values of the
other variables that share this cache line with “a”?

There is clearly not much point in accelerating inval-
idation responses if doing so causes memory barriers
to effectively be ignored. However, the memory-barrier
instructions can interact with the invalidate queue, so that
when a given CPU executes a memory barrier, it marks
all the entries currently in its invalidate queue, and forces
any subsequent load to wait until all marked entries have
been applied to the CPU’s cache. Therefore, we can add a
memory barrier to function bar as follows:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7

8 void bar(void)
9 {

10 while (b == 0) continue;
11 smp_mb();
12 assert(a == 1);
13 }

Quick Quiz C.14: Say what??? Why do we need a memory
barrier here, given that the CPU cannot possibly execute the
assert() until after the while loop completes?

With this change, the sequence of operations might be
as follows:

1 CPU 0 executes a = 1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and trans-
mits an “invalidate” message in order to flush the
corresponding cache line from CPU 1’s cache.

2 CPU 1 executes while (b == 0)continue, but
the cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3 CPU 1 receives CPU 0’s “invalidate” message,
queues it, and immediately responds to it.

4 CPU 0 receives the response from CPU 1, and is
therefore free to proceed past the smp_mb() on line 4
above, moving the value of “a” from its store buffer
to its cache line.

5 CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

6 CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

7 CPU 1 receives the cache line containing “b” and
installs it in its cache.

8 CPU 1 can now finish executing while (b ==
0)continue, and since it finds that the value of “b”
is 1, it proceeds to the next statement, which is now
a memory barrier.

9 CPU 1 must now stall until it processes all pre-
existing messages in its invalidation queue.

10 CPU 1 now processes the queued “invalidate” mes-
sage, and invalidates the cache line containing “a”
from its own cache.

11 CPU 1 executes the assert(a == 1), and, since
the cache line containing “a” is no longer in CPU 1’s
cache, it transmits a “read” message.

12 CPU 0 responds to this “read” message with the
cache line containing the new value of “a”.

13 CPU 1 receives this cache line, which contains a
value of 1 for “a”, so that the assertion does not
trigger.

With much passing of MESI messages, the CPUs arrive
at the correct answer. This section illustrates why CPU
designers must be extremely careful with their cache-
coherence optimizations. The key requirement is that the
memory barriers provide the appearance of ordering to the
software. As long as these appearances are maintained,
the hardware can carry out whatever queueing, buffering,
marking, stallings, and flushing optimizations it likes.

v2024.12.27a

C.6. EXAMPLE MEMORY-BARRIER SEQUENCES 459

Quick Quiz C.15: Instead of all of this marking of
invalidation-queue entries and stalling of loads, why not simply
force an immediate flush of the invalidation queue?

C.5 Read and Write Memory Bar-
riers

In the previous section, memory barriers were used to
mark entries in both the store buffer and the invalidate
queue. But in our code fragment, foo() had no reason to
do anything with the invalidate queue, and bar() similarly
had no reason to do anything with the store buffer.

Many CPU architectures therefore provide weaker
memory-barrier instructions that do only one or the other
of these two. Roughly speaking, a “read memory barrier”
marks only the invalidate queue (and snoops entries in the
store buffer) and a “write memory barrier” marks only the
store buffer, while a full-fledged memory barrier does all
of the above.

The software-visible effect of these hardware mecha-
nisms is that a read memory barrier orders only loads on
the CPU that executes it, so that all loads preceding the
read memory barrier will appear to have completed before
any load following the read memory barrier. Similarly,
a write memory barrier orders only stores, again on the
CPU that executes it, and again so that all stores preceding
the write memory barrier will appear to have completed
before any store following the write memory barrier. A
full-fledged memory barrier orders both loads and stores,
but again only on the CPU executing the memory barrier.

Quick Quiz C.16: But can’t full memory barriers impose
global ordering? After all, isn’t that needed to provide the
ordering shown in Listing 12.27?

If we update foo() and bar() to use read and write
memory barriers, they appear as follows:

1 void foo(void)
2 {
3 a = 1;
4 smp_wmb();
5 b = 1;
6 }
7

8 void bar(void)
9 {

10 while (b == 0) continue;
11 smp_rmb();
12 assert(a == 1);
13 }

Some computers have even more flavors of memory bar-
riers, but understanding these three variants will provide
a good introduction to memory barriers in general.

C.6 Example Memory-Barrier Se-
quences

This section presents some seductive but subtly broken
uses of memory barriers. Although many of them will
work most of the time, and some will work all the time
on some specific CPUs, these uses must be avoided if the
goal is to produce code that works reliably on all CPUs.
To help us better see the subtle breakage, we first need to
focus on an ordering-hostile architecture.

C.6.1 Ordering-Hostile Architecture
A number of ordering-hostile computer systems have been
produced over the decades, but the nature of the hostility
has always been extremely subtle, and understanding it
has required detailed knowledge of the specific hardware.
Rather than picking on a specific hardware vendor, and as
a presumably attractive alternative to dragging the reader
through detailed technical specifications, let us instead
design a mythical but maximally memory-ordering-hostile
computer architecture.4

This hardware must obey the following ordering con-
straints [McK05a, McK05b]:

1. Each CPU will always perceive its own memory
accesses as occurring in program order.

2. CPUs will reorder a given operation with a store
only if the two operations are referencing different
locations.

3. All of a given CPU’s loads preceding a read memory
barrier (smp_rmb()) will be perceived by all CPUs
to precede any loads following that read memory
barrier.

4. All of a given CPU’s stores preceding a write memory
barrier (smp_wmb()) will be perceived by all CPUs
to precede any stores following that write memory
barrier.

4 Readers preferring a detailed look at real hardware architec-
tures are encouraged to consult CPU vendors’ manuals [SW95, Adv02,
Int02a, IBM94, LHF05, SPA94, Int04b, Int04a, Int04c], Gharachor-
loo’s dissertation [Gha95], Peter Sewell’s work [Sew], or the excellent
hardware-oriented primer by Sorin, Hill, and Wood [SHW11].

v2024.12.27a

460 APPENDIX C. WHY MEMORY BARRIERS?

CPU 0

Queue
Message

CPU 1

Queue
Message

CPU 0

Cache

CPU 1

Node 0

CPU 2

Queue
Message

CPU 3

Queue
Message

CPU 3CPU 2

Cache

Node 1

Interconnect

Memory

Figure C.8: Example Ordering-Hostile Architecture

5. All of a given CPU’s accesses (loads and stores)
preceding a full memory barrier (smp_mb()) will
be perceived by all CPUs to precede any accesses
following that memory barrier.

Quick Quiz C.17: Does the guarantee that each CPU sees
its own memory accesses in order also guarantee that each
user-level thread will see its own memory accesses in order?
Why or why not?

Imagine a large non-uniform cache architecture (NUCA)
system that, in order to provide fair allocation of inter-
connect bandwidth to CPUs in a given node, provided
per-CPU queues in each node’s interconnect interface, as
shown in Figure C.8. Although a given CPU’s accesses
are ordered as specified by memory barriers executed by
that CPU, however, the relative order of a given pair of
CPUs’ accesses could be severely reordered, as we will
see.5

C.6.2 Example 1
Listing C.1 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. Each of “a”, “b”, and “c” are
initially zero.

Suppose CPU 0 recently experienced many cache
misses, so that its message queue is full, but that CPU 1
has been running exclusively within the cache, so that its

5 Any real hardware architect or designer will no doubt be objecting
strenuously, as they just might be a bit upset about the prospect of
working out which queue should handle a message involving a cache
line that both CPUs accessed, to say nothing of the many races that this
example poses. All I can say is “Give me a better example”.

Listing C.1: Memory Barrier Example 1

CPU 0 CPU 1 CPU 2
a = 1;
smp_wmb(); while (b == 0);
b = 1; c = 1; z = c;

smp_rmb();
x = a;
assert(z == 0 || x == 1);

Listing C.2: Memory Barrier Example 2

CPU 0 CPU 1 CPU 2
a = 1; while (a == 0);

smp_mb(); y = b;
b = 1; smp_rmb();

x = a;
assert(y == 0 || x == 1);

message queue is empty. Then CPU 0’s assignment to
“a” and “b” will appear in Node 0’s cache immediately
(and thus be visible to CPU 1), but will be blocked behind
CPU 0’s prior traffic. In contrast, CPU 1’s assignment
to “c” will sail through CPU 1’s previously empty queue.
Therefore, CPU 2 might well see CPU 1’s assignment to
“c” before it sees CPU 0’s assignment to “a”, causing the
assertion to fire, despite the memory barriers.

Therefore, portable code cannot rely on this assertion
not firing, as both the compiler and the CPU can reorder
the code so as to trip the assertion.

Quick Quiz C.18: Could this code be fixed by inserting a
memory barrier between CPU 1’s “while” and assignment to
“c”? Why or why not?

C.6.3 Example 2
Listing C.2 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. Both “a” and “b” are initially
zero.

Again, suppose CPU 0 recently experienced many cache
misses, so that its message queue is full, but that CPU 1
has been running exclusively within the cache, so that its
message queue is empty. Then CPU 0’s assignment to “a”
will appear in Node 0’s cache immediately (and thus be
visible to CPU 1), but will be blocked behind CPU 0’s
prior traffic. In contrast, CPU 1’s assignment to “b” will
sail through CPU 1’s previously empty queue. Therefore,
CPU 2 might well see CPU 1’s assignment to “b” before
it sees CPU 0’s assignment to “a”, causing the assertion
to fire, despite the memory barriers.

In theory, portable code should not rely on this example
code fragment, however, as before, in practice it actually
does work on most mainstream computer systems.

v2024.12.27a

C.8. ADVICE TO HARDWARE DESIGNERS 461

C.6.4 Example 3
Listing C.3 shows three code fragments, executed con-
currently by CPUs 0, 1, and 2. All variables are initially
zero.

Note that neither CPU 1 nor CPU 2 can proceed to
line 5 until they see CPU 0’s assignment to “b” on line 3.
Once CPU 1 and 2 have executed their memory barriers on
line 4, they are both guaranteed to see all assignments by
CPU 0 preceding its memory barrier on line 2. Similarly,
CPU 0’s memory barrier on line 8 pairs with those of
CPUs 1 and 2 on line 4, so that CPU 0 will not execute
the assignment to “e” on line 9 until after its assignment
to “b” is visible to both of the other CPUs. Therefore,
CPU 2’s assertion on line 9 is guaranteed not to fire.

Quick Quiz C.19: Suppose that lines 3–5 for CPUs 1 and 2
in Listing C.3 are in an interrupt handler, and that the CPU 2’s
line 9 runs at process level. In other words, the code in all
three columns of the table runs on the same CPU, but the first
two columns run in an interrupt handler, and the third column
runs at process level, so that the code in third column can be
interrupted by the code in the first two columns. What changes,
if any, are required to enable the code to work correctly, in
other words, to prevent the assertion from firing?

Quick Quiz C.20: If CPU 2 executed an
assert(e==0||c==1) in the example in Listing C.3, would
this assert ever trigger?

The Linux kernel’s synchronize_rcu() primitive
uses an algorithm similar to that shown in this example.

C.7 Are Memory Barriers Forever?
There have been a number of recent systems that are
significantly less aggressive about out-of-order execution
in general and re-ordering memory references in particular.
Will this trend continue to the point where memory barriers
are a thing of the past?

The argument in favor would cite proposed massively
multi-threaded hardware architectures, so that each thread
would wait until memory was ready, with tens, hundreds,
or even thousands of other threads making progress in
the meantime. In such an architecture, there would be no
need for memory barriers, because a given thread would
simply wait for all outstanding operations to complete
before proceeding to the next instruction. Because there
would be potentially thousands of other threads, the CPU
would be completely utilized, so no CPU time would be
wasted.

The argument against would cite the extremely lim-
ited number of applications capable of scaling up to a
thousand threads, as well as increasingly severe realtime
requirements, which are in the tens of microseconds for
some applications. The realtime-response requirements
are difficult enough to meet as is, and would be even more
difficult to meet given the extremely low single-threaded
throughput implied by the massive multi-threaded scenar-
ios.

Another argument in favor would cite increasingly
sophisticated latency-hiding hardware implementation
techniques that might well allow the CPU to provide the
illusion of fully sequentially consistent execution while
still providing almost all of the performance advantages
of out-of-order execution. A counter-argument would
cite the increasingly severe power-efficiency requirements
presented both by battery-operated devices and by envi-
ronmental responsibility.

Who is right? We have no clue, so we are preparing to
live with either scenario.

C.8 Advice to Hardware Designers
There are any number of things that hardware designers
can do to make the lives of software people difficult. Here
is a list of a few such things that we have encountered
in the past, presented here in the hope that it might help
prevent future such problems:

1. I/O devices that ignore cache coherence.
This charming misfeature can result in DMAs from
memory missing recent changes to the output buffer,
or, just as bad, cause input buffers to be overwritten
by the contents of CPU caches just after the DMA
completes. To make your system work in face of
such misbehavior, you must carefully flush the CPU
caches of any location in any DMA buffer before
presenting that buffer to the I/O device. Otherwise, a
store from one of the CPUs might not be accounted
for in the data DMAed out through the device. This
is a form of data corruption, which is an extremely
serious bug.
Similarly, you need to invalidate6 the CPU caches
corresponding to any location in any DMA buffer
after DMA to that buffer completes. Otherwise, a
given CPU might see the old data still residing in

6 Why not flush? If there is a difference, then a CPU must have
incorrectly stored to the DMA buffer in the midst of the DMA operation.

v2024.12.27a

462 APPENDIX C. WHY MEMORY BARRIERS?

Listing C.3: Memory Barrier Example 3

CPU 0 CPU 1 CPU 2
1 a = 1;
2 smp_wmb();
3 b = 1; while (b == 0); while (b == 0);
4 smp_mb(); smp_mb();
5 c = 1; d = 1;
6 while (c == 0);
7 while (d == 0);
8 smp_mb();
9 e = 1; assert(e == 0 || a == 1);

its cache instead of the newly DMAed data that it
was supposed to see. This is another form of data
corruption.

And even then, you need to be very careful to avoid
pointer bugs, as even a misplaced read to an input
buffer can result in corrupting the data input! One
way to avoid this is to invalidate all of the caches of
all of the CPUs once the DMA completes, but it is
much easier and more efficient if the device DMA
participates in the cache-coherence protocol, making
all of this flushing and invalidating unnecessary.

2. External busses that fail to transmit cache-coherence
data.

This is an even more painful variant of the above
problem, but causes groups of devices—and even
memory itself—to fail to respect cache coherence. It
is my painful duty to inform you that as embedded
systems move to multicore architectures, we will no
doubt see a fair number of such problems arise. By
the year 2021, there were some efforts to address
these problems with new interconnect standards, with
some debate as to how effective these standards will
really be [Won19].

3. Device interrupts that ignore cache coherence.

This might sound innocent enough—after all, in-
terrupts aren’t memory references, are they? But
imagine a CPU with a split cache, one bank of which
is extremely busy, therefore holding onto the last
cacheline of the input buffer. If the corresponding
I/O-complete interrupt reaches this CPU, then that
CPU’s memory reference to the last cache line of the
buffer could return old data, again resulting in data
corruption, but in a form that will be invisible in a
later crash dump. By the time the system gets around
to dumping the offending input buffer, the DMA will
most likely have completed.

4. Inter-processor interrupts (IPIs) that ignore cache
coherence.
This can be problematic if the IPI reaches its destina-
tion before all of the cache lines in the corresponding
message buffer have been committed to memory.

5. Context switches that get ahead of cache coherence.
If memory accesses can complete too wildly out of
order, then context switches can be quite harrowing.
If the task flits from one CPU to another before all
the memory accesses visible to the source CPU make
it to the destination CPU, then the task could easily
see the corresponding variables revert to prior values,
which can fatally confuse most algorithms.

6. Overly kind simulators and emulators.
It is difficult to write simulators or emulators that
force memory re-ordering, so software that runs just
fine in these environments can get a nasty surprise
when it first runs on the real hardware. Unfortunately,
it is still the rule that the hardware is more devious
than are the simulators and emulators, but we hope
that this situation changes.

Again, we encourage hardware designers to avoid these
practices!

v2024.12.27a

De gustibus non est disputandum.

Latin maximAppendix D

Style Guide

This appendix is a collection of style guides which is
intended as a reference to improve consistency in perfbook.
It also contains several suggestions and their experimental
examples.

Appendix D.1 describes basic punctuation and spelling
rules. Appendix D.2 explains rules related to unit symbols.
Appendix D.3 summarizes LATEX-specific conventions.

D.1 Paul’s Conventions
Following is the list of Paul’s conventions assembled from
his answers to Akira’s questions regarding perfbook’s
punctuation policy.

• (On punctuations and quotations) Despite being
American myself, for this sort of book, the UK
approach is better because it removes ambiguities
like the following:

Type “ls -a,” look for the file “.,” and
file a bug if you don’t see it.

The following is much more clear:

Type “ls -a”, look for the file “.”, and
file a bug if you don’t see it.

• American English spelling: “color” rather than
“colour”.

• Oxford comma: “a, b, and c” rather than “a, b and c”.
This is arbitrary. Cases where the Oxford comma
results in ambiguity should be reworded, for example,
by introducing numbering: “a, b, and c and d” should
be “(1) a, (2) b, and (3) c and d”.

• Italic for emphasis. Use sparingly.

• \co{} for identifiers, \url{} for URLs, \path{}
for filenames.

• Dates should use an unambiguous format. Never
“mm/dd/yy” or “dd/mm/yy”, but rather “July 26, 2016”
or “26 July 2016” or “26-Jul-2016” or “2016/07/26”.
I tend to use yyyy.mm.ddA for filenames, for exam-
ple.

• North American rules on periods and abbreviations.
For example neither of the following can reasonably
be interpreted as two sentences:

– Say hello, to Mr. Jones.
– If it looks like she sprained her ankle, call

Dr. Smith and then tell her to keep the ankle
iced and elevated.

An ambiguous example:

If I take the cow, the pig, the horse, etc.
George will be upset.

can be written with more words:

If I take the cow, the pig, the horse, or
much of anything else, George will be
upset.

or:

If I take the cow, the pig, the horse, etc.,
George will be upset.

• I don’t like ampersand (“&”) in headings, but will
sometimes use it if doing so prevents a line break in
that heading.

• When mentioning words, I use quotations. When
introducing a new word, I use \emph{}.

463

v2024.12.27a

464 APPENDIX D. STYLE GUIDE

Following is a convention regarding punctuation in
LATEX sources.

• Place a newline after a colon (:) and the end of a
sentence. This avoids the whole one-space/two-space
food fight and also has the advantage of more clearly
showing changes to single sentences in the middle
of long paragraphs.

D.2 NIST Style Guide

D.2.1 Unit Symbol
D.2.1.1 SI Unit Symbol

NIST style guide [Nat19, Chapter 5] states the following
rules (rephrased for perfbook).

• When SI unit symbols such as “ns”, “MHz”, and “K”
(kelvin) are used behind numerical values, narrow
spaces should be placed between the values and the
symbols.
A narrow space can be coded in LATEX by the sequence
of “\,”. For example,

“2.4 GHz”, rather then “2.4GHz”.

• Even when the value is used in adjectival sense, a
narrow space should be placed. For example,

“a 10 ms interval”, rather than “a 10-ms
interval” nor “a 10ms interval”.

The symbol of micro (µ:10−6) can be typeset easily by
the help of “gensymb” LATEX package. A macro “\micro”
can be used in both text and math modes. To typeset the
symbol of “microsecond”, you can do so by “\micro s”.
For example,

10 µs

Note that math mode “\mu” is italic by default and
should not be used as a prefix. An improper example:

10 𝜇s (math mode “\mu”)

D.2.1.2 Non-SI Unit Symbol

Although NIST style guide does not cover non-SI unit
symbols such as “KB”, “MB”, and “GB”, the same rule
should be followed.

Example:

“A 240 GB hard drive”, rather than “a 240-GB
hard drive” nor “a 240GB hard drive”.

Strictly speaking, NIST guide requires us to use the
binary prefixes “Ki”, “Mi”, or “Gi” to represent powers
of 210. However, we accept the JEDEC conventions to
use “K”, “M”, and “G” as binary prefixes in describing
memory capacity [JED].

An acceptable example:

“8 GB of main memory”, meaning “8 GiB of
main memory”.

Also, it is acceptable to use just “K”, “M”, or “G”
as abbreviations appended to a numerical value, e.g.,
“4K entries”. In such cases, no space before an abbreviation
is required. For example,

“8K entries”, rather than “8 K entries”.

If you put a space in between, the symbol looks like
a unit symbol and is confusing. Note that “K” and “k”
represent 210 and 103, respectively. “M” can represent
either 220 or 106, and “G” can represent either 230 or 109.
These ambiguities should not be confusing in discussing
approximate order.

D.2.1.3 Degree Symbol

The angular-degree symbol (°) does not require any space
in front of it. NIST style guide clearly states so.

The symbol of degree can also be typeset easily by the
help of gensymb package. A macro “\degree” can be
used in both text and math modes.

Example:

45°, rather than 45 °.

D.2.1.4 Percent Symbol

NIST style guide treats the percent symbol (%) as the
same as SI unit symbols.

50 % possibility, rather than 50% possibility.

D.2.1.5 Font Style

Quote from NIST check list [Nata, #6]:

Variables and quantity symbols are in italic
type. Unit symbols are in roman type. Num-
bers should generally be written in roman type.
These rules apply irrespective of the typeface
used in the surrounding text.

v2024.12.27a

D.3. LATEX CONVENTIONS 465

Table D.1: Digit-Grouping Style

Style Outputs of \num{}

NIST/SI (English) 12 345 12.345 1 234 567.89
SI (French) 12 345 12,345 1 234 567,89
English 12,345 12.345 1,234,567.89
French 12 345 12,345 1 234 567,89
Other Europe 12.345 12,345 1.234.567,89

For example,

e (elementary charge)

On the other hand, mathematical constants such as the
base of natural logarithms should be roman [Natb]. For
example,

e𝑥

D.2.2 NIST Guide Yet To Be Followed
There are a few cases where NIST style guide is not
followed. Other English conventions are followed in such
cases.

D.2.2.1 Digit Grouping

Quote from NIST checklist [Nata, #16]:

The digits of numerical values having more than
four digits on either side of the decimal marker
are separated into groups of three using a thin,
fixed space counting from both the left and right
of the decimal marker. Commas are not used to
separate digits into groups of three.

NIST Example: 15 739.012 53 ms
Our convention: 15,739.01253 ms

In LATEX coding, it is cumbersome to place thin spaces as
are recommended in NIST guide. The \num{} command
provided by the “siunitx” package would be of help for us
to follow this rule. It would also help us overcome different
conventions. We can select a specific digit-grouping style
as a default in preamble, or specify an option to each
\num{} command as is shown in Table D.1.

As are evident in Table D.1, periods and commas used
as other than decimal markers are confusing and should
be avoided, especially in documents expecting global
audiences.

By marking up constant decimal values by \num{}
commands, the LATEX source would be exempted from any
particular conventions.

Because of its open-source policy, this approach should
give more “portability” to perfbook.

D.3 LATEX Conventions
Good looking LATEX documents require further considera-
tions on proper use of font styles, line break exceptions,
etc. This section summarizes guidelines specific to LATEX.

D.3.1 Monospace Font
Monospace font (or typewriter font) is heavily used in
this textbook. First policy regarding monospace font in
perfbook is to avoid directly using “\texttt” or “\tt”
macro. It is highly recommended to use a macro or an
environment indicating the reason why you want the font.

This section explains the use cases of such macros and
environments.

D.3.1.1 Code Snippet

Because the “verbatim” environment is a primitive way
to include listings, we have transitioned to a scheme which
uses the “fancyvrb” package for code snippets.

The goal of the scheme is to extract LATEX sources
of code snippets directly from code samples under
CodeSamples directory. It also makes it possible to
embed line labels in the code samples, which can be
referenced within the LATEX sources. This reduces the
burden of keeping line numbers in the text consistent with
those in code snippets.

Code-snippet extraction is handled by a couple of perl
scripts and recipes in Makefile. We use the escaping
feature of the fancyvrb package to embed line labels as
comments.

We used to use the “verbbox” environment provided
by the “verbatimbox” package. Appendix D.3.1.2 de-
scribes how verbbox can automatically generate line
numbers, but those line numbers cannot be referenced
within the LATEX sources.

Let’s start by looking at how code snippets are coded in
the current scheme. There are three customized environ-
ments of “Verbatim”. “VerbatimL” is for floating snip-
pets within the “listing” environment. “VerbatimN” is
for inline snippets with line count enabled. “VerbatimU”

v2024.12.27a

466 APPENDIX D. STYLE GUIDE

Listing D.1: LATEX Source of Sample Code Snippet (Current)
1 \begin{listing}
2 \begin{fcvlabel}[ln:base1]
3 \begin{VerbatimL}[commandchars=\$\[\]]
4 /*
5 * Sample Code Snippet
6 */
7 #include <stdio.h>
8 int main(void)
9 {

10 printf("Hello world!\n"); $lnlbl[printf]
11 return 0; $lnlbl[return]
12 }
13 \end{VerbatimL}
14 \end{fcvlabel}
15 \caption{Sample Code Snippet}
16 \label{lst:app:styleguide:Sample Code Snippet}
17 \end{listing}

Listing D.2: Sample Code Snippet
1 /*
2 * Sample Code Snippet
3 */
4 #include <stdio.h>
5 int main(void)
6 {
7 printf("Hello world!\n");
8 return 0;
9 }

is for inline snippets without line count. They are defined
in the preamble as shown below:

\DefineVerbatimEnvironment{VerbatimL}{Verbatim}%
{fontsize=\scriptsize,numbers=left,numbersep=5pt,%

xleftmargin=9pt,obeytabs=true,tabsize=2}
\AfterEndEnvironment{VerbatimL}{\vspace*{-9pt}}
\DefineVerbatimEnvironment{VerbatimN}{Verbatim}%

{fontsize=\scriptsize,numbers=left,numbersep=3pt,%
xleftmargin=5pt,xrightmargin=5pt,obeytabs=true,%
tabsize=2,frame=single}

\DefineVerbatimEnvironment{VerbatimU}{Verbatim}%
{fontsize=\scriptsize,numbers=none,xleftmargin=5pt,%

xrightmargin=5pt,obeytabs=true,tabsize=2,%
samepage=true,frame=single}

The LATEX source of a sample code snippet is shown in
Listing D.1 and is typeset as shown in Listing D.2.

Labels to lines are specified in “$lnlbl[]” command.
The characters specified by “commandchars” option to
VarbatimL environment are used by the fancyvrb pack-
age to substitute “\lnlbl{}” for “$lnlbl[]”. Those
characters should be selected so that they don’t appear
elsewhere in the code snippet.

Labels “printf” and “return” in Listing D.2 can be
referred to as shown below:

\begin{fcvref}[ln:base1]
\Clnref{printf, return} can be referred
to from text.
\end{fcvref}

Above code results in the paragraph below:

Lines 7 and 8 can be referred to from text.

Macros “\lnlbl{}” and “\lnref{}” are defined in
the preamble as follows:

\newcommand{\lnlblbase}{}
\newcommand{\lnlbl}[1]{%

\phantomsection\label{\lnlblbase:#1}}
\newcommand{\lnrefbase}{}
\newcommand{\lnref}[1]{\ref{\lnrefbase:#1}}

Environments “fcvlabel” and “fcvref” are defined
as shown below:

\newenvironment{fcvlabel}[1][]{%
\renewcommand{\lnlblbase}{#1}%
\ignorespaces}{\ignorespacesafterend}

\newenvironment{fcvref}[1][]{%
\renewcommand{\lnrefbase}{#1}%
\ignorespaces}{\ignorespacesafterend}

The main part of LATEX source shown on lines 2–14
in Listing D.1 can be extracted from a code sample of
Listing D.3 by a perl script utilities/fcvextract.
pl. All the relevant rules of extraction are described as
recipes in the top level Makefile and a script to generate
dependencies (utilities/gen_snippet_d.pl).

As you can see, Listing D.3 has meta commands in
comments of C (C++ style). Those meta commands
are interpreted by utilities/fcvextract.pl, which
distinguishes the type of comment style by the suffix of
code sample’s file name.

Meta commands which can be used in code samples
are listed below:

• \begin{snippet}[<options>]
• \end{snippet}
• \lnlbl{<label string>}
• \fcvexclude
• \fcvblank

“<options>” to the \begin{snippet} meta com-
mand is a comma-spareted list of options shown below:

• labelbase=<label base string>
• keepcomment=yes
• gobbleblank=yes
• commandchars=\X\Y\Z

The “labelbase” option is mandatory and
the string given to it will be passed to the

v2024.12.27a

D.3. LATEX CONVENTIONS 467

Listing D.3: Source of Code Sample with “snippet” Meta Command
1 //\begin{snippet}[labelbase=ln:base1,keepcomment=yes,commandchars=\$\[\]]
2 /*
3 * Sample Code Snippet
4 */
5 #include <stdio.h>
6 int main(void)
7 {
8 printf("Hello world!\n"); //\lnlbl{printf}
9 return 0; //\lnlbl{return}

10 }
11 //\end{snippet}

“\begin{fcvlabel}[<label base string>]” com-
mand as shown on line 2 of Listing D.1. The
“keepcomment=yes” option tells fcvextract.pl to
keep comment blocks. Otherwise, comment blocks in C
source code will be omitted. The “gobbleblank=yes”
option will remove empty or blank lines in the resulting
snippet. The “commandchars” option is given to the
VerbatimL environment as is. At the moment, it is also
mandatory and must come at the end of options listed
above. Other types of options, if any, are also passed to
the VerbatimL environment.

The “\lnlbl” commands are converted along the way
to reflect the escape-character choice.1 Source lines with
“\fcvexclude” are removed. “\fcvblank” can be used
to keep blank lines when the “gobbleblank=yes” option
is specified.

There can be multiple pairs of \begin{snippet}
and \end{snippet} as long as they have unique
“labelbase” strings.

Our naming scheme of “labelbase” for unique name
space is as follows:

ln:<Chapter/Subdirectory>:<File Name>:<Function Name>

Litmus tests, which are handled by “herdtools7” com-
mands such as “litmus7” and “herd7”, were problematic
in this scheme. Those commands have particular rules
of where comments can be placed and restriction on per-
mitted characters in comments. They also forbid a couple
of tokens to appear in comments. (Tokens in comments
might sound strange, but they do have such restriction.)

For example, the first token in a litmus test must be one
of “C”, “PPC”, “X86”, “LISA”, etc., which indicates the
flavor of the test. This means no comment is allowed at
the beginning of a litmus test.

Similarly, several tokens such as “exists”, “filter”,
and “locations” indicate the end of litmus test’s body.

1 Characters forming comments around the “\lnlbl” commands
are also gobbled up regardless of the “keepcomment” setting.

Once one of them appears in a litmus test, comments
should be of OCaml style (“(* ... *)”). Those to-
kens keep the same meaning even when they appear in
comments!

The pair of characters “{” and “}” also have special
meaning in the C flavour tests. They are used to separate
portions in a litmus test.

First pair of “{” and “}” encloses initialization part.
Comments in this part should also be in the ocaml form.

You can’t use “{” and “}” in comments in litmus tests,
either.

Examples of disallowed comments in a litmus test are
shown below:

1 // Comment at first
2 C C-sample
3 // Comment with { and } characters
4 {
5 x=2; // C style comment in initialization
6 }
7
8 P0(int *x}
9 {

10 int r1;
11
12 r1 = READ_ONCE(*x); // Comment with "exists"
13 }
14
15 [...]
16
17 exists (0:r1=0) // C++ style comment after test body

To avoid parse errors, meta commands in litmus tests
(C flavor) are embedded in the following way.

1 C C-SB+o-o+o-o
2 //\begin[snippet][labelbase=ln:base,commandchars=\%\@\$]
3
4 {
5 1:r2=0 (*\lnlbl[initr2]*)
6 }
7
8 P0(int *x0, int *x1) //\lnlbl[P0:b]
9 {

10 int r2;
11
12 WRITE_ONCE(*x0, 2);
13 r2 = READ_ONCE(*x1);
14 } //\lnlbl[P0:e]
15

v2024.12.27a

468 APPENDIX D. STYLE GUIDE

16 P1(int *x0, int *x1)
17 {
18 int r2;
19
20 WRITE_ONCE(*x1, 2);
21 r2 = READ_ONCE(*x0);
22 }
23
24 //\end[snippet]
25 exists (1:r2=0 /\ 0:r2=0) (* \lnlbl[exists_] *)

Example above is converted to the following interme-
diate code by a script utilities/reorder_ltms.pl.2
The intermediate code can be handled by the common
script utilities/fcvextract.pl.

1 // Do not edit!
2 // Generated by utillities/reorder_ltms.pl
3 //\begin{snippet}[labelbase=ln:base,commandchars=\%\@\$]
4 C C-SB+o-o+o-o
5
6 {
7 1:r2=0 //\lnlbl{initr2}
8 }
9

10 P0(int *x0, int *x1) //\lnlbl{P0:b}
11 {
12 int r2;
13
14 WRITE_ONCE(*x0, 2);
15 r2 = READ_ONCE(*x1);
16 } //\lnlbl{P0:e}
17
18 P1(int *x0, int *x1)
19 {
20 int r2;
21
22 WRITE_ONCE(*x1, 2);
23 r2 = READ_ONCE(*x0);
24 }
25
26 exists (1:r2=0 /\ 0:r2=0) \lnlbl{exists_}
27 //\end{snippet}

Note that each litmus test’s source file can con-
tain at most one pair of \begin[snippet] and
\end[snippet] because of the restriction of comments.

D.3.1.2 Code Snippet (Obsolete)

Sample LATEX source of a code snippet coded using the
“verbatimbox” package is shown in Listing D.4 and is
typeset as shown in Listing D.5.

The auto-numbering feature of verbbox is enabled
by the “\LstLineNo” macro specified in the option to
verbbox (line 3 in Listing D.4). The macro is defined in
the preamble of perfbook.tex as follows:

\newcommand{\LstLineNo}
{\makebox[5ex][r]{\arabic{VerbboxLineNo}\hspace{2ex}}}

2 Currently, only C flavor litmus tests are supported.

Listing D.4: LATEX Source of Sample Code Snippet (Obsolete)
1 \begin{listing}
2 { \scriptsize
3 \begin{verbbox}[\LstLineNo]
4 /*
5 * Sample Code Snippet
6 */
7 #include <stdio.h>
8 int main(void)
9 {

10 printf("Hello world!\n");
11 return 0;
12 }
13 \end{verbbox}
14 }
15 \centering
16 \theverbbox
17 \caption{Sample Code Snippet (Obsolete)}
18 \label{lst:app:styleguide:Sample Code Snippet (Obsolete)}
19 \end{listing}

Listing D.5: Sample Code Snippet (Obsolete)
1 /*
2 * Sample Code Snippet
3 */
4 #include <stdio.h>
5 int main(void)
6 {
7 printf("Hello world!\n");
8 return 0;
9 }

The “verbatim” environment is used for listings with
too many lines to fit in a column. It is also used to avoid
overwhelming LATEX with a lot of floating objects. They
are being converted to the scheme using the VerbatimN
environment.

D.3.1.3 Identifier

We use “\co{}” macro for inline identifiers. (“co” stands
for “code”.)

By putting them into \co{}, underscore characters in
their names are free of escaping in LATEX source. It is
convenient to search them in source files. Also, \co{}
macro has a capability to permit line breaks at particular
sequences of letters. Current definition permits a line
break at an underscore (_), two consecutive underscores
(__), a white space, or an operator ->.

D.3.1.4 Identifier inside Table and Heading

Although \co{} command is convenient for inlining
within text, it is fragile because of its capability of line
break. When it is used inside a “tabular” environment
or its derivative such as “tabularx”, it confuses column
width estimation of those environments. Furthermore,

v2024.12.27a

D.3. LATEX CONVENTIONS 469

Table D.2: Limitation of Monospace Macro

Macro Need Escape Should Avoid

\co, \nbco \, %, {, }
\tco # %, {, }, \

\co{} can not be safely used in section headings nor
description headings.

As a workaround, we use “\tco{}” command inside
tables and headings. It has no capability of line break
at particular sequences, but still frees us from escaping
underscores.

When used in text, \tco{} permits line breaks at white
spaces.

D.3.1.5 Other Use Cases of Monospace Font

For URLs, we use “\url{}” command provided by the
“hyperref” package. It will generate hyper references to
the URLs.

For path names, we use “\path{}” command. It won’t
generate hyper references.

Both \url{} and \path{} permit line breaks at “/”,
“-”, and “.”.3

For short monospace statements not to be line broken,
we use the “\nbco{}” (non-breakable co) macro.

D.3.1.6 Limitations

There are a few cases where macros introduced in this
section do not work as expected. Table D.2 lists such
limitations.

While \co{} requires some characters to be escaped,
it can contain any character.

On the other hand, \tco{} can not handle “%”, “{”,
“}”, nor “\” properly. If they are escaped by a “\”, they
appear in the end result with the escape character. The
“\verb” command can be used in running text if you need
to use monospace font for a string which contains many
characters to escape.4

3 Overfill can be a problem if the URL or the path name contains
long runs of unbreakable characters.

4 The \verb command is not almighty though. For example, you
can’t use it within a footnote. If you do so, you will see a fatal LATEX
error. A workaround would be a macro named \VerbatimFootnotes
provided by the fancyvrb package. Unfortunately, perfbook can’t
employ it due to the interference with the footnotebackref package.

D.3.2 Cross-reference
Cross-references to Chapters, Sections, Listings, etc.
have been expressed by combinations of names and bare
\ref{} commands in the following way:

1 Chapter~\ref{chp:Introduction},
2 Table~\ref{tab:app:styleguide:Digit-Grouping Style}

This is a traditional way of cross-referencing. However,
it is tedious and sometimes error-prone to put a name man-
ually on every cross-reference. The cleveref package
provides a nicer way of cross-referencing. A few examples
follow:

1 \Cref{chp:Introduction},
2 \cref{sec:intro:Parallel Programming Goals},
3 \cref{chp:app:styleguide:Style Guide},
4 \cref{tab:app:styleguide:Digit-Grouping Style}, and
5 \cref{lst:app:styleguide:Source of Code Sample} are
6 examples of cross\-/references.

Above code is typeset as follows:

Chapter 2, Section 2.2, Appendix D, Table D.1,
and Listing D.3 are examples of cross-refer-
ences.

As you can see, naming of cross-references is automated.
Current setting generates capitalized names for both of
\Cref{} and \cref{}, but the former should be used at
the beginning of a sentence.

We are in the middle of conversion to cleveref-style
cross-referencing.

Cross-references to line numbers of code snippets
can be done in a similar way by using \Clnref{} and
\clnref{} macros, which mimic cleveref. The former
puts “Line” as the name of the reference and the latter
“line”.

Please refer to cleveref’s documentation for further
info on its cleverness.

D.3.3 Non Breakable Spaces
In LATEX conventions, proper use of non-breakable white
spaces is highly recommended. They can prevent widow-
ing and orphaning of single digit numbers or short variable
names, which would cause the text to be confusing at first
glance.

The thin space mentioned earlier to be placed in front
of a unit symbol is non breakable.

Other cases to use a non-breakable space (“~” in LATEX
source, often referred to as “nbsp”) are the following
(inexhaustive).

v2024.12.27a

470 APPENDIX D. STYLE GUIDE

• Reference to a Chapter or a Section:

Please refer to Appendix D.2.

• Calling out CPU number or Thread name:

After they load the pointer, CPUs 1 and 2
will see the stored value.

• Short variable name:

The results will be stored in variables a
and b.

D.3.4 Hyphenation and Dashes
D.3.4.1 Hyphenation in Compound Word

In plain LATEX, compound words such as “high-frequency”
can be hyphenated only at the hyphen. This sometimes
results in poor typesetting. For example:

High-frequency radio wave, high-frequency ra-
dio wave, high-frequency radio wave, high-
frequency radio wave, high-frequency radio
wave, high-frequency radio wave.

By using a shortcut “\-/” provided by the “extdash”
package, hyphenation in elements of compound words is
enabled in perfbook.5

Example with “\-/”:

High-frequency radio wave, high-frequency ra-
dio wave, high-frequency radio wave, high-fre-
quency radio wave, high-frequency radio wave,
high-frequency radio wave.

D.3.4.2 Non Breakable Hyphen

We want hyphenated compound terms such as “x-coordi-
nate”, “y-coordinate”, etc. not to be broken at the hyphen
following a single letter.

To make a hyphen unbreakable, we can use a short cut
“\=/” also provided by the “extdash” package.

Example without a shortcut:

5 In exchange for enabling the shortcut, we can’t use plain LATEX’s
shortcut “\-” to specify hyphenation points. Use pfhyphex.tex to
add such exceptions.

x-, y-, and z-coordinates; x-, y-, and z-
coordinates; x-, y-, and z-coordinates; x-, y-,
and z-coordinates; x-, y-, and z-coordinates; x-,
y-, and z-coordinates;

Example with “\-/”:

x-, y-, and z-coordinates; x-, y-, and z-coordi-
nates; x-, y-, and z-coordinates; x-, y-, and z-
coordinates; x-, y-, and z-coordinates; x-, y-,
and z-coordinates;

Example with “\=/”:

x-, y-, and z-coordinates; x-, y-, and z-coor-
dinates; x-, y-, and z-coordinates; x-, y-, and
z-coordinates; x-, y-, and z-coordinates; x-, y-,
and z-coordinates;

Note that “\=/” enables hyphenation in elements of
compound words as the same as “\-/” does.

D.3.4.3 Em Dash

Em dashes are used to indicate parenthetic expression. In
perfbook, em dashes are placed without spaces around it.
In LATEX source, an em dash is represented by “---”.

Example (quote from Appendix C.1):

This disparity in speed—more than two or-
ders of magnitude—has resulted in the multi-
megabyte caches found on modern CPUs.

D.3.4.4 En Dash

In LATEX convention, en dashes (–) are used for ranges
of (mostly) numbers. Past revisions of perfbook didn’t
follow this rule and used plain dashes (-) for such cases.

Now that \clnrefrange, \crefrange, and their vari-
ants, which generate en dashes, are used for ranges of
cross-references, the remaining couple of tens of simple
dashes of other types of ranges have been converted to
en dashes for consistency.

Example with a simple dash:

Lines 4-12 in Listing D.4 are the contents of the
verbbox environment. The box is output by the
\theverbbox macro on line 16.

Example with an en dash:

v2024.12.27a

D.3. LATEX CONVENTIONS 471

Lines 4–12 in Listing D.4 are the contents of
the verbbox environment. The box is output by
the \theverbbox macro on line 16.

D.3.4.5 Numerical Minus Sign

Numerical minus signs should be coded as math mode
minus signs, namely “$-$”.6 For example,

−30, rather than -30.

D.3.5 Punctuation
D.3.5.1 Ellipsis

In monospace fonts, ellipses can be expressed by series of
periods. For example:

Great ... So how do I fix it?

However, in proportional fonts, the series of periods is
printed with tight spaces as follows:

Great ... So how do I fix it?

Standard LATEX defines the \dots macro for this pur-
pose. However, it has a kludge in the evenness of spaces.
The “ellipsis” package redefines the \dots macro to fix
the issue.7 By using \dots, the above example is typeset
as the following:

Great . . . So how do I fix it?

Note that the “xspace” option specified to the “ellipsis”
package adjusts the spaces after ellipses depending on
what follows them.

For example:

• He said, “I . . . really don’t remember . . .”
• Sequence A: (one, two, three, . . .)
• Sequence B: (4, 5, . . . , 𝑛)

As you can see, extra space is placed before the comma.
\dots macro can also be used in math mode:

• Sequence C: (1, 2, 3, 5, 8, . . .)
• Sequence D: (10, 12, . . . , 20)

The \ldots macro behaves the same as the \dots
macro.

6 This rule assumes that math mode uses the same upright glyph as
text mode. Our default font choice meets the assumption.

7 To be exact, it is the \textellipsis macro that is redefined. The
behavior of \dots macro in math mode is not affected. The “amsmath”
package has another definition of \dots. It is not used in perfbook at
the moment.

D.3.5.2 Full Stop

LATEX treats a full stop in front of a white space as an end
of a sentence and puts a slightly wider skip by default
(double spacing). There is an exception to this rule, i.e.
where the full stop is next to a capital letter, LATEX assumes
it represents an abbreviation and puts a normal skip.

To make LATEX use proper skips, one need to annotate
such exceptions. For example, given the following LATEX
source:

\begin{quote}
Lock~1 is owned by CPU~A.
Lock~2 is owned by CPU~B. (Bad.)

Lock~1 is owned by CPU~A\@.
Lock~2 is owned by CPU~B\@. (Good.)

\end{quote}

the output will be as the following:

Lock 1 is owned by CPU A. Lock 2 is owned
by CPU B. (Bad.)
Lock 1 is owned by CPU A. Lock 2 is owned
by CPU B. (Good.)

On the other hand, where a full stop is following a lower
case letter, e.g. as in “Mr. Smith”, a wider skip will follow
in the output unless it is properly hinted. Such hintings
can be done in one of several ways.

Given the following source,

\begin{itemize}[nosep]
\item Mr. Smith (bad)
\item Mr.~Smith (good)
\item Mr.\ Smith (good)
\item Mr.\@ Smith (good)

\end{itemize}

the result will look as follows:
• Mr. Smith (bad)
• Mr. Smith (good)
• Mr. Smith (good)
• Mr. Smith (good)

D.3.6 Floating Object Format
D.3.6.1 Ruled Line in Table

They say that tables drawn by using ruled lines of plain
LATEX look ugly.8 Vertical lines should be avoided and
horizontal lines should be used sparingly, especially in
tables of simple structure.

8 https://www.inf.ethz.ch/personal/markusp/
teaching/guides/guide-tables.pdf

https://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-tables.pdf
https://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-tables.pdf

v2024.12.27a

472 APPENDIX D. STYLE GUIDE

Table D.3: Refrigeration Power Consumption

Situation 𝑇 (K) 𝐶P

Power per watt
waste heat (W)

Dry Ice 195 1.990 0.5
Liquid N2 77 0.356 2.8
Liquid H2 20 0.073 13.7
Liquid He 4 0.0138 72.3
IBM Q 0.015 0.000051 19,500.0

Table D.3 (corresponding to a table from a now-deleted
section) is drawn by using the features of “booktabs” and
“xcolor” packages. Note that ruled lines of booktabs can
not be mixed with vertical lines in a table.9

D.3.6.2 Position of Caption

In LATEX conventions, captions of tables are usually placed
above them. The reason is the flow of your eye movement
when you look at them. Most tables have a row of heading
at the top. You naturally look at the top of a table at first.
Captions at the bottom of tables disturb this flow. The
same can be said of code snippets, which are read from
top to bottom.

For code snippets, the “ruled” style chosen for listing
environment places the caption at the top. See Listing D.2
for an example.

As for tables, the position of caption is tweaked by
\floatstyle{} and \restylefloat{} macros in pre-
amble.

Vertical skips below captions are reduced by setting
a smaller value to the \abovecaptionskip variable,
which would also affect captions to figures.

In the tables which use horizontal rules of “booktabs”
package, the vertical skips between captions and tables
are further reduced by setting a negative value to the
\abovetopsep variable, which controls the behavior of
\toprule.

D.3.7 Improvement Candidates
There are a few areas yet to be attempted in perfbook
which would further improve its appearance. This section
lists such candidates.

9 There is another package named “arydshln” which provides
dashed lines to be used in tables. A couple of experimental examples
are presented in Appendix D.3.7.2.

D.3.7.1 Grouping Related Figures/Listings

To prevent a pair of closely related figures or listings from
being placed in different pages, it is desirable to group
them into a single floating object. The “subfig” package
provides the features to do so.10

Two floating objects can be placed side by side by using
\parbox or minipage. For example, Figures 14.10
and 14.11 can be grouped together by using a pair of
minipages as shown in Figures D.1 and D.2.

By using subfig package, Listings 15.4 and 15.5 can
be grouped together as shown in Listing D.6 with sub-
captions (with a minor change of blank line).

Note that they can not be grouped in the same way as
Figures D.1 and D.2 because the “ruled” style prevents
their captions from being properly typeset.

The sub-caption can be cited by combining a \cref{}
macro and a \subref{} macro, for example, “List-
ing D.6 (a)”.

It can also be cited by a \cref{} macro, for example,
“Listing D.6b”. Note the difference in the resulting format.
For the citing by a \cref{} to work, you need to place the
\label{} macro of the combined floating object ahead
of the definition of subfloats. Otherwise, the resulting
caption number would be off by one from the actual
number.

D.3.7.2 Table Layout Experiment

This section presents some experimental tables using book-
tabs, xcolors, and arydshln packages. The corresponding
tables in the text have been converted using one of the
format shown here. The source of this section can be
regarded as a reference to be consulted when new tables
are added in the text.

In Table D.4 (corresponding to Table 3.1), the “S”
column specifiers provided by the “siunitx” package are
used to align numbers.

Table D.5 (corresponding to Table 13.1) is an example
of table with a complex header. In Table D.5, the gap in
the mid-rule corresponds to the distinction which had been
represented by double vertical rules before the conversion.
The legends in the frame box appended here explain the
abbreviations used in the matrix. Two types of memory
barrier are denoted by subscripts here. The legends and
subscripts are not present in Table 13.1 since they are
redundant there.

10 One problem of grouping figures might be the complexity in LATEX
source.

v2024.12.27a

D.3. LATEX CONVENTIONS 473

Figure D.1: Timer Wheel at 1 kHz Figure D.2: Timer Wheel at 100 kHz

Listing D.6: Message-Passing Litmus Test (by subfig)
(a) Not Enforcing Order

1 C C-MP+o-wmb-o+o-o.litmus
2
3 {
4 }
5
6 P0(int* x0, int* x1) {
7
8 WRITE_ONCE(*x0, 2);
9 smp_wmb();

10 WRITE_ONCE(*x1, 2);
11
12 }
13
14 P1(int* x0, int* x1) {
15
16 int r2;
17 int r3;
18
19 r2 = READ_ONCE(*x1);
20 r3 = READ_ONCE(*x0);
21
22 }
23
24
25 exists (1:r2=2 /\ 1:r3=0)

(b) Enforcing Order
1 C C-MP+o-wmb-o+o-rmb-o.litmus
2
3 {
4 }
5
6 P0(int* x0, int* x1) {
7
8 WRITE_ONCE(*x0, 2);
9 smp_wmb();

10 WRITE_ONCE(*x1, 2);
11
12 }
13
14 P1(int* x0, int* x1) {
15
16 int r2;
17 int r3;
18
19 r2 = READ_ONCE(*x1);
20 smp_rmb();
21 r3 = READ_ONCE(*x0);
22
23 }
24
25 exists (1:r2=2 /\ 1:r3=0)

v2024.12.27a

474 APPENDIX D. STYLE GUIDE

Table D.4: CPU 0 View of Synchronization Mechanisms
on 8-Socket System With Intel Xeon Platinum 8176
CPUs @ 2.10GHz

Operation Cost (ns)
Ratio

(cost/clock)

Clock period 0.5 1.0
Best-case CAS 7.0 14.6
Best-case lock 15.4 32.3
Blind CAS 7.2 15.2
CAS 18.0 37.7
Blind CAS (off-core) 47.5 99.8
CAS (off-core) 101.9 214.0
Blind CAS (off-socket) 148.8 312.5
CAS (off-socket) 442.9 930.1
Comms Fabric 5,000 10,500
Global Comms 195,000,000 409,500,000

Table D.5: Synchronization and Reference Counting

Release

Acquisition Locks Reference
Counts

Hazard
Pointers

RCU

Locks − CAMR M CA
Reference
Counts

A AMR M A

Hazard
Pointers

M M M M

RCU CA MACA M CA

Key: A: Atomic counting
C: Check combined with the atomic acquisition

operation
M: Full memory barriers required

MR: Memory barriers required only on release
MA: Memory barriers required on acquire

Table D.6 (corresponding to Table C.1) is a sequence
diagram drawn as a table.

Table D.7 is a tweaked version of Table 9.3. Here,
the “Category” column in the original is removed and
the categories are indicated in rows of bold-face font just
below the mid-rules. This change makes it easier for
\rowcolors{} command of “xcolor” package to work
properly.

Table D.8 is another version which keeps original col-
umns and colors rows only where a category has multiple
rows. This is done by combining \rowcolors{} of
“xcolor” and \cellcolor{} commands of the “colortbl”
package (\cellcolor{} overrides \rowcolors{}).

In Table 9.3, the latter layout without partial row color-
ing has been chosen for simplicity.

Table D.9 (corresponding to Table 15.1) is also a se-
quence diagram drawn as a tabular object.

Table D.10 shows another version of Table D.3 with
dashed horizontal and vertical rules of the arydshln pack-
age.

In this case, the vertical dashed rules seems unnecessary.
The one without the vertical rules is shown in Table D.11.

v2024.12.27a

D.3. LATEX CONVENTIONS 475

Table D.6: Cache Coherence Example

CPU Cache Memory

Sequence # CPU # Operation 0 1 2 3 0 8

0 Initial State −/I −/I −/I −/I V V
1 0 Load 0 (cache value miss) 0/S −/I −/I −/I V V
2 2 Load 0 (cache value miss) 0/S −/I 0/S −/I V V

3.1 0 Load 8 (collision, invalidation) −/I −/I 0/S −/I V V
3.2 0 Load 8 (cache value miss) 8/S −/I 0/S −/I V V

4 3 Load 0 (cache value miss) 8/S −/I 0/S 0/S V V
5.1 3 CAS 0 (cache value hit) 8/S −/I 0/S 0/S V V
5.2 3 CAS 0 (cache permission miss) 8/S −/I −/I 0/E V V
5.3 3 CAS 0 8/S −/I −/I 0/M I V
6.1 1 Store 8 (cache value miss) −/I 8/E −/I 0/M I V
6.2 1 Store 8 −/I 8/M −/I 0/M I I

7 3 CAS 0 −/I 8/M −/I 0/M I I
8.1 1 Load 0 (collision, flush) −/I −/I −/I 0/M I V
8.2 1 Load 0 (cache value miss) −/I 0/S −/I 0/S I V

9 3 Load 0 (cache value hit) −/I 0/S −/I 0/S I V

Table D.7: RCU Publish-Subscribe and Version Maintenance APIs

Primitives Availability Overhead

List traversal
list_for_each_entry_rcu() 2.5.59 Simple instructions (memory barrier on Alpha)

List update
list_add_rcu() 2.5.44 Memory barrier
list_add_tail_rcu() 2.5.44 Memory barrier
list_del_rcu() 2.5.44 Simple instructions
list_replace_rcu() 2.6.9 Memory barrier
list_splice_init_rcu() 2.6.21 Grace-period latency

Hlist traversal
hlist_for_each_entry_rcu() 2.6.8 Simple instructions (memory barrier on Alpha)

Hlist update
hlist_add_after_rcu() 2.6.14 Memory barrier
hlist_add_before_rcu() 2.6.14 Memory barrier
hlist_add_head_rcu() 2.5.64 Memory barrier
hlist_del_rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal
rcu_dereference() 2.6.9 Simple instructions (memory barrier on Alpha)

Pointer update
rcu_assign_pointer() 2.6.10 Memory barrier

v2024.12.27a

476 APPENDIX D. STYLE GUIDE

Table D.8: RCU Publish-Subscribe and Version Maintenance APIs

Category Primitives Availability Overhead

List traversal list_for_each_entry_rcu() 2.5.59 Simple instructions (mem-
ory barrier on Alpha)

List update list_add_rcu() 2.5.44 Memory barrier
list_add_tail_rcu() 2.5.44 Memory barrier
list_del_rcu() 2.5.44 Simple instructions
list_replace_rcu() 2.6.9 Memory barrier
list_splice_init_rcu() 2.6.21 Grace-period latency

Hlist traversal hlist_for_each_entry_rcu() 2.6.8 Simple instructions (mem-
ory barrier on Alpha)

Hlist update hlist_add_after_rcu() 2.6.14 Memory barrier
hlist_add_before_rcu() 2.6.14 Memory barrier
hlist_add_head_rcu() 2.5.64 Memory barrier
hlist_del_rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal rcu_dereference() 2.6.9 Simple instructions (mem-
ory barrier on Alpha)

Pointer update rcu_assign_pointer() 2.6.10 Memory barrier

Table D.9: Memory Misordering: Store-Buffering Sequence of Events

CPU 0 CPU 1

Instruction Store Buffer Cache Instruction Store Buffer Cache

1 (Initial state) x1==0 (Initial state) x0==0
2 x0 = 2; x0==2 x1==0 x1 = 2; x1==2 x0==0
3 r2 = x1; (0) x0==2 x1==0 r2 = x0; (0) x1==2 x0==0
4 (Read-invalidate) x0==2 x0==0 (Read-invalidate) x1==2 x1==0
5 (Finish store) x0==2 (Finish store) x1==2

v2024.12.27a

D.3. LATEX CONVENTIONS 477

Table D.10: Refrigeration Power Consumption

Situation 𝑇 (K) 𝐶P

Power per watt
waste heat (W)

Dry Ice 195 1.990 0.5
Liquid N2 77 0.356 2.8
Liquid H2 20 0.073 13.7
Liquid He 4 0.0138 72.3
IBM Q 0.015 0.000051 19,500.0

Table D.11: Refrigeration Power Consumption

Situation 𝑇 (K) 𝐶P

Power per watt
waste heat (W)

Dry Ice 195 1.990 0.5
Liquid N2 77 0.356 2.8
Liquid H2 20 0.073 13.7
Liquid He 4 0.0138 72.3
IBM Q 0.015 0.000051 19,500.0

D.3.7.3 Miscellaneous Candidates

Other improvement candidates are listed in the source of
this section as comments.

v2024.12.27a

478 APPENDIX D. STYLE GUIDE

v2024.12.27a

The Answer to the Ultimate Question of Life, The

Universe, and Everything.

The Hitchhikers Guide to the Galaxy, Douglas AdamsAppendix E

Answers to Quick Quizzes

E.1 How To Use This Book

Quick Quiz 1.1: p.2

Where are the answers to the Quick Quizzes found?

Answer:
In Appendix E starting on page 479. Hey, I thought I
owed you an easy one! ❑

Quick Quiz 1.2: p.2

Some of the Quick Quiz questions seem to be from the
viewpoint of the reader rather than the author. Is that
really the intent?

Answer:
Indeed it is! Many are questions that Paul E. McKenney
would probably have asked if he was a novice student
in a class covering this material. It is worth noting that
Paul was taught most of this material by parallel hardware
and software, not by professors. In Paul’s experience,
professors are much more likely to provide answers to
verbal questions than are parallel systems, recent advances
in voice-activated assistants notwithstanding. Of course,
we could have a lengthy debate over which of professors
or parallel systems provide the most useful answers to
these sorts of questions, but for the time being let’s just
agree that usefulness of answers varies widely across the
population both of professors and of parallel systems.

Other quizzes are quite similar to actual questions that
have been asked during conference presentations and
lectures covering the material in this book. A few others
are from the viewpoint of the author. ❑

Quick Quiz 1.3: p.2

These Quick Quizzes are just not my cup of tea. What
can I do about it?

Answer:
Here are a few possible strategies:

1. Just ignore the Quick Quizzes and read the rest of the
book. You might miss out on the interesting material
in some of the Quick Quizzes, but the rest of the
book has lots of good material as well. This is an
eminently reasonable approach if your main goal is
to gain a general understanding of the material or if
you are skimming through the book to find a solution
to a specific problem.

2. Look at the answer immediately rather than investing
a large amount of time in coming up with your own
answer. This approach is reasonable when a given
Quick Quiz’s answer holds the key to a specific
problem you are trying to solve. This approach
is also reasonable if you want a somewhat deeper
understanding of the material, but when you do not
expect to be called upon to generate parallel solutions
given only a blank sheet of paper.

3. If you find the Quick Quizzes distracting but impossi-
ble to ignore, you can always clone the LATEX source
for this book from the git archive.1 You can then
run the command make nq, which will produce a
perfbook-nq.pdf. This PDF contains unobtrusive
boxed tags where the Quick Quizzes would otherwise
be, and gathers each chapter’s Quick Quizzes at the
end of that chapter in the classic textbook style.

1 See Section 1.6 for instructions to do this.

479

v2024.12.27a

480 APPENDIX E. ANSWERS TO QUICK QUIZZES

4. Learn to like (or at least tolerate) the Quick Quizzes.
Experience indicates that quizzing yourself periodi-
cally while reading greatly increases comprehension
and depth of understanding.

Note that the quick quizzes are hyperlinked to the
answers and vice versa. Click either the “Quick Quiz”
heading or the small black square to move to the beginning
of the answer. From the answer, click on the heading or
the small black square to move to the beginning of the quiz,
or, alternatively, click on the small white square at the end
of the answer to move to the end of the corresponding
quiz. ❑

Quick Quiz 1.4: p.2

If passively reading this book doesn’t get me full problem-
solving and code-production capabilities, what on earth
is the point???

Answer:
For those preferring analogies, coding concurrent software
is similar to playing music in that there are good uses for
many different levels of talent and skill. Not everyone
needs to devote their entire live to becoming a concert
pianist. In fact, for every such virtuoso, there are a great
many lesser pianists whose of music is welcomed by their
friends and families. But these lesser pianists are probably
doing something else to support themselves, and so it is
with concurrent coding.

One potential benefit of passively reading this book
is the ability to read and understand modern concurrent
code. This ability might in turn permit you to:

1. See what the concurrent code does so that you can
check to see if a proposed use case is valid.

2. Chase down a bug in concurrent code.

3. Use information in the concurrent code base to more
easily chase down a bug in other code interacting
with that code base.

4. Produce a fix for a bug in concurrent code.

5. Create a straightforward feature in a concurrent code
base, whether coding by hand from scratch or using
the modern “copy-pasta” development methodology
involving downloading code from Internet.2

2 But be careful of copyright and licensing issues!

If you are proficient with straightforward uses of locks
and atomic operations, passively reading this book should
enable you to successfully apply modern concurrency
techniques.

And finally, if your job is to coordinate the activities of
developers making use of modern concurrency techniques,
passively reading this book might help you understand
what on earth they are talking about. ❑

E.2 Introduction

Quick Quiz 2.1: p.8

Come on now!!! Parallel programming has been known
to be exceedingly hard for many decades. You seem to
be hinting that it is not so hard. What sort of game are
you playing?

Answer:
If you really believe that parallel programming is exceed-
ingly hard, then you should have a ready answer to the
question “Why is parallel programming hard?” One could
list any number of reasons, ranging from deadlocks to
race conditions to testing coverage, but the real answer
is that it is not really all that hard. After all, if parallel
programming was really so horribly difficult, how could
a large number of open-source projects, ranging from
Apache to MySQL to the Linux kernel, have managed to
master it?

A better question might be: “Why is parallel program-
ming perceived to be so difficult?” To see the answer, let’s
go back to the year 1991. Paul McKenney was walking
across the parking lot to Sequent’s benchmarking center
carrying six dual-80486 Sequent Symmetry CPU boards,
when he suddenly realized that he was carrying several
times the price of the house he had just purchased.3 This
high cost of parallel systems meant that parallel program-
ming was restricted to a privileged few who worked for
an employer who either manufactured or could afford to
purchase machines costing upwards of $100,000—in 1991
dollars US.

In contrast, in 2020, Paul finds himself typing these
words on a six-core x86 laptop. Unlike the dual-80486
CPU boards, this laptop also contains 64 GB of main
memory, a 1 TB solid-state disk, a display, Ethernet, USB
ports, wireless, and Bluetooth. And the laptop is more

3 Yes, this sudden realization did cause him to walk quite a bit more
carefully. Why do you ask?

v2024.12.27a

E.2. INTRODUCTION 481

than an order of magnitude cheaper than even one of those
dual-80486 CPU boards, even before taking inflation into
account.

Parallel systems have truly arrived. They are no longer
the sole domain of a privileged few, but something avail-
able to almost everyone.

The earlier restricted availability of parallel hardware is
the real reason that parallel programming is considered so
difficult. After all, it is quite difficult to learn to program
even the simplest machine if you have no access to it.
Since the age of rare and expensive parallel machines is
for the most part behind us, the age during which parallel
programming is perceived to be mind-crushingly difficult
is coming to a close.4 ❑

Quick Quiz 2.2: p.8

How could parallel programming ever be as easy as
sequential programming?

Answer:
It depends on the programming environment. SQL [Int92]
is an underappreciated success story, as it permits pro-
grammers who know nothing about parallelism to keep a
large parallel system productively busy. We can expect
more variations on this theme as parallel computers con-
tinue to become cheaper and more readily available. For
example, one possible contender in the scientific and tech-
nical computing arena is MATLAB*P, which is an attempt
to automatically parallelize common matrix operations.

Finally, on Linux and UNIX systems, consider the
following shell command:

get_input | grep "interesting" | sort

This shell pipeline runs the get_input, grep, and
sort processes in parallel. There, that wasn’t so hard,
now was it?

In short, parallel programming is just as easy as se-
quential programming—at least in those environments
that hide the parallelism from the user! ❑

4 Parallel programming is in some ways more difficult than sequential
programming, for example, parallel validation is more difficult. But no
longer mind-crushingly difficult.

Quick Quiz 2.3: p.8

Oh, really??? What about correctness, maintainability,
robustness, and so on?

Answer:
These are important goals, but they are just as important
for sequential programs as they are for parallel programs.
Therefore, important though they are, they do not belong
on a list specific to parallel programming. ❑

Quick Quiz 2.4: p.8

And if correctness, maintainability, and robustness don’t
make the list, why do productivity and generality?

Answer:
Given that parallel programming is perceived to be much
harder than sequential programming, productivity is tan-
tamount and therefore must not be omitted. Furthermore,
high-productivity parallel-programming environments
such as SQL serve a specific purpose, hence general-
ity must also be added to the list. ❑

Quick Quiz 2.5: p.9

Given that parallel programs are much harder to prove
correct than are sequential programs, again, shouldn’t
correctness really be on the list?

Answer:
From an engineering standpoint, the difficulty in proving
correctness, either formally or informally, would be impor-
tant insofar as it impacts the primary goal of productivity.
So, in cases where correctness proofs are important, they
are subsumed under the “productivity” rubric. ❑

Quick Quiz 2.6: p.9

What about just having fun?

Answer:
Having fun is important as well, but, unless you are a
hobbyist, would not normally be a primary goal. On the
other hand, if you are a hobbyist, go wild! ❑

Quick Quiz 2.7: p.9

Are there no cases where parallel programming is about
something other than performance?

Answer:
There certainly are cases where the problem to be solved

v2024.12.27a

482 APPENDIX E. ANSWERS TO QUICK QUIZZES

is inherently parallel, for example, Monte Carlo meth-
ods and some numerical computations. Even in these
cases, however, there will be some amount of extra work
managing the parallelism.

Parallelism is also sometimes used for reliability. For
but one example, triple-modulo redundancy has three
systems run in parallel and vote on the result. In extreme
cases, the three systems will be independently imple-
mented using different algorithms and technologies. ❑

Quick Quiz 2.8: p.9

Why not instead rewrite programs from inefficient script-
ing languages to C or C++?

Answer:
If the developers, budget, and time is available for such
a rewrite, and if the result will attain the required levels
of performance on a single CPU, this can be a reasonable
approach. ❑

Quick Quiz 2.9: p.10

Why all this prattling on about non-technical issues???
And not just any non-technical issue, but productivity of
all things? Who cares?

Answer:
If you are a pure hobbyist, perhaps you don’t need to care.
But even pure hobbyists will often care about how much
they can get done, and how quickly. After all, the most
popular hobbyist tools are usually those that are the best
suited for the job, and an important part of the definition
of “best suited” involves productivity. And if someone
is paying you to write parallel code, they will very likely
care deeply about your productivity. And if the person
paying you cares about something, you would be most
wise to pay at least some attention to it!

Besides, if you really didn’t care about productivity, you
would be doing it by hand rather than using a computer!
❑

Quick Quiz 2.10: p.10

Given how cheap parallel systems have become, how
can anyone afford to pay people to program them?

Answer:
There are a number of answers to this question:

1. Given a large computational cluster of parallel ma-
chines, the aggregate cost of the cluster can easily
justify substantial developer effort, because the de-
velopment cost can be spread over the large number
of machines.

2. Popular software that is run by tens of millions of
users can easily justify substantial developer effort,
as the cost of this development can be spread over
the tens of millions of users. Note that this includes
things like kernels and system libraries.

3. If the low-cost parallel machine is controlling the
operation of a valuable piece of equipment, then the
cost of this piece of equipment might easily justify
substantial developer effort.

4. If the software for the low-cost parallel machine
produces an extremely valuable result (e.g., energy
savings), then this valuable result might again justify
substantial developer cost.

5. Safety-critical systems protect lives, which can
clearly justify very large developer effort.

6. Hobbyists and researchers might instead seek knowl-
edge, experience, fun, or glory.

So it is not the case that the decreasing cost of hardware
renders software worthless, but rather that it is no longer
possible to “hide” the cost of software development within
the cost of the hardware, at least not unless there are
extremely large quantities of hardware. ❑

Quick Quiz 2.11: p.12

This is a ridiculously unachievable ideal! Why not focus
on something that is achievable in practice?

Answer:
This is eminently achievable. The cellphone is a computer
that can be used to make phone calls and to send and
receive text messages with little or no programming or
configuration on the part of the end user.

This might seem to be a trivial example at first glance,
but if you consider it carefully you will see that it is both
simple and profound. When we are willing to sacrifice
generality, we can achieve truly astounding increases in
productivity. Those who indulge in excessive generality
will therefore fail to set the productivity bar high enough
to succeed near the top of the software stack. This fact
of life even has its own acronym: YAGNI, or “You Ain’t
Gonna Need It.” ❑

v2024.12.27a

E.2. INTRODUCTION 483

Quick Quiz 2.12: p.13

Wait a minute! Doesn’t this approach simply shift
the development effort from you to whoever wrote the
existing parallel software you are using?

Answer:
Exactly! And that is the whole point of using existing soft-
ware. One team’s work can be used by many other teams,
resulting in a large decrease in overall effort compared to
all teams needlessly reinventing the wheel. ❑

Quick Quiz 2.13: p.13

What other bottlenecks might prevent additional CPUs
from providing additional performance?

Answer:
There are any number of potential bottlenecks:

1. Main memory. If a single thread consumes all avail-
able memory, additional threads will simply page
themselves silly.

2. Cache. If a single thread’s cache footprint completely
fills any shared CPU cache(s), then adding more
threads will simply thrash those affected caches, as
will be seen in Chapter 10.

3. Memory bandwidth. If a single thread consumes all
available memory bandwidth, additional threads will
simply result in additional queuing on the system
interconnect.

4. I/O bandwidth. If a single thread is I/O bound, adding
more threads will simply result in them all waiting
in line for the affected I/O resource.

Specific hardware systems might have any number of
additional bottlenecks. The fact is that every resource
which is shared between multiple CPUs or threads is a
potential bottleneck. ❑

Quick Quiz 2.14: p.14

Other than CPU cache capacity, what might require
limiting the number of concurrent threads?

Answer:
There are any number of potential limits on the number
of threads:

1. Main memory. Each thread consumes some mem-
ory (for its stack if nothing else), so that excessive
numbers of threads can exhaust memory, resulting
in excessive paging or memory-allocation failures.

2. I/O bandwidth. If each thread initiates a given amount
of mass-storage I/O or networking traffic, excessive
numbers of threads can result in excessive I/O queu-
ing delays, again degrading performance. Some
networking protocols may be subject to timeouts
or other failures if there are so many threads that
networking events cannot be responded to in a timely
fashion.

3. Synchronization overhead. For many synchroniza-
tion protocols, excessive numbers of threads can
result in excessive spinning, blocking, or rollbacks,
thus degrading performance.

Specific applications and platforms may have any num-
ber of additional limiting factors. ❑

Quick Quiz 2.15: p.15

Just what is “explicit timing”???

Answer:
Where each thread is given access to some set of resources
during an agreed-to slot of time. For example, a parallel
program with eight threads might be organized into eight-
millisecond time intervals, so that the first thread is given
access during the first millisecond of each interval, the
second thread during the second millisecond, and so
on. This approach clearly requires carefully synchronized
clocks and careful control of execution times, and therefore
should be used with considerable caution.

In fact, outside of hard realtime environments, you al-
most certainly want to use something else instead. Explicit
timing is nevertheless worth a mention, as it is always
there when you need it. ❑

Quick Quiz 2.16: p.16

Are there any other obstacles to parallel programming?

Answer:
There are a great many other potential obstacles to parallel
programming. Here are a few of them:

1. The only known algorithms for a given project might
be inherently sequential in nature. In this case,
either avoid parallel programming (there being no

v2024.12.27a

484 APPENDIX E. ANSWERS TO QUICK QUIZZES

law saying that your project has to run in parallel) or
invent a new parallel algorithm.

2. The project allows binary-only plugins that share
the same address space, such that no one developer
has access to all of the source code for the project.
Because many parallel bugs, including deadlocks,
are global in nature, such binary-only plugins pose
a severe challenge to current software development
methodologies. This might well change, but for the
time being, all developers of parallel code sharing a
given address space need to be able to see all of the
code running in that address space.

3. The project contains heavily used APIs that were
designed without regard to parallelism [AGH+11a,
CKZ+13]. Some of the more ornate features of the
System V message-queue API form a case in point.
Of course, if your project has been around for a few
decades, and its developers did not have access to
parallel hardware, it undoubtedly has at least its share
of such APIs.

4. The project was implemented without regard to paral-
lelism. Given that there are a great many techniques
that work extremely well in a sequential environment,
but that fail miserably in parallel environments, if
your project ran only on sequential hardware for most
of its lifetime, then your project undoubtably has at
least its share of parallel-unfriendly code.

5. The project was implemented without regard to good
software-development practice. The cruel truth is
that shared-memory parallel environments are often
much less forgiving of sloppy development practices
than are sequential environments. You may be well-
served to clean up the existing design and code prior
to attempting parallelization.

6. The people who originally did the development on
your project have since moved on, and the people
remaining, while well able to maintain it or add small
features, are unable to make “big animal” changes.
In this case, unless you can work out a very simple
way to parallelize your project, you will probably be
best off leaving it sequential. That said, there are a
number of simple approaches that you might use to
parallelize your project, including running multiple
instances of it, using a parallel implementation of
some heavily used library function, or making use
of some other parallel project, such as a database.

One can argue that many of these obstacles are non-
technical in nature, but that does not make them any less
real. In short, parallelization of a large body of code
can be a large and complex effort. As with any large
and complex effort, it makes sense to do your homework
beforehand. ❑

E.3 Hardware and its Habits

Quick Quiz 3.1: p.17

Why should parallel programmers bother learning low-
level properties of the hardware? Wouldn’t it be easier,
better, and more elegant to remain at a higher level of
abstraction?

Answer:
It might well be easier to ignore the detailed properties
of the hardware, but in most cases it would be quite
foolish to do so. If you accept that the only purpose of
parallelism is to increase performance, and if you further
accept that performance depends on detailed properties
of the hardware, then it logically follows that parallel
programmers are going to need to know at least a few
hardware properties.

This is the case in most engineering disciplines. Would
you want to use a bridge designed by an engineer who
did not understand the properties of the concrete and steel
making up that bridge? If not, why would you expect
a parallel programmer to be able to develop competent
parallel software without at least some understanding of
the underlying hardware? ❑

Quick Quiz 3.2: p.20

What types of machines would allow atomic operations
on multiple data elements?

Answer:
One answer to this question is that it is often possible to
pack multiple elements of data into a single machine word,
which can then be manipulated atomically.

A more trendy answer would be machines support-
ing transactional memory [Lom77, Kni86, HM93]. By
early 2014, several mainstream systems provided lim-
ited hardware transactional memory implementations, the
ups and downs of which are covered in more detail in
Section 17.3. The jury is also still out on the applicabil-
ity of software transactional memory [MMW07, PW07,

v2024.12.27a

E.3. HARDWARE AND ITS HABITS 485

RHP+07, CBM+08, DFGG11, MS12], which is covered
in Section 17.2. ❑

Quick Quiz 3.3: p.20

But what does this have to do with scaling workloads
across a multi-core CPU???

Answer:
In many cases, quite a bit! For example, on a system
with hyperthreaded cores, the hardware threads sharing a
core also share its functional units, which can result in yet
another form of contention that can limit scalability. For
another example, the whole point of having an impressive
array of functional units is to support instruction-level
parallelism, that is, intra-CPU concurrency and thus scal-
ability. ❑

Quick Quiz 3.4: p.21

Given a long thermal warmup period doing a fixed
workload, why would ambient temperature matter?

Answer:
Yes, a fixed workload running at a fixed CPU core clock
frequency might well generate a constant flow of heat,
give or take the many challenges one faces when creating
thermal models of CPUs. However, the lower the ambient
temperature, the more quickly heat flows from the CPU
to the surrounding environment. This in turn, coupled
with constant flow of heat, means that lower ambient
temperatures will result in lower CPU temperatures, and
thus less thermal throttling. Therefore, a given benchmark
might well yield higher performance at night or during
winter, both being times when ambient temperatures tend
to be lower. ❑

Quick Quiz 3.5: p.21

So have CPU designers also greatly reduced the overhead
of cache misses?

Answer:
Unfortunately, not so much. There has been some re-
duction given constant numbers of CPUs, but the finite
speed of light and the atomic nature of matter limits their
ability to reduce cache-miss overhead for larger systems.
Section 3.3 discusses some possible avenues for possible
future progress. ❑

Quick Quiz 3.6: p.24

This is a simplified sequence of events? How could it
possibly be any more complex?

Answer:
This sequence ignored a number of possible complications,
including:

1. Other CPUs might be concurrently attempting to
perform memory-reference operations involving this
same cacheline.

2. The cacheline might have been replicated read-only
in several CPUs’ caches, in which case, it would need
to be flushed from their caches.

3. CPU 6 might have been operating on the cache line
when the request for it arrived, in which case CPU 6
might need to hold off the request until its own
operation completed.

4. CPU 6 might have ejected the cacheline from its
cache (for example, in order to make room for other
data), so that by the time that the request arrived, the
cacheline was on its way to memory.

5. A correctable error might have occurred in the cache-
line, which would then need to be corrected at some
point before the data was used.

Production-quality cache-coherence mechanisms are
extremely complicated due to these sorts of considera-
tions [HP95, CSG99, MHS12, SHW11]. ❑

Quick Quiz 3.7: p.24

Why is it necessary to flush the cacheline from CPU 6’s
cache?

Answer:
If the cacheline was not flushed from CPU 6’s cache, then
CPUs 1 and 6 might have different values for the same
set of variables in the cacheline. This sort of incoherence
greatly complicates parallel software, which is why wise
hardware architects avoid it. ❑

Quick Quiz 3.8: p.25

Table 3.1 shows CPU 0 sharing a core with CPU 224.
However, isn’t it more logical for CPU 0 to share a core
with CPU 1 instead of CPU 224???

v2024.12.27a

486 APPENDIX E. ANSWERS TO QUICK QUIZZES

Answer:
It is easy to be sympathetic to this view, but
the file /sys/devices/system/cpu/cpu0/cache/
index0/shared_cpu_list really does contain the
string 0,224. Therefore, CPU 0’s hyperthread twin really
is CPU 224. Some people speculate that this number-
ing allows naive applications and schedulers to perform
better, citing the fact that on many workloads the second
hyperthread does not provide a huge amount of additional
performance. This speculation assumes that naive appli-
cations and schedulers would utilize CPUs in numerical
order, leaving aside the weaker hyperthread twin CPUs
until all cores are in use. ❑

Quick Quiz 3.9: p.25

Surely the hardware designers could be persuaded to
improve this situation! Why have they been content with
such abysmal performance for these single-instruction
operations?

Answer:
The hardware designers have been working on this prob-
lem, and have consulted with no less a luminary than
the late physicist Stephen Hawking. Hawking’s obser-
vation was that the hardware designers have two basic
problems [Gar07]:

1. The finite speed of light, and

2. The atomic nature of matter.

The first problem limits raw speed, and the second
limits miniaturization, which in turn limits frequency.
And even this sidesteps the power-consumption issue that
is currently limiting production frequencies to well below
10 GHz.

In addition, Table 3.1 on page 24 represents a reasonably
large system with no fewer than 448 hardware threads.
Smaller systems often achieve better latency, as may be
seen in Table E.1, which represents a much smaller system
with only 16 hardware threads. A similar view is provided
by the rows of Table 3.1 down to and including the two
“Off-Core” rows.

Furthermore, newer small-scale single-socket systems
such as the laptop on which I am typing this also have
more reasonable latencies, as can be seen in Table E.2.

Alternatively, a 64-CPU system in the mid 1990s had
cross-interconnect latencies in excess of five microsec-
onds, so even the eight-socket 448-hardware-thread mon-
ster shown in Table 3.1 represents more than a five-fold
improvement over its 25-years-prior counterparts.

Table E.1: Performance of Synchronization Mechanisms
on 16-CPU 2.8 GHz Intel X5550 (Nehalem) System

Operation Cost (ns)
Ratio

(cost/clock)

Clock period 0.4 1.0

Same-CPU
CAS 12.2 33.8
lock 25.6 71.2

On-Core
Blind CAS 12.9 35.8
CAS 7.0 19.4

Off-Core
Blind CAS 31.2 86.6
CAS 31.2 86.5

Off-Socket
Blind CAS 92.4 256.7
CAS 95.9 266.4

Off-System
Comms Fabric 2,600 7,220
Global Comms 195,000,000 542,000,000

Table E.2: CPU 0 View of Synchronization Mechanisms
on 12-CPU Intel Core i7-8750H CPU @ 2.20 GHz

Operation Cost (ns)
Ratio

(cost/clock) CPUs

Clock period 0.5 1.0

Same-CPU 0
CAS 6.2 13.6
lock 13.5 29.6

On-Core 6
Blind CAS 6.5 14.3
CAS 16.2 35.6

Off-Core 1–5
Blind CAS 22.2 48.8 7–11
CAS 53.6 117.9

Off-System
Comms Fabric 5,000 11,000
Global Comms 195,000,000 429,000,000

v2024.12.27a

E.3. HARDWARE AND ITS HABITS 487

Integration of hardware threads in a single core and
multiple cores on a die have improved latencies greatly,
at least within the confines of a single core or single
die. There has been some improvement in overall system
latency, but only by about a factor of two. Unfortunately,
neither the speed of light nor the atomic nature of matter
has changed much in the past few years [Har16]. Therefore,
spatial and temporal locality are first-class concerns for
concurrent software, even when running on relatively
small systems.

Section 3.3 looks at what else hardware designers might
be able to do to ease the plight of parallel programmers.
❑

Quick Quiz 3.10: p.25

Table E.1 in the answer to Quick Quiz 3.9 on page 486
says that on-core CAS is faster than both of same-CPU
CAS and on-core blind CAS. What is happening there?

Answer:
I was surprised by the data I obtained and did a rigorous
check of their validity. I got the same result persistently.
One theory that might explain the observation would
be: The two threads in the core are able to overlap
their accesses, while the single CPU must do everything
sequentially. Unfortunately, there seems to be no public
documentation explaining why the Intel X5550 (Nehalem)
system behaved like that. ❑

Quick Quiz 3.11: p.26

These numbers are insanely large! How can I possibly
get my head around them?

Answer:
Get a roll of toilet paper. In the USA, each roll will
normally have somewhere around 350–500 sheets. Tear
off one sheet to represent a single clock cycle, setting it
aside. Now unroll the rest of the roll.

The resulting pile of toilet paper will likely represent a
single CAS cache miss.

For the more-expensive inter-system communications
latencies, use several rolls (or multiple cases) of toilet
paper to represent the communications latency.

Important safety tip: Make sure to account for the needs
of those you live with when appropriating toilet paper,
especially in 2020 or during a similar time when store
shelves are free of toilet paper and much else besides.

Furthermore, for those working on kernel code, a CPU
disabling interrupts across a cache miss is analogous to
you holding your breath while unrolling a roll of toilet
paper. How many rolls of toilet paper can you unroll while
holding your breath? You might wish to avoid disabling
interrupts across that many cache misses.5 ❑

Quick Quiz 3.12: p.27

But individual electrons don’t move anywhere near that
fast, even in conductors!!! The electron drift velocity in
a conductor under semiconductor voltage levels is on the
order of only one millimeter per second. What gives???

Answer:
Electron drift velocity tracks the long-term movement of
individual electrons. It turns out that individual electrons
bounce around quite randomly, so that their instantaneous
speed is very high, but over the long term, they don’t
move very far. In this, electrons resemble long-distance
commuters, who might spend most of their time traveling
at full highway speed, but over the long term go nowhere.
These commuters’ speed might be 70 miles per hour (113
kilometers per hour), but their long-term drift velocity
relative to the planet’s surface is zero.

Therefore, we should pay attention not to the electrons’
drift velocity, but to their instantaneous velocities. How-
ever, even their instantaneous velocities are nowhere near
a significant fraction of the speed of light. Nevertheless,
the measured velocity of electric waves in conductors is a
substantial fraction of the speed of light, so we still have a
mystery on our hands.

The other trick is that electrons interact with each other
at significant distances (from an atomic perspective, any-
way), courtesy of their negative charge. This interaction
is carried out by photons, which do move at the speed of
light. So even with electricity’s electrons, it is photons
doing most of the fast footwork.

Extending the commuter analogy, a driver might use a
smartphone to inform other drivers of an accident or con-
gestion, thus allowing a change in traffic flow to propagate
much faster than the instantaneous velocity of the individ-
ual cars. Summarizing the analogy between electricity
and traffic flow:

1. The (very low) drift velocity of an electron is similar
to the long-term velocity of a commuter, both being
very nearly zero.

5 Kudos to Matthew Wilcox for this holding-breath analogy.

v2024.12.27a

488 APPENDIX E. ANSWERS TO QUICK QUIZZES

2. The (still rather low) instantaneous velocity of an
electron is similar to the instantaneous velocity of
a car in traffic. Both are much higher than the drift
velocity, but quite small compared to the rate at which
changes propagate.

3. The (much higher) propagation velocity of an elec-
tric wave is primarily due to photons transmitting
electromagnetic force among the electrons. Simi-
larly, traffic patterns can change quite quickly due
to communication among drivers. Not that this is
necessarily of much help to the drivers already stuck
in traffic, any more than it is to the electrons already
pooled in a given capacitor.

To fully understand this topic, study electrodynamics.
❑

Quick Quiz 3.13: p.30

Given that distributed-systems communication is so
horribly expensive, why does anyone bother with such
systems?

Answer:
There are a number of reasons:

1. Shared-memory multiprocessor systems have strict
size limits. If you need more than a few thousand
CPUs, you have no choice but to use a distributed
system.

2. Large shared-memory systems tend to be more ex-
pensive per unit computation than their smaller coun-
terparts.

3. Large shared-memory systems tend to have much
longer cache-miss latencies than do smaller system.
To see this, compare Table 3.1 on page 24 with
Table E.2.

4. The distributed-systems communications operations
do not necessarily use much CPU, so that computa-
tion can proceed in parallel with message transfer.

5. Many important problems are “embarrassingly paral-
lel”, so that extremely large quantities of processing
may be enabled by a very small number of messages.
SETI@HOME [Uni08b] was but one example of
such an application. These sorts of applications can
make good use of networks of computers despite
extremely long communications latencies.

Thus, large shared-memory systems tend to be used
for applications that benefit from faster latencies than can
be provided by distributed computing, and particularly
for those applications that benefit from a large shared
memory.

It is likely that continued work on parallel applications
will increase the number of embarrassingly parallel ap-
plications that can run well on machines and/or clusters
having long communications latencies, reductions in cost
being the driving force that it is. That said, greatly re-
duced hardware latencies would be an extremely welcome
development, both for single-system and for distributed
computing. And such reductions are in fact happening,
albeit rather slowly from the perspective of those of us
who lived through the exponential CPU-clock-frequency
increases up to the early 2000s. ❑

Quick Quiz 3.14: p.30

OK, if we are going to have to apply distributed-
programming techniques to shared-memory parallel
programs, why not just always use these distributed
techniques and dispense with shared memory?

Answer:
Because it is often the case that only a small fraction
of the program is performance-critical. Shared-memory
parallelism allows us to focus distributed-programming
techniques on that small fraction, allowing simpler shared-
memory techniques to be used on the non-performance-
critical bulk of the program. ❑

E.4 Tools of the Trade

Quick Quiz 4.1: p.31

You call these tools??? They look more like low-level
synchronization primitives to me!

Answer:
They look that way because they are in fact low-level
synchronization primitives. And they are in fact the fun-
damental tools for building low-level concurrent software.
❑

v2024.12.27a

E.4. TOOLS OF THE TRADE 489

Quick Quiz 4.2: p.31

But this silly shell script isn’t a real parallel program!
Why bother with such trivia???

Answer:
Because you should never forget the simple stuff!

Please keep in mind that the title of this book is “Is
Parallel Programming Hard, And, If So, What Can You
Do About It?”. One of the most effective things you can
do about it is to avoid forgetting the simple stuff! After all,
if you choose to do parallel programming the hard way,
you have no one but yourself to blame. ❑

Quick Quiz 4.3: p.31

Is there a simpler way to create a parallel shell script?
If so, how? If not, why not?

Answer:
One straightforward approach is the shell pipeline:

grep $pattern1 | sed -e 's/a/b/' | sort

For a sufficiently large input file, grep will pattern-
match in parallel with sed editing and with the input
processing of sort. See the file parallel.sh for a
demonstration of shell-script parallelism and pipelining.
❑

Quick Quiz 4.4: p.32

But if script-based parallel programming is so easy, why
bother with anything else?

Answer:
In fact, it is quite likely that a very large fraction of
parallel programs in use today are script-based. However,
script-based parallelism does have its limitations:

1. Creation of new processes is usually quite heavy-
weight, involving the expensive fork() and exec()
system calls.

2. Sharing of data, including pipelining, typically in-
volves expensive file I/O.

3. The reliable synchronization primitives available to
scripts also typically involve expensive file I/O.

4. Scripting languages are often too slow, but are often
quite useful when coordinating execution of long-
running programs written in lower-level program-
ming languages.

These limitations require that script-based parallelism
use coarse-grained parallelism, with each unit of work
having execution time of at least tens of milliseconds, and
preferably much longer.

Those requiring finer-grained parallelism are well ad-
vised to think hard about their problem to see if it can be
expressed in a coarse-grained form. If not, they should
consider using other parallel-programming environments,
such as those discussed in Section 4.2. ❑

Quick Quiz 4.5: p.32

Why does this wait() primitive need to be so compli-
cated? Why not just make it work like the shell-script
wait does?

Answer:
Some parallel applications need to take special action when
specific children exit, and therefore need to wait for each
child individually. In addition, some parallel applications
need to detect the reason that the child died. As we saw in
Listing 4.2, it is not hard to build a waitall() function
out of the wait() function, but it would be impossible
to do the reverse. Once the information about a specific
child is lost, it is lost. ❑

Quick Quiz 4.6: p.33

Isn’t there a lot more to fork() and wait() than dis-
cussed here?

Answer:
Indeed there is, and it is quite possible that this section
will be expanded in future versions to include messaging
features (such as UNIX pipes, TCP/IP, and shared file I/O)
and memory mapping (such as mmap() and shmget()).
In the meantime, there are any number of textbooks that
cover these primitives in great detail, and the truly moti-
vated can read man pages, existing parallel applications
using these primitives, as well as the source code of the
Linux-kernel implementations themselves.

It is important to note that the parent process in List-
ing 4.3 waits until after the child terminates to do its
printf(). Using printf()’s buffered I/O concurrently
to the same file from multiple processes is non-trivial,
and is best avoided. If you really need to do concur-
rent buffered I/O, consult the documentation for your
OS. For UNIX/Linux systems, Stewart Weiss’s lecture
notes provide a good introduction with informative exam-
ples [Wei13]. ❑

v2024.12.27a

490 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 4.7: p.33

If the mythread() function in Listing 4.4 can simply
return, why bother with pthread_exit()?

Answer:
In this simple example, there is no reason whatsoever.
However, imagine a more complex example, where
mythread() invokes other functions, possibly separately
compiled. In such a case, pthread_exit() allows these
other functions to end the thread’s execution without hav-
ing to pass some sort of error return all the way back up
to mythread(). ❑

Quick Quiz 4.8: p.34

If the C language makes no guarantees in presence of a
data race, then why does the Linux kernel have so many
data races? Are you trying to tell me that the Linux
kernel is completely broken???

Answer:
Ah, but the Linux kernel is written in a carefully selected
superset of the C language that includes special GNU
extensions, such as asms, that permit safe execution even
in presence of data races. In addition, the Linux kernel
does not run on a number of platforms where data races
would be especially problematic. For an example, consider
embedded systems with 32-bit pointers and 16-bit busses.
On such a system, a data race involving a store to and a
load from a given pointer might well result in the load
returning the low-order 16 bits of the old value of the
pointer concatenated with the high-order 16 bits of the
new value of the pointer.

Nevertheless, even in the Linux kernel, data races
can be quite dangerous and should be avoided where
feasible [Cor12]. ❑

Quick Quiz 4.9: p.34

What if I want several threads to hold the same lock at
the same time?

Answer:
The first thing you should do is to ask yourself why you
would want to do such a thing. If the answer is “because I
have a lot of data that is read by many threads, and only
occasionally updated”, then POSIX reader-writer locks
might be what you are looking for. These are introduced
in Section 4.2.4.

Another way to get the effect of multiple threads holding
the same lock is for one thread to acquire the lock, and

then use pthread_create() to create the other threads.
The question of why this would ever be a good idea is left
to the reader. ❑

Quick Quiz 4.10: p.35

Why not simply make the argument to lock_reader()
on line 6 of Listing 4.5 be a pointer to a pthread_
mutex_t?

Answer:
Because we will need to pass lock_reader() to
pthread_create(). Although we could cast the func-
tion when passing it to pthread_create(), function
casts are quite a bit uglier and harder to get right than are
simple pointer casts. ❑

Quick Quiz 4.11: p.35

What is the READ_ONCE() on lines 20 and 47 and the
WRITE_ONCE() on line 47 of Listing 4.5?

Answer:
These macros constrain the compiler so as to prevent it
from carrying out optimizations that would be problematic
for concurrently accessed shared variables. They don’t
constrain the CPU at all, other than by preventing reorder-
ing of accesses to a given single variable. Note that this
single-variable constraint does apply to the code shown in
Listing 4.5 because only the variable x is accessed.

For more information on READ_ONCE() and WRITE_
ONCE(), please see Section 4.2.5. For more in-
formation on ordering accesses to multiple variables
by multiple threads, please see Chapter 15. In the
meantime, READ_ONCE(x) has much in common with
the GCC intrinsic __atomic_load_n(&x, __ATOMIC_
RELAXED) and WRITE_ONCE(x, v) has much in common
with the GCC intrinsic __atomic_store_n(&x, v, __
ATOMIC_RELAXED). ❑

Quick Quiz 4.12: p.35

Writing four lines of code for each acquisition and release
of a pthread_mutex_t sure seems painful! Isn’t there
a better way?

Answer:
Indeed! And for that reason, the pthread_mutex_
lock() and pthread_mutex_unlock() primitives are
normally wrapped in functions that do this error check-
ing. Later on, we will wrap them with the Linux kernel
spin_lock() and spin_unlock() APIs. ❑

v2024.12.27a

E.4. TOOLS OF THE TRADE 491

Quick Quiz 4.13: p.35

Is “x = 0” the only possible output from the code fragment
shown in Listing 4.6? If so, why? If not, what other
output could appear, and why?

Answer:
No. The reason that “x = 0” was output was that lock_
reader() acquired the lock first. Had lock_writer()
instead acquired the lock first, then the output would have
been “x = 3”. However, because the code fragment started
lock_reader() first and because this run was performed
on a multiprocessor, one would normally expect lock_
reader() to acquire the lock first. Nevertheless, there
are no guarantees, especially on a busy system. ❑

Quick Quiz 4.14: p.36

Using different locks could cause quite a bit of confu-
sion, what with threads seeing each others’ intermediate
states. So should well-written parallel programs restrict
themselves to using a single lock in order to avoid this
kind of confusion?

Answer:
Although it is sometimes possible to write a program
using a single global lock that both performs and scales
well, such programs are exceptions to the rule. You
will normally need to use multiple locks to attain good
performance and scalability.

One possible exception to this rule is “transactional
memory”, which is currently a research topic. Transac-
tional-memory semantics can be loosely thought of as
those of a single global lock with optimizations permitted
and with the addition of rollback [Boe09]. ❑

Quick Quiz 4.15: p.36

In the code shown in Listing 4.7, is lock_reader()
guaranteed to see all the values produced by lock_
writer()? Why or why not?

Answer:
No. On a busy system, lock_reader() might be pre-
empted for the entire duration of lock_writer()’s ex-
ecution, in which case it would not see any of lock_
writer()’s intermediate states for x. ❑

Quick Quiz 4.16: p.36

Wait a minute here!!! Listing 4.6 didn’t initialize shared
variable x, so why does it need to be initialized in
Listing 4.7?

Answer:
See line 4 of Listing 4.5. Because the code in Listing 4.6
ran first, it could rely on the compile-time initialization
of x. The code in Listing 4.7 ran next, so it had to
re-initialize x. ❑

Quick Quiz 4.17: p.37

Instead of using READ_ONCE() everywhere, why not just
declare goflag as volatile on line 10 of Listing 4.8?

Answer:
A volatile declaration is in fact a reasonable alternative
in this particular case. However, use of READ_ONCE() has
the benefit of clearly flagging to the reader that goflag
is subject to concurrent reads and updates. Note that
READ_ONCE() is especially useful in cases where most of
the accesses are protected by a lock (and thus not subject
to change), but where a few of the accesses are made
outside of the lock. Using a volatile declaration in
this case would make it harder for the reader to note the
special accesses outside of the lock, and would also make
it harder for the compiler to generate good code under the
lock. ❑

Quick Quiz 4.18: p.37

READ_ONCE() only affects the compiler, not the CPU.
Don’t we also need memory barriers to make sure that
the change in goflag’s value propagates to the CPU in
a timely fashion in Listing 4.8?

Answer:
No, memory barriers are not needed and won’t help here.
Memory barriers only enforce ordering among multiple
memory references: They absolutely do not guarantee
to expedite the propagation of data from one part of the
system to another.6 This leads to a quick rule of thumb:
You do not need memory barriers unless you are using
more than one variable to communicate between multiple
threads.

6 There have been persistent rumors of hardware in which memory
barriers actually do expedite propagation of data, but no confirmed
sightings.

v2024.12.27a

492 APPENDIX E. ANSWERS TO QUICK QUIZZES

But what about nreadersrunning? Isn’t that a second
variable used for communication? Indeed it is, and there
really are the needed memory-barrier instructions buried
in __sync_fetch_and_add(), which make sure that the
thread proclaims its presence before checking to see if it
should start. ❑

Quick Quiz 4.19: p.37

Would it ever be necessary to use READ_ONCE() when
accessing a per-thread variable, for example, a variable
declared using GCC’s __thread storage class?

Answer:
It depends. If the per-thread variable was accessed only
from its thread, and never from a signal handler, then
no. Otherwise, it is quite possible that READ_ONCE()
is needed. We will see examples of both situations in
Section 5.4.4.

This leads to the question of how one thread can gain
access to another thread’s __thread variable, and the
answer is that the second thread must store a pointer to
its __thread variable somewhere that the first thread has
access to. One common approach is to maintain a linked
list with one element per thread, and to store the address
of each thread’s __thread variable in the corresponding
element. ❑

Quick Quiz 4.20: p.37

Isn’t comparing against single-CPU throughput a bit
harsh?

Answer:
Not at all. In fact, this comparison was, if anything,
overly lenient. A more balanced comparison would be
against single-CPU throughput with the locking primitives
commented out. ❑

Quick Quiz 4.21: p.37

But one microsecond is not a particularly small size for
a critical section. What do I do if I need a much smaller
critical section, for example, one containing only a few
instructions?

Answer:
If the data being read never changes, then you do not need
to hold any locks while accessing it. If the data changes
sufficiently infrequently, you might be able to checkpoint
execution, terminate all threads, change the data, then
restart at the checkpoint.

Another approach is to keep a single exclusive lock per
thread, so that a thread read-acquires the larger aggregate
reader-writer lock by acquiring its own lock, and write-
acquires by acquiring all the per-thread locks [HW92].
This can work quite well for readers, but causes writers
to incur increasingly large overheads as the number of
threads increases.

Some other ways of efficiently handling very small
critical sections are described in Chapter 9. ❑

Quick Quiz 4.22: p.38

The system used is a few years old, and new hardware
should be faster. So why should anyone worry about
reader-writer locks being slow?

Answer:
In general, newer hardware is improving. However, it will
need to improve several orders of magnitude to permit
reader-writer lock to achieve ideal performance on 448
CPUs. Worse yet, the greater the number of CPUs, the
larger the required performance improvement. The per-
formance problems of reader-writer locking are therefore
very likely to be with us for quite some time to come. ❑

Quick Quiz 4.23: p.38

Is it really necessary to have both sets of primitives?

Answer:
Strictly speaking, no. One could implement any member
of the second set using the corresponding member of the
first set. For example, one could implement __sync_
nand_and_fetch() in terms of __sync_fetch_and_
nand() as follows:

tmp = v;
ret = __sync_fetch_and_nand(p, tmp);
ret = ~ret & tmp;

It is similarly possible to implement __sync_fetch_
and_add(), __sync_fetch_and_sub(), and __sync_
fetch_and_xor() in terms of their post-value counter-
parts.

However, the alternative forms can be quite convenient,
both for the programmer and for the compiler/library
implementor. ❑

Quick Quiz 4.24: p.38

Given that these atomic operations will often be able
to generate single atomic instructions that are directly

v2024.12.27a

E.4. TOOLS OF THE TRADE 493

supported by the underlying instruction set, shouldn’t
they be the fastest possible way to get things done?

Answer:
Unfortunately, no. See Chapter 5 for some stark coun-
terexamples. ❑

Quick Quiz 4.25: p.38

What happened to ACCESS_ONCE()?

Answer:
In the 2018 v4.15 release, the Linux kernel’s ACCESS_
ONCE() was replaced by READ_ONCE() and WRITE_
ONCE() for reads and writes, respectively [Cor12, Cor14a,
Rut17]. ACCESS_ONCE() was introduced as a helper in
RCU code, but was promoted to core API soon after-
ward [McK07b, Tor08]. Linux kernel’s READ_ONCE()
and WRITE_ONCE() have evolved into complex forms that
look quite different than the original ACCESS_ONCE()
implementation due to the need to support access-once
semantics for large structures, but with the possibility of
load/store tearing if the structure cannot be loaded and
stored with a single machine instruction. ❑

Quick Quiz 4.26: p.41

What happened to the Linux-kernel equivalents to
fork() and wait()?

Answer:
They don’t really exist. All tasks executing within the
Linux kernel share memory, at least unless you want to
do a huge amount of memory-mapping work by hand. ❑

Quick Quiz 4.27: p.41

What problems could occur if the variable counter
were incremented without the protection of mutex?

Answer:
On CPUs with load-store architectures, incrementing
counter might compile into something like the following:

LOAD counter,r0
INC r0
STORE r0,counter

On such machines, two threads might simultaneously
load the value of counter, each increment it, and each
store the result. The new value of counter will then
only be one greater than before, despite two threads each
incrementing it. ❑

Quick Quiz 4.28: p.42

What is wrong with loading Listing 4.14’s global_ptr
up to three times?

Answer:
Suppose that global_ptr is initially non-NULL, but that
some other thread sets global_ptr to NULL. Suppose
further that line 1 of the transformed code (Listing 4.15)
executes just before global_ptr is set to NULL and line 2
just after. Then line 1 will conclude that global_ptr is
non-NULL, line 2 will conclude that it is less than high_
address, so that line 3 passes do_low() a NULL pointer,
which do_low() just might not be prepared to deal with.

Your editor made exactly this mistake in the DYNIX/ptx
kernel’s memory allocator in the early 1990s. Tracking
down the bug consumed a holiday weekend not just for
your editor, but also for several of his colleagues. In short,
this is not a new problem, nor is it likely to go away on its
own. ❑

Quick Quiz 4.29: p.43

Why does it matter whether do_something() and do_
something_else() in Listing 4.18 are inline func-
tions?

Answer:
Because gp is not a static variable, if either do_
something() or do_something_else() were sepa-
rately compiled, the compiler would have to assume that
either or both of these two functions might change the
value of gp. This possibility would force the compiler
to reload gp on line 15, thus avoiding the NULL-pointer
dereference. ❑

Quick Quiz 4.30: p.45

Ouch! So can’t the compiler invent a store to a normal
variable pretty much any time it likes?

Answer:
Thankfully, the answer is no. This is because the compiler
is forbidden from introducing data races. The case of
inventing a store just before a normal store is quite special:
It is not possible for some other entity, be it CPU, thread,
signal handler, or interrupt handler, to be able to see the
invented store unless the code already has a data race,
even without the invented store. And if the code already
has a data race, it already invokes the dreaded spectre of
undefined behavior, which allows the compiler to generate

v2024.12.27a

494 APPENDIX E. ANSWERS TO QUICK QUIZZES

pretty much whatever code it wants, regardless of the
wishes of the developer.

But if the original store is volatile, as in WRITE_ONCE(),
for all the compiler knows, there might be a side effect
associated with the store that could signal some other
thread, allowing data-race-free access to the variable. By
inventing the store, the compiler might be introducing a
data race, which it is not permitted to do.

Furthermore, in Listing 4.21, the address of that variable
is passed to do_a_bunch_of_stuff(). If the compiler
can see this function’s definition, and notes that a is
unconditionally stored to without any synchronization
operations, then the compiler can be quite sure that it is
not introducing a data race in this case.

In the case of volatile and atomic variables, the
compiler is specifically forbidden from inventing writes.
❑

Quick Quiz 4.31: p.47

But aren’t full memory barriers very heavyweight? Isn’t
there a cheaper way to enforce the ordering needed in
Listing 4.29?

Answer:
As is often the case, the answer is “it depends”. However,
if only two threads are accessing the status and other_
task_ready variables, then the smp_store_release()
and smp_load_acquire() functions discussed in Sec-
tion 4.3.5 will suffice. ❑

Quick Quiz 4.32: p.48

What needs to happen if an interrupt or signal handler
might itself be interrupted?

Answer:
Then that interrupt handler must follow the same rules
that are followed by other interrupted code. Only those
handlers that cannot be themselves interrupted or that
access no variables shared with an interrupting handler
may safely use plain accesses, and even then only if those
variables cannot be concurrently accessed by some other
CPU or thread. ❑

Quick Quiz 4.33: p.49

How could you work around the lack of a per-thread-
variable API on systems that do not provide it?

Answer:
One approach would be to create an array indexed by

smp_thread_id(), and another would be to use a hash
table to map from smp_thread_id() to an array index—
which is in fact what this set of APIs does in pthread
environments.

Another approach would be for the parent to allocate
a structure containing fields for each desired per-thread
variable, then pass this to the child during thread cre-
ation. However, this approach can impose large software-
engineering costs in large systems. To see this, imagine if
all global variables in a large system had to be declared
in a single file, regardless of whether or not they were C
static variables! ❑

Quick Quiz 4.34: p.49

What do you do if you need a per-thread (not per-CPU!)
variable in the Linux kernel?

Answer:
First, needing a per-thread variable is less likely than
you might think. Per-CPU variables can often do a per-
thread variable’s job. For example, if you only need
to do addition, bitwise AND, bitwise OR, exchange,
or compare-and-exchange, then the this_cpu_add(),
this_cpu_add_return(), this_cpu_and(), this_
cpu_or(), this_cpu_xchg(), this_cpu_cmpxchg(),
and this_cpu_cmpxchg_double() operations, respec-
tively, will do the job cheaply and atomically with respect
to context switches, interrupt handlers, and softirq han-
dlers, but not non-maskable interrupts.

Second, within a preemption-disabled region of code,
for example, one surrounded by the preempt_disable()
and preempt_enable() macros, the current task is guar-
anteed to remain executing on the current CPU. Therefore,
while within one such region, any series of accesses to per-
CPU variables is atomic with respect to context switches,
though not with respect to interrupt handlers, softirq han-
dlers, and non-maskable interrupts. But please be aware
that a preemption-disabled region of code that runs for
more than a few microseconds will not be looked upon
with favor by people attempting to construct real-time
systems.

Third, a field added to the task_struct structure acts
as set of per-task variables. However, there are those who
keep a close eye on the size of this structure, and these
people are likely to ask hard questions about the need
for any added fields. Therefore, if your field is being
added for some facility that is only built into some kernels,
you should definitely place your new task_struct fields
under an appropriate #ifdef.

v2024.12.27a

E.5. COUNTING 495

Fourth and finally, your per-task variable might instead
be located in some other structure and protected by some
synchronization mechanism that is already in use. For
example, if your code must hold a given lock, can accesses
to this storage instead be protected by that lock? The
fact that this is at the end of the list notwithstanding, you
should look into this possibility first, not last! ❑

Quick Quiz 4.35: p.50

Wouldn’t the shell normally use vfork() rather than
fork()?

Answer:
It might well do that, however, checking is left as an
exercise for the reader. But in the meantime, I hope that
we can agree that vfork() is a variant of fork(), so that
we can use fork() as a generic term covering both. ❑

E.5 Counting

Quick Quiz 5.1: p.51

Why should efficient and scalable counting be hard???
After all, computers have special hardware for the sole
purpose of doing counting!!!

Answer:
Because the straightforward counting algorithms, for ex-
ample, atomic operations on a shared counter, either are
slow and scale badly, or are inaccurate, as will be seen in
Section 5.1. ❑

Quick Quiz 5.2: p.51

Network-packet counting problem. Suppose that you
need to collect statistics on the number of networking
packets transmitted and received. Packets might be
transmitted or received by any CPU on the system.
Suppose further that your system is capable of handling
millions of packets per second per CPU, and that a
systems-monitoring package reads the count every five
seconds. How would you implement this counter?

Answer:
Hint: The act of updating the counter must be blazingly
fast, but because the counter is read out only about once
in five million updates, the act of reading out the counter
can be quite slow. In addition, the value read out normally
need not be all that accurate—after all, since the counter

is updated a thousand times per millisecond, we should
be able to work with a value that is within a few thousand
counts of the “true value”, whatever “true value” might
mean in this context. However, the value read out should
maintain roughly the same absolute error over time. For
example, a 1 % error might be just fine when the count
is on the order of a million or so, but might be abso-
lutely unacceptable once the count reaches a trillion. See
Section 5.2. ❑

Quick Quiz 5.3: p.51

Approximate structure-allocation limit problem.
Suppose that you need to maintain a count of the number
of structures allocated in order to fail any allocations
once the number of structures in use exceeds a limit
(say, 10,000). Suppose further that the structures are
short-lived, the limit is rarely exceeded, and a “sloppy”
approximate limit is acceptable.

Answer:
Hint: The act of updating the counter must again be
blazingly fast, but the counter is read out each time that the
counter is increased. However, the value read out need not
be accurate except that it must distinguish approximately
between values below the limit and values greater than or
equal to the limit. See Section 5.3. ❑

Quick Quiz 5.4: p.51

Exact structure-allocation limit problem. Suppose
that you need to maintain a count of the number of
structures allocated in order to fail any allocations once
the number of structures in use exceeds an exact limit
(again, say 10,000). Suppose further that these structures
are short-lived, and that the limit is rarely exceeded, that
there is almost always at least one structure in use, and
suppose further still that it is necessary to know exactly
when this counter reaches zero, for example, in order to
free up some memory that is not required unless there is
at least one structure in use.

Answer:
Hint: The act of updating the counter must once again be
blazingly fast, but the counter is read out each time that
the counter is increased. However, the value read out need
not be accurate except that it absolutely must distinguish
perfectly between values between the limit and zero on
the one hand, and values that either are less than or equal
to zero or are greater than or equal to the limit on the other
hand. See Section 5.4. ❑

v2024.12.27a

496 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 5.5: p.51

Removable I/O device access-count problem. Suppose
that you need to maintain a reference count on a heavily
used removable mass-storage device, so that you can tell
the user when it is safe to remove the device. As usual,
the user indicates a desire to remove the device, and the
system tells the user when it is safe to do so.

Answer:
Hint: Yet again, the act of updating the counter must be
blazingly fast and scalable in order to avoid slowing down
I/O operations, but because the counter is read out only
when the user wishes to remove the device, the counter
read-out operation can be extremely slow. Furthermore,
there is no need to be able to read out the counter at all
unless the user has already indicated a desire to remove the
device. In addition, the value read out need not be accurate
except that it absolutely must distinguish perfectly between
non-zero and zero values, and even then only when the
device is in the process of being removed. However, once
it has read out a zero value, it must act to keep the value at
zero until it has taken some action to prevent subsequent
threads from gaining access to the device being removed.
See Section 5.4.6. ❑

Quick Quiz 5.6: p.52

One thing that could be simpler is ++ instead of that
concatenation of READ_ONCE() and WRITE_ONCE().
Why all that extra typing???

Answer:
See Section 4.3.4.1 on page 42 for more information
on how the compiler can cause trouble, as well as how
READ_ONCE() and WRITE_ONCE() can avoid this trouble.
❑

Quick Quiz 5.7: p.52

But can’t a smart compiler prove that line 5 of Listing 5.1
is equivalent to the ++ operator and produce an x86 add-
to-memory instruction? And won’t the CPU cache cause
this to be atomic?

Answer:
Although the ++ operator could be atomic, there is no
requirement that it be so unless it is applied to a C11
_Atomic variable. And indeed, in the absence of _
Atomic, GCC often chooses to load the value to a register,
increment the register, then store the value to memory,
which is decidedly non-atomic.

Furthermore, note the volatile casts in READ_ONCE()
and WRITE_ONCE(), which tell the compiler that the
location might well be an MMIO device register. Because
MMIO registers are not cached, it would be unwise for
the compiler to assume that the increment operation is
atomic. ❑

Quick Quiz 5.8: p.52

The 8-figure accuracy on the number of failures indicates
that you really did test this. Why would it be necessary
to test such a trivial program, especially when the bug
is easily seen by inspection?

Answer:
Not only are there very few trivial parallel programs, and
most days I am not so sure that there are many trivial
sequential programs, either.

No matter how small or simple the program, if you
haven’t tested it, it does not work. And even if you have
tested it, Murphy’s Law says that there will be at least a
few bugs still lurking.

Furthermore, while proofs of correctness certainly do
have their place, they never will replace testing, including
the counttorture.h test setup used here. After all,
proofs are only as good as the assumptions that they are
based on. Finally, proofs can be every bit as buggy as are
programs! ❑

Quick Quiz 5.9: p.52

Why doesn’t the horizontal dashed line on the x axis
meet the diagonal line at 𝑥 = 1?

Answer:
Because of the overhead of the atomic operation. The
dashed line on the x axis represents the overhead of a single
non-atomic increment. After all, an ideal algorithm would
not only scale linearly, it would also incur no performance
penalty compared to single-threaded code.

This level of idealism may seem severe, but if it is good
enough for Linus Torvalds, it is good enough for you. ❑

Quick Quiz 5.10: p.52

But atomic increment is still pretty fast. And incre-
menting a single variable in a tight loop sounds pretty
unrealistic to me, after all, most of the program’s exe-
cution should be devoted to actually doing work, not
accounting for the work it has done! Why should I care
about making this go faster?

v2024.12.27a

E.5. COUNTING 497

Answer:
In many cases, atomic increment will in fact be fast enough
for you. In those cases, you should by all means use atomic
increment.

That said, there are many real-world situations where
more elaborate counting algorithms are required. The
canonical example of such a situation is counting packets
and bytes in highly optimized networking stacks, where
it is all too easy to find much of the execution time
going into these sorts of accounting tasks, especially on
large multiprocessors. In fact, some workers defined the
“configuration that outperforms a single thread” (COST),
finding that a surprisingly large number of threads are
often required to outperform a single thread [MIM15]. In
other words, this is not a trivial matter and it is not likely
to go away without concerted effort.

In short, as noted at the beginning of this chapter, count-
ing provides an excellent view of the issues encountered
in shared-memory parallel programs. ❑

Quick Quiz 5.11: p.53

But why can’t CPU designers simply ship the addition
operation to the data, avoiding the need to circulate the
cache line containing the global variable being incre-
mented?

Answer:
It might well be possible to do this in some cases. However,
there are a few complications:

1. If the value of the variable is required, then the thread
will be forced to wait for the operation to be shipped
to the data, and then for the result to be shipped back.

2. If the atomic increment must be ordered with respect
to prior and/or subsequent operations, then the thread
will be forced to wait for the operation to be shipped
to the data, and for an indication that the operation
completed to be shipped back.

3. Shipping operations among CPUs will likely require
more lines in the system interconnect, which will
consume more die area and more electrical power.

But what if neither of the first two conditions holds? Then
you should think carefully about the algorithms discussed
in Section 5.2, which achieve near-ideal performance on
commodity hardware.

If either or both of the first two conditions hold, there
is some hope for improved hardware. One could imagine
the hardware implementing a combining tree, so that the

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory MemorySystem Interconnect

Figure E.1: Data Flow For Global Combining-Tree
Atomic Increment

increment requests from multiple CPUs are combined by
the hardware into a single addition when the combined
request reaches the hardware. The hardware could also
apply an order to the requests, thus returning to each CPU
the return value corresponding to its particular atomic
increment. This results in instruction latency that varies
as O (log 𝑁), where 𝑁 is the number of CPUs, as shown
in Figure E.1. Some say that a few CPUs with this sort
of hardware optimization were in production use in the
1990s and started to reappear in 2011.7

This is a great improvement over the O (𝑁) perfor-
mance of current hardware shown in Figure 5.2, and it is
possible that hardware latencies might decrease further if
innovations such as three-dimensional fabrication prove
practical. Nevertheless, we will see that in some important
special cases, software can do much better. ❑

Quick Quiz 5.12: p.53

But doesn’t the fact that C’s “integers” are limited in
size complicate things?

Answer:
No, because modulo addition is still commutative and
associative. At least as long as you use unsigned integers.
Recall that in the C standard, overflow of signed integers
results in undefined behavior, never mind the fact that
machines that do anything other than wrap on overflow are
quite rare these days. Unfortunately, compilers frequently
carry out optimizations that assume that signed integers
will not overflow, so if your code allows signed integers

7 The first reader to send a citable reference confirming or inval-
idating this statement will be mentioned in a future version of this
footnote.

v2024.12.27a

498 APPENDIX E. ANSWERS TO QUICK QUIZZES

to overflow, you can run into trouble even on modern
twos-complement hardware.

That said, one potential source of additional complex-
ity arises when attempting to gather (say) a 64-bit sum
from 32-bit per-thread counters. Dealing with this added
complexity is left as an exercise for the reader, for whom
some of the techniques introduced later in this chapter
could be quite helpful. ❑

Quick Quiz 5.13: p.53

An array??? But doesn’t that limit the number of threads?

Answer:
It can, and in this toy implementation, it does. But it is
not that hard to come up with an alternative implemen-
tation that permits an arbitrary number of threads, for
example, using C11’s _Thread_local facility, as shown
in Section 5.2.3. ❑

Quick Quiz 5.14: p.54

What other nasty optimizations could GCC apply?

Answer:
See Sections 4.3.4.1 and 15.4 for more information. One
nasty optimization would be to apply common subexpres-
sion elimination to successive calls to the read_count()
function, which might come as a surprise to code expect-
ing changes in the values returned from successive calls
to that function. ❑

Quick Quiz 5.15: p.54

How does the per-thread counter variable in Listing 5.3
get initialized?

Answer:
The C standard specifies that the initial value of global
variables is zero, unless they are explicitly initialized,
thus implicitly initializing all the instances of counter
to zero. Besides, in the common case where the user is
interested only in differences between consecutive reads
from statistical counters, the initial value is irrelevant. ❑

Quick Quiz 5.16: p.54

How is the code in Listing 5.3 supposed to permit more
than one counter?

Answer:
Indeed, this toy example does not support more than one

counter. Modifying it so that it can provide multiple
counters is left as an exercise to the reader. ❑

Quick Quiz 5.17: p.54

The read operation takes time to sum up the per-thread
values, and during that time, the counter could well
be changing. This means that the value returned by
read_count() in Listing 5.3 will not necessarily be
exact. Assume that the counter is being incremented at
rate 𝑟 counts per unit time, and that read_count()’s
execution consumes 𝛥units of time. What is the expected
error in the return value?

Answer:
Let’s do worst-case analysis first, followed by a less con-
servative analysis.

In the worst case, the read operation completes immedi-
ately, but is then delayed for 𝛥 time units before returning,
in which case the worst-case error is simply 𝑟𝛥.

This worst-case behavior is rather unlikely, so let us
instead consider the case where the reads from each of
the 𝑁 counters is spaced equally over the time period 𝛥.
There will be 𝑁 + 1 intervals of duration 𝛥

𝑁+1 between
the 𝑁 reads. The rate 𝑟 of increments is expected to be
spread evenly over the 𝑁 counters, for 𝑟

𝑁
increments per

unit time for each individual counter. The error due to the
delay after the read from the last thread’s counter will be
given by 𝑟𝛥

𝑁 (𝑁+1) , the second-to-last thread’s counter by
2𝑟𝛥

𝑁 (𝑁+1) , the third-to-last by 3𝑟𝛥
𝑁 (𝑁+1) , and so on. The total

error is given by the sum of the errors due to the reads
from each thread’s counter, which is:

𝑟𝛥

𝑁 (𝑁 + 1)

𝑁∑︁
𝑖=1

𝑖 (E.1)

Expressing the summation in closed form yields:

𝑟𝛥

𝑁 (𝑁 + 1)
𝑁 (𝑁 + 1)

2
(E.2)

Canceling yields the intuitively expected result:

𝑟𝛥

2
(E.3)

It is important to remember that error continues accu-
mulating as the caller executes code making use of the
count returned by the read operation. For example, if the
caller spends time 𝑡 executing some computation based
on the result of the returned count, the worst-case error
will have increased to 𝑟 (𝛥 + 𝑡).

The expected error will have similarly increased to:

v2024.12.27a

E.5. COUNTING 499

𝑟

(
𝛥

2
+ 𝑡

)
(E.4)

Of course, it is sometimes unacceptable for the counter
to continue incrementing during the read operation. Sec-
tion 5.4.6 discusses a way to handle this situation.

Thus far, we have been considering a counter that is
only increased, never decreased. If the counter value is
being changed by 𝑟 counts per unit time, but in either
direction, we should expect the error to reduce. However,
the worst case is unchanged because although the counter
could move in either direction, the worst case is when the
read operation completes immediately, but then is delayed
for 𝛥 time units, during which time all the changes in the
counter’s value move it in the same direction, again giving
us an absolute error of 𝑟𝛥.

There are a number of ways to compute the average
error, based on a variety of assumptions about the patterns
of increments and decrements. For simplicity, let’s assume
that the 𝑓 fraction of the operations are decrements, and
that the error of interest is the deviation from the counter’s
long-term trend line. Under this assumption, if 𝑓 is less
than or equal to 0.5, each decrement will be canceled by
an increment, so that 2 𝑓 of the operations will cancel each
other, leaving 1 − 2 𝑓 of the operations being uncanceled
increments. On the other hand, if 𝑓 is greater than 0.5, 1− 𝑓

of the decrements are canceled by increments, so that the
counter moves in the negative direction by −1 + 2 (1 − 𝑓),
which simplifies to 1 − 2 𝑓 , so that the counter moves an
average of 1 − 2 𝑓 per operation in either case. Therefore,
that the long-term movement of the counter is given by
(1 − 2 𝑓) 𝑟 . Plugging this into Eq. E.3 yields:

(1 − 2 𝑓) 𝑟𝛥
2

(E.5)

All that aside, in most uses of statistical counters, the
error in the value returned by read_count() is irrelevant.
This irrelevance is due to the fact that the time required for
read_count() to execute is normally extremely small
compared to the time interval between successive calls to
read_count(). ❑

Quick Quiz 5.18: p.55

Doesn’t that explicit counterp array in Listing 5.4
reimpose an arbitrary limit on the number of threads?
Why doesn’t the C language provide a per_thread()
interface, similar to the Linux kernel’s per_cpu() prim-
itive, to allow threads to more easily access each others’
per-thread variables?

Answer:
Why indeed?

To be fair, user-mode thread-local storage faces some
challenges that the Linux kernel gets to ignore. When
a user-level thread exits, its per-thread variables all dis-
appear, which complicates the problem of per-thread-
variable access, particularly before the advent of user-level
RCU (see Section 9.5). In contrast, in the Linux kernel,
when a CPU goes offline, that CPU’s per-CPU variables
remain mapped and accessible.

Similarly, when a new user-level thread is created, its
per-thread variables suddenly come into existence. In
contrast, in the Linux kernel, all per-CPU variables are
mapped and initialized at boot time, regardless of whether
the corresponding CPU exists yet, or indeed, whether the
corresponding CPU will ever exist.

A key limitation that the Linux kernel imposes is a
compile-time maximum bound on the number of CPUs,
namely, CONFIG_NR_CPUS, along with a typically tighter
boot-time bound of nr_cpu_ids. In contrast, in user
space, there is not necessarily a hard-coded upper limit
on the number of threads.

Of course, both environments must handle dynamically
loaded code (dynamic libraries in user space, kernel mod-
ules in the Linux kernel), which increases the complexity
of per-thread variables.

These complications make it significantly harder for
user-space environments to provide access to other threads’
per-thread variables. Nevertheless, such access is highly
useful, and it is hoped that it will someday appear.

In the meantime, textbook examples such as this one can
use arrays whose limits can be easily adjusted by the user.
Alternatively, such arrays can be dynamically allocated
and expanded as needed at runtime. Finally, variable-
length data structures such as linked lists can be used, as is
done in the userspace RCU library [Des09b, DMS+12a].
This last approach can also reduce false sharing in some
cases. ❑

Quick Quiz 5.19: p.55

Doesn’t the check for NULL on line 19 of Listing 5.4 add
extra branch mispredictions? Why not have a variable set
permanently to zero, and point unused counter-pointers
to that variable rather than setting them to NULL?

Answer:
This is a reasonable strategy. Checking for the perfor-
mance difference is left as an exercise for the reader.

v2024.12.27a

500 APPENDIX E. ANSWERS TO QUICK QUIZZES

However, please keep in mind that the fastpath is not
read_count(), but rather inc_count(). ❑

Quick Quiz 5.20: p.55

Why on earth do we need something as heavyweight as
a lock guarding the summation in the function read_
count() in Listing 5.4?

Answer:
Remember, when a thread exits, its per-thread variables
disappear. Therefore, if we attempt to access a given
thread’s per-thread variables after that thread exits, we will
get a segmentation fault. The lock coordinates summation
and thread exit, preventing this scenario.

Of course, we could instead read-acquire a reader-writer
lock, but Chapter 9 will introduce even lighter-weight
mechanisms for implementing the required coordination.

Another approach would be to use an array instead of
a per-thread variable, which, as Alexey Roytman notes,
would eliminate the tests against NULL. However, array
accesses are often slower than accesses to per-thread
variables, and use of an array would imply a fixed upper
bound on the number of threads. Also, note that neither
tests nor locks are needed on the inc_count() fastpath.
❑

Quick Quiz 5.21: p.55

Why on earth do we need to acquire the lock in count_
register_thread() in Listing 5.4? It is a single
properly aligned machine-word store to a location that
no other thread is modifying, so it should be atomic
anyway, right?

Answer:
This lock could in fact be omitted, but better safe than
sorry, especially given that this function is executed only
at thread startup, and is therefore not on any critical path.
Now, if we were testing on machines with thousands of
CPUs, we might need to omit the lock, but on machines
with “only” a hundred or so CPUs, there is no need to get
fancy. ❑

Quick Quiz 5.22: p.55

Fine, but the Linux kernel doesn’t have to acquire a
lock when reading out the aggregate value of per-CPU
counters. So why should user-space code need to do
this???

Listing E.1: Per-Thread Statistical Counters With Lockless
Summation

1 unsigned long __thread counter = 0;
2 unsigned long *counterp[NR_THREADS] = { NULL };
3 int finalthreadcount = 0;
4 DEFINE_SPINLOCK(final_mutex);
5
6 static __inline__ void inc_count(void)
7 {
8 WRITE_ONCE(counter, counter + 1);
9 }

10
11 static __inline__ unsigned long read_count(void)
12 /* need to tweak counttorture! */
13 {
14 int t;
15 unsigned long sum = 0;
16
17 for_each_thread(t) {
18 if (READ_ONCE(counterp[t]) != NULL)
19 sum += READ_ONCE(*counterp[t]);
20 }
21 return sum;
22 }
23
24 void count_register_thread(unsigned long *p)
25 {
26 WRITE_ONCE(counterp[smp_thread_id()], &counter);
27 }
28
29 void count_unregister_thread(int nthreadsexpected)
30 {
31 spin_lock(&final_mutex);
32 finalthreadcount++;
33 spin_unlock(&final_mutex);
34 while (READ_ONCE(finalthreadcount) < nthreadsexpected)
35 poll(NULL, 0, 1);
36 }

Answer:
Remember, the Linux kernel’s per-CPU variables are
always accessible, even if the corresponding CPU is
offline—even if the corresponding CPU never existed and
never will exist.

One workaround is to ensure that each thread contin-
ues to exist until all threads are finished, as shown in
Listing E.1 (count_tstat.c). Analysis of this code is
left as an exercise to the reader, however, please note
that it requires tweaks in the counttorture.h counter-
evaluation scheme. (Hint: See #ifndef KEEP_GCC_
THREAD_LOCAL.) Chapter 9 will introduce synchroniza-
tion mechanisms that handle this situation in a much more
graceful manner. ❑

Quick Quiz 5.23: p.56

Wouldn’t that period scan be bad for battery lifetime?

Answer:
It quite likely would. Can you think of other more battery-
friendly ways to update the global_count variable? ❑

v2024.12.27a

E.5. COUNTING 501

Quick Quiz 5.24: p.57

Why doesn’t inc_count() in Listing 5.5 need to use
atomic instructions? After all, we now have multiple
threads accessing the per-thread counters!

Answer:
Because one of the two threads only reads, and because
the variable is aligned and machine-sized, non-atomic
instructions suffice. That said, the READ_ONCE() macro
is used to prevent compiler optimizations that might
otherwise prevent the counter updates from becoming
visible to eventual().8

An older version of this algorithm did in fact use atomic
instructions, kudos to Ersoy Bayramoglu for pointing out
that they are in fact unnecessary. However, note that
on a 32-bit system, the per-thread counter variables
might need to be limited to 32 bits in order to sum them
accurately, but with a 64-bit global_count variable to
avoid overflow. In this case, it is necessary to zero the per-
thread counter variables periodically in order to avoid
overflow, which does require atomic instructions. It is
extremely important to note that this zeroing cannot be
delayed too long or overflow of the smaller per-thread
variables will result. This approach therefore imposes
real-time requirements on the underlying system, and in
turn must be used with extreme care.

In contrast, if all variables are the same size, overflow
of any variable is harmless because the eventual sum will
be modulo the word size. ❑

Quick Quiz 5.25: p.57

Won’t the single global thread in the function
eventual() of Listing 5.5 be just as severe a bottleneck
as a global lock would be?

Answer:
In this case, no. What will happen instead is that as the
number of threads increases, the estimate of the counter
value returned by read_count() will become more in-
accurate. ❑

Quick Quiz 5.26: p.57

Won’t the estimate returned by read_count() in List-
ing 5.5 become increasingly inaccurate as the number
of threads rises?

Answer:
Yes. If this proves problematic, one fix is to provide

8 A simple definition of READ_ONCE() is shown in Listing 4.9.

multiple eventual() threads, each covering its own
subset of the other threads. In more extreme cases, a tree-
like hierarchy of eventual() threads might be required.
❑

Quick Quiz 5.27: p.57

Given that in the eventually-consistent algorithm shown
in Listing 5.5 both reads and updates have extremely
low overhead and are extremely scalable, why would
anyone bother with the implementation described in
Section 5.2.2, given its costly read-side code?

Answer:
The thread executing eventual() consumes CPU time.
As more of these eventually-consistent counters are added,
the resulting eventual() threads will eventually con-
sume all available CPUs. This implementation therefore
suffers a different sort of scalability limitation, with the
scalability limit being in terms of the number of eventually
consistent counters rather than in terms of the number of
threads or CPUs.

Of course, it is possible to make other tradeoffs. For
example, a single thread could be created to handle all
eventually-consistent counters, which would limit the
overhead to a single CPU, but would result in increas-
ing update-to-read latencies as the number of counters
increased. Alternatively, that single thread could track
the update rates of the counters, visiting the frequently-
updated counters more frequently. In addition, the num-
ber of threads handling the counters could be set to some
fraction of the total number of CPUs, and perhaps also
adjusted at runtime. Finally, each counter could specify
its latency, and deadline-scheduling techniques could be
used to provide the required latencies to each counter.

There are no doubt many other tradeoffs that could be
made. ❑

Quick Quiz 5.28: p.57

What is the accuracy of the estimate returned by read_
count() in Listing 5.5?

Answer:
A straightforward way to evaluate this estimate is to use
the analysis derived in Quick Quiz 5.17, but set 𝛥 to the
interval between the beginnings of successive runs of the
eventual() thread. Handling the case where a given
counter has multiple eventual() threads is left as an
exercise for the reader. ❑

v2024.12.27a

502 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 5.29: p.57

What fundamental difference is there between counting
packets and counting the total number of bytes in the
packets, given that the packets vary in size?

Answer:
When counting packets, the counter is only incremented
by the value one. On the other hand, when counting bytes,
the counter might be incremented by largish numbers.

Why does this matter? Because in the increment-by-one
case, the value returned will be exact in the sense that the
counter must necessarily have taken on that value at some
point in time, even if it is impossible to say precisely when
that point occurred. In contrast, when counting bytes, two
different threads might return values that are inconsistent
with any global ordering of operations.

To see this, suppose that thread 0 adds the value three to
its counter, thread 1 adds the value five to its counter, and
threads 2 and 3 sum the counters. If the system is “weakly
ordered” or if the compiler uses aggressive optimizations,
thread 2 might find the sum to be three and thread 3 might
find the sum to be five. The only possible global orders of
the sequence of values of the counter are 0,3,8 and 0,5,8,
and neither order is consistent with the results obtained.

If you missed this one, you are not alone. Michael Scott
used this question to stump Paul E. McKenney during
Paul’s Ph.D. defense. ❑

Quick Quiz 5.30: p.57

Given that the reader must sum all the threads’ coun-
ters, this counter-read operation could take a long time
given large numbers of threads. Is there any way that
the increment operation can remain fast and scalable
while allowing readers to also enjoy not only reasonable
performance and scalability, but also good accuracy?

Answer:
One approach would be to maintain a global approxima-
tion to the value, similar to the approach described in
Section 5.2.4. Updaters would increment their per-thread
variable, but when it reached some predefined limit, atom-
ically add it to a global variable, then zero their per-thread
variable. This would permit a tradeoff between average
increment overhead and accuracy of the value read out. In
particular, it would allow sharp bounds on the read-side
inaccuracy.

Another approach makes use of the fact that readers
often care only about certain transitions in value, not in
the exact value. This approach is examined in Section 5.3.

The reader is encouraged to think up and try out other
approaches, for example, using a combining tree. ❑

Quick Quiz 5.31: p.59

Why does Listing 5.7 provide add_count() and
sub_count() instead of the inc_count() and dec_
count() interfaces show in Section 5.2?

Answer:
Because structures come in different sizes. Of course,
a limit counter corresponding to a specific size of struc-
ture might still be able to use inc_count() and dec_
count(). ❑

Quick Quiz 5.32: p.59

What is with the strange form of the condition on line 3
of Listing 5.7? Why not the more intuitive form of the
fastpath shown in Listing 5.8?

Answer:
Two words. “Integer overflow.”

Try the formulation in Listing 5.8 with counter equal
to 10 and delta equal to ULONG_MAX. Then try it again
with the code shown in Listing 5.7.

A good understanding of integer overflow will be re-
quired for the rest of this example, so if you have never
dealt with integer overflow before, please try several exam-
ples to get the hang of it. Integer overflow can sometimes
be more difficult to get right than parallel algorithms! ❑

Quick Quiz 5.33: p.60

Why does globalize_count() zero the per-thread
variables, only to later call balance_count() to refill
them in Listing 5.7? Why not just leave the per-thread
variables non-zero?

Answer:
That is in fact what an earlier version of this code did.
But addition and subtraction are extremely cheap, and
handling all of the special cases that arise is quite complex.
Again, feel free to try it yourself, but beware of integer
overflow! ❑

Quick Quiz 5.34: p.60

Given that globalreserve counted against us in add_
count(), why doesn’t it count for us in sub_count()
in Listing 5.7?

v2024.12.27a

E.5. COUNTING 503

Answer:
The globalreserve variable tracks the sum of all
threads’ countermax variables. The sum of these threads’
counter variables might be anywhere from zero to
globalreserve. We must therefore take a conservative
approach, assuming that all threads’ counter variables
are full in add_count() and that they are all empty in
sub_count().

But remember this question, as we will come back to it
later. ❑

Quick Quiz 5.35: p.60

Suppose that one thread invokes add_count() shown
in Listing 5.7, and then another thread invokes sub_
count(). Won’t sub_count() return failure even
though the value of the counter is non-zero?

Answer:
Indeed it will! In many cases, this will be a problem,
as discussed in Section 5.3.3, and in those cases the
algorithms from Section 5.4 will likely be preferable. ❑

Quick Quiz 5.36: p.60

Why have both add_count() and sub_count() in
Listing 5.7? Why not simply pass a negative number to
add_count()?

Answer:
Given that add_count() takes an unsigned long as its
argument, it is going to be a bit tough to pass it a negative
number. And unless you have some anti-matter memory,
there is little point in allowing negative numbers when
counting the number of structures in use!

All kidding aside, it would of course be possible to
combine add_count() and sub_count(), however, the
if conditions on the combined function would be more
complex than in the current pair of functions, which would
in turn mean slower execution of these fast paths. ❑

Quick Quiz 5.37: p.61

Why set counter to countermax / 2 in line 15 of List-
ing 5.9? Wouldn’t it be simpler to just take countermax
counts?

Answer:
First, it really is reserving countermax counts (see
line 14), however, it adjusts so that only half of these
are actually in use by the thread at the moment. This
allows the thread to carry out at least countermax / 2

increments or decrements before having to refer back to
globalcount again.

Note that the accounting in globalcount remains
accurate, thanks to the adjustment in line 18. ❑

Quick Quiz 5.38: p.61

In Figure 5.6, even though a quarter of the remaining
count up to the limit is assigned to thread 0, only an
eighth of the remaining count is consumed, as indicated
by the uppermost dotted line connecting the center and
the rightmost configurations. Why is that?

Answer:
The reason this happened is that thread 0’s counter
was set to half of its countermax. Thus, of the quarter
assigned to thread 0, half of that quarter (one eighth) came
from globalcount, leaving the other half (again, one
eighth) to come from the remaining count.

There are two purposes for taking this approach: (1) To
allow thread 0 to use the fastpath for decrements as well
as increments and (2) To reduce the inaccuracies if all
threads are monotonically incrementing up towards the
limit. To see this last point, step through the algorithm
and watch what it does. ❑

Quick Quiz 5.39: p.63

Why is it necessary to atomically manipulate the thread’s
counter and countermax variables as a unit? Wouldn’t
it be good enough to atomically manipulate them indi-
vidually?

Answer:
This might well be possible, but great care is re-
quired. Note that removing counter without first zeroing
countermax could result in the corresponding thread
increasing counter immediately after it was zeroed, com-
pletely negating the effect of zeroing the counter.

The opposite ordering, namely zeroing countermax
and then removing counter, can also result in a non-zero
counter. To see this, consider the following sequence of
events:

1. Thread A fetches its countermax, and finds that it
is non-zero.

2. Thread B zeroes Thread A’s countermax.

3. Thread B removes Thread A’s counter.

v2024.12.27a

504 APPENDIX E. ANSWERS TO QUICK QUIZZES

4. Thread A, having found that its countermax is non-
zero, proceeds to add to its counter, resulting in a
non-zero value for counter.

Again, it might well be possible to atomically manipu-
late countermax and counter as separate variables, but
it is clear that great care is required. It is also quite likely
that doing so will slow down the fastpath.

Exploring these possibilities are left as exercises for the
reader. ❑

Quick Quiz 5.40: p.63

In what way does line 7 of Listing 5.12 violate the C
standard?

Answer:
It assumes eight bits per byte. This assumption does hold
for all current commodity microprocessors that can be
easily assembled into shared-memory multiprocessors,
but certainly does not hold for all computer systems that
have ever run C code. (What could you do instead in order
to comply with the C standard? What drawbacks would it
have?) ❑

Quick Quiz 5.41: p.64

Given that there is only one counterandmax variable,
why bother passing in a pointer to it on line 18 of
Listing 5.12?

Answer:
There is only one counterandmax variable per
thread. Later, we will see code that needs to pass
other threads’ counterandmax variables to split_
counterandmax(). ❑

Quick Quiz 5.42: p.64

Why does merge_counterandmax() in Listing 5.12 re-
turn an int rather than storing directly into an atomic_
t?

Answer:
Later, we will see that we need the int return to pass to
the atomic_cmpxchg() primitive. ❑

Quick Quiz 5.43: p.64

Yecch! Why the ugly goto on line 11 of Listing 5.13?
Haven’t you heard of the break statement???

Answer:
Replacing the goto with a break would require keeping
a flag to determine whether or not line 15 should return,
which is not the sort of thing you want on a fastpath. If
you really hate the goto that much, your best bet would be
to pull the fastpath into a separate function that returned
success or failure, with “failure” indicating a need for
the slowpath. This is left as an exercise for goto-hating
readers. ❑

Quick Quiz 5.44: p.64

Why would the atomic_cmpxchg() primitive at
lines 13–14 of Listing 5.13 ever fail? After all, we
picked up its old value on line 9 and have not changed
it!

Answer:
Later, we will see how the flush_local_count()
function in Listing 5.15 might update this thread’s
counterandmax variable concurrently with the execu-
tion of the fastpath on lines 8–14 of Listing 5.13. ❑

Quick Quiz 5.45: p.65

What stops a thread from simply refilling its
counterandmax variable immediately after flush_
local_count() on line 14 of Listing 5.15 empties it?

Answer:
This other thread cannot refill its counterandmax un-
til the caller of flush_local_count() releases the
gblcnt_mutex. By that time, the caller of flush_
local_count() will have finished making use of the
counts, so there will be no problem with this other thread
refilling—assuming that the value of globalcount is
large enough to permit a refill. ❑

Quick Quiz 5.46: p.65

What prevents concurrent execution of the fastpath of
either add_count() or sub_count() from interfer-
ing with the counterandmax variable while flush_
local_count() is accessing it on line 27 of List-
ing 5.15?

v2024.12.27a

E.5. COUNTING 505

Answer:
Nothing. Consider the following three cases:

1. If flush_local_count()’s atomic_xchg() exe-
cutes before the split_counterandmax() of either
fastpath, then the fastpath will see a zero counter
and countermax, and will thus transfer to the slow-
path (unless of course delta is zero).

2. If flush_local_count()’s atomic_xchg() ex-
ecutes after the split_counterandmax() of ei-
ther fastpath, but before that fastpath’s atomic_
cmpxchg(), then the atomic_cmpxchg() will fail,
causing the fastpath to restart, which reduces to case 1
above.

3. If flush_local_count()’s atomic_xchg() exe-
cutes after the atomic_cmpxchg() of either fast-
path, then the fastpath will (most likely) complete
successfully before flush_local_count() zeroes
the thread’s counterandmax variable.

Either way, the race is resolved correctly. ❑

Quick Quiz 5.47: p.66

How can line 21 of balance_count() in Listing 5.16
work correctly in face of concurrent flush_local_
count() updates to this variable?

Answer:
It wouldn’t work if they were executed concurrently! But
no worries. The callers of both balance_count() and
flush_local_count() hold gblcnt_mutex, so only
one may be executing at a given time. ❑

Quick Quiz 5.48: p.66

Does the atomic_set() primitive in balance_
count() really need to be atomic?

Answer:
No, it does not. As far as the code in question is con-
cerned, the atomic_set() updates the per-thread vari-
able counterandmax of its own, whose value can only
be updated either from its own thread’s fastpaths or from
slowpaths of all updaters. As the atomic_set() is in the
slowpath, it can never race with other atomic operations.

So, even if this code is ported to an ISA where a plain
store to an atomic_t can interfere with atomic read-
modify-write operations, a non-atomic atomic_set()
should work.

That said, such an optimization in slowpaths which is
effective only for those peculiar ISAs might not be worth
bothering. ❑

Quick Quiz 5.49: p.66

But signal handlers can be migrated to some other CPU
while running. Doesn’t this possibility require that
atomic instructions and memory barriers are required
to reliably communicate between a thread and a signal
handler that interrupts that thread?

Answer:
No. If the signal handler is migrated to another CPU, then
the interrupted thread is also migrated along with it. ❑

Quick Quiz 5.50: p.67

In Figure 5.7, why is the REQ theft state colored red?

Answer:
To indicate that only the fastpath is permitted to change
the theft state, and that if the thread remains in this state
for too long, the thread running the slowpath will resend
the POSIX signal. ❑

Quick Quiz 5.51: p.67

In Figure 5.7, what is the point of having separate REQ
and ACK theft states? Why not simplify the state
machine by collapsing them into a single REQACK
state? Then whichever of the signal handler or the
fastpath gets there first could set the state to READY.

Answer:
Reasons why collapsing the REQ and ACK states would
be a very bad idea include:

1. The slowpath uses the REQ and ACK states to deter-
mine whether the signal should be retransmitted. If
the states were collapsed, the slowpath would have
no choice but to send redundant signals, which would
have the unhelpful effect of needlessly slowing down
the fastpath.

2. The following race would result:

(a) The slowpath sets a given thread’s state to
REQACK.

(b) That thread has just finished its fastpath, and
notes the REQACK state.

v2024.12.27a

506 APPENDIX E. ANSWERS TO QUICK QUIZZES

(c) The thread receives the signal, which also notes
the REQACK state, and, because there is no
fastpath in effect, sets the state to READY.

(d) The slowpath notes the READY state, steals the
count, and sets the state to IDLE, and completes.

(e) The fastpath sets the state to READY, disabling
further fastpath execution for this thread.

The basic problem here is that the combined
REQACK state can be referenced by both the signal
handler and the fastpath. The clear separation main-
tained by the four-state setup ensures orderly state
transitions.

That said, you might well be able to make a three-state
setup work correctly. If you do succeed, compare carefully
to the four-state setup. Is the three-state solution really
preferable, and why or why not? ❑

Quick Quiz 5.52: p.67

In Listing 5.18, doesn’t flush_local_count_sig()
need stronger memory barriers?

Answer:
No, that smp_store_release() suffices because this
code communicates only with flush_local_count(),
and there is no need for store-to-load ordering. ❑

Quick Quiz 5.53: p.67

In Listing 5.18, why is it safe for line 25 to directly
access the other thread’s countermax variable?

Answer:
Because the other thread is not permitted to change the
value of its countermax variable unless it holds the
gblcnt_mutex lock. But the caller has acquired this
lock, so it is not possible for the other thread to hold it,
and therefore the other thread is not permitted to change
its countermax variable. We can therefore safely access
it—but not change it. ❑

Quick Quiz 5.54: p.67

In Listing 5.18, why doesn’t line 30 check for the current
thread sending itself a signal?

Answer:
There is no need for an additional check. The
caller of flush_local_count() has already invoked
globalize_count(), so the check on line 25 will have
succeeded, skipping the later pthread_kill(). ❑

Quick Quiz 5.55: p.67

The code shown in Listings 5.17 and 5.18 works with
GCC and POSIX. What would be required to make it
also conform to the ISO C standard?

Answer:
The theft variable must be of type sig_atomic_t to
guarantee that it can be safely shared between the signal
handler and the code interrupted by the signal. ❑

Quick Quiz 5.56: p.67

In Listing 5.18, why does line 39 resend the signal?

Answer:
Because many operating systems over several decades have
had the property of losing the occasional signal. Whether
this is a feature or a bug is debatable, but irrelevant. The
obvious symptom from the user’s viewpoint will not be a
kernel bug, but rather a user application hanging.

Your user application hanging! ❑

Quick Quiz 5.57: p.70

Not only are POSIX signals slow, sending one to each
thread simply does not scale. What would you do if you
had (say) 10,000 threads and needed the read side to be
fast?

Answer:
One approach is to use the techniques shown in Sec-
tion 5.2.4, summarizing an approximation to the overall
counter value in a single variable. Another approach
would be to use multiple threads to carry out the reads,
with each such thread interacting with a specific subset of
the updating threads. ❑

Quick Quiz 5.58: p.70

What if you want an exact limit counter to be exact only
for its lower limit, but to allow the upper limit to be
inexact?

Answer:
One simple solution is to overstate the upper limit by the
desired amount. The limiting case of such overstatement
results in the upper limit being set to the largest value that
the counter is capable of representing. ❑

v2024.12.27a

E.5. COUNTING 507

Quick Quiz 5.59: p.70

What else had you better have done when using a biased
counter?

Answer:
You had better have set the upper limit to be large enough
accommodate the bias, the expected maximum number
of accesses, and enough “slop” to allow the counter to
work efficiently even when the number of accesses is at
its maximum. ❑

Quick Quiz 5.60: p.70

This is ridiculous! We are read-acquiring a reader-writer
lock to update the counter? What are you playing at???

Answer:
Strange, perhaps, but true! Almost enough to make you
think that the name “reader-writer lock” was poorly chosen,
isn’t it? ❑

Quick Quiz 5.61: p.70

What other issues would need to be accounted for in a
real system?

Answer:
A huge number!

Here are a few to start with:

1. There could be any number of devices, so that the
global variables are inappropriate, as are the lack of
arguments to functions like do_io().

2. Polling loops can be problematic in real systems,
wasting CPU time and energy. In many cases, an
event-driven design is far better, for example, where
the last completing I/O wakes up the device-removal
thread.

3. The I/O might fail, and so do_io() will likely need
a return value.

4. If the device fails, the last I/O might never complete.
In such cases, there might need to be some sort of
timeout to allow error recovery.

5. Both add_count() and sub_count() can fail, but
their return values are not checked.

6. Reader-writer locks do not scale well. One way of
avoiding the high read-acquisition costs of reader-
writer locks is presented in Chapters 7 and 9. ❑

Quick Quiz 5.62: p.71

On the count_stat.c row of Table 5.1, we see that
the read-side scales linearly with the number of threads.
How is that possible given that the more threads there
are, the more per-thread counters must be summed up?

Answer:
The read-side code must scan the entire fixed-size array, re-
gardless of the number of threads, so there is no difference
in performance. In contrast, in the last two algorithms,
readers must do more work when there are more threads.
In addition, the last two algorithms interpose an additional
level of indirection because they map from integer thread
ID to the corresponding _Thread_local variable. ❑

Quick Quiz 5.63: p.71

Even on the fourth row of Table 5.1, the read-side
performance of these statistical counter implementations
is pretty horrible. So why bother with them?

Answer:
“Use the right tool for the job.”

As can be seen from Figure 5.1, single-variable atomic
increment need not apply for any job involving heavy use of
parallel updates. In contrast, the algorithms shown in the
top half of Table 5.1 do an excellent job of handling update-
heavy situations. Of course, if you have a read-mostly
situation, you should use something else, for example, an
eventually consistent design featuring a single atomically
incremented variable that can be read out using a single
load, similar to the approach used in Section 5.2.4. ❑

Quick Quiz 5.64: p.71

Given the performance data shown in the bottom half of
Table 5.1, we should always prefer signals over atomic
operations, right?

Answer:
That depends on the workload. Note that on a 64-core
system, you need more than one hundred non-atomic
operations (with roughly a 40-nanosecond performance
gain) to make up for even one signal (with almost a 5-
microsecond performance loss). Although there are no
shortage of workloads with far greater read intensity, you
will need to consider your particular workload.

In addition, although memory barriers have historically
been expensive compared to ordinary instructions, you
should check this on the specific hardware you will be

v2024.12.27a

508 APPENDIX E. ANSWERS TO QUICK QUIZZES

running. The properties of computer hardware do change
over time, and algorithms must change accordingly. ❑

Quick Quiz 5.65: p.71

Can advanced techniques be applied to address the
lock contention for readers seen in the bottom half of
Table 5.1?

Answer:
One approach is to give up some update-side perfor-
mance, as is done with scalable non-zero indicators
(SNZI) [ELLM07]. There are a number of other ways one
might go about this, and these are left as exercises for the
reader. Any number of approaches that apply hierarchy,
which replace frequent global-lock acquisitions with local
lock acquisitions corresponding to lower levels of the
hierarchy, should work quite well. ❑

Quick Quiz 5.66: p.72

The ++ operator works just fine for 1,000-digit numbers!
Haven’t you heard of operator overloading???

Answer:
In the C++ language, you might well be able to use ++ on
a 1,000-digit number, assuming that you had access to a
class implementing such numbers. But as of 2021, the C
language does not permit operator overloading. ❑

Quick Quiz 5.67: p.73

But if we are going to have to partition everything, why
bother with shared-memory multithreading? Why not
just partition the problem completely and run as multiple
processes, each in its own address space?

Answer:
Indeed, multiple processes with separate address spaces
can be an excellent way to exploit parallelism, as the
proponents of the fork-join methodology and the Erlang
language would be very quick to tell you. However, there
are also some advantages to shared-memory parallelism:

1. Only the most performance-critical portions of the
application must be partitioned, and such portions
are usually a small fraction of the application.

2. Although cache misses are quite slow compared
to individual register-to-register instructions, they
are typically considerably faster than inter-process-
communication primitives, which in turn are consid-
erably faster than things like TCP/IP networking.

P1

P2

P3P4

P5

Figure E.2: Dining Philosophers Problem, Fully Parti-
tioned

3. Shared-memory multiprocessors are readily available
and quite inexpensive, so, in stark contrast to the
1990s, there is little cost penalty for use of shared-
memory parallelism.

As always, use the right tool for the job! ❑

E.6 Partitioning and Synchroniza-
tion Design

Quick Quiz 6.1: p.76

Is there a better solution to the Dining Philosophers
Problem?

Answer:
One such improved solution is shown in Figure E.2, where
the philosophers are simply provided with an additional
five forks. All five philosophers may now eat simultane-
ously, and there is never any need for philosophers to wait
on one another. In addition, this approach offers greatly
improved disease control.

This solution might seem like cheating to some, but
such “cheating” is key to finding good solutions to many
concurrency problems, as any hungry philosopher would
agree.

And this is one solution to the Dining Philosophers
concurrent-consumption problem called out on page 75.
❑

v2024.12.27a

E.6. PARTITIONING AND SYNCHRONIZATION DESIGN 509

Quick Quiz 6.2: p.76

How would you valididate an algorithm alleged to solve
the Dining Philosophers Problem?

Answer:
Much depends on the details of the algorithm, but here
are a couple of places to start.

First, for algorithms in which picking up left-hand and
right-hand forks are separate operations, start with all
forks on the table. Then have all philosophers attempt to
pick up their first fork. Once all philosophers either have
their first fork or are waiting for someone to put down
their first fork, have each non-waiting philosopher pick
up their second fork. At this point in any starvation-free
solution, at least one philosopher will be eating. If there
were any waiting philosophers, repeat this test, preferably
imposing random variations in timing.

Second, create a stress test in which philosphers start
and stop eating at random times. Generate starvation and
fairness conditions and verify that these conditions are
met. Here are a couple of example starvation and fairness
conditions:

1. If all other philosophers have stopped eating 𝑁 times
since a given philosopher attempted to pick up a
given fork, that philosopher should have succeeded
in picking up that fork. For high-quality solutions
using high-quality locking primitives (or high-quality
atomic operations), 𝑁 = 1 is doable.

2. Given an upper bound 𝑇 on the time any philosopher
holds onto both forks before putting them down, the
maximum waiting time for any philosopher should
be bounded by 𝑁𝑇 for some 𝑁 that is not hugely
larger than the number of philosophers.

3. Generate some statistic representing the time from
when philosophers attempt to pick up their first fork
to the time when they start eating. The smaller this
statistic, the better the solution. Mean, median, and
maximum are all useful statistics, but examining the
full distribution can also be enlightening.

Readers are encouraged to actually try testing any of
the solutions presented in this book, and especially testing
solutions of their own devising. ❑

Quick Quiz 6.3: p.76

And in just what sense can this “horizontal parallelism”
be said to be “horizontal”?

Answer:
Jack Inman [Inm85] was working with protocol stacks,
which are normally depicted vertically, with the applica-
tion on top and the hardware interconnect on the bottom.
Data flows up and down this stack. “Horizontal parallel-
ism” processes packets from different network connections
in parallel, while “vertical parallelism” handles different
protocol-processing steps for a given packet in parallel.

“Vertical parallelism” is also called “pipelining”. ❑

Quick Quiz 6.4: p.78

In this compound double-ended queue implementation,
what should be done if the queue has become non-empty
while releasing and reacquiring the lock?

Answer:
In this case, simply dequeue an item from the non-empty
queue, release both locks, and return. ❑

Quick Quiz 6.5: p.81

Is the hashed double-ended queue a good solution? Why
or why not?

Answer:
The best way to answer this is to run lockhdeq.c on
a number of different multiprocessor systems, and you
are encouraged to do so in the strongest possible terms.
One reason for concern is that each operation on this
implementation must acquire not one but two locks.

The first well-designed performance study will be
cited.9 Do not forget to compare to a sequential im-
plementation! ❑

Quick Quiz 6.6: p.81

Move all the elements to the queue that became empty?
In what possible universe is this brain-dead solution in
any way optimal???

Answer:
It is optimal in the case where data flow switches direction
only rarely. It would of course be an extremely poor
choice if the double-ended queue was being emptied from

9 The studies by Dalessandro et al. [DCW+11] and Dice et
al. [DLM+10] are excellent starting points.

v2024.12.27a

510 APPENDIX E. ANSWERS TO QUICK QUIZZES

both ends concurrently. This of course raises another
question, namely, in what possible universe emptying
from both ends concurrently would be a reasonable thing
to do. Work-stealing queues are one possible answer to
this question. ❑

Quick Quiz 6.7: p.81

Why can’t the compound parallel double-ended queue
implementation be symmetric?

Answer:
The need to avoid deadlock by imposing a lock hierarchy
forces the asymmetry, just as it does in the fork-numbering
solution to the Dining Philosophers Problem (see Sec-
tion 6.1.1). ❑

Quick Quiz 6.8: p.82

Why is it necessary to retry the right-dequeue operation
on line 28 of Listing 6.3?

Answer:
This retry is necessary because some other thread might
have enqueued an element between the time that this
thread dropped d->rlock on line 25 and the time that it
reacquired this same lock on line 27. ❑

Quick Quiz 6.9: p.82

Surely the left-hand lock must sometimes be available!!!
So why is it necessary that line 25 of Listing 6.3 uncon-
ditionally release the right-hand lock?

Answer:
It would be possible to use spin_trylock() to attempt to
acquire the left-hand lock when it was available. However,
the failure case would still need to drop the right-hand
lock and then re-acquire the two locks in order. Making
this transformation (and determining whether or not it is
worthwhile) is left as an exercise for the reader. ❑

Quick Quiz 6.10: p.82

But in the case where data is flowing in only one di-
rection, the algorithm shown in Listing 6.3 will have
both ends attempting to acquire the same lock whenever
the consuming end empties its underlying double-ended
queue. Doesn’t that mean that sometimes this algorithm
fails to provide concurrent access to both ends of the
queue even when the queue contains an arbitrarily large
number of elements?

Answer:
Indeed it does!

But the same is true of other algorithms claiming
this property. For example, in solutions using software
transactional memory mechanisms based on hashed ar-
rays of locks, the leftmost and rightmost elements’ ad-
dresses will sometimes happen to hash to the same lock.
These hash collisions will also prevent concurrent ac-
cess. For another example, solutions using hardware
transactional memory mechanisms with software fall-
backs [YHLR13, Mer11, JSG12] often use locking within
those software fallbacks, and thus suffer (albeit hopefully
rarely) from whatever concurrency limitations that these
locking solutions suffer from.

Therefore, as of 2021, all practical solutions to the
concurrent double-ended queue problem fail to provide
full concurrency in at least some circumstances, including
the compound double-ended queue. ❑

Quick Quiz 6.11: p.82

Why are there not one but two solutions to the double-
ended queue problem?

Answer:
There are actually at least three. The third, by Dominik
Dingel, makes interesting use of reader-writer locking,
and may be found in lockrwdeq.c.

And so there is not one, but rather three solutions to the
lock-based double-ended queue problem on page 75! ❑

Quick Quiz 6.12: p.83

The tandem double-ended queue runs about twice as fast
as the hashed double-ended queue, even when I increase
the size of the hash table to an insanely large number.
Why is that?

Answer:
The hashed double-ended queue’s locking design only
permits one thread at a time at each end, and further
requires two lock acquisitions for each operation. The
tandem double-ended queue also permits one thread at a
time at each end, and in the common case requires only
one lock acquisition per operation. Therefore, the tandem
double-ended queue should be expected to outperform the
hashed double-ended queue.

Can you create a double-ended queue that allows multi-
ple concurrent operations at each end? If so, how? If not,
why not? ❑

v2024.12.27a

E.6. PARTITIONING AND SYNCHRONIZATION DESIGN 511

Quick Quiz 6.13: p.83

Is there a significantly better way of handling concur-
rency for double-ended queues?

Answer:
One approach is to transform the problem to be solved so
that multiple double-ended queues can be used in parallel,
allowing the simpler single-lock double-ended queue to
be used, and perhaps also replace each double-ended
queue with a pair of conventional single-ended queues.
Without such “horizontal scaling”, the speedup is limited
to 2.0. In contrast, horizontal-scaling designs can achieve
very large speedups, and are especially attractive if there
are multiple threads working either end of the queue,
because in this multiple-thread case the dequeue simply
cannot provide strong ordering guarantees. After all, the
fact that a given thread removed an item first in no way
implies that it will process that item first [HKLP12]. And
if there are no guarantees, we may as well obtain the
performance benefits that come with refusing to provide
these guarantees.

Regardless of whether or not the problem can be trans-
formed to use multiple queues, it is worth asking whether
work can be batched so that each enqueue and dequeue op-
eration corresponds to larger units of work. This batching
approach decreases contention on the queue data struc-
tures, which increases both performance and scalability,
as will be seen in Section 6.3. After all, if you must incur
high synchronization overheads, be sure you are getting
your money’s worth.

Other researchers are working on other ways to take ad-
vantage of limited ordering guarantees in queues [KLP12].
❑

Quick Quiz 6.14: p.84

Don’t all these problems with critical sections mean
that we should just always use non-blocking synchro-
nization [Her90], which don’t have critical sections?

Answer:
Although non-blocking synchronization can be very useful
in some situations, it is no panacea, as discussed in
Section 14.2. Also, non-blocking synchronization really
does have critical sections, as noted by Josh Triplett. For
example, in a non-blocking algorithm based on compare-
and-swap operations, the code starting at the initial load
and continuing to the compare-and-swap is analogous to
a lock-based critical section. ❑

Quick Quiz 6.15: p.85

What should you do to validate a hash table?

Answer:
Quite a bit, actually.

See Section 10.3.2 for a good starting point. ❑

Quick Quiz 6.16: p.87

“Partitioning time”? Isn’t that an odd turn of phrase?

Answer:
Perhaps so.

But in the next section we will be partitioning space
(that is, address space) as well as time. This nomenclature
will permit us to partition spacetime, as opposed to (say)
partitioning space but segmenting time. ❑

Quick Quiz 6.17: p.88

What are some ways of preventing a structure from being
freed while its lock is being acquired?

Answer:
Here are a few possible solutions to this existence guaran-
tee problem:

1. Provide a statically allocated lock that is held while
the per-structure lock is being acquired, which is an
example of hierarchical locking (see Section 6.4.2).
Of course, using a single global lock for this pur-
pose can result in unacceptably high levels of lock
contention, dramatically reducing performance and
scalability.

2. Provide an array of statically allocated locks, hash-
ing the structure’s address to select the lock to be
acquired, as described in Chapter 7. Given a hash
function of sufficiently high quality, this avoids the
scalability limitations of the single global lock, but in
read-mostly situations, the lock-acquisition overhead
can result in unacceptably degraded performance.

3. Use a garbage collector, in software environments
providing them, so that a structure cannot be deallo-
cated while being referenced. This works very well,
removing the existence-guarantee burden (and much
else besides) from the developer’s shoulders, but
imposes the overhead of garbage collection on the
program. Although garbage-collection technology
has advanced considerably in the past few decades, its

v2024.12.27a

512 APPENDIX E. ANSWERS TO QUICK QUIZZES

overhead may be unacceptably high for some appli-
cations. In addition, some applications require that
the developer exercise more control over the layout
and placement of data structures than is permitted by
most garbage collected environments.

4. As a special case of a garbage collector, use a global
reference counter, or a global array of reference coun-
ters. These have strengths and limitations similar to
those called out above for locks.

5. Use hazard pointers [Mic04a], which can be thought
of as an inside-out reference count. Hazard-pointer-
based algorithms maintain a per-thread list of point-
ers, so that the appearance of a given pointer on any
of these lists acts as a reference to the correspond-
ing structure. Hazard pointers are starting to see
significant production use (see Section 9.6.3.1).

6. Use transactional memory (TM) [HM93, Lom77,
ST95], so that each reference and modification to the
data structure in question is performed atomically.
Although TM has engendered much excitement in
recent years, and seems likely to be of some use
in production software, developers should exercise
some caution [BLM05, BLM06, MMW07], partic-
ularly in performance-critical code. In particular,
existence guarantees require that the transaction cov-
ers the full path from a global reference to the data
elements being updated. For more on TM, including
ways to overcome some of its weaknesses by combin-
ing it with other synchronization mechanisms, see
Sections 17.2 and 17.3.

7. Use RCU, which can be thought of as an extremely
lightweight approximation to a garbage collector. Up-
daters are not permitted to free RCU-protected data
structures that RCU readers might still be referenc-
ing. RCU is most heavily used for read-mostly data
structures, and is discussed at length in Section 9.5.

For more on providing existence guarantees, see Chap-
ters 7 and 9. ❑

Quick Quiz 6.18: p.89

But won’t system boot and shutdown (or application
startup and shutdown) be partitioning time, even for data
ownership?

Answer:
You can indeed think in these terms.

And if you are working on a persistent data store where
state survives shutdown, thinking in these terms might
even be useful. ❑

Quick Quiz 6.19: p.90

How can a single-threaded 64-by-64 matrix multiple
possibly have an efficiency of less than 1.0? Shouldn’t
all of the traces in Figure 6.17 have efficiency of exactly
1.0 when running on one thread?

Answer:
The matmul.c program creates the specified number of
worker threads, so even the single-worker-thread case
incurs thread-creation overhead. Making the changes
required to optimize away thread-creation overhead in
the single-worker-thread case is left as an exercise to the
reader. ❑

Quick Quiz 6.20: p.91

How are data-parallel techniques going to help with
matrix multiply? It is already data parallel!!!

Answer:
I am glad that you are paying attention! This example
serves to show that although data parallelism can be a very
good thing, it is not some magic wand that automatically
wards off any and all sources of inefficiency. Linear
scaling at full performance, even to “only” 64 threads,
requires care at all phases of design and implementation.

In particular, you need to pay careful attention to the
size of the partitions. For example, if you split a 64-by-
64 matrix multiply across 64 threads, each thread gets
only 64 floating-point multiplies. The cost of a floating-
point multiply is minuscule compared to the overhead of
thread creation, and cache-miss overhead also plays a role
in spoiling the theoretically perfect scalability (and also
in making the traces so jagged). The full 448 hardware
threads would require a matrix with hundreds of thousands
of rows and columns to attain good scalability, but by that
point GPGPUs become quite attractive, especially from a
price/performance viewpoint.

Moral: If you have a parallel program with variable
input, always include a check for the input size being
too small to be worth parallelizing. And when it is not
helpful to parallelize, it is not helpful to incur the overhead
required to spawn a thread, now is it? ❑

v2024.12.27a

E.6. PARTITIONING AND SYNCHRONIZATION DESIGN 513

Quick Quiz 6.21: p.91

What did you do to validate this matrix multiply algo-
rithm?

Answer:
For this simple approach, very little.

However, the validation of production-quality matrix
multiply requires great care and attention. Some cases
require careful handling of floating-point rounding er-
rors, others involve complex sparse-matrix data structures,
and still others make use of special-purpose arithmetic
hardware such as vector units or GPGPUs. Adequate
tests for handling of floating-point rounding errors can be
especially challenging. ❑

Quick Quiz 6.22: p.91

In what situation would hierarchical locking work well?

Answer:
If the comparison on line 31 of Listing 6.8 were replaced
by a much heavier-weight operation, then releasing bp->
bucket_lock might reduce lock contention enough to
outweigh the overhead of the extra acquisition and release
of cur->node_lock. ❑

Quick Quiz 6.23: p.94

Doesn’t this resource-allocator design resemble that of
the approximate limit counters covered in Section 5.3?

Answer:
Indeed it does! We are used to thinking of allocating and
freeing memory, but the algorithms in Section 5.3 are
taking very similar actions to allocate and free “count”. ❑

Quick Quiz 6.24: p.95

In Figure 6.21, there is a pattern of performance rising
with increasing run length in groups of three samples,
for example, for run lengths 10, 11, and 12. Why?

Answer:
This is due to the per-CPU target value being three. A
run length of 12 must acquire the global-pool lock twice,
while a run length of 13 must acquire the global-pool lock
three times. ❑

Quick Quiz 6.25: p.95

Allocation failures were observed in the two-thread tests

at run lengths of 19 and greater. Given the global-pool
size of 40 and the per-thread target pool size 𝑠 of three,
number of threads 𝑛 equal to two, and assuming that
the per-thread pools are initially empty with none of
the memory in use, what is the smallest allocation run
length 𝑚 at which failures can occur? (Recall that each
thread repeatedly allocates 𝑚 block of memory, and then
frees the 𝑚 blocks of memory.) Alternatively, given 𝑛

threads each with pool size 𝑠, and where each thread
repeatedly first allocates 𝑚 blocks of memory and then
frees those 𝑚 blocks, how large must the global pool
size be? Note: Obtaining the correct answer will require
you to examine the smpalloc.c source code, and very
likely single-step it as well. You have been warned!

Answer:
This solution is adapted from one put forward by Alexey
Roytman. It is based on the following definitions:

𝑔 Number of blocks globally available.

𝑖 Number of blocks left in the initializing thread’s per-
thread pool. (This is one reason you needed to look
at the code!)

𝑚 Allocation/free run length.

𝑛 Number of threads, excluding the initialization thread.

𝑝 Per-thread maximum block consumption, including
both the blocks actually allocated and the blocks
remaining in the per-thread pool.

The values 𝑔, 𝑚, and 𝑛 are given. The value for 𝑝 is 𝑚
rounded up to the next multiple of 𝑠, as follows:

𝑝 = 𝑠

⌈𝑚
𝑠

⌉
(E.6)

The value for 𝑖 is as follows:

𝑖 =

{
𝑔 (mod 2𝑠) = 0 : 2𝑠
𝑔 (mod 2𝑠) ≠ 0 : 𝑔 (mod 2𝑠) (E.7)

The relationships between these quantities are shown
in Figure E.3. The global pool is shown on the top of
this figure, and the “extra” initializer thread’s per-thread
pool and per-thread allocations are the left-most pair of
boxes. The initializer thread has no blocks allocated,
but has 𝑖 blocks stranded in its per-thread pool. The
rightmost two pairs of boxes are the per-thread pools and
per-thread allocations of threads holding the maximum

v2024.12.27a

514 APPENDIX E. ANSWERS TO QUICK QUIZZES

i

0

0

0

p-m

m

p-m

m

g-i-p(n-1)Global Pool

Per-Thread Pool

Per-Thread Allocation

n

Figure E.3: Allocator Cache Run-Length Analysis

possible number of blocks, while the second-from-left
pair of boxes represents the thread currently trying to
allocate.

The total number of blocks is 𝑔, and adding up the
per-thread allocations and per-thread pools, we see that
the global pool contains 𝑔 − 𝑖 − 𝑝(𝑛 − 1) blocks. If the
allocating thread is to be successful, it needs at least 𝑚
blocks in the global pool, in other words:

𝑔 − 𝑖 − 𝑝(𝑛 − 1) ≥ 𝑚 (E.8)

The question has 𝑔 = 40, 𝑠 = 3, and 𝑛 = 2. Equation E.7
gives 𝑖 = 4, and Eq. E.6 gives 𝑝 = 18 for 𝑚 = 18 and
𝑝 = 21 for 𝑚 = 19. Plugging these into Eq. E.8 shows
that 𝑚 = 18 will not overflow, but that 𝑚 = 19 might well
do so.

The presence of 𝑖 could be considered to be a bug.
After all, why allocate memory only to have it stranded in
the initialization thread’s cache? One way of fixing this
would be to provide a memblock_flush() function that
flushed the current thread’s pool into the global pool. The
initialization thread could then invoke this function after
freeing all of the blocks. ❑

Quick Quiz 6.26: p.100

Given that a 2D maze achieved 4x speedup on two CPUs,
would a 3D maze achieve an 8x speedup on two CPUs?

Answer:
This is an excellent question that is left to a suitably
interested and industrious reader. ❑

Quick Quiz 6.27: p.101

Why place the third, fourth, and so on threads on the
diagonal? Why not instead distribute them evenly around
the maze?

Answer:
There are indeed a great many ways to distribute the extra
threads. Evaluation of distribution strategies is left to a
suitably interested and industrious reader. ❑

E.7 Locking

Quick Quiz 7.1: p.103

Just how can serving as a whipping boy be considered
to be in any way honorable???

Answer:
The reason locking serves as a research-paper whipping
boy is because it is heavily used in practice. In contrast, if
no one used or cared about locking, most research papers
would not bother even mentioning it. ❑

Quick Quiz 7.2: p.104

But the definition of lock-based deadlock only said that
each thread was holding at least one lock and waiting
on another lock that was held by some thread. How do
you know that there is a cycle?

Answer:
Suppose that there is no cycle in the graph. We would
then have a directed acyclic graph (DAG), which would
have at least one leaf node.

If this leaf node was a lock, then we would have a thread
that was waiting on a lock that wasn’t held by any thread,
counter to the definition. In this case the thread would
immediately acquire the lock.

On the other hand, if this leaf node was a thread, then
we would have a thread that was not waiting on any lock,
again counter to the definition. And in this case, the thread
would either be running or be blocked on something that is
not a lock. In the first case, in the absence of infinite-loop
bugs, the thread will eventually release the lock. In the
second case, in the absence of a failure-to-wake bug, the
thread will eventually wake up and release the lock.10

Therefore, given this definition of lock-based deadlock,
there must be a cycle in the corresponding graph. ❑

Quick Quiz 7.3: p.105

Are there any exceptions to this rule, so that there really

10 Of course, one type of failure-to-wake bug is a deadlock that
involves not only locks, but also non-lock resources. But the question
really did say “lock-based deadlock”!

v2024.12.27a

E.7. LOCKING 515

could be a deadlock cycle containing locks from both
the library and the caller, even given that the library
code never invokes any of the caller’s functions?

Answer:
Indeed there are! Here are a few of them:

1. If one of the library function’s arguments is a pointer
to a lock that this library function acquires, and if the
library function holds one of its locks while acquiring
the caller’s lock, then we could have a deadlock cycle
involving both caller and library locks.

2. If one of the library functions returns a pointer to a
lock that is acquired by the caller, and if the caller
acquires one of its locks while holding the library’s
lock, we could again have a deadlock cycle involving
both caller and library locks.

3. If one of the library functions acquires a lock and
then returns while still holding it, and if the caller
acquires one of its locks, we have yet another way
to create a deadlock cycle involving both caller and
library locks.

4. If the caller has a signal handler that acquires locks,
then the deadlock cycle can involve both caller and
library locks. In this case, however, the library’s locks
are innocent bystanders in the deadlock cycle. That
said, please note that acquiring a lock from within a
signal handler is a no-no in many environments—it
is not just a bad idea, it is unsupported. But if you
absolutely must acquire a lock in a signal handler,
be sure to block that signal while holding that same
lock in thread context, and also while holding any
other locks acquired while that same lock is held. ❑

Quick Quiz 7.4: p.105

But if qsort() releases all its locks before invoking the
comparison function, how can it protect against races
with other qsort() threads?

Answer:
By privatizing the data elements being compared (as dis-
cussed in Chapter 8) or through use of deferral mechanisms
such as reference counting (as discussed in Chapter 9). Or
through use of layered locking hierarchies, as described
in Section 7.1.1.3.

On the other hand, changing a key in a list that is
currently being sorted is at best rather brave. ❑

Quick Quiz 7.5: p.106

So the iterating thread may or may not observe the added
child. What is the big deal?

Answer:
There are at least two hazards in this situation.

One is indeed that the number of children may or may
not be observed to have changed. While that would be
consistent with tree_add() being called either before
or after the iterator started, it is better not left to the
vagaries of the compiler. A more serious problem is that
realloc() may not be able to extend the array in place,
causing the heap to free the one used by the iterator and
replace it with another block of memory. If the children
pointer is not re-read then the iterating thread will access
invalid memory (either free or reclaimed). ❑

Quick Quiz 7.6: p.108

What do you mean “cannot always safely invoke the
scheduler”? Either call_rcu() can or cannot safely
invoke the scheduler, right?

Answer:
It really does depend.

The scheduler locks are always held with interrupts
disabled. Therefore, if call_rcu() is invoked with
interrupts enabled, no scheduler locks are held, and call_
rcu() can safely call into the scheduler. Otherwise, if
interrupts are disabled, one of the scheduler locks might
be held, so call_rcu() must play it safe and refrain from
calling into the scheduler. ❑

Quick Quiz 7.7: p.109

Name one common situation where a pointer to a lock
is passed into a function.

Answer:
Locking primitives, of course! ❑

Quick Quiz 7.8: p.109

Doesn’t the fact that pthread_cond_wait() first re-
leases the mutex and then re-acquires it eliminate the
possibility of deadlock?

Answer:
Absolutely not!

v2024.12.27a

516 APPENDIX E. ANSWERS TO QUICK QUIZZES

Consider a program that acquires mutex_a, and
then mutex_b, in that order, and then passes mutex_
a to pthread_cond_wait(). Now, pthread_cond_
wait() will release mutex_a, but will re-acquire it before
returning. If some other thread acquires mutex_a in the
meantime and then blocks on mutex_b, the program will
deadlock. ❑

Quick Quiz 7.9: p.109

Can the transformation from Listing 7.4 to Listing 7.5
be applied universally?

Answer:
Absolutely not!

This transformation assumes that the layer_2_
processing() function is idempotent, given that it might
be executed multiple times on the same packet when the
layer_1() routing decision changes. Therefore, in real
life, this transformation can become arbitrarily complex.
❑

Quick Quiz 7.10: p.109

But the complexity in Listing 7.5 is well worthwhile
given that it avoids deadlock, right?

Answer:
Maybe.

If the routing decision in layer_1() changes often
enough, the code will always retry, never making forward
progress. This is termed “livelock” if no thread makes
any forward progress or “starvation” if some threads make
forward progress but others do not (see Section 7.1.2). ❑

Quick Quiz 7.11: p.110

When using the “acquire needed locks first” approach de-
scribed in Section 7.1.1.7, how can livelock be avoided?

Answer:
Provide an additional global lock. If a given thread has
repeatedly tried and failed to acquire the needed locks,
then have that thread unconditionally acquire the new
global lock, and then unconditionally acquire any needed
locks. (Suggested by Doug Lea.) ❑

Quick Quiz 7.12: p.110

Suppose Lock A is never acquired within a signal handler,
but Lock B is acquired both from thread context and
by signal handlers. Suppose further that Lock A is

sometimes acquired with signals unblocked. Why is it
illegal to acquire Lock A holding Lock B?

Answer:
Because this would lead to deadlock. Given that Lock A
is sometimes held outside of a signal handler without
blocking signals, a signal might be handled while holding
this lock. The corresponding signal handler might then
acquire Lock B, so that Lock B is acquired while holding
Lock A. Therefore, if we also acquire Lock A while
holding Lock B, we will have a deadlock cycle. Note
that this problem exists even if signals are blocked while
holding Lock B.

This is another reason to be very careful with locks that
are acquired within interrupt or signal handlers. But the
Linux kernel’s lock dependency checker knows about this
situation and many others as well, so please do make full
use of it! ❑

Quick Quiz 7.13: p.110

How can you legally block signals within a signal han-
dler?

Answer:
One of the simplest and fastest ways to do so is to use the
sa_mask field of the struct sigaction that you pass
to sigaction() when setting up the signal. ❑

Quick Quiz 7.14: p.110

If acquiring locks in signal handlers is such a bad idea,
why even discuss ways of making it safe?

Answer:
Because these same rules apply to the interrupt handlers
used in operating-system kernels and in some embedded
applications.

In many application environments, acquiring locks in
signal handlers is frowned upon [Ope97]. However, that
does not stop clever developers from (perhaps unwisely)
fashioning home-brew locks out of atomic operations.
And atomic operations are in many cases perfectly legal
in signal handlers. ❑

Quick Quiz 7.15: p.110

Given an object-oriented application that passes control
freely among a group of objects such that there is no
straightforward locking hierarchy,a layered or otherwise,
how can this application be parallelized?

a Also known as “object-oriented spaghetti code.”

v2024.12.27a

E.7. LOCKING 517

Answer:
There are a number of approaches:

1. In the case of parametric search via simulation, where
a large number of simulations will be run in order
to converge on (for example) a good design for a
mechanical or electrical device, leave the simulation
single-threaded, but run many instances of the sim-
ulation in parallel. This retains the object-oriented
design, and gains parallelism at a higher level, and
likely also avoids both deadlocks and synchronization
overhead.

2. Partition the objects into groups such that there is no
need to operate on objects in more than one group at
a given time. Then associate a lock with each group.
This is an example of a single-lock-at-a-time design,
which discussed in Section 7.1.1.8.

3. Partition the objects into groups such that threads
can all operate on objects in the groups in some
groupwise ordering. Then associate a lock with
each group, and impose a locking hierarchy over the
groups.

4. Impose an arbitrarily selected hierarchy on the locks,
and then use conditional locking if it is necessary
to acquire a lock out of order, as was discussed in
Section 7.1.1.6.

5. Before carrying out a given group of operations,
predict which locks will be acquired, and attempt to
acquire them before actually carrying out any updates.
If the prediction turns out to be incorrect, drop all
the locks and retry with an updated prediction that
includes the benefit of experience. This approach
was discussed in Section 7.1.1.7.

6. Use transactional memory. This approach has a
number of advantages and disadvantages which will
be discussed in Sections 17.2–17.3.

7. Refactor the application to be more concurrency-
friendly. This would likely also have the side effect
of making the application run faster even when single-
threaded, but might also make it more difficult to
modify the application.

8. Use techniques from later chapters in addition to
locking. ❑

Quick Quiz 7.16: p.111

How can the livelock shown in Listing 7.6 be avoided?

Answer:
Listing 7.5 provides some good hints. In many cases,
livelocks are a hint that you should revisit your locking
design. Or visit it in the first place if your locking design
“just grew”.

That said, one good-and-sufficient approach due to
Doug Lea is to use conditional locking as described in
Section 7.1.1.6, but combine this with acquiring all needed
locks first, before modifying shared data, as described
in Section 7.1.1.7. If a given critical section retries
too many times, unconditionally acquire a global lock,
then unconditionally acquire all the needed locks. This
avoids both deadlock and livelock, and scales reasonably
assuming that the global lock need not be acquired too
often. ❑

Quick Quiz 7.17: p.111

What problems can you spot in the code in Listing 7.7?

Answer:
Here are a couple:

1. A one-second wait is way too long for most uses.
Wait intervals should begin with roughly the time
required to execute the critical section, which will
normally be in the microsecond or millisecond range.

2. The code does not check for overflow. On the other
hand, this bug is nullified by the previous bug: 32
bits worth of seconds is more than 50 years. ❑

Quick Quiz 7.18: p.112

Wouldn’t it be better just to use a good parallel design so
that lock contention was low enough to avoid unfairness?

Answer:
It would be better in some sense, but there are situations
where it can be appropriate to use designs that sometimes
result in high lock contentions.

For example, imagine a system that is subject to a
rare error condition. It might well be best to have a
simple error-handling design that has poor performance
and scalability for the duration of the rare error condition,

v2024.12.27a

518 APPENDIX E. ANSWERS TO QUICK QUIZZES

as opposed to a complex and difficult-to-debug design that
is helpful only when one of those rare error conditions is
in effect.

That said, it is usually worth putting some effort into
attempting to produce a design that both simple as well as
efficient during error conditions, for example by partition-
ing the problem. ❑

Quick Quiz 7.19: p.112

How might the lock holder be interfered with?

Answer:
If the data protected by the lock is in the same cache line
as the lock itself, then attempts by other CPUs to acquire
the lock will result in expensive cache misses on the part
of the CPU holding the lock. This is a special case of
false sharing, which can also occur if a pair of variables
protected by different locks happen to share a cache line.
In contrast, if the lock is in a different cache line than the
data that it protects, the CPU holding the lock will usually
suffer a cache miss only on first access to a given variable.

Of course, the downside of placing the lock and data
into separate cache lines is that the code will incur two
cache misses rather than only one in the uncontended case.
As always, choose wisely! ❑

Quick Quiz 7.20: p.113

Does it ever make sense to have an exclusive lock acqui-
sition immediately followed by a release of that same
lock, that is, an empty critical section?

Answer:
Empty lock-based critical sections are rarely used, but
they do have their uses. The point is that the semantics
of exclusive locks have two components: (1) The familiar
data-protection semantic and (2) A messaging semantic,
where releasing a given lock notifies a waiting acquisi-
tion of that same lock. An empty critical section uses
the messaging component without the data-protection
component.

The rest of this answer provides some example uses of
empty critical sections, however, these examples should
be considered “gray magic.”11 As such, empty critical
sections are almost never used in practice. Nevertheless,
pressing on into this gray area . . .

One historical use of empty critical sections appeared in
the networking stack of the 2.4 Linux kernel through use

11 Thanks to Alexey Roytman for this description.

of a read-side-scalable reader-writer lock called brlock
for “big reader lock”. This use case is a way of approxi-
mating the semantics of read-copy update (RCU), which
is discussed in Section 9.5. And in fact this Linux-kernel
use case has been replaced with RCU.

The empty-lock-critical-section idiom can also be used
to reduce lock contention in some situations. For example,
consider a multithreaded user-space application where
each thread processes units of work maintained in a per-
thread list, where threads are prohibited from touching
each others’ lists [McK12e]. There could also be updates
that require that all previously scheduled units of work
have completed before the update can progress. One way
to handle this is to schedule a unit of work on each thread,
so that when all of these units of work complete, the
update may proceed.

In some applications, threads can come and go. For
example, each thread might correspond to one user of
the application, and thus be removed when that user
logs out or otherwise disconnects. In many applications,
threads cannot depart atomically: They must instead
explicitly unravel themselves from various portions of
the application using a specific sequence of actions. One
specific action will be refusing to accept further requests
from other threads, and another specific action will be
disposing of any remaining units of work on its list, for
example, by placing these units of work in a global work-
item-disposal list to be taken by one of the remaining
threads. (Why not just drain the thread’s work-item list by
executing each item? Because a given work item might
generate more work items, so that the list could not be
drained in a timely fashion.)

If the application is to perform and scale well, a good
locking design is required. One common solution is to
have a global lock (call it G) protecting the entire process
of departing (and perhaps other things as well), with
finer-grained locks protecting the individual unraveling
operations.

Now, a departing thread must clearly refuse to accept
further requests before disposing of the work on its list,
because otherwise additional work might arrive after the
disposal action, which would render that disposal action
ineffective. So simplified pseudocode for a departing
thread might be as follows:

1. Acquire lock G.

2. Acquire the lock guarding communications.

3. Refuse further communications from other threads.

v2024.12.27a

E.7. LOCKING 519

4. Release the lock guarding communications.

5. Acquire the lock guarding the global work-item-
disposal list.

6. Move all pending work items to the global work-item-
disposal list.

7. Release the lock guarding the global work-item-
disposal list.

8. Release lock G.

Of course, a thread that needs to wait for all pre-existing
work items will need to take departing threads into account.
To see this, suppose that this thread starts waiting for all
pre-existing work items just after a departing thread has
refused further communications from other threads. How
can this thread wait for the departing thread’s work items
to complete, keeping in mind that threads are not allowed
to access each others’ lists of work items?

One straightforward approach is for this thread to ac-
quire G and then the lock guarding the global work-item-
disposal list, then move the work items to its own list. The
thread then release both locks, places a work item on the
end of its own list, and then wait for all of the work items
that it placed on each thread’s list (including its own) to
complete.

This approach does work well in many cases, but if
special processing is required for each work item as it
is pulled in from the global work-item-disposal list, the
result could be excessive contention on G. One way to
avoid that contention is to acquire G and then immediately
release it. Then the process of waiting for all prior work
items look something like the following:

1. Set a global counter to one and initialize a condition
variable to zero.

2. Send a message to all threads to cause them to
atomically increment the global counter, and then to
enqueue a work item. The work item will atomically
decrement the global counter, and if the result is zero,
it will set a condition variable to one.

3. Acquire G, which will wait on any currently depart-
ing thread to finish departing. Because only one
thread may depart at a time, all the remaining threads
will have already received the message sent in the
preceding step.

4. Release G.

5. Acquire the lock guarding the global work-item-
disposal list.

6. Move all work items from the global work-item-
disposal list to this thread’s list, processing them as
needed along the way.

7. Release the lock guarding the global work-item-
disposal list.

8. Enqueue an additional work item onto this thread’s
list. (As before, this work item will atomically
decrement the global counter, and if the result is zero,
it will set a condition variable to one.)

9. Wait for the condition variable to take on the value
one.

Once this procedure completes, all pre-existing work
items are guaranteed to have completed. The empty
critical sections are using locking for messaging as well
as for protection of data. ❑

Quick Quiz 7.21: p.115

Is there any other way for the VAX/VMS DLM to
emulate a reader-writer lock?

Answer:
There are in fact several. One way would be to use the
null, protected-read, and exclusive modes. Another way
would be to use the null, protected-read, and concurrent-
write modes. A third way would be to use the null,
concurrent-read, and exclusive modes. ❑

Quick Quiz 7.22: p.116

The code in Listing 7.8 is ridiculously complicated!
Why not conditionally acquire a single global lock?

Answer:
Conditionally acquiring a single global lock does work
very well, but only for relatively small numbers of CPUs.
To see why it is problematic in systems with many hundreds
of CPUs, look at Figure 5.1. ❑

Quick Quiz 7.23: p.116

Wait a minute! If we “win” the tournament on line 16
of Listing 7.8, we get to do all the work of do_force_
quiescent_state(). Exactly how is that a win, really?

v2024.12.27a

520 APPENDIX E. ANSWERS TO QUICK QUIZZES

Answer:
How indeed? This just shows that in concurrency, just as
in life, one should take care to learn exactly what winning
entails before playing the game. ❑

Quick Quiz 7.24: p.117

Why not rely on the C language’s default initialization
of zero instead of using the explicit initializer shown on
line 2 of Listing 7.9?

Answer:
Because this default initialization does not apply to locks
allocated as auto variables within the scope of a function.
❑

Quick Quiz 7.25: p.117

Why bother with the inner loop on lines 7–8 of List-
ing 7.9? Why not simply repeatedly do the atomic
exchange operation on line 6?

Answer:
Suppose that the lock is held and that several threads
are attempting to acquire the lock. In this situation, if
these threads all loop on the atomic exchange operation,
they will ping-pong the cache line containing the lock
among themselves, imposing load on the interconnect. In
contrast, if these threads are spinning in the inner loop
on lines 7–8, they will each spin within their own caches,
placing negligible load on the interconnect. ❑

Quick Quiz 7.26: p.117

Why not simply store zero into the lock word on line 14
of Listing 7.9?

Answer:
This can be a legitimate implementation, but only if this
store is preceded by a memory barrier and makes use
of WRITE_ONCE(). The memory barrier is not required
when the xchg() operation is used because this operation
implies a full memory barrier due to the fact that it returns
a value. ❑

Quick Quiz 7.27: p.119

How can you tell if one counter is greater than another,
while accounting for counter wrap?

Answer:
In the C language, the following macro correctly handles
this:

#define ULONG_CMP_LT(a, b) \
(ULONG_MAX / 2 < (a) - (b))

Although it is tempting to simply subtract two signed
integers, this should be avoided because signed overflow is
undefined in the C language. For example, if the compiler
knows that one of the values is positive and the other
negative, it is within its rights to simply assume that the
positive number is greater than the negative number, even
though subtracting the negative number from the positive
number might well result in overflow and thus a negative
number.

How could the compiler know the signs of the two
numbers? It might be able to deduce it based on prior
assignments and comparisons. In this case, if the per-CPU
counters were signed, the compiler could deduce that they
were always increasing in value, and then might assume
that they would never go negative. This assumption
could well lead the compiler to generate unfortunate
code [McK12d, Reg10]. ❑

Quick Quiz 7.28: p.119

Which is better, the counter approach or the flag ap-
proach?

Answer:
The flag approach will normally suffer fewer cache misses,
but a better answer is to try both and see which works best
for your particular workload. ❑

Quick Quiz 7.29: p.120

How can relying on implicit existence guarantees result
in a bug?

Answer:
Here are some bugs resulting from improper use of implicit
existence guarantees:

1. A program writes the address of a global variable to a
file, then a later instance of that same program reads
that address and attempts to dereference it. This
can fail due to address-space randomization, to say
nothing of recompilation of the program.

2. A module can record the address of one of its vari-
ables in a pointer located in some other module, then
attempt to dereference that pointer after the module
has been unloaded.

v2024.12.27a

E.8. DATA OWNERSHIP 521

3. A function can record the address of one of its on-
stack variables into a global pointer, which some
other function might attempt to dereference after that
function has returned.

I am sure that you can come up with additional possibilities.
❑

Quick Quiz 7.30: p.120

What if the element we need to delete is not the first
element of the list on line 8 of Listing 7.10?

Answer:
This is a very simple hash table with no chaining, so the
only element in a given bucket is the first element. The
reader is invited to adapt this example to a hash table with
full chaining. ❑

E.8 Data Ownership

Quick Quiz 8.1: p.127

What form of data ownership is extremely difficult to
avoid when creating shared-memory parallel programs
(for example, using pthreads) in C or C++?

Answer:
Use of auto variables in functions. By default, these are
private to the thread executing the current function. ❑

Quick Quiz 8.2: p.127

What synchronization remains in the example shown in
Section 8.1?

Answer:
The creation of the threads via the sh & operator and the
joining of thread via the sh wait command.

Of course, if the processes explicitly share memory,
for example, using the shmget() or mmap() system calls,
explicit synchronization might well be needed when acc-
cessing or updating the shared memory. The processes
might also synchronize using any of the following inter-
process communications mechanisms:

1. System V semaphores.

2. System V message queues.

3. UNIX-domain sockets.

4. Networking protocols, including TCP/IP, UDP, and
a whole host of others.

5. File locking.

6. Use of the open() system call with the O_CREAT
and O_EXCL flags.

7. Use of the rename() system call.

A complete list of possible synchronization mechanisms
is left as an exercise to the reader, who is warned that it
will be an extremely long list. A surprising number of
unassuming system calls can be pressed into service as
synchronization mechanisms. ❑

Quick Quiz 8.3: p.127

Is there any shared data in the example shown in Sec-
tion 8.1?

Answer:
That is a philosophical question.

Those wishing the answer “no” might argue that pro-
cesses by definition do not share memory.

Those wishing to answer “yes” might list a large number
of synchronization mechanisms that do not require shared
memory, note that the kernel will have some shared state,
and perhaps even argue that the assignment of process
IDs (PIDs) constitute shared data.

Such arguments are excellent intellectual exercise, and
are also a wonderful way of feeling intelligent and scoring
points against hapless classmates or colleagues, but are
mostly a way of avoiding getting anything useful done. ❑

Quick Quiz 8.4: p.128

Does it ever make sense to have partial data ownership
where each thread reads only its own instance of a per-
thread variable, but writes to other threads’ instances?

Answer:
Amazingly enough, yes. One example is a simple message-
passing system where threads post messages to other
threads’ mailboxes, and where each thread is responsible
for removing any message it sent once that message has
been acted on. Implementation of such an algorithm is
left as an exercise for the reader, as is identifying other
algorithms with similar ownership patterns. ❑

v2024.12.27a

522 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 8.5: p.128

What mechanisms other than POSIX signals may be
used for function shipping?

Answer:
There is a very large number of such mechanisms, includ-
ing:

1. System V message queues.

2. Shared-memory dequeue (see Section 6.1.2).

3. Shared-memory mailboxes.

4. UNIX-domain sockets.

5. TCP/IP or UDP, possibly augmented by any number
of higher-level protocols, including RPC, HTTP,
XML, SOAP, and so on.

Compilation of a complete list is left as an exercise to
sufficiently single-minded readers, who are warned that
the list will be extremely long. ❑

Quick Quiz 8.6: p.129

But none of the data in the eventual() function shown
on lines 17–32 of Listing 5.5 is actually owned by
the eventual() thread! In just what way is this data
ownership???

Answer:
The key phrase is “owns the rights to the data”. In this
case, the rights in question are the rights to access the per-
thread counter variable defined on line 1 of the listing.
This situation is similar to that described in Section 8.2.

However, there really is data that is owned by the
eventual() thread, namely the t and sum variables
defined on lines 19 and 20 of the listing.

For other examples of designated threads, look at the
kernel threads in the Linux kernel, for example, those
created by kthread_create() and kthread_run(). ❑

Quick Quiz 8.7: p.129

Is it possible to obtain greater accuracy while still main-
taining full privacy of the per-thread data?

Answer:
Yes. One approach is for read_count() to add the value
of its own per-thread variable. This maintains full owner-
ship and performance, but only a slight improvement in

accuracy, particularly on systems with very large numbers
of threads.

Another approach is for read_count() to use function
shipping, for example, in the form of per-thread signals.
This greatly improves accuracy, but at a significant perfor-
mance cost for read_count().

However, both of these methods have the advantage
of eliminating cache thrashing for the common case of
updating counters. ❑

E.9 Deferred Processing

Quick Quiz 9.1: p.133

Why bother with a use-after-free check?

Answer:
To greatly increase the probability of finding bugs. A
small torture-test program (routetorture.h) that allo-
cates and frees only one type of structure can tolerate a
surprisingly large amount of use-after-free misbehavior.
See Figure 11.4 on page 221 and the related discussion
in Section 11.6.4 starting on page 222 for more on the
importance of increasing the probability of finding bugs.
❑

Quick Quiz 9.2: p.134

Why doesn’t route_del() in Listing 9.3 use reference
counts to protect the traversal to the element to be freed?

Answer:
Because the traversal is already protected by the lock, so
no additional protection is required. ❑

Quick Quiz 9.3: p.134

Why the break in the “ideal” line at 224 CPUs in Fig-
ure 9.2? Shouldn’t it be a straight line?

Answer:
The break is due to hyperthreading. On this particular
system, the first hardware thread in each core within a
socket have consecutive CPU numbers, followed by the
first hardware threads in each core for the other sockets,
and finally followed by the second hardware thread in
each core on all the sockets. On this particular system,
CPU numbers 0–27 are the first hardware threads in each
of the 28 cores in the first socket, numbers 28–55 are

v2024.12.27a

E.9. DEFERRED PROCESSING 523

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1 10 100

ideal

refcnt

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

Figure E.4: Pre-BSD Routing Table Protected by Refer-
ence Counting, Log Scale

the first hardware threads in each of the 28 cores in the
second socket, and so on, so that numbers 196–223 are
the first hardware threads in each of the 28 cores in the
eighth socket. Then CPU numbers 224–251 are the second
hardware threads in each of the 28 cores of the first socket,
numbers 252–279 are the second hardware threads in
each of the 28 cores of the second socket, and so on until
numbers 420–447 are the second hardware threads in each
of the 28 cores of the eighth socket.

Why does this matter?
Because the two hardware threads of a given core share

resources, and this workload seems to allow a single
hardware thread to consume more than half of the relevant
resources within its core. Therefore, adding the second
hardware thread of that core adds less than one might
hope. Other workloads might gain greater benefit from
each core’s second hardware thread, but much depends on
the details of both the hardware and the workload. ❑

Quick Quiz 9.4: p.134

Shouldn’t the refcnt trace in Figure 9.2 be at least a little
bit off of the x-axis???

Answer:
Define “a little bit.”

Figure E.4 shows the same data, but on a log-log plot.
As you can see, the refcnt line drops below 5,000 at two
CPUs. This means that the refcnt performance at two
CPUs is more than one thousand times smaller than the
first y-axis tick of 5 × 106 in Figure 9.2. Therefore, the
depiction of the performance of reference counting shown
in Figure 9.2 is all too accurate. ❑

Quick Quiz 9.5: p.134

If concurrency has “most definitely reduced the use-
fulness of reference counting”, why are there so many
reference counters in the Linux kernel?

Answer:
That sentence did say “reduced the usefulness”, not “elim-
inated the usefulness”, now didn’t it?

Please see Section 13.2, which discusses some of the
techniques that the Linux kernel uses to take advantage of
reference counting in a highly concurrent environment. ❑

Quick Quiz 9.6: p.135

Given that papers on hazard pointers use the bottom bits
of each pointer to mark deleted elements, what is up
with HAZPTR_POISON?

Answer:
The published implementations of hazard pointers used
non-blocking synchronization techniques for insertion and
deletion. These techniques require that readers traversing
the data structure “help” updaters complete their updates,
which in turn means that readers need to look at the
successor of a deleted element.

In contrast, we will be using locking to synchronize
updates, which does away with the need for readers to
help updaters complete their updates, which in turn allows
us to leave pointers’ bottom bits alone. This approach
allows read-side code to be simpler and faster. ❑

Quick Quiz 9.7: p.135

Why does hp_try_record() in Listing 9.4 take a dou-
ble indirection to the data element? Why not void *
instead of void **?

Answer:
Because hp_try_record() must check for concurrent
modifications. To do that job, it needs a pointer to a pointer
to the element, so that it can check for a modification to
the pointer to the element. ❑

Quick Quiz 9.8: p.135

Why bother with hp_try_record()? Wouldn’t it be
easier to just use the failure-immune hp_record()
function?

Answer:
It might be easier in some sense, but as will be seen in the
Pre-BSD routing example, there are situations for which
hp_record() simply does not work. ❑

v2024.12.27a

524 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 9.9: p.137

Readers must “typically” restart? What are some excep-
tions?

Answer:
If the pointer emanates from a global variable or is other-
wise not subject to being freed, then hp_record() may
be used to repeatedly attempt to record the hazard pointer,
even in the face of concurrent deletions.

In certain cases, restart can be avoided by using link
counting as exemplified by the UnboundedQueue and
ConcurrentHashMap data structures implemented in Folly
open-source library.12 ❑

Quick Quiz 9.10: p.137

But don’t these restrictions on hazard pointers also apply
to other forms of reference counting?

Answer:
Yes and no. These restrictions apply only to reference-
counting mechanisms whose reference acquisition can fail.
❑

Quick Quiz 9.11: p.138

Figure 9.3 shows no sign of hyperthread-induced flatten-
ing at 224 threads. Why is that?

Answer:
Modern microprocessors are complicated beasts, so signif-
icant skepticism is appropriate for any simple answer. That
aside, the most likely reason is the full memory barriers
required by hazard-pointers readers. Any delays resulting
from those memory barriers would make time available
to the other hardware thread sharing the core, resulting in
greater scalability at the expense of per-hardware-thread
performance. ❑

Quick Quiz 9.12: p.138

The paper “Structured Deferral: Synchronization via
Procrastination” [McK13] shows that hazard pointers
have near-ideal performance. Whatever happened in
Figure 9.3???

Answer:
First, Figure 9.3 has a linear y-axis, while most of the
graphs in the “Structured Deferral” paper have logscale
y-axes. Next, that paper uses lightly-loaded hash tables,

12 https://github.com/facebook/folly

while Figure 9.3’s uses a 10-element simple linked list,
which means that hazard pointers face a larger memory-
barrier penalty in this workload than in that of the “Struc-
tured Deferral” paper. Finally, that paper used an older
modest-sized x86 system, while a much newer and larger
system was used to generate the data shown in Figure 9.3.

In addition, use of pairwise asymmetric barriers [Mic08,
Cor10b, Cor18] has been proposed to eliminate the read-
side hazard-pointer memory barriers on systems sup-
porting this notion [Gol18b], which might improve the
performance of hazard pointers beyond what is shown in
the figure.

As always, your mileage may vary. Given the difference
in performance, it is clear that hazard pointers give you
the best performance either for very large data structures
(where the memory-barrier overhead will at least partially
overlap cache-miss penalties) and for data structures such
as hash tables where a lookup operation needs a minimal
number of hazard pointers. ❑

Quick Quiz 9.13: p.138

Why isn’t this sequence-lock discussion in Chapter 7,
you know, the one on locking?

Answer:
The sequence-lock mechanism is really a combination
of two separate synchronization mechanisms, sequence
counts and locking. In fact, the sequence-count mech-
anism is available separately in the Linux kernel via
the write_seqcount_begin() and write_seqcount_
end() primitives.

However, the combined write_seqlock() and
write_sequnlock() primitives are used much more
heavily in the Linux kernel. More importantly, many
more people will understand what you mean if you say
“sequence lock” than if you say “sequence count”.

So this section is entitled “Sequence Locks” so that
people will understand what it is about just from the title,
and it appears in the “Deferred Processing” because (1) of
the emphasis on the “sequence count” aspect of “sequence
locks” and (2) because a “sequence lock” is much more
than merely a lock. ❑

Quick Quiz 9.14: p.140

Why not have read_seqbegin() in Listing 9.10 check
whether the sequence-number value is odd, and, if so,
retry internally rather than entering a doomed read-side
critical section?

https://github.com/facebook/folly

v2024.12.27a

E.9. DEFERRED PROCESSING 525

Answer:
This would be a legitimate implementation.

But please keep in mind that (1) This added check is a
relatively expensive conditional branch, (2) It cannot be
substituted for the later check done by read_seqretry(),
which must happen after the critical section completes,
and (3) Sequence locking is intended for read-mostly
workloads, which means that this extra check would slow
down the common case.

On the other hand, in an alternate universe having
a sufficiently large fraction of updates and sufficiently
high-overhead readers, having this internal-to-read_
seqbegin() check might be preferable.

Of course, the full memory barriers on lines 17 and 26
of Listing 9.10 are quite heavyweight as instructions go,
which suggests that the overhead of the added check
might be negligible. Except that, in userspace code, the
membarrier() system call [Cor10c, Des17, Cor18] can
be used to eliminate that smp_mb() overhead on the read
side in exchange for the added overhead of membarrier()
on the update side. This feature is on its way into the C++
standard under the name of “asymmetric fences” [Gol22].
Either way, this trick eliminates the update-side smp_mb()
overhead, which in turn makes eliminating the check more
attractive, arriving again at the form of the code shown in
Listing 9.11.

This same trick may be applied to Linux-kernel code
using tools such as smp_call_function(), at least in
non-realtime builds of the Linux kernel. ❑

Quick Quiz 9.15: p.140

Why is the smp_mb() on line 26 of Listing 9.10 needed?

Answer:
If it was omitted, both the compiler and the CPU would be
within their rights to move the critical section preceding
the call to read_seqretry() down below this function.
This would prevent the sequence lock from protecting the
critical section. The smp_mb() primitive prevents such
reordering. ❑

Quick Quiz 9.16: p.140

Can’t weaker memory barriers be used in the code in
Listing 9.10?

Answer:
In older versions of the Linux kernel, no.

In very new versions of the Linux kernel, line 16 could
use smp_load_acquire() instead of READ_ONCE(),
which in turn would allow the smp_mb() on line 17 to
be dropped. Similarly, line 41 could use an smp_store_
release(), for example, as follows:

smp_store_release(&slp->seq, READ_ONCE(slp->seq) + 1);

This would allow the smp_mb() on line 40 to be
dropped. ❑

Quick Quiz 9.17: p.140

What prevents sequence-locking updaters from starving
readers?

Answer:
Nothing. This is one of the weaknesses of sequence
locking, and as a result, you should use sequence locking
only in read-mostly situations. Unless of course read-side
starvation is acceptable in your situation, in which case,
go wild with the sequence-locking updates! ❑

Quick Quiz 9.18: p.140

What if something else serializes writers, so that the
lock is not needed?

Answer:
In this case, the ->lock field could be omitted, as it is in
seqcount_t in the Linux kernel. ❑

Quick Quiz 9.19: p.140

Why isn’t seq on line 2 of Listing 9.10 unsigned rather
than unsigned long? After all, if unsigned is good
enough for the Linux kernel, shouldn’t it be good enough
for everyone?

Answer:
Not at all. The Linux kernel has a number of special
attributes that allow it to ignore the following sequence of
events:

1. Thread 0 executes read_seqbegin(), picking up
->seq in line 16, noting that the value is even, and
thus returning to the caller.

2. Thread 0 starts executing its read-side critical section,
but is then preempted for a long time.

3. Other threads repeatedly invoke write_seqlock()
and write_sequnlock(), until the value of ->seq
overflows back to the value that Thread 0 fetched.

v2024.12.27a

526 APPENDIX E. ANSWERS TO QUICK QUIZZES

4. Thread 0 resumes execution, completing its read-side
critical section with inconsistent data.

5. Thread 0 invokes read_seqretry(), which incor-
rectly concludes that Thread 0 has seen a consistent
view of the data protected by the sequence lock.

The Linux kernel uses sequence locking for things that
are updated rarely, with time-of-day information being a
case in point. This information is updated at most once
per millisecond, so that seven weeks would be required to
overflow the counter. If a kernel thread was preempted for
seven weeks, the Linux kernel’s soft-lockup code would
be emitting warnings every two minutes for that entire
time.

In contrast, with a 64-bit counter, more than five cen-
turies would be required to overflow, even given an update
every nanosecond. Therefore, this implementation uses a
type for ->seq that is 64 bits on 64-bit systems. ❑

Quick Quiz 9.20: p.141

Can this bug be fixed? In other words, can you use
sequence locks as the only synchronization mechanism
protecting a linked list supporting concurrent addition,
deletion, and lookup?

Answer:
One trivial way of accomplishing this is to surround all
accesses, including the read-only accesses, with write_
seqlock() and write_sequnlock(). Of course, this
solution also prohibits all read-side parallelism, resulting
in massive lock contention, and furthermore could just as
easily be implemented using simple locking.

If you do come up with a solution that uses read_
seqbegin() and read_seqretry() to protect read-side
accesses, make sure that you correctly handle the following
sequence of events:

1. CPU 0 is traversing the linked list, and picks up a
pointer to list element A.

2. CPU 1 removes element A from the list and frees it.

3. CPU 2 allocates an unrelated data structure, and gets
the memory formerly occupied by element A. In this
unrelated data structure, the memory previously used
for element A’s ->next pointer is now occupied by
a floating-point number.

4. CPU 0 picks up what used to be element A’s ->
next pointer, gets random bits, and therefore gets a
segmentation fault.

One way to protect against this sort of problem requires
use of “type-safe memory”, which will be discussed in Sec-
tion 9.5.4.5. Roughly similar solutions are possible using
the hazard pointers discussed in Section 9.3. But in either
case, you would be using some other synchronization
mechanism in addition to sequence locks! ❑

Quick Quiz 9.21: p.143

Why does Figure 9.7 use smp_store_release() given
that it is storing a NULL pointer? Wouldn’t WRITE_
ONCE() work just as well in this case, given that there
is no structure initialization to order against the store of
the NULL pointer?

Answer:
Yes, it would.

Because a NULL pointer is being assigned, there is noth-
ing to order against, so there is no need for smp_store_
release(). In contrast, when assigning a non-NULL
pointer, it is necessary to use smp_store_release()
in order to ensure that initialization of the pointed-to
structure is carried out before assignment of the pointer.

In short, WRITE_ONCE() would work, and would save a
little bit of CPU time on some architectures. However, as
we will see, software-engineering concerns will motivate
use of a special rcu_assign_pointer() that is quite
similar to smp_store_release(). ❑

Quick Quiz 9.22: p.143

Readers running concurrently with each other and with
the procedure outlined in Figure 9.7 can disagree on the
value of gptr. Isn’t that just a wee bit problematic???

Answer:
Not necessarily.

As hinted at in Sections 3.2.3 and 3.3, speed-of-light
delays mean that a computer’s data is always stale com-
pared to whatever external reality that data is intended to
model.

Real-world algorithms therefore absolutely must tol-
erate inconsistancies between external reality and the
in-computer data reflecting that reality. Many of those
algorithms are also able to tolerate some degree of in-
consistency within the in-computer data. Section 10.3.4
discusses this point in more detail.

Please note that this need to tolerate inconsistent and
stale data is not limited to RCU. It also applies to reference
counting, hazard pointers, sequence locks, and even to

v2024.12.27a

E.9. DEFERRED PROCESSING 527

some locking use cases. For example, if you compute
some quantity while holding a lock, but use that quantity
after releasing that lock, you might well be using stale
data. After all, the data that quantity is based on might
change arbitrarily as soon as the lock is released.

So yes, RCU readers can see stale and inconsistent data,
but no, this is not necessarily problematic. And, when
needed, there are RCU usage patterns that avoid both
staleness and inconsistency [ACMS03]. ❑

Quick Quiz 9.23: p.144

What is an RCU-protected pointer?

Answer:
A pointer to RCU-protected data. RCU-protected data is
in turn a block of dynamically allocated memory whose
freeing will be deferred such that an RCU grace period
will elapse between the time that there were no longer any
RCU-reader-accessible pointers to that block and the time
that that block is freed. This ensures that no RCU readers
will have access to that block at the time that it is freed.

RCU-protected pointers must be handled carefully.
For example, any reader that intends to dereference an
RCU-protected pointer must use rcu_dereference()
(or stronger) to load that pointer. In addition, any updater
must use rcu_assign_pointer() (or stronger) to store
to that pointer. ❑

Quick Quiz 9.24: p.144

What does synchronize_rcu() do if it starts at about
the same time as an rcu_read_lock()?

Answer:
If a synchronize_rcu() cannot prove that it started
before a given rcu_read_lock(), then it must wait for
the corresponding rcu_read_unlock(). ❑

Quick Quiz 9.25: p.146

In Figure 9.8, the last of CPU 3’s readers that could
possibly have access to the old data item ended before
the grace period even started! So why would anyone
bother waiting until CPU 3’s later context switch???

Answer:
Because that waiting is exactly what enables readers to
use the same sequence of instructions that is appropriate
for single-theaded situations. In other words, this addi-
tional “redundant” waiting enables excellent read-side
performance, scalability, and real-time response. ❑

Quick Quiz 9.26: p.147

What is the point of rcu_read_lock() and rcu_read_
unlock() in Listing 9.13? Why not just let the quiescent
states speak for themselves?

Answer:
Recall that readers are not permitted to pass through a
quiescent state. For example, within the Linux kernel,
RCU readers are not permitted to execute a context switch.
Use of rcu_read_lock() and rcu_read_unlock() en-
ables debug checks for improperly placed quiescent states,
making it easy to find bugs that would otherwise be
difficult to find, intermittent, and quite destructive. ❑

Quick Quiz 9.27: p.147

What is the point of rcu_dereference(), rcu_
assign_pointer() and RCU_INIT_POINTER() in
Listing 9.13? Why not just use READ_ONCE(), smp_
store_release(), and WRITE_ONCE(), respectively?

Answer:
The RCU-specific APIs do have similar semantics to the
suggested replacements, but also enable static-analysis
debugging checks that complain if an RCU-specific API
is invoked on a non-RCU pointer and vice versa. ❑

Quick Quiz 9.28: p.147

But what if the old structure needs to be freed, but
the caller of ins_route() cannot block, perhaps due
to performance considerations or perhaps because the
caller is executing within an RCU read-side critical
section?

Answer:
A call_rcu() function, which is described in Sec-
tion 9.5.2.2, permits asynchronous grace-period waits.
❑

Quick Quiz 9.29: p.147

Doesn’t Section 9.4’s seqlock also permit readers and
updaters to make useful concurrent forward progress?

Answer:
Yes and no. Although seqlock readers can run concurrently
with seqlock writers, whenever this happens, the read_
seqretry() primitive will force the reader to retry. This
means that any work done by a seqlock reader running

v2024.12.27a

528 APPENDIX E. ANSWERS TO QUICK QUIZZES

concurrently with a seqlock updater will be discarded
and then redone upon retry. So seqlock readers can run
concurrently with updaters, but they cannot actually get
any work done in this case.

In contrast, RCU readers can perform useful work even
in presence of concurrent RCU updaters.

However, both reference counters (Section 9.2) and
hazard pointers (Section 9.3) really do permit useful
concurrent forward progress for both updaters and readers,
just at somewhat greater cost. Please see Section 9.6 for
a comparison of these different solutions to the deferred-
reclamation problem. ❑

Quick Quiz 9.30: p.149

Wouldn’t use of data ownership for RCU updaters mean
that the updates could use exactly the same sequence of
instructions as would the corresponding single-threaded
code?

Answer:
Sometimes, for example, on TSO systems such as x86 or
the IBM mainframe where a store-release operation emits a
single store instruction. However, weakly ordered systems
must also emit a memory barrier or perhaps a store-release
instruction. In addition, removing data requires quite a
bit of additional work because it is necessary to wait for
pre-existing readers before freeing the removed data. ❑

Quick Quiz 9.31: p.149

But suppose that updaters are adding and removing
multiple data items from a linked list while a reader
is iterating over that same list. Specifically, suppose
that a list initially contains elements A, B, and C, and
that an updater removes element A and then adds a new
element D at the end of the list. The reader might well
see {A, B, C, D}, when that sequence of elements never
actually ever existed! In what alternate universe would
that qualify as “not disrupting concurrent readers”???

Answer:
In the universe where an iterating reader is only required
to traverse elements that were present throughout the full
duration of the iteration. In the example, that would be
elements B and C. Because elements A and D were
each present for only part of the iteration, the reader is
permitted to iterate over them, but not obliged to. Note
that this supports the common case where the reader is
simply looking up a single item, and does not know or
care about the presence or absence of other items.

If stronger consistency is required, then higher-cost
synchronization mechanisms are required, for example,
sequence locking or reader-writer locking. But if stronger
consistency is not required (and it very often is not), then
why pay the higher cost? ❑

Quick Quiz 9.32: p.150

What other final values of r1 and r2 are possible in
Figure 9.11?

Answer:
The r1 == 0 && r2 == 0 possibility was called out in
the text. Given that r1 == 0 implies r2 == 0, we know
that r1 == 0 && r2 == 1 is forbidden. The following
discussion will show that both r1 == 1 && r2 == 1
and r1 == 1 && r2 == 0 are possible. ❑

Quick Quiz 9.33: p.150

What would happen if the order of P0()’s two accesses
was reversed in Figure 9.12?

Answer:
Absolutely nothing would change. The fact that P0()’s
loads from x and y are in the same RCU read-side critical
section suffices; their order is irrelevant. ❑

Quick Quiz 9.34: p.151

What would happen if P0()’s accesses in Figures 9.11–
9.13 were stores?

Answer:
The exact same ordering rules would apply, that is, (1) If
any part of P0()’s RCU read-side critical section preceded
the beginning of P1()’s grace period, all of P0()’s RCU
read-side critical section would precede the end of P1()’s
grace period, and (2) If any part of P0()’s RCU read-side
critical section followed the end of P1()’s grace period,
all of P0()’s RCU read-side critical section would follow
the beginning of P1()’s grace period.

It might seem strange to have RCU read-side critical
sections containing writes, but this capability is not only
permitted, but also highly useful. For example, the Linux
kernel frequently carries out an RCU-protected traversal
of a linked data structure and then acquires a reference to
the destination data element. Because this data element
must not be freed in the meantime, that element’s refer-
ence counter must necessarily be incremented within the
traversal’s RCU read-side critical section. However, that
increment entails a write to memory. Therefore, it is a

v2024.12.27a

E.9. DEFERRED PROCESSING 529

Listing E.2: Concurrent RCU Deletion
1 spin_lock(&mylock);
2 p = search(head, key);
3 if (p == NULL)
4 spin_unlock(&mylock);
5 else {
6 list_del_rcu(&p->list);
7 spin_unlock(&mylock);
8 synchronize_rcu();
9 kfree(p);

10 }

very good thing that memory writes are permitted within
RCU read-side critical sections.

If having writes in RCU read-side critical sections
still seems strange, please review Section 5.4.6, which
presented a use case for writes in reader-writer locking
read-side critical sections. ❑

Quick Quiz 9.35: p.153

How would you modify the deletion example to permit
more than two versions of the list to be active?

Answer:
One way of accomplishing this is as shown in Listing E.2.

Note that this means that multiple concurrent deletions
might be waiting in synchronize_rcu(). ❑

Quick Quiz 9.36: p.153

How many RCU versions of a given list can be active at
any given time?

Answer:
That depends on the synchronization design. If a sema-
phore protecting the update is held across the grace period,
then there can be at most two versions, the old and the
new.

However, suppose that only the search, the update,
and the list_replace_rcu() were protected by a lock,
so that the synchronize_rcu() was outside of that
lock, similar to the code shown in Listing E.2. Suppose
further that a large number of threads undertook an RCU
replacement at about the same time, and that readers are
also constantly traversing the data structure.

Then the following sequence of events could occur,
starting from the end state of Figure 9.15:

1. Thread A traverses the list, obtaining a reference to
Element C.

2. Thread B replaces Element C with a new Element F,
then waits for its synchronize_rcu() call to return.

3. Thread C traverses the list, obtaining a reference to
Element F.

4. Thread D replaces Element F with a new Element G,
then waits for its synchronize_rcu() call to return.

5. Thread E traverses the list, obtaining a reference to
Element G.

6. Thread F replaces Element G with a new Element H,
then waits for its synchronize_rcu() call to return.

7. Thread G traverses the list, obtaining a reference to
Element H.

8. And the previous two steps repeat quickly with ad-
ditional new elements, so that all of them happen
before any of the synchronize_rcu() calls return.

Thus, there can be an arbitrary number of versions
active, limited only by memory and by how many updates
could be completed within a grace period. But please
note that data structures that are updated so frequently are
not likely to be good candidates for RCU. Nevertheless,
RCU can handle high update rates when necessary. ❑

Quick Quiz 9.37: p.153

How can the per-update overhead of RCU be reduced?

Answer:
The most effective way to reduce the per-update overhead
of RCU is to increase the number of updates served by
a given grace period. This works because the per-grace
period overhead is nearly independent of the number of
updates served by that grace period.

One way to do this is to delay the start of a given
grace period in the hope that more updates requiring that
grace period appear in the meantime. Another way is to
slow down execution of the grace period in the hope that
more updates requiring an additional grace period will
accumulate in the meantime.

There are many other possible optimizations, and fa-
natically devoted readers are referred to the Linux-kernel
RCU implementation. ❑

v2024.12.27a

530 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 9.38: p.154

How can RCU updaters possibly delay RCU readers,
given that neither rcu_read_lock() nor rcu_read_
unlock() spin or block?

Answer:
The modifications undertaken by a given RCU updater
will cause the corresponding CPU to invalidate cache lines
containing the data, forcing the CPUs running concurrent
RCU readers to incur expensive cache misses. (Can you
design an algorithm that changes a data structure without
inflicting expensive cache misses on concurrent readers?
On subsequent readers?) ❑

Quick Quiz 9.39: p.155

Why do some of the cells in Table 9.2 have exclamation
marks (“!”)?

Answer:
The API members with exclamation marks (rcu_read_
lock(), rcu_read_unlock(), and call_rcu()) were
the only members of the Linux RCU API that Paul E.
McKenney was aware of back in the mid-90s. During this
timeframe, he was under the mistaken impression that he
knew all that there is to know about RCU. ❑

Quick Quiz 9.40: p.155

How do you prevent a huge number of RCU read-
side critical sections from indefinitely blocking a
synchronize_rcu() invocation?

Answer:
There is no need to do anything to prevent RCU
read-side critical sections from indefinitely block-
ing a synchronize_rcu() invocation, because the
synchronize_rcu() invocation need wait only for pre-
existing RCU read-side critical sections. So as long as
each RCU read-side critical section is of finite duration,
RCU grace periods will also remain finite. ❑

Quick Quiz 9.41: p.155

The synchronize_rcu() API waits for all pre-existing
interrupt handlers to complete, right?

Answer:
In v4.20 and later Linux kernels, yes [McK19c, McK19a].

Table E.3: synchronize_rcu() vs. rcu_barrier()

Must Wait Until (in the snippet):

Invoked at: synchronize_rcu() rcu_barrier()

do_something_1()
do_something_2() rcu_read_unlock() (line 6)
do_something_3() rcu_read_unlock() (line 6) f(&p->rh) (line 8)
do_something_4() f(&p->rh) (line 8)
do_something_5()

1 do_something_1();
2 rcu_read_lock();
3 do_something_2();
4 call_rcu(&p->rh, f);
5 do_something_3();
6 rcu_read_unlock();
7 do_something_4();
8 // f(&p->rh) invoked
9 do_something_5();

But not in earlier kernels, and especially not when us-
ing preemptible RCU! You instead want synchronize_
irq(). Alternatively, you can place calls to rcu_read_
lock() and rcu_read_unlock() in the specific inter-
rupt handlers that you want synchronize_rcu() to wait
for. But even then, be careful, as preemptible RCU will
not be guaranteed to wait for that portion of the interrupt
handler preceding the rcu_read_lock() or following
the rcu_read_unlock(). ❑

Quick Quiz 9.42: p.155

What is the difference between synchronize_rcu()
and rcu_barrier()?

Answer:
They wait on different things. While synchronize_
rcu() waits for pre-existing RCU read-side critical sec-
tions to complete, rcu_barrier() instead waits for call-
backs from prior calls to call_rcu() to be invoked.

This distinction is illustrated by Table E.3, in which
the snippet at the bottom shows code being executed by a
given CPU. For simplicity, assume that no other CPU is
executing rcu_read_lock(), rcu_read_unlock(), or
call_rcu().

The table shows how long each primitive must wait if
invoked concurrently with each of the do_something_
*() functions, with empty cells indicating that no waiting
is necessary. As you can see, synchronize_rcu() need
not wait unless it is in an RCU read-side critical section,
in which case it must wait for the rcu_read_unlock()

v2024.12.27a

E.9. DEFERRED PROCESSING 531

Listing E.3: Multistage SRCU Deadlocks
1 idx = srcu_read_lock(&ssa);
2 synchronize_srcu(&ssb);
3 srcu_read_unlock(&ssa, idx);
4
5 /* . . . */
6
7 idx = srcu_read_lock(&ssb);
8 synchronize_srcu(&ssa);
9 srcu_read_unlock(&ssb, idx);

that ends that critical section. In contrast, RCU read-
side critical sections have no effect on rcu_barrier().
However, when rcu_barrier() executes after a call_
rcu() invocation, it must wait until the corresponding
RCU callback is invoked.

All that said, there is a special case where each call
to rcu_barrier() can be replaced by a direct call to
synchronize_rcu(), and that is where synchronize_
rcu() is implemented in terms of call_rcu() and where
there is a single global list of callbacks. But please do not
do this in portable code!!! ❑

Quick Quiz 9.43: p.157

Under what conditions can synchronize_srcu() be
safely used within an SRCU read-side critical section?

Answer:
In principle, you can use either synchronize_srcu() or
synchronize_srcu_expedited() with a given srcu_
struct within an SRCU read-side critical section that
uses some other srcu_struct. In practice, however,
doing this is almost certainly a bad idea. In particular, the
code shown in Listing E.3 could still result in deadlock.
❑

Quick Quiz 9.44: p.157

In a kernel built with CONFIG_PREEMPT_NONE=y, won’t
synchronize_rcu() wait for all trampolines, given
that preemption is disabled and that trampolines never
directly or indirectly invoke schedule()?

Answer:
You are quite right!

In fact, in nonpreemptible kernels, synchronize_
rcu_tasks() is a wrapper around synchronize_rcu().
❑

Quick Quiz 9.45: p.158

Normally, any pointer subject to rcu_dereference()

Listing E.4: Diverse RCU Read-Side Nesting
1 rcu_read_lock();
2 preempt_disable();
3 p = rcu_dereference(global_pointer);
4
5 /* . . . */
6
7 preempt_enable();
8 rcu_read_unlock();

must always be updated using one of the pointer-publish
functions in Table 9.3, for example, rcu_assign_
pointer().
What is an exception to this rule?

Answer:
One such exception is when a multi-element linked data
structure is initialized as a unit while inaccessible to
other CPUs, and then a single rcu_assign_pointer()
is used to plant a global pointer to this data structure.
The initialization-time pointer assignments need not use
rcu_assign_pointer(), though any such assignments
that happen after the structure is globally visible must use
rcu_assign_pointer().

However, unless this initialization code is on an im-
pressively hot code-path, it is probably wise to use rcu_
assign_pointer() anyway, even though it is in theory
unnecessary. It is all too easy for a “minor” change to inval-
idate your cherished assumptions about the initialization
happening privately. ❑

Quick Quiz 9.46: p.158

Are there any downsides to the fact that these traversal
and update primitives can be used with any of the RCU
API family members?

Answer:
It can sometimes be difficult for automated code checkers
such as “sparse” (or indeed for human beings) to work out
which type of RCU read-side critical section a given RCU
traversal primitive corresponds to. For example, consider
the code shown in Listing E.4.

Is the rcu_dereference() primitive in a vanilla RCU
critical section or an RCU Sched critical section? What
would you have to do to figure this out?

But perhaps after the consolidation of the RCU flavors
in the v4.20 Linux kernel we no longer need to care! ❑

v2024.12.27a

532 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 9.47: p.160

But what if an hlist_nulls reader gets moved to some
other bucket and then back again?

Answer:
One way to handle this is to always move nodes to the
beginning of the destination bucket, ensuring that when
the reader reaches the end of the list having a matching
NULL pointer, it will have searched the entire list.

Of course, if there are too many move operations in
a hash table with many elements per bucket, the reader
might never reach the end of a list. One way of avoiding
this in the common case is to keep hash tables well-
tuned, thus with short lists. One way of detecting the
problem and handling it is for the reader to terminate
the search after traversing some large number of nodes,
acquire the update-side lock, and redo the search, but this
might introduce deadlocks. Another way of avoiding the
problem entirely is for readers to search within RCU read-
side critical sections, and to wait for an RCU grace period
between successive updates. An intermediate position
might wait for an RCU grace period every 𝑁 updates, for
some suitable value of 𝑁 . ❑

Quick Quiz 9.48: p.163

Why isn’t there a rcu_read_lock_tasks_held() for
Tasks RCU?

Answer:
Because Tasks RCU does not have read-side markers.
Instead, Tasks RCU read-side critical sections are bounded
by voluntary context switches. ❑

Quick Quiz 9.49: p.165

Wait, what??? How can RCU QSBR possibly be better
than ideal? Just what rubbish definition of ideal would
fail to be the best of all possible results???

Answer:
This is an excellent question, and the answer is that modern
CPUs and compilers are extremely complex. But before
getting into that, it is well worth noting that RCU QSBR’s
performance advantage appears only in the one-hardware-
thread-per-core regime. Once the system is fully loaded,
RCU QSBR’s performance drops back to ideal.

The RCU variant of the route_lookup() search loop
actually has one more x86 instruction than does the se-
quential version, namely the lea in the sequence cmp,
je, mov, cmp, lea, and jne. This extra instruction is

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 0 50 100 150 200 250 300 350 400 450

ideal

hazptr
seqlock

RCU

Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

Figure E.5: Pre-BSD Routing Table Protected by RCU
QSBR With Non-Initial rcu_head

due to the rcu_head structure at the beginning of the
RCU variant’s route_entry structure, so that, unlike the
sequential variant, the RCU variant’s ->re_next.next
pointer has a non-zero offset. Back in the 1980s, this
additional lea instruction might have reliably resulted in
the RCU variant being slower, but we are now in the 21st

century, and the 1980s are long gone.
But those of you who read Section 3.1.1 carefully

already knew all of this!
These counter-intuitive results of course means that

any performance result on modern microprocessors must
be subject to some skepticism. In theory, it really does
not make sense to obtain performance results that are
better than ideal, but it really can happen on modern
microprocessors. Such results can be thought of as similar
to the celebrated super-linear speedups (see Section 6.5 for
one such example), that is, of interest but also of limited
practical importance. Nevertheless, one of the strengths
of RCU is that its read-side overhead is so low that tiny
effects such as this one are visible in real performance
measurements.

This raises the question as to what would happen if
the rcu_head structure were to be moved so that RCU’s
->re_next.next pointer also had zero offset, just the
same as the sequential variant. And the answer, as can
be seen in Figure E.5, is that this causes RCU QSBR’s
performance to decrease to where it is still very nearly
ideal, but no longer super-ideal. ❑

Quick Quiz 9.50: p.165

Given RCU QSBR’s read-side performance, why bother
with any other flavor of userspace RCU?

v2024.12.27a

E.9. DEFERRED PROCESSING 533

Listing E.5: Using RCU to Wait for Mythical Preemptible NMIs
to Finish

1 struct profile_buffer {
2 long size;
3 atomic_t entry[0];
4 };
5 static struct profile_buffer *buf = NULL;
6
7 void nmi_profile(unsigned long pcvalue)
8 {
9 struct profile_buffer *p;

10
11 rcu_read_lock();
12 p = rcu_dereference(buf);
13 if (p == NULL) {
14 rcu_read_unlock();
15 return;
16 }
17 if (pcvalue >= p->size) {
18 rcu_read_unlock();
19 return;
20 }
21 atomic_inc(&p->entry[pcvalue]);
22 rcu_read_unlock();
23 }
24
25 void nmi_stop(void)
26 {
27 struct profile_buffer *p = buf;
28
29 if (p == NULL)
30 return;
31 rcu_assign_pointer(buf, NULL);
32 synchronize_rcu();
33 kfree(p);
34 }

Answer:
Because RCU QSBR places constraints on the overall ap-
plication that might not be tolerable, for example, requiring
that each and every thread in the application regularly
pass through a quiescent state. Among other things, this
means that RCU QSBR is not helpful to library writers,
who might be better served by other flavors of userspace
RCU [MDJ13f]. ❑

Quick Quiz 9.51: p.168

Suppose that the nmi_profile() function was pre-
emptible. What would need to change to make this
example work correctly?

Answer:
One approach would be to use rcu_read_lock() and
rcu_read_unlock() in nmi_profile(), and to replace
the synchronize_sched() with synchronize_rcu(),
perhaps as shown in Listing E.5.

But why on earth would an NMI handler be pre-
emptible??? ❑

Quick Quiz 9.52: p.168

What is the point of the second call to synchronize_
rcu() in function maint() in Listing 9.17? Isn’t it
OK for any cco() invocations in the clean-up phase to
invoke either cco_carefully() or cco_quickly()?

Answer:
The problem is that there is no ordering between the cco()
function’s load from be_careful and any memory loads
executed by the cco_quickly() function. Because there
is no ordering, without that second call to syncrhonize_
rcu(), memory ordering could cause loads in cco_
quickly() to overlap with stores by do_maint().

Another alternative would be to compensate for the
removal of that second call to synchronize_rcu() by
changing the READ_ONCE() to smp_load_acquire()
and the WRITE_ONCE() to smp_store_release(), thus
restoring the needed ordering. ❑

Quick Quiz 9.53: p.168

How can you be sure that the code shown in maint()
in Listing 9.17 really works?

Answer:
By one popular school of thought, you cannot.

But in this case, those willing to jump ahead
to Chapter 12 and Chapter 15 might find a cou-
ple of LKMM litmus tests to be interesting (C-
RCU-phased-state-change-1.litmus and C-RCU-
phased-state-change-2.litmus). These tests could
be argued to demonstrate that this code and a variant of it
really do work. ❑

Quick Quiz 9.54: p.169

But what if there is an arbitrarily long series of RCU
read-side critical sections in multiple threads, so that
at any point in time there is at least one thread in the
system executing in an RCU read-side critical section?
Wouldn’t that prevent any data from a SLAB_TYPESAFE_
BY_RCU slab ever being returned to the system, possibly
resulting in OOM events?

Answer:
There could certainly be an arbitrarily long period of
time during which at least one thread is always in an
RCU read-side critical section. However, the key words
in the description in Section 9.5.4.5 are “in-use” and
“pre-existing”. Keep in mind that a given RCU read-side

v2024.12.27a

534 APPENDIX E. ANSWERS TO QUICK QUIZZES

critical section is conceptually only permitted to gain
references to data elements that were visible to readers
during that critical section. Furthermore, remember that
a slab cannot be returned to the system until all of its data
elements have been freed, in fact, the RCU grace period
cannot start until after they have all been freed.

Therefore, the slab cache need only wait for those RCU
read-side critical sections that started before the freeing
of the last element of the slab. This in turn means that any
RCU grace period that begins after the freeing of the last
element will do—the slab may be returned to the system
after that grace period ends. ❑

Quick Quiz 9.55: p.170

What if the element we need to delete is not the first
element of the list on line 9 of Listing 9.18?

Answer:
As with the (bug-ridden) Listing 7.10, this is a very simple
hash table with no chaining, so the only element in a given
bucket is the first element. The reader is again invited to
adapt this example to a hash table with full chaining. Less
energetic readers might wish to refer to Chapter 10. ❑

Quick Quiz 9.56: p.170

Why is it OK to exit the RCU read-side critical section
on line 15 of Listing 9.18 before releasing the lock on
line 17?

Answer:
First, please note that the second check on line 14 is
necessary because some other CPU might have removed
this element while we were waiting to acquire the lock.
However, the fact that we were in an RCU read-side
critical section while acquiring the lock guarantees that
this element could not possibly have been re-allocated and
re-inserted into this hash table. Furthermore, once we
acquire the lock, the lock itself guarantees the element’s
existence, so we no longer need to be in an RCU read-side
critical section. ❑

Quick Quiz 9.57: p.170

Why not exit the RCU read-side critical section on line 23
of Listing 9.18 before releasing the lock on line 22?

Answer:
Suppose we reverse the order of these two lines. Then this
code is vulnerable to the following sequence of events:

1. CPU 0 invokes delete(), and finds the element to
be deleted, executing through line 15. It has not yet
actually deleted the element, but is about to do so.

2. CPU 1 concurrently invokes delete(), attempting
to delete this same element. However, CPU 0 still
holds the lock, so CPU 1 waits for it at line 13.

3. CPU 0 executes lines 16 and 17, and blocks at line 18
waiting for CPU 1 to exit its RCU read-side critical
section.

4. CPU 1 now acquires the lock, but the test on line 14
fails because CPU 0 has already removed the element.
CPU 1 now executes line 22 (which we switched
with line 23 for the purposes of this Quick Quiz) and
exits its RCU read-side critical section.

5. CPU 0 can now return from synchronize_rcu(),
and thus executes line 19, sending the element to the
freelist.

6. CPU 1 now attempts to release a lock for an element
that has been freed, and, worse yet, possibly reallo-
cated as some other type of data structure. This is a
fatal memory-corruption error. ❑

Quick Quiz 9.58: p.170

The RCU-based algorithm shown in Listing 9.18 locks
very similar to that in Listing 7.11, so why should the
RCU-based approach be any better?

Answer:
Listing 9.18 replaces the per-element spin_lock() and
spin_unlock() shown in Listing 7.11 with a much
cheaper rcu_read_lock() and rcu_read_unlock(),
thus greatly improving both performance and scalability.
For more detail, please see Section 10.3.3. ❑

Quick Quiz 9.59: p.171

WTF? How the heck do you expect me to believe that
RCU can have less than a 300-picosecond overhead when
the clock period at 2.10 GHz is almost 500 picoseconds?

Answer:
First, consider that the inner loop used to take this mea-
surement is as follows:

v2024.12.27a

E.9. DEFERRED PROCESSING 535

1 for (i = nloops; i >= 0; i--) {
2 rcu_read_lock();
3 rcu_read_unlock();
4 }

Next, consider the effective definitions of rcu_read_
lock() and rcu_read_unlock():

1 #define rcu_read_lock() barrier()
2 #define rcu_read_unlock() barrier()

These definitions constrain compiler code-movement
optimizations involving memory references, but emit no
instructions in and of themselves. However, if the loop
variable is maintained in a register, the accesses to i
will not count as memory references. Furthermore, the
compiler can do loop unrolling, allowing the resulting
code to “execute” multiple passes through the loop body
simply by incrementing i by some value larger than the
value 1.

So the “measurement” of 267 picoseconds is simply the
fixed overhead of the timing measurements divided by the
number of passes through the inner loop containing the
calls to rcu_read_lock() and rcu_read_unlock(),
plus the code to manipulate i divided by the loop-unrolling
factor. And therefore, this measurement really is in error,
in fact, it exaggerates the overhead by an arbitrary number
of orders of magnitude. After all, in terms of machine
instructions emitted, the actual overheads of rcu_read_
lock() and of rcu_read_unlock() are each precisely
zero.

It is not just every day that a timing measurement of
267 picoseconds turns out to be an overestimate! ❑

Quick Quiz 9.60: p.171

Didn’t an earlier edition of this book show RCU read-
side overhead way down in the sub-picosecond range?
What happened???

Answer:
Excellent memory!!! The overhead in some early releases
was in fact roughly 100 femtoseconds.

What happened was that RCU usage spread more
broadly through the Linux kernel, including into code
that takes page faults. Back at that time, rcu_read_
lock() and rcu_read_unlock() were complete no-
ops in CONFIG_PREEMPT=n kernels. Unfortunately, that
situation allowed the compiler to reorder page-faulting
memory accesses into RCU read-side critical sections. Of

course, page faults can block, which destroys those critical
sections.

Nor was this a theoretical problem: A failure actually
manifested in 2019. Herbert Xu tracked down this failure
down and Linus Torvalds therefore queued a commit to
upgrade rcu_read_lock() and rcu_read_unlock()
to unconditionally include a call to barrier() [Tor19].
And although barrier() emits no code, it does constrain
compiler optimizations. And so the price of widespread
RCU usage is slightly higher rcu_read_lock() and
rcu_read_unlock() overhead. As such, Linux-kernel
RCU has proven to be a victim of its own success.

Of course, it is also the case that the older results were
obtained on a different system than were those shown in
Figure 9.25. So which change had the most effect, Linus’s
commit or the change in the system? This question is left
as an exercise to the reader. ❑

Quick Quiz 9.61: p.171

Why is there such large variation for the RCU trace in
Figure 9.25?

Answer:
Keep in mind that this is a log-log plot, so those large-
seeming RCU variances in reality span only a few hundred
picoseconds. And that is such a short time that anything
could cause it. However, given that the variance decreases
with both small and large numbers of CPUs, one hypothesis
is that the variation is due to migrations from one CPU to
another.

Yes, these measurements were taken with interrupts
disabled, but they were also taken within a guest OS,
so that preemption was still possible at the hypervisor
level. In addition, the system featured hyperthreading and
a single hardware thread running this RCU workload is
able to consume more than half of the core’s resources.
Therefore, the overall throughput varies depending on how
many of a given guest OS’s CPUs share cores. Attempting
to reduce these variations by running the guest OSes at
real-time priority (as suggested by Joel Fernandes) is left
as an exercise for the reader. ❑

Quick Quiz 9.62: p.172

Given that the system had no fewer than 448 hardware
threads, why only 192 CPUs?

Answer:
Because the script (rcuscale.sh) that generates this data
spawns a guest operating system for each set of points

v2024.12.27a

536 APPENDIX E. ANSWERS TO QUICK QUIZZES

gathered, and on this particular system, both qemu and
KVM limit the number of CPUs that may be configured
into a given guest OS. Yes, it would have been possible
to run a few more CPUs, but 192 is a nice round number
from a binary perspective, given that 256 is infeasible. ❑

Quick Quiz 9.63: p.172

Why the larger error ranges for the submicrosecond
durations in Figure 9.27?

Answer:
Because smaller disturbances result in greater relative
errors for smaller measurements. Also, the Linux kernel’s
ndelay() nanosecond-scale primitive is (as of 2020) less
accurate than is the udelay() primitive used for the data
for durations of a microsecond or more. It is instructive to
compare to the zero-length case shown in Figure 9.25. ❑

Quick Quiz 9.64: p.172

Is there an exception to this deadlock immunity, and if
so, what sequence of events could lead to deadlock?

Answer:
One way to cause a deadlock cycle involving RCU read-
side primitives is via the following (illegal) sequence of
statements:

rcu_read_lock();
synchronize_rcu();
rcu_read_unlock();

The synchronize_rcu() cannot return until all pre-
existing RCU read-side critical sections complete, but is
enclosed in an RCU read-side critical section that cannot
complete until the synchronize_rcu() returns. The
result is a classic self-deadlock—you get the same effect
when attempting to write-acquire a reader-writer lock
while read-holding it.

Note that this self-deadlock scenario does not apply to
RCU QSBR, because the context switch performed by the
synchronize_rcu() would act as a quiescent state for
this CPU, allowing a grace period to complete. However,
this is if anything even worse, because data used by the
RCU read-side critical section might be freed as a result of
the grace period completing. Plus Linux kernel’s lockdep
facility will yell at you.

In short, do not invoke synchronous RCU update-side
primitives, which are listed in Table 9.2, from within an
RCU read-side critical section.

In addition, within the Linux kernel, RCU uses the
scheduler and the scheduler uses RCU. In some cases,
both RCU and the scheduler must take care to avoid
deadlock. ❑

Quick Quiz 9.65: p.173

Immunity to both deadlock and priority inversion???
Sounds too good to be true. Why should I believe that
this is even possible?

Answer:
It really does work. After all, if it didn’t work, the Linux
kernel would not run. ❑

Quick Quiz 9.66: p.173

But how many other algorithms really tolerate stale and
inconsistent data?

Answer:
Quite a few!

Please keep in mind that the finite speed of light means
that data reaching a given computer system is at least
slightly stale at the time that it arrives, and extremely
stale in the case of astronomical data. The finite speed of
light also places a sharp limit on the consistency of data
arriving from different sources of via different paths.

You might as well face the fact that the laws of physics
are incompatible with naive notions of perfect freshness
and consistency. ❑

Quick Quiz 9.67: p.174

If Tasks RCU Trace might someday be priority boosted,
why not also Tasks RCU and Tasks RCU Rude?

Answer:
Maybe, but these are less likely.

In the case of Tasks RCU, recall that the quiescent state
is a voluntary context switch. Thus, all tasks not blocked
after a voluntary context switch might need to be boosted,
and the mechanics of deboosting would not likely be at
all pretty.

In the case of Tasks RCU Rude, as was the case with
the old RCU Sched, any preemptible region of code is
a quiescent state. Thus, the only tasks that might need
boosting are those currently running with preemption
disabled. But boosting the priority of a preemption-
disabled task has no effect. It therefore seems doubly
unlikely that priority boosting will ever be introduced to
Tasks RCU Rude, at least in its current form. ❑

v2024.12.27a

E.9. DEFERRED PROCESSING 537

Quick Quiz 9.68: p.177

But doesn’t the RCU grace period start sometime after the
call to synchronize_rcu() rather than in the middle
of that xchg() statement?

Answer:
Which grace period, exactly?

The updater is required to wait for at least one grace
period that starts at or some time after the removal, in
this case, the xchg(). So in Figure 9.29, the indicated
grace period starts as early as theoretically possible and
extends to the return from synchronize_rcu(). This is
a perfectly legal grace period corresponding to the change
carried out by that xchg() statement. ❑

Quick Quiz 9.69: p.177

Is RCU the only synchronization mechanism that com-
bines temporal and spatial synchronization in this way?

Answer:
Not at all.

Hazard pointers can be considered to combine temporal
and spatial synchronization in a similar manner. Referring
to Listing 9.4, the hp_record() function’s acquisition
of a reference provides both spatial and temporal syn-
chronization, subscribing to a version and marking the
start of a reference, respectively. This function therefore
combines the effects of RCU’s rcu_read_lock() and
rcu_dereference(). Referring now to Listing 9.5, the
hp_clear() function’s release of a reference provides
temporal synchronization marking the end of a reference,
and is thus similar to RCU’s rcu_read_unlock(). The
hazptr_free_later() function’s retiring of a hazard-
pointer-protected object provides temporal synchroniza-
tion, similar to RCU’s call_rcu(). The primitives used
to mutate a hazard-pointer-protected structure provide
spatial synchronization, similar to RCU’s rcu_assign_
pointer().

Alternatively, one could instead come at hazard pointers
by analogy with reference counting. And, by doing so,
learn that reference counting also combines temporal and
spatial synchronization as described above for hazard
pointers. ❑

Quick Quiz 9.70: p.178

But wait! This is exactly the same code that might

be used when thinking of RCU as a replacement for
reader-writer locking! What gives?

Answer:
This is an effect of the Law of Toy Examples: Beyond a
certain point, the code fragments look the same. The only
difference is in how we think about the code. For example,
what does an atomic_inc() operation do? It might be
acquiring another explicit reference to an object to which
we already have a reference, it might be incrementing an
often-read/seldom-updated statistical counter, it might be
checking into an HPC-style barrier, or any of a number of
other things.

However, these differences can be extremely important.
For but one example of the importance, consider that if we
think of RCU as a restricted reference counting scheme,
we would never be fooled into thinking that the updates
would exclude the RCU read-side critical sections.

It nevertheless is often useful to think of RCU as a
replacement for reader-writer locking, for example, when
you are replacing reader-writer locking with RCU. ❑

Quick Quiz 9.71: p.180

Which of these use cases best describes the Pre-BSD
routing example in Section 9.5.4.1?

Answer:
Pre-BSD routing could be argued to fit into either quasi
reader-writer lock, quasi reference count, or quasi multi-
version concurrency control. The code is the same either
way. This is similar to things like atomic_inc(), another
tool that can be put to a great many uses. ❑

Quick Quiz 9.72: p.181

Garbage collectors? Passive serialization? System
reference points? Quiescent states? Aging? Genera-
tions? Why on earth couldn’t the knuckleheads working
on these early papers bring themselves to agree on a
common terminology???

Answer:
There were multiple independent inventions of mecha-
nisms vaguely resembling RCU. Each group of inventors
was unaware of the others, so each made up its own
terminology as a matter of course. And the different
terminology made it quite difficult for any one group to
find any of the others.

Sorry, but life is like that sometimes! ❑

v2024.12.27a

538 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 9.73: p.181

Why didn’t Kung’s and Lehman’s paper result in imme-
diate use of RCU?

Answer:
One reason is that Kung and Lehman were simply ahead of
their time. Another reason was that their approach, ground-
breaking though it was, did not take a number of software-
engineering and performance issues into account.

To see that they were ahead of their time, consider
that three years after their paper was published, Paul was
working on a PDP-11 system running BSD 2.8. This
system lacked any sort of automatic configuration, which
meant that any hardware modification, including adding
a new disk drive, required hand-editing and rebuilding
the kernel. Furthermore, this was a single-CPU system,
which meant that full-system synchronization was a simple
matter of disabling interrupts.

Fast-forward a number of years, and multicore systems
permitting runtime changes in hardware configuration
were commonplace. This meant that the hardware con-
figuration data that was implicitly represented in 1980s
kernel source code was now a mutable data structure
that was accessed on every I/O. Such data structures
rarely change, but could change at any time. And this
read-mostly property applies to many other new-age data
structures, including those concerning networking (rare
in the 1980s), security policies (physical locks in the
1980s), software configuration (immutable at runtime in
the 1980s), and much else besides. There was thus much
more opportunity for RCU to demonstrate its benefits in
the 1990s and 2000s than there was in the 1980s.

Kung’s and Lehman’s software-engineering sins in-
cluded failing to mark readers (thus presenting debugging
difficulties), failing to provide a clean RCU API (thus
tying their mechanism to a specific data structure), and
failing to allow for any post-grace-period operation other
than freeing memory (thus disallowing a number of RCU
use cases).

Kung and Lehman presented two garbage-collection
strategies. The first waited for all processes running at
a given time to terminate, which represented another
software-engineering sin that ruled out their mechanism’s
use in software that runs indefinitely. The second used per-
object reference counting, which greatly complicates their
read-side code (thus representing yet another software-
engineering sin), and, on modern hardware, results in
severe cache-miss overhead (thus representing a perfor-
mance sin, see for example Figures 9.30 and 9.31).

Despite this long list of software-engineering and per-
formance sins, Kung’s and Lehman’s paper remains a
truly impressive piece of work, especially considering
that much of the later work (both independent and not)
committed these same sins, plus others as well. ❑

Quick Quiz 9.74: p.183

Why not just drop the lock before waiting for the grace
period, or using something like call_rcu() instead of
waiting for a grace period?

Answer:
The authors wished to support linearizable tree opera-
tions, so that concurrent additions to, deletions from, and
searches of the tree would appear to execute in some glob-
ally agreed-upon order. In their search trees, this requires
holding locks across grace periods. (It is probably better
to drop linearizability as a requirement in most cases,
but linearizability is a surprisingly popular (and costly!)
requirement.) ❑

Quick Quiz 9.75: p.184

Why can’t users dynamically allocate the hazard pointers
as they are needed?

Answer:
They can, but at the expense of additional reader-traversal
overhead and, in some environments, the need to handle
memory-allocation failure. ❑

Quick Quiz 9.76: p.184

But don’t Linux-kernel kref reference counters allow
guaranteed unconditional reference acquisition?

Answer:
Yes they do, but the guarantee only applies unconditionally
in cases where a reference is already held. With this in
mind, please review the paragraph at the beginning of
Section 9.6, especially the part saying “large enough
that readers do not hold references from one traversal to
another”. ❑

Quick Quiz 9.77: p.185

But didn’t the answer to one of the quick quizzes in
Section 9.3 say that pairwise asymmetric barriers could
eliminate the read-side smp_mb() from hazard pointers?

v2024.12.27a

E.10. DATA STRUCTURES 539

Answer:
Yes, it did. However, doing this could be argued to
change hazard-pointers “Reclamation Forward Progress”
row (discussed later) from lock-free to blocking because a
CPU spinning with interrupts disabled in the kernel would
prevent the update-side portion of the asymmetric barrier
from completing. In the Linux kernel, such blocking
could in theory be prevented by building the kernel with
CONFIG_NO_HZ_FULL, designating the relevant CPUs as
nohz_full at boot time, ensuring that only one thread
was ever runnable on a given CPU at a given time, and
avoiding ever calling into the kernel. Alternatively, you
could ensure that the kernel was free of any bugs that
might cause CPUs to spin with interrupts disabled.

Given that CPUs spinning in the Linux kernel with
interrupts disabled seems to be rather rare, one might
counter-argue that asymmetric-barrier hazard-pointer up-
dates are non-blocking in practice, if not in theory. ❑

E.10 Data Structures

Quick Quiz 10.1: p.192

But chained hash tables are but one type of many. Why
the focus on chained hash tables?

Answer:
Chained hash tables are completely partitionable, and
thus well-suited to concurrent use. There are other
completely-partitionable hash tables, for example, split-
ordered list [SS06], but they are considerably more com-
plex. We therefore focus on chained hash tables. ❑

Quick Quiz 10.2: p.193

But isn’t the double comparison on lines 10–13 in List-
ing 10.3 inefficient in the case where the key fits into an
unsigned long?

Answer:
Indeed it is! However, hash tables quite frequently store
information with keys such as character strings that do
not necessarily fit into an unsigned long. Simplifying the
hash-table implementation for the case where keys always
fit into unsigned longs is left as an exercise for the reader.
❑

Quick Quiz 10.3: p.194

Instead of simply increasing the number of hash buckets,

wouldn’t it be better to cache-align the existing hash
buckets?

Answer:
The answer depends on a great many things. If the hash
table has a large number of elements per bucket, it would
clearly be better to increase the number of hash buckets.
On the other hand, if the hash table is lightly loaded, the
answer depends on the hardware, the effectiveness of the
hash function, and the workload. Interested readers are
encouraged to experiment. ❑

Quick Quiz 10.4: p.195

Given the negative scalability of the Schrödinger’s Zoo
application across sockets, why not just run multiple
copies of the application, with each copy having a subset
of the animals and confined to run on a single socket?

Answer:
You can do just that! In fact, you can extend this idea
to large clustered systems, running one copy of the ap-
plication on each node of the cluster. This practice is
called “sharding”, and is heavily used in practice by large
web-based retailers [DHJ+07].

However, if you are going to shard on a per-socket basis
within a multisocket system, why not buy separate smaller
and cheaper single-socket systems, and then run one shard
of the database on each of those systems? ❑

Quick Quiz 10.5: p.196

But if elements in a hash table can be removed concur-
rently with lookups, doesn’t that mean that a lookup
could return a reference to a data element that was
removed immediately after it was looked up?

Answer:
Yes it can! This is why hashtab_lookup() must be
invoked within an RCU read-side critical section, and
it is why hashtab_add() and hashtab_del() must
also use RCU-aware list-manipulation primitives. Finally,
this is why the caller of hashtab_del() must wait for
a grace period (e.g., by calling synchronize_rcu())
before freeing the removed element. This will ensure that
all RCU readers that might reference the newly removed
element have completed before that element is freed. ❑

v2024.12.27a

540 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 10.6: p.196

The hashtorture.h file contains more than 1,000
lines! Is that a comprehensive test or what???

Answer:
What.

The hashtorture.h tests are a good start and suffice
for a textbook algorithm. If this code was to be used in
production, much more testing would be required:

1. Have some subset of elements that always reside
in the table, and verify that lookups always find
these elements regardless of the number and type of
concurrent updates in flight.

2. Pair an updater with one or more readers, verifying
that after an element is added, once a reader success-
fully looks up that element, all later lookups succeed.
The definition of “later” will depend on the table’s
consistency requirements.

3. Pair an updater with one or more readers, verifying
that after an element is deleted, once a reader’s lookup
of that element fails, all later lookups also fail.

There are many more tests where those came from,
the exact nature of which depend on the details of the
requirements on your particular hash table. ❑

Quick Quiz 10.7: p.198

How can we be so sure that the hash-table size is at fault
here, especially given that Figure 10.4 on page 194 shows
that varying hash-table size has almost no effect? Might
the problem instead be something like false sharing?

Answer:
Excellent question!

False sharing requires writes, which are not featured
in the unsynchronized and RCU runs of this lookup-only
benchmark. The problem is therefore not false sharing.

Still unconvinced? Then look at the log-log plot in
Figure E.6, which shows performance for 448 CPUs
as a function of the hash-table size, that is, number of
buckets and maximum number of elements. A hash-
table of size 1,024 has 1,024 buckets and contains at
most 1,024 elements, with the average occupancy being
512 elements. Because this is a read-only benchmark, the
actual occupancy is always equal to the average occupancy.

This figure shows near-ideal performance below about
8,000 elements, that is, when the hash table comprises

 100000

 1x106

 1x107

 1x108

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
x1

06

ideal

unsync

QSBR,RCU,hazptr

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Hash Table Size (Buckets and Maximum Elements)

Figure E.6: Read-Only RCU-Protected Hash-Table Per-
formance For Schrödinger’s Zoo at 448 CPUs, Vary-
ing Table Size

less than 1 MB of data. This near-ideal performance is
consistent with that for the pre-BSD routing table shown in
Figure 9.21 on page 165, even at 448 CPUs. However, the
performance drops significantly (this is a log-log plot) at
about 8,000 elements, which is where the 1,048,576-byte
L2 cache overflows. Performance falls off a cliff (even on
this log-log plot) at about 300,000 elements, where the
40,370,176-byte L3 cache overflows. This demonstrates
that the memory-system bottleneck is profound, degrading
performance by well in excess of an order of magnitude
for the large hash tables. This should not be a surprise,
as the size-8,388,608 hash table occupies about 1 GB of
memory, overflowing the L3 caches by a factor of 25.

The reason that Figure 10.4 on page 194 shows little
effect is that its data was gathered from bucket-locked hash
tables, where locking overhead and contention drowned
out cache-capacity effects. In contrast, both RCU and
hazard-pointers readers avoid stores to shared data, which
means that the cache-capacity effects come to the fore.

Still not satisfied? Find a multi-socket system and run
this code, making use of whatever performance-counter
hardware is available. This hardware should allow you to
track down the precise cause of any slowdowns exhibited
on your particular system. The experience gained by
doing this exercise will be extremely valuable, giving you
a significant advantage over those whose understanding
of this issue is strictly theoretical.13 ❑

13 Of course, a theoretical understanding beats no understanding.
Most of the time, anyway.

v2024.12.27a

E.10. DATA STRUCTURES 541

Quick Quiz 10.8: p.198

The memory system is a serious bottleneck on this big
system. Why bother putting 448 CPUs on a system
without giving them enough memory bandwidth to do
something useful???

Answer:
It would indeed be a bad idea to use this large and expensive
system for a workload consisting solely of simple hash-
table lookups of small data elements. However, this
system is extremely useful for a great many workloads
that feature more processing and less memory accessing.
For example, some in-memory databases run extremely
well on this class of system, albeit when running much
more complex sets of queries than performed by the
benchmarks in this chapter. For example, such systems
might be processing images or video streams stored in
each element, providing further performance benefits due
to the fact that the resulting sequential memory accesses
will make better use of the available memory bandwidth
than will a pure pointer-following workload.

But let this be a lesson to you. Modern computer
systems come in a great many shapes and sizes, and great
care is frequently required to select one that suits your
application. And perhaps even more frequently, significant
care and work is required to adjust your application to the
specific computer systems at hand. ❑

Quick Quiz 10.9: p.199

The dangers of extrapolating from 28 CPUs to 448 CPUs
was made quite clear in Section 10.2.3. Would extrapo-
lating up from 448 CPUs be any safer?

Answer:
In theory, no, it isn’t any safer, and a useful exercise
would be to run these programs on larger systems. In
practice, there are only a very few systems with more than
448 CPUs, in contrast to the huge number having more
than 28 CPUs. This means that although it is dangerous
to extrapolate beyond 448 CPUs, there is very little need
to do so.

In addition, other testing has shown that RCU read-side
primitives offer consistent performance and scalability up
to at least 1024 CPUs. However, it is useful to review
Figure E.6 and its associated commentary. You see,
unlike the 448-CPU system that provided this data, the
system enjoying linear scalability up to 1024 CPUs boasted
excellent memory bandwidth. ❑

Quick Quiz 10.10: p.203

How does the code in Listing 10.10 protect against the
resizing process progressing past the selected bucket?

Answer:
It does not provide any such protection. That is instead
the job of the update-side concurrency-control functions
described next. ❑

Quick Quiz 10.11: p.203

Suppose that one thread is inserting an element into
the hash table during a resize operation. What prevents
this insertion from being lost due to a subsequent resize
operation completing before the insertion does?

Answer:
The second resize operation will not be able to move
beyond the bucket into which the insertion is taking place
due to the insertion holding the lock(s) on one or both of the
hash buckets in the hash tables. Furthermore, the insertion
operation takes place within an RCU read-side critical
section. As we will see when we examine the hashtab_
resize() function, this allows each resize operation
to use synchronize_rcu() invocations to wait for the
insertion’s read-side critical section to complete. These
synchronize_rcu() invocations prevent pre-existing
insertions operation from outliving the resize operation.
❑

Quick Quiz 10.12: p.204

The hashtab_lookup() function in Listing 10.12 ig-
nores concurrent resize operations. Doesn’t this mean
that readers might miss an element that was previously
added during a resize operation?

Answer:
No. As we will see soon, the hashtab_add() and
hashtab_del() functions keep the old hash table up-
to-date while a resize operation is in progress. ❑

Quick Quiz 10.13: p.204

The hashtab_add() and hashtab_del() functions
in Listing 10.12 can update two hash buckets while a
resize operation is progressing. This might cause poor
performance if the frequency of resize operation is not
negligible. Isn’t it possible to reduce the cost of updates
in such cases?

v2024.12.27a

542 APPENDIX E. ANSWERS TO QUICK QUIZZES

Listing E.6: Resizable Hash-Table Access Functions (Fewer
Updates)

1 struct ht_elem *
2 hashtab_lookup(struct hashtab *htp_master, void *key)
3 {
4 struct ht *htp;
5 struct ht_elem *htep;
6
7 htp = rcu_dereference(htp_master->ht_cur);
8 htep = ht_search_bucket(htp, key);
9 if (htep)

10 return htep;
11 htp = rcu_dereference(htp->ht_new);
12 if (!htp)
13 return NULL;
14 return ht_search_bucket(htp, key);
15 }
16
17 void hashtab_add(struct ht_elem *htep,
18 struct ht_lock_state *lsp)
19 {
20 struct ht_bucket *htbp = lsp->hbp[0];
21 int i = lsp->hls_idx[0];
22
23 htep->hte_next[!i].prev = NULL;
24 cds_list_add_rcu(&htep->hte_next[i], &htbp->htb_head);
25 }
26
27 void hashtab_del(struct ht_elem *htep,
28 struct ht_lock_state *lsp)
29 {
30 int i = lsp->hls_idx[0];
31
32 if (htep->hte_next[i].prev) {
33 cds_list_del_rcu(&htep->hte_next[i]);
34 htep->hte_next[i].prev = NULL;
35 }
36 if (lsp->hbp[1] && htep->hte_next[!i].prev) {
37 cds_list_del_rcu(&htep->hte_next[!i]);
38 htep->hte_next[!i].prev = NULL;
39 }
40 }

Answer:
Yes, at least assuming that a slight increase in the cost
of hashtab_lookup() is acceptable. One approach is
shown in Listings E.6 and E.7 (hash_resize_s.c).

This version of hashtab_add() adds an element to
either the old bucket if it is not resized yet, or to the
new bucket if it has been resized, and hashtab_del()
removes the specified element from any buckets into which
it has been inserted. The hashtab_lookup() function
searches the new bucket if the search of the old bucket
fails, which has the disadvantage of adding overhead to the
lookup fastpath. The alternative hashtab_lock_mod()
returns the locking state of the new bucket in ->hbp[0]
and ->hls_idx[0] if resize operation is in progress,
instead of the perhaps more natural choice of ->hbp[1]
and ->hls_idx[1]. However, this less-natural choice
has the advantage of simplifying hashtab_add().

Further analysis of the code is an exercise for the reader.
❑

Listing E.7: Resizable Hash-Table Update-Side Locking Func-
tion (Fewer Updates)

1 static void
2 hashtab_lock_mod(struct hashtab *htp_master, void *key,
3 struct ht_lock_state *lsp)
4 {
5 long b;
6 unsigned long h;
7 struct ht *htp;
8 struct ht_bucket *htbp;
9

10 rcu_read_lock();
11 htp = rcu_dereference(htp_master->ht_cur);
12 htbp = ht_get_bucket(htp, key, &b, &h);
13 spin_lock(&htbp->htb_lock);
14 lsp->hbp[0] = htbp;
15 lsp->hls_idx[0] = htp->ht_idx;
16 if (b > READ_ONCE(htp->ht_resize_cur)) {
17 lsp->hbp[1] = NULL;
18 return;
19 }
20 htp = rcu_dereference(htp->ht_new);
21 htbp = ht_get_bucket(htp, key, &b, &h);
22 spin_lock(&htbp->htb_lock);
23 lsp->hbp[1] = lsp->hbp[0];
24 lsp->hls_idx[1] = lsp->hls_idx[0];
25 lsp->hbp[0] = htbp;
26 lsp->hls_idx[0] = htp->ht_idx;
27 }

Quick Quiz 10.14: p.204

In the hashtab_resize() function in Listing 10.13,
what guarantees that the update to ->ht_new on line 29
will be seen as happening before the update to ->
ht_resize_cur on line 40 from the perspective of
hashtab_add() and hashtab_del()? In other words,
what prevents hashtab_add() and hashtab_del()
from dereferencing a NULL pointer loaded from ->ht_
new?

Answer:
The synchronize_rcu() on line 30 of Listing 10.13
ensures that all pre-existing RCU readers have completed
between the time that we install the new hash-table ref-
erence on line 29 and the time that we update ->ht_
resize_cur on line 40. This means that any reader that
sees a non-negative value of ->ht_resize_cur cannot
have started before the assignment to ->ht_new, and thus
must be able to see the reference to the new hash table.

And this is why the update-side hashtab_add() and
hashtab_del() functions must be enclosed in RCU read-
side critical sections, courtesy of hashtab_lock_mod()
and hashtab_unlock_mod() in Listing 10.11. ❑

Quick Quiz 10.15: p.206

Why is there a WRITE_ONCE() on line 40 in List-
ing 10.13?

v2024.12.27a

E.11. VALIDATION 543

 1000

 10000

 100000

 1x106

 1x107

 1 10 100

262,144

2,097,152Lo
ok

up
s

pe
r M

ill
is

ec
on

d

Number of CPUs (Threads)

Figure E.7: Effect of Memory-System Bottlenecks on
Hash Tables

Answer:
Together with the READ_ONCE() on line 16 in hashtab_
lock_mod() of Listing 10.11, it tells the compiler that
the non-initialization accesses to ->ht_resize_cur must
remain because reads from ->ht_resize_cur really can
race with writes, just not in a way to change the “if”
conditions. ❑

Quick Quiz 10.16: p.206

How much of the difference in performance between
the large and small hash tables shown in Figure 10.18
was due to long hash chains and how much was due to
memory-system bottlenecks?

Answer:
The easy way to answer this question is to do another run
with 2,097,152 elements, but this time also with 2,097,152
buckets, thus bringing the average number of elements
per bucket back down to unity.

The results are shown by the triple-dashed new trace in
the middle of Figure E.7. The other six traces are identical
to their counterparts in Figure 10.18 on page 206. The
gap between this new trace and the lower set of three
traces is a rough measure of how much of the difference
in performance was due to hash-chain length, and the gap
between the new trace and the upper set of three traces
is a rough measure of how much of that difference was
due to memory-system bottlenecks. The new trace starts
out slightly below its 262,144-element counterpart at a
single CPU, showing that cache capacity is degrading

performance slightly even on that single CPU.14 This is
to be expected, given that unlike its smaller counterpart,
the 2,097,152-bucket hash table does not fit into the L3
cache. This new trace rises just past 28 CPUs, which is
also to be expected. This rise is due to the fact that the
29th CPU is on another socket, which brings with it an
additional 39 MB of cache as well as additional memory
bandwidth.

But the large hash table’s advantage over that of the hash
table with 524,288 buckets (but still 2,097,152 elements)
decreases with additional CPUs, which is consistent with
the bottleneck residing in the memory system. Above
about 400 CPUs, the 2,097,152-bucket hash table is ac-
tually outperformed slightly by the 524,288-bucket hash
table. This should not be a surprise because the memory
system is the bottleneck and the larger number of buckets
increases this workload’s memory footprint.

The alert reader will have noted the word “rough” above
and might be interested in a more detailed analysis. Such
readers are invited to run similar benchmarks, using what-
ever performance counters or hardware-analysis tools they
might have available. This can be a long and complex
journey, but those brave enough to embark on it will be re-
warded with detailed knowledge of hardware performance
and its effect on software. ❑

E.11 Validation

Quick Quiz 11.1: p.212

When in computing is it necessary to follow a fragmen-
tary plan?

Answer:
There are any number of situations, but perhaps the most
important situation is when no one has ever created any-
thing resembling the program to be developed. In this case,
the only way to create a credible plan is to implement the
program, create the plan, and implement it a second time.
But whoever implements the program for the first time
has no choice but to follow a fragmentary plan because
any detailed plan created in ignorance cannot survive first
contact with the real world.

And perhaps this is one reason why evolution has
favored insanely optimistic human beings who are happy
to follow fragmentary plans! ❑

14 Yes, as far as hardware architects are concerned, caches are part
of the memory system.

v2024.12.27a

544 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 11.2: p.212

Who cares about the organization? After all, it is the
project that is important!

Answer:
Yes, projects are important, but if you like being paid for
your work, you need organizations as well as projects. ❑

Quick Quiz 11.3: p.213

Suppose that you are writing a script that processes the
output of the time command, which looks as follows:

real 0m0.132s
user 0m0.040s
sys 0m0.008s

The script is required to check its input for errors, and
to give appropriate diagnostics if fed erroneous time
output. What test inputs should you provide to this
program to test it for use with time output generated by
single-threaded programs?

Answer:
Can you say “Yes” to all the following questions?

1. Do you have a test case in which all the time is
consumed in user mode by a CPU-bound program?

2. Do you have a test case in which all the time is
consumed in system mode by a CPU-bound program?

3. Do you have a test case in which all three times are
zero?

4. Do you have a test case in which the “user” and
“sys” times sum to more than the “real” time?
(This would of course be completely legitimate in a
multithreaded program.)

5. Do you have a set of tests cases in which one of the
times uses more than one second?

6. Do you have a set of tests cases in which one of the
times uses more than ten seconds?

7. Do you have a set of test cases in which one of
the times has non-zero minutes? (For example,
“15m36.342s”.)

8. Do you have a set of test cases in which one of the
times has a seconds value of greater than 60?

9. Do you have a set of test cases in which one of the
times overflows 32 bits of milliseconds? 64 bits of
milliseconds?

10. Do you have a set of test cases in which one of the
times is negative?

11. Do you have a set of test cases in which one of the
times has a positive minutes value but a negative
seconds value?

12. Do you have a set of test cases in which one of the
times omits the “m” or the “s”?

13. Do you have a set of test cases in which one of the
times is non-numeric? (For example, “Go Fish”.)

14. Do you have a set of test cases in which one of
the lines is omitted? (For example, where there is
a “real” value and a “sys” value, but no “user”
value.)

15. Do you have a set of test cases where one of the lines
is duplicated? Or duplicated, but with a different
time value for the duplicate?

16. Do you have a set of test cases where a given
line has more than one time value? (For example,
“real 0m0.132s 0m0.008s”.)

17. Do you have a set of test cases containing random
characters?

18. In all test cases involving invalid input, did you
generate all permutations?

19. For each test case, do you have an expected outcome
for that test?

If you did not generate test data for a substantial number
of the above cases, you will need to cultivate a more
destructive attitude in order to have a chance of generating
high-quality tests.

Of course, one way to economize on destructiveness
is to generate the tests with the to-be-tested source code
at hand, which is called white-box testing (as opposed to
black-box testing). However, this is no panacea: You will
find that it is all too easy to find your thinking limited by
what the program can handle, thus failing to generate truly
destructive inputs. ❑

Quick Quiz 11.4: p.214

You are asking me to do all this validation BS before

v2024.12.27a

E.11. VALIDATION 545

I even start coding??? That sounds like a great way to
never get started!!!

Answer:
If it is your project, for example, a hobby, do what you
like. Any time you waste will be your own, and you have
no one else to answer to for it. And there is a good chance
that the time will not be completely wasted. For example,
if you are embarking on a first-of-a-kind project, the
requirements are in some sense unknowable anyway. In
this case, the best approach might be to quickly prototype
a number of rough solutions, try them out, and see what
works best.

On the other hand, if you are being paid to produce
a system that is broadly similar to existing systems, you
owe it to your users, your employer, and your future self
to validate early and often. ❑

Quick Quiz 11.5: p.214

Are you actually suggesting that it is possible to test
correctness into software??? Everyone knows that is
impossible!!!

Answer:
Please note that the text used the word “validation” rather
than the word “testing”. The word “validation” includes
formal methods as well as testing, for more on which
please see Chapter 12.

But as long as we are bringing up things that everyone
should know, let’s remind ourselves that Darwinian evo-
lution is not about correctness, but rather about survival.
As is software. My goal as a developer is not that my
software be attractive from a theoretical viewpoint, but
rather that it survive whatever its users throw at it.

Although the notion of correctness does have its uses,
its fundamental limitation is that the specification against
which correctness is judged will also have bugs. This
means nothing more nor less than that traditional correct-
ness proofs prove that the code in question contains the
intended set of bugs!

Alternative definitions of correctness instead focus on
the lack of problematic properties, for example, proving
that the software has no use-after-free bugs, no NULL
pointer dereferences, no array-out-of-bounds references,
and so on. Make no mistake, finding and eliminating such
classes of bugs can be highly useful. But the fact remains
that the lack of certain classes of bugs does nothing to
demonstrate fitness for any specific purpose.

Therefore, usage-driven validation remains critically
important.

Besides, it is also impossible to verify correctness into
your software, especially given the problematic need to
verify both the verifier and the specification. ❑

Quick Quiz 11.6: p.216

How can you implement WARN_ON_ONCE()?

Answer:
If you don’t mind WARN_ON_ONCE() sometimes warning
more than once, simply maintain a static variable that is
initialized to zero. If the condition triggers, check the
variable, and if it is non-zero, return. Otherwise, set it to
one, print the message, and return.

If you really need the message to never appear more
than once, you can use an atomic exchange operation in
place of “set it to one” above. Print the message only if
the atomic exchange operation returns zero. ❑

Quick Quiz 11.7: p.217

Just what invalid assumptions are you accusing Linux
kernel hackers of harboring???

Answer:
Those wishing a complete answer to this question are
encouraged to search the Linux kernel git repository for
commits containing the string “Fixes:”. There were
many thousands of them just in the year 2020, including
fixes for the following invalid assumptions:

1. Testing for a non-zero denominator will prevent
divide-by-zero errors. (Hint: Suppose that the test
uses 64-bit arithmetic but that the division uses 32-bit
arithmetic.)

2. Userspace can be trusted to zero out versioned data
structures used to communicate with the kernel.
(Hint: Sometimes userspace has no idea how large
the data structure is.)

3. Outdated TCP duplicate selective acknowledgement
(D-SACK) packets can be completely ignored. (Hint:
These packets might also contain other information.)

4. All CPUs are little-endian.

5. Once a data structure is no longer needed, all of its
memory may be immediately freed.

6. All devices can be initialized while in standby mode.

v2024.12.27a

546 APPENDIX E. ANSWERS TO QUICK QUIZZES

7. Developers can be trusted to consistently do correct
hexidecimal arithmetic.

Those who look at these commits in greater detail will
conclude that invalid assumptions are the rule, not the
exception. ❑

Quick Quiz 11.8: p.219

Why would anyone bother copying existing code in pen
on paper??? Doesn’t that just increase the probability of
transcription errors?

Answer:
If you are worried about transcription errors, please allow
me to be the first to introduce you to a really cool tool
named diff. In addition, carrying out the copying can
be quite valuable:

1. If you are copying a lot of code, you are probably
failing to take advantage of an opportunity for ab-
straction. The act of copying code can provide great
motivation for abstraction.

2. Copying the code gives you an opportunity to think
about whether the code really works in its new setting.
Is there some non-obvious constraint, such as the
need to disable interrupts or to hold some lock?

3. Copying the code also gives you time to consider
whether there is some better way to get the job done.

So, yes, copy the code! ❑

Quick Quiz 11.9: p.219

This procedure is ridiculously over-engineered! How
can you expect to get a reasonable amount of software
written doing it this way???

Answer:
Indeed, repeatedly copying code by hand is laborious
and slow. However, when combined with heavy-duty
stress testing and proofs of correctness, this approach is
also extremely effective for complex parallel code where
ultimate performance and reliability are required and
where debugging is difficult. The Linux-kernel RCU
implementation is a case in point.

On the other hand, if you are writing a simple single-
threaded shell script, then you would be best-served by a
different methodology. For example, enter each command
one at a time into an interactive shell with a test data set to
make sure that it does what you want, then copy-and-paste

the successful commands into your script. Finally, test the
script as a whole.

If you have a friend or colleague who is willing to help
out, pair programming can work very well, as can any
number of formal design- and code-review processes.

And if you are writing code as a hobby, then do whatever
you like.

In short, different types of software need different
development methodologies. ❑

Quick Quiz 11.10: p.219

What do you do if, after all the pen-on-paper copying,
you find a bug while typing in the resulting code?

Answer:
The answer, as is often the case, is “it depends”. If the
bug is a simple typo, fix that typo and continue typing.
However, if the bug indicates a design flaw, go back to
pen and paper. ❑

Quick Quiz 11.11: p.219

Wait! Why on earth would an abstract piece of software
fail only sometimes???

Answer:
Because complexity and concurrency can produce results
that are indistinguishable from randomness [MOZ09].
For example, a bug in Linux-kernel RCU required the
following to hold before that bug would manifest:

1. The kernel was built for HPC or real-time use, so
that a given CPU’s RCU work could be offloaded to
some other CPU.

2. An offloaded CPU went offline just after generating
a large quantity of RCU work.

3. A special rcu_barrier() API was invoked just at
this time.

4. The RCU work from the newly offlined CPU was still
being processed after rcu_barrier() returned.

5. One of these remaining RCU work items was related
to the code invoking the rcu_barrier().

Making this bug manifest therefore required considerable
luck or great testing skill. But the testing skill could be
effective only if the bug was known, which of course it
was not. Therefore, the manifesting of this bug was very
well modeled as a probabilistic process. ❑

v2024.12.27a

E.11. VALIDATION 547

Quick Quiz 11.12: p.220

Suppose that you had a very large number of systems
at your disposal. For example, at current cloud prices,
you can purchase a huge amount of CPU time at low
cost. Why not use this approach to get close enough to
certainty for all practical purposes?

Answer:
This approach might well be a valuable addition to your
validation arsenal. But it does have limitations that rule
out “for all practical purposes”:

1. Some bugs have extremely low probabilities of occur-
rence, but nevertheless need to be fixed. For example,
suppose that the Linux kernel’s RCU implementation
had a bug that is triggered only once per million years
of machine time on average. A million years of CPU
time is hugely expensive even on the cheapest cloud
platforms, but we could expect this bug to result
in more than 50 failures per day on the more than
20 billion Linux instances in the world as of 2017.

2. The bug might well have zero probability of occur-
rence on your particular cloud-computing test setup,
which means that you won’t see it no matter how
much machine time you burn testing it. For but one
example, there are RCU bugs that appear only in
preemptible kernels, and also other RCU bugs that
appear only in non-preemptible kernels.

Of course, if your code is small enough, formal validation
may be helpful, as discussed in Chapter 12. But beware:
Formal validation of your code will not find errors in
your assumptions, misunderstanding of the requirements,
misunderstanding of the software or hardware primitives
you use, or errors that you did not think to construct a
proof for. ❑

Quick Quiz 11.13: p.220

Say what??? When I plug the earlier five-test 10 %-
failure-rate example into the formula, I get 59,050 % and
that just doesn’t make sense!!!

Answer:
You are right, that makes no sense at all.

Remember that a probability is a number between zero
and one, so that you need to divide a percentage by 100 to
get a probability. So 10 % is a probability of 0.1, which
gets a probability of 0.4095, which rounds to 41 %, which
quite sensibly matches the earlier result. ❑

Quick Quiz 11.14: p.221

In Eq. 11.6, are the logarithms base-10, base-2, or
base-e?

Answer:
It does not matter. You will get the same answer no matter
what base of logarithms you use because the result is
a pure ratio of logarithms. The only constraint is that
you use the same base for both the numerator and the
denominator. ❑

Quick Quiz 11.15: p.222

Suppose that a bug causes a test failure three times per
hour on average. How long must the test run error-free
to provide 99.9 % confidence that the fix significantly
reduced the probability of failure?

Answer:
We set 𝑛 to 3 and 𝑃 to 99.9 in Eq. 11.11, resulting in:

𝑇 = −1
3

ln
100 − 99.9

100
= 2.3 (E.9)

If the test runs without failure for 2.3 hours, we can
be 99.9 % certain that the fix reduced the probability of
failure. ❑

Quick Quiz 11.16: p.222

Doing the summation of all the factorials and exponen-
tials is a real pain. Isn’t there an easier way?

Answer:
One approach is to use the open-source symbolic ma-
nipulation program named “maxima”. Once you have
installed this program, which is a part of many Linux dis-
tributions, you can run it and give the load(distrib);
command followed by any number of bfloat(cdf_
poisson(m,lambda)); commands, where the m is re-
placed by the value of 𝑚 (the actual number of failures in
actual test of the alleged fix, usually zero) and the lambda
is replaced by the value of 𝜆 (the expected number of
failures in that same test prior to applying the alleged
fix). You can adjust for the desired improvement, for
example, if the run prior to the fix had 24 failures and
you are looking for an improvement of at least an order of
magnitude, then set 𝜆 to 2.4 instead of 24.

In particular, the bfloat(cdf_poisson(2,24));
command results in 1.181617112359357b-8, which
matches the value given by Eq. 11.13.

v2024.12.27a

548 APPENDIX E. ANSWERS TO QUICK QUIZZES

Table E.4: Human-Friendly Poisson-Function Display

Improvement

Certainty (%) Any 10x 100x

90.0 2.3 23.0 230.0
95.0 3.0 30.0 300.0
99.0 4.6 46.1 460.5
99.9 6.9 69.1 690.7

Another approach is to recognize that in this real world,
it is not all that useful to compute (say) the duration
of a test having two or fewer errors that would give a
76.8 % confidence of a 349.2x improvement in reliability.
Instead, human beings tend to focus on specific values, for
example, a 95 % confidence of a 10x improvement. People
also greatly prefer error-free test runs, and so should you
because doing so reduces your required test durations.
Therefore, it is quite possible that the values in Table E.4
will suffice. Simply look up the desired confidence and
degree of improvement, and the resulting number will
give you the required error-free test duration in terms of
the expected time for a single error to appear. So if your
pre-fix testing suffered one failure per hour, and the powers
that be require a 95 % confidence of a 10x improvement,
you need a 30-hour error-free run.

Alternatively, you can use the rough-and-ready method
described in Section 11.6.2. ❑

Quick Quiz 11.17: p.222

But wait!!! Given that there has to be some number
of failures (including the possibility of zero failures),
shouldn’t Eq. 11.13 approach the value 1 as 𝑚 goes to
infinity?

Answer:
Indeed it should. And it does.

To see this, note that e−𝜆 does not depend on 𝑖, which
means that it can be pulled out of the summation as
follows:

e−𝜆
∞∑︁
𝑖=0

𝜆𝑖

𝑖!
(E.10)

The remaining summation is exactly the Taylor series
for e𝜆, yielding:

e−𝜆e𝜆 (E.11)

The two exponentials are reciprocals, and therefore
cancel, resulting in exactly 1, as required. ❑

Quick Quiz 11.18: p.223

How is this approach supposed to help if the corruption
affected some unrelated pointer, which then caused the
corruption???

Answer:
Indeed, that can happen. Many CPUs have hardware-
debugging facilities that can help you locate that unrelated
pointer. Furthermore, if you have a core dump, you
can search the core dump for pointers referencing the
corrupted region of memory. You can also look at the
data layout of the corruption, and check pointers whose
type matches that layout.

You can also step back and test the modules making up
your program more intensively, which will likely confine
the corruption to the module responsible for it. If this
makes the corruption vanish, consider adding additional
argument checking to the functions exported from each
module.

Nevertheless, this is a hard problem, which is why I
used the words “a bit of a dark art”. ❑

Quick Quiz 11.19: p.223

But I did the bisection, and ended up with a huge commit.
What do I do now?

Answer:
A huge commit? Shame on you! This is but one reason
why you are supposed to keep the commits small.

And that is your answer: Break up the commit into
bite-sized pieces and bisect the pieces. In my experience,
the act of breaking up the commit is often sufficient to
make the bug painfully obvious. ❑

Quick Quiz 11.20: p.224

Why don’t conditional-locking primitives provide this
spurious-failure functionality?

Answer:
There are locking algorithms that depend on conditional-
locking primitives telling them the truth. For example, if
conditional-lock failure signals that some other thread is
already working on a given job, spurious failure might
cause that job to never get done, possibly resulting in a
hang. ❑

v2024.12.27a

E.11. VALIDATION 549

Quick Quiz 11.21: p.227

That is ridiculous!!! After all, isn’t getting the correct
answer later than one would like better than getting an
incorrect answer???

Answer:
This question fails to consider the option of choosing
not to compute the answer at all, and in doing so, also
fails to consider the costs of computing the answer. For
example, consider short-term weather forecasting, for
which accurate models exist, but which require large (and
expensive) clustered supercomputers, at least if you want
to actually run the model faster than the weather.

And in this case, any performance bug that prevents
the model from running faster than the actual weather
prevents any forecasting. Given that the whole purpose
of purchasing the large clustered supercomputers was to
forecast weather, if you cannot run the model faster than
the weather, you would be better off not running the model
at all.

More severe examples may be found in the area of
safety-critical real-time computing. ❑

Quick Quiz 11.22: p.227

But if you are going to put in all the hard work of
parallelizing an application, why not do it right? Why
settle for anything less than optimal performance and
linear scalability?

Answer:
Although I do heartily salute your spirit and aspirations,
you are forgetting that there may be high costs due to
delays in the program’s completion. For an extreme
example, suppose that a 40 % performance shortfall from
a single-threaded application is causing one person to die
each day. Suppose further that in a day you could hack
together a quick and dirty parallel program that ran 50 %
faster on an eight-CPU system than the sequential version,
but that an optimal parallel program would require four
months of painstaking design, coding, debugging, and
tuning.

It is safe to say that more than 100 people would prefer
the quick and dirty version. ❑

Quick Quiz 11.23: p.228

But what about other sources of error, for example, due
to interactions between caches and memory layout?

Answer:
Changes in memory layout can indeed result in unrealistic
decreases in execution time. For example, suppose that
a given microbenchmark almost always overflows the
L0 cache’s associativity, but with just the right memory
layout, it all fits. If this is a real concern, consider running
your microbenchmark using huge pages (or within the
kernel or on bare metal) in order to completely control the
memory layout.

But note that there are many different possible memory-
layout bottlenecks. Benchmarks sensitive to memory
bandwidth (such as those involving matrix arithmetic)
should spread the running threads across the available
cores and sockets to maximize memory parallelism. They
should also spread the data across NUMA nodes, memory
controllers, and DRAM chips to the extent possible. In
contrast, benchmarks sensitive to memory latency (in-
cluding most poorly scaling applications) should instead
maximize locality, filling each core and socket in turn
before adding another one. ❑

Quick Quiz 11.24: p.229

Wouldn’t the techniques suggested to isolate the code un-
der test also affect that code’s performance, particularly
if it is running within a larger application?

Answer:
Indeed it might, although in most microbenchmarking
efforts you would extract the code under test from the
enclosing application. Nevertheless, if for some reason
you must keep the code under test within the application,
you will very likely need to use the techniques discussed
in Section 11.7.6. ❑

Quick Quiz 11.25: p.231

This approach is just plain weird! Why not use means
and standard deviations, like we were taught in our
statistics classes?

Answer:
Because mean and standard deviation were not designed
to do this job. To see this, try applying mean and standard
deviation to the following data set, given a 1 % relative
error in measurement:

49,548.4 49,549.4 49,550.2 49,550.9 49,550.9
49,551.0 49,551.5 49,552.1 49,899.0 49,899.3
49,899.7 49,899.8 49,900.1 49,900.4 52,244.9
53,333.3 53,333.3 53,706.3 53,706.3 54,084.5

v2024.12.27a

550 APPENDIX E. ANSWERS TO QUICK QUIZZES

The problem is that mean and standard deviation do not
rest on any sort of measurement-error assumption, and
they will therefore see the difference between the values
near 49,500 and those near 49,900 as being statistically
significant, when in fact they are well within the bounds
of estimated measurement error.

Of course, it is possible to create a script similar to that
in Listing 11.2 that uses standard deviation rather than
absolute difference to get a similar effect, and this is left
as an exercise for the interested reader. Be careful to avoid
divide-by-zero errors arising from strings of identical data
values! ❑

Quick Quiz 11.26: p.231

But what if all the y-values in the trusted group of data
are exactly zero? Won’t that cause the script to reject
any non-zero value?

Answer:
Indeed it will! But if your performance measurements
often produce a value of exactly zero, perhaps you need
to take a closer look at your performance-measurement
code.

Note that many approaches based on mean and standard
deviation will have similar problems with this sort of
dataset. ❑

E.12 Formal Verification

Quick Quiz 12.1: p.240

Why is there an unreached statement in locker? After
all, isn’t this a full state-space search?

Answer:
The locker process is an infinite loop, so control never
reaches the end of this process. However, since there are
no monotonically increasing variables, Promela is able to
model this infinite loop with a small number of states. ❑

Quick Quiz 12.2: p.240

What are some Promela code-style issues with this
example?

Answer:
There are several:

1. The declaration of sum should be moved to within
the init block, since it is not used anywhere else.

2. The assertion code should be moved outside of the
initialization loop. The initialization loop can then
be placed in an atomic block, greatly reducing the
state space (by how much?).

3. The atomic block covering the assertion code should
be extended to include the initialization of sum and
j, and also to cover the assertion. This also reduces
the state space (again, by how much?). ❑

Quick Quiz 12.3: p.241

Is there a more straightforward way to code the do-od
statement?

Answer:
Yes. Replace it with if-fi and remove the two break
statements. ❑

Quick Quiz 12.4: p.242

Why are there atomic blocks at lines 12–21 and
lines 44–56, when the operations within those atomic
blocks have no atomic implementation on any current
production microprocessor?

Answer:
Because those operations are for the benefit of the assertion
only. They are not part of the algorithm itself. There
is therefore no harm in marking them atomic, and so
marking them greatly reduces the state space that must be
searched by the Promela model. ❑

Quick Quiz 12.5: p.242

Is the re-summing of the counters on lines 24–27 really
necessary?

Answer:
Yes. To see this, delete these lines and run the model.

Alternatively, consider the following sequence of steps:

1. One process is within its RCU read-side critical
section, so that the value of ctr[0] is zero and the
value of ctr[1] is two.

2. An updater starts executing, and sees that the sum
of the counters is two so that the fastpath cannot be
executed. It therefore acquires the lock.

3. A second updater starts executing, and fetches the
value of ctr[0], which is zero.

v2024.12.27a

E.12. FORMAL VERIFICATION 551

4. The first updater adds one to ctr[0], flips the index
(which now becomes zero), then subtracts one from
ctr[1] (which now becomes one).

5. The second updater fetches the value of ctr[1],
which is now one.

6. The second updater now incorrectly concludes that
it is safe to proceed on the fastpath, despite the fact
that the original reader has not yet completed. ❑

Quick Quiz 12.6: p.243

A compression rate of 0.48 % corresponds to a 200-to-
1 decrease in memory occupied by the states! Is the
state-space search really exhaustive???

Answer:
According to Spin’s documentation, yes, it is.

As an indirect evidence, let’s compare the results of
runs with -DCOLLAPSE and with -DMA=88 (two readers
and three updaters). The diff of outputs from those runs
is shown in Listing E.8. As you can see, they agree on the
numbers of states (stored and matched). ❑

Quick Quiz 12.7: p.245

But different formal-verification tools are often designed
to locate particular classes of bugs. For example, very
few formal-verification tools will find an error in the
specification. So isn’t this “clearly untrustworthy” judg-
ment a bit harsh?

Answer:
It is certainly true that many formal-verification tools are
specialized in some way. For example, Promela does
not handle realistic memory models (though they can be
programmed into Promela [DMD13]), CBMC [CKL04]
does not detect probabilistic hangs and deadlocks, and
Nidhugg [LSLK14] does not detect bugs involving data
nondeterminism. But this means that these tools cannot
be trusted to find bugs that they are not designed to locate.

And therefore people creating formal-verification tools
should “tell the truth on the label”, clearly calling out
what classes of bugs their tools can and cannot detect.
Otherwise, the first time a practitioner finds a tool failing to
detect a bug, that practitioner is likely to make extremely
harsh and extremely public denunciations of that tool.
Yes, yes, there is something to be said for putting your
best foot forward, but putting it too far forward without
appropriate disclaimers can easily trigger a land mine of

Listing E.8: Spin Output Diff of -DCOLLAPSE and -DMA=88
@@ -1,6 +1,6 @@
(Spin Version 6.4.6 -- 2 December 2016)

+ Partial Order Reduction
- + Compression
+ + Graph Encoding (-DMA=88)

Full statespace search for:
never claim - (none specified)

@@ -9,27 +9,22 @@
invalid end states +

State-vector 88 byte, depth reached 328014, errors: 0
+MA stats: -DMA=77 is sufficient
+Minimized Automaton: 2084798 nodes and 6.38445e+06 edges
1.8620286e+08 states, stored
1.7759831e+08 states, matched
3.6380117e+08 transitions (= stored+matched)
1.3724093e+08 atomic steps

-hash conflicts: 1.1445626e+08 (resolved)

Stats on memory usage (in Megabytes):
20598.919 equivalent memory usage for states

(stored*(State-vector + overhead))
- 8418.559 actual memory usage for states
- (compression: 40.87%)
- state-vector as stored =
- 19 byte + 28 byte overhead
- 2048.000 memory used for hash table (-w28)
+ 204.907 actual memory usage for states
+ (compression: 0.99%)

17.624 memory used for DFS stack (-m330000)
- 1.509 memory lost to fragmentation
-10482.675 total actual memory usage
+ 222.388 total actual memory usage

-nr of templates: [0:globals 1:chans 2:procs]
-collapse counts: [0:1021 2:32 3:1869 4:2]
unreached in proctype qrcu_reader

(0 of 18 states)
unreached in proctype qrcu_updater

@@ -38,5 +33,5 @@
unreached in init

(0 of 23 states)

-pan: elapsed time 369 seconds
-pan: rate 505107.58 states/second
+pan: elapsed time 2.68e+03 seconds
+pan: rate 69453.282 states/second

v2024.12.27a

552 APPENDIX E. ANSWERS TO QUICK QUIZZES

negative reaction that your tool might or might not be able
to recover from.

You have been warned! ❑

Quick Quiz 12.8: p.245

Given that we have two independent proofs of correctness
for the QRCU algorithm described herein, and given that
the proof of incorrectness covers what is known to be a
different algorithm, why is there any room for doubt?

Answer:
There is always room for doubt. In this case, it is important
to keep in mind that the two proofs of correctness preceded
the formalization of real-world memory models, raising
the possibility that these two proofs are based on incorrect
memory-ordering assumptions. Furthermore, since both
proofs were constructed by the same person, it is quite
possible that they contain a common error. Again, there
is always room for doubt. ❑

Quick Quiz 12.9: p.246

Yeah, that’s just great! Now, just what am I supposed to
do if I don’t happen to have a machine with 40 GB of
main memory???

Answer:
Relax, there are a number of lawful answers to this ques-
tion:

1. Try compiler flags -DCOLLAPSE and -DMA=N to re-
duce memory consumption. See Section 12.1.4.1.

2. Further optimize the model, reducing its memory
consumption.

3. Work out a pencil-and-paper proof, perhaps starting
with the comments in the code in the Linux kernel.

4. Devise careful torture tests, which, though they can-
not prove the code correct, can find hidden bugs.

5. There is some movement towards tools that do model
checking on clusters of smaller machines. However,
please note that we have not actually used such tools
myself, courtesy of some large machines that Paul
has occasional access to.

6. Wait for memory sizes of affordable systems to ex-
pand to fit your problem.

7. Use one of a number of cloud-computing services to
rent a large system for a short time period. ❑

Quick Quiz 12.10: p.247

Why not simply increment rcu_update_flag, and then
only increment dynticks_progress_counter if the
old value of rcu_update_flag was zero???

Answer:
This fails in presence of NMIs. To see this, suppose
an NMI was received just after rcu_irq_enter() in-
cremented rcu_update_flag, but before it incremented
dynticks_progress_counter. The instance of rcu_
irq_enter() invoked by the NMI would see that the
original value of rcu_update_flag was non-zero, and
would therefore refrain from incrementing dynticks_
progress_counter. This would leave the RCU grace-
period machinery no clue that the NMI handler was
executing on this CPU, so that any RCU read-side crit-
ical sections in the NMI handler would lose their RCU
protection.

The possibility of NMI handlers, which, by definition
cannot be masked, does complicate this code. ❑

Quick Quiz 12.11: p.247

But if line 7 finds that we are the outermost inter-
rupt, wouldn’t we always need to increment dynticks_
progress_counter?

Answer:
Not if we interrupted a running task! In that case,
dynticks_progress_counter would have already
been incremented by rcu_exit_nohz(), and there would
be no need to increment it again. ❑

Quick Quiz 12.12: p.248

Can you spot any bugs in any of the code in this section?

Answer:
Read the next section to see if you were correct. ❑

Quick Quiz 12.13: p.249

Why isn’t the memory barrier in rcu_exit_nohz()
and rcu_enter_nohz() modeled in Promela?

Answer:
Promela assumes sequential consistency, so it is not neces-
sary to model memory barriers. In fact, one must instead
explicitly model lack of memory barriers, for example, as
shown in Listing 12.13 on page 241. ❑

v2024.12.27a

E.12. FORMAL VERIFICATION 553

Quick Quiz 12.14: p.249

Isn’t it a bit strange to model rcu_exit_nohz() fol-
lowed by rcu_enter_nohz()? Wouldn’t it be more
natural to instead model entry before exit?

Answer:
It probably would be more natural, but we will need this
particular order for the liveness checks that we will add
later. ❑

Quick Quiz 12.15: p.250

Wait a minute! In the Linux kernel, both dynticks_
progress_counter and rcu_dyntick_snapshot
are per-CPU variables. So why are they instead be-
ing modeled as single global variables?

Answer:
Because the grace-period code processes each CPU’s
dynticks_progress_counter and rcu_dyntick_
snapshot variables separately, we can collapse the state
onto a single CPU. If the grace-period code were instead
to do something special given specific values on specific
CPUs, then we would indeed need to model multiple
CPUs. But fortunately, we can safely confine ourselves to
two CPUs, the one running the grace-period processing
and the one entering and leaving dynticks-idle mode. ❑

Quick Quiz 12.16: p.250

Given there are a pair of back-to-back changes to grace_
period_state on lines 25 and 26, how can we be sure
that line 25’s changes won’t be lost?

Answer:
Recall that Promela and Spin trace out every possible
sequence of state changes. Therefore, timing is irrelevant:
Promela/Spin will be quite happy to jam the entire rest
of the model between those two statements unless some
state variable specifically prohibits doing so. ❑

Quick Quiz 12.17: p.253

But what would you do if you needed the statements
in a single EXECUTE_MAINLINE() group to execute
non-atomically?

Answer:
The easiest thing to do would be to put each such statement
in its own EXECUTE_MAINLINE() statement. ❑

Quick Quiz 12.18: p.253

But what if the dynticks_nohz() process had “if” or
“do” statements with conditions, where the statement bod-
ies of these constructs needed to execute non-atomically?

Answer:
One approach, as we will see in a later section, is to use
explicit labels and “goto” statements. For example, the
construct:

if
:: i == 0 -> a = -1;
:: else -> a = -2;
fi;

could be modeled as something like:

EXECUTE_MAINLINE(stmt1,
if
:: i == 0 -> goto stmt1_then;
:: else -> goto stmt1_else;
fi)

stmt1_then: skip;
EXECUTE_MAINLINE(stmt1_then1, a = -1; goto stmt1_end)
stmt1_else: skip;
EXECUTE_MAINLINE(stmt1_then1, a = -2)
stmt1_end: skip;

However, it is not clear that the macro is helping much in
the case of the “if” statement, so these sorts of situations
will be open-coded in the following sections. ❑

Quick Quiz 12.19: p.254

Why are lines 46 and 47 (the “in_dyntick_irq = 0;”
and the “i++;”) executed atomically?

Answer:
These lines of code pertain to controlling the model, not
to the code being modeled, so there is no reason to model
them non-atomically. The motivation for modeling them
atomically is to reduce the size of the state space. ❑

Quick Quiz 12.20: p.254

What property of interrupts is this dynticks_irq()
process unable to model?

Answer:
One such property is nested interrupts, which are handled
in the following section. ❑

v2024.12.27a

554 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 12.21: p.257

Does Paul always write his code in this painfully incre-
mental manner?

Answer:
Not always, but more and more frequently. In this case,
Paul started with the smallest slice of code that included
an interrupt handler, because he was not sure how best to
model interrupts in Promela. Once he got that working,
he added other features. (But if he was doing it again, he
would start with a “toy” handler. For example, he might
have the handler increment a variable twice and have the
mainline code verify that the value was always even.)

Why the incremental approach? Consider the following,
attributed to Brian W. Kernighan:

Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code
as cleverly as possible, you are, by definition,
not smart enough to debug it.

This means that any attempt to optimize the production
of code should place at least 66 % of its emphasis on
optimizing the debugging process, even at the expense of
increasing the time and effort spent coding. Incremental
coding and testing is one way to optimize the debugging
process, at the expense of some increase in coding effort.
Paul uses this approach because he rarely has the luxury
of devoting full days (let alone weeks) to coding and
debugging. ❑

Quick Quiz 12.22: p.258

But what happens if an NMI handler starts running
before an IRQ handler completes, and if that NMI
handler continues running until a second IRQ handler
starts?

Answer:
This cannot happen within the confines of a single CPU.
The first IRQ handler cannot complete until the NMI
handler returns. Therefore, if each of the dynticks and
dynticks_nmi variables have taken on an even value
during a given time interval, the corresponding CPU
really was in a quiescent state at some time during that
interval. ❑

Quick Quiz 12.23: p.260

This is still pretty complicated. Why not just have a
cpumask_t with per-CPU bits, clearing the bit when

entering an IRQ or NMI handler, and setting it upon
exit?

Answer:
Although this approach would be functionally correct, it
would result in excessive IRQ entry/exit overhead on large
machines. In contrast, the approach laid out in this section
allows each CPU to touch only per-CPU data on IRQ and
NMI entry/exit, resulting in much lower IRQ entry/exit
overhead, especially on large machines. ❑

Quick Quiz 12.24: p.261

But x86 has strong memory ordering, so why formalize
its memory model?

Answer:
Actually, academics consider the x86 memory model to
be weak because it can allow prior stores to be reordered
with subsequent loads. From an academic viewpoint, a
strong memory model is one that allows absolutely no
reordering, so that all threads agree on the order of all
operations visible to them.

Plus it really is the case that developers are sometimes
confused about x86 memory ordering. ❑

Quick Quiz 12.25: p.261

Why does line 8 of Listing 12.23 initialize the registers?
Why not instead initialize them on lines 4 and 5?

Answer:
Either way works. However, in general, it is better
to use initialization than explicit instructions. The ex-
plicit instructions are used in this example to demonstrate
their use. In addition, many of the litmus tests available
on the tool’s web site (https://www.cl.cam.ac.uk/
~pes20/ppcmem/) were automatically generated, which
generates explicit initialization instructions. ❑

Quick Quiz 12.26: p.262

But whatever happened to line 17 of Listing 12.23, the
one that is the Fail1: label?

Answer:
The implementation of PowerPC version of atomic_
add_return() loops when the stwcx instruction fails,
which it communicates by setting non-zero status in the
condition-code register, which in turn is tested by the bne
instruction. Because actually modeling the loop would
result in state-space explosion, we instead branch to the

https://www.cl.cam.ac.uk/~pes20/ppcmem/
https://www.cl.cam.ac.uk/~pes20/ppcmem/

v2024.12.27a

E.12. FORMAL VERIFICATION 555

Fail1: label, terminating the model with the initial value
of 2 in P0’s r3 register, which will not trigger the exists
assertion.

There is some debate about whether this trick is univer-
sally applicable, but I have not seen an example where it
fails. ❑

Quick Quiz 12.27: p.263

Does the Arm Linux kernel have a similar bug?

Answer:
Arm does not have this particular bug because it places
smp_mb() before and after the atomic_add_return()
function’s assembly-language implementation. PowerPC
no longer has this bug; it has long since been fixed [Her11].
❑

Quick Quiz 12.28: p.263

Does the lwsync on line 10 in Listing 12.23 provide
sufficient ordering?

Answer:
It depends on the semantics required. The rest of this
answer assumes that the assembly language for P0 in
Listing 12.23 is supposed to implement a value-returning
atomic operation.

As is discussed in Chapter 15, Linux kernel’s memory
consistency model requires value-returning atomic RMW
operations to be fully ordered on both sides. The ordering
provided by lwsync is insufficient for this purpose, and so
sync should be used instead. This change has since been
made [Fen15] in response to an email thread discussing a
couple of other litmus tests [McK15g]. Finding any other
bugs that the Linux kernel might have is left as an exercise
for the reader.

In other enviroments providing weaker semantics,
lwsync might be sufficient. But not for the Linux kernel’s
value-returning atomic operations! ❑

Quick Quiz 12.29: p.265

What do you have to do to run herd on litmus tests like
that shown in Listing 12.29?

Answer:
Get version v4.17 (or later) of the Linux-kernel source
code, then follow the instructions in tools/memory-
model/README to install the needed tools. Then follow
the further instructions to run these tools on the litmus
test of your choice. ❑

Table E.5: Locking: Modeling vs. Emulation Time (s)

Model Emulate

filter exists

#
Pr

oc
.

cmpxchg xchg cmpxchg xchg

2 0.004 0.022 0.027 0.039 0.058
3 0.041 0.743 0.968 1.653 3.203
4 0.374 59.565 74.818 151.962 500.960
5 4.905

Quick Quiz 12.30: p.265

Why bother modeling locking directly? Why not simply
emulate locking with atomic operations?

Answer:
In a word, performance, as can be seen in Table E.5.
The first column shows the number of herd processes
modeled. The second column shows the herd runtime
when modeling spin_lock() and spin_unlock() di-
rectly in herd’s cat language. The third column shows
the herd runtime when emulating spin_lock() with
cmpxchg_acquire() and spin_unlock() with smp_
store_release(), using the herd filter clause to
reject executions that fail to acquire the lock. The fourth
column is like the third, but using xchg_acquire()
instead of cmpxchg_acquire(). The fifth and sixth
columns are like the third and fourth, but instead using
the herd exists clause to reject executions that fail to
acquire the lock.

Note also that use of the filter clause is about twice
as fast as is use of the exists clause. This is no surprise
because the filter clause allows early abandoning of ex-
cluded executions, where the executions that are excluded
are the ones in which the lock is concurrently held by
more than one process.

More important, modeling spin_lock() and spin_
unlock() directly ranges from five times faster to more
than two orders of magnitude faster than modeling emu-
lated locking. This should also be no surprise, as direct
modeling raises the level of abstraction, thus reducing the
number of events that herd must model. Because almost
everything that herd does is of exponential computational
complexity, modest reductions in the number of events
produces exponentially large reductions in runtime.

Thus, in formal verification even more than in parallel
programming itself, divide and conquer!!! ❑

v2024.12.27a

556 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 12.31: p.267

Wait!!! Isn’t leaking pointers out of an RCU read-side
critical section a critical bug???

Answer:
Yes, it usually is a critical bug. However, in this case,
the updater has been cleverly constructed to properly
handle such pointer leaks. But please don’t make a habit
of doing this sort of thing, and especially don’t do this
without having put a lot of thought into making some
more conventional approach work. ❑

Quick Quiz 12.32: p.267

In Listing 12.32, why couldn’t a reader fetch c just before
P1() zeroed it on line 45, and then later store this same
value back into c just after it was zeroed, thus defeating
the zeroing operation?

Answer:
Because the reader advances to the next element on line 24,
thus avoiding storing a pointer to the same element as was
fetched. ❑

Quick Quiz 12.33: p.267

In Listing 12.32, why not have just one call to
synchronize_rcu() immediately before line 48?

Answer:
Because this results in P0() accessing a freed element.
But don’t take my word for this, try it out in herd! ❑

Quick Quiz 12.34: p.267

Also in Listing 12.32, can’t line 48 be WRITE_ONCE()
instead of smp_store_release()?

Answer:
That is an excellent question. As of late 2021, the answer
is “no one knows”. Much depends on the semantics of
Armv8’s conditional-move instruction. While awaiting
clarity on these semantics, smp_store_release() is
the safe choice. ❑

Quick Quiz 12.35: p.269

But shouldn’t sufficiently low-level software be for all
intents and purposes immune to being exploited by black
hats?

Answer:
Unfortunately, no.

At one time, Paul E. McKenny felt that Linux-kernel
RCU was immune to such exploits, but the advent of Row
Hammer showed him otherwise. After all, if the black
hats can hit the system’s DRAM, they can hit any and all
low-level software, even including RCU.

And in 2018, this possibility passed from the realm
of theoretical speculation into the hard and fast realm of
objective reality [McK19a]. ❑

Quick Quiz 12.36: p.269

In light of the full verification of the L4 microkernel,
isn’t this limited view of formal verification just a little
bit obsolete?

Answer:
Unfortunately, no.

The first full verification of the L4 microkernel was
a tour de force, with a large number of Ph.D. students
hand-verifying code at a very slow per-student rate. This
level of effort could not be applied to most software
projects because the rate of change is just too great.
Furthermore, although the L4 microkernel is a large
software artifact from the viewpoint of formal verification,
it is tiny compared to a great number of projects, including
LLVM, GCC, the Linux kernel, Hadoop, MongoDB,
and a great many others. In addition, this verification
did have limits, as the researchers freely admit, to their
credit: https://docs.sel4.systems/projects/
sel4/frequently-asked-questions.html#does-
sel4-have-zero-bugs.

Although formal verification is finally starting to show
some promise, including more-recent L4 verifications
involving greater levels of automation, it currently has no
chance of completely displacing testing in the foreseeable
future. And although I would dearly love to be proven
wrong on this point, please note that such proof will be in
the form of a real tool that verifies real software, not in
the form of a large body of rousing rhetoric.

Perhaps someday formal verification will be used heav-
ily for validation, including for what is now known as
regression testing. Section 17.4 looks at what would be
required to make this possibility a reality. ❑

https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html#does-sel4-have-zero-bugs
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html#does-sel4-have-zero-bugs
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html#does-sel4-have-zero-bugs

v2024.12.27a

E.13. PUTTING IT ALL TOGETHER 557

E.13 Putting It All Together

Quick Quiz 13.1: p.274

Why not implement reference-acquisition using a sim-
ple compare-and-swap operation that only acquires a
reference if the reference counter is non-zero?

Answer:
Although this can resolve the race between the release of
the last reference and acquisition of a new reference, it
does absolutely nothing to prevent the data structure from
being freed and reallocated, possibly as some completely
different type of structure. It is quite likely that the “sim-
ple compare-and-swap operation” would give undefined
results if applied to the differently typed structure.

In short, use of atomic operations such as compare-and-
swap absolutely requires either type-safety or existence
guarantees.

But what if it is absolutely necessary to let the type
change?

One approach is for each such type to have the refer-
ence counter at the same location, so that as long as the
reallocation results in an object from this group of types,
all is well. If you do this in C, make sure you comment
the reference counter in each structure in which it appears.
In C++, use inheritance and templates. ❑

Quick Quiz 13.2: p.275

Why isn’t it necessary to guard against cases where one
CPU acquires a reference just after another CPU releases
the last reference?

Answer:
Because a CPU must already hold a reference in order
to legally acquire another reference. Therefore, if one
CPU releases the last reference, there had better not be
any CPU acquiring a new reference! ❑

Quick Quiz 13.3: p.276

Suppose that just after the atomic_sub_and_test()
on line 22 of Listing 13.2 is invoked, that some other
CPU invokes kref_get(). Doesn’t this result in that
other CPU now having an illegal reference to a released
object?

Answer:
This cannot happen if these functions are used correctly.
It is illegal to invoke kref_get() unless you already

hold a reference, in which case the kref_sub() could
not possibly have decremented the counter to zero. ❑

Quick Quiz 13.4: p.276

Suppose that kref_sub() returns zero, indicating that
the release() function was not invoked. Under what
conditions can the caller rely on the continued existence
of the enclosing object?

Answer:
The caller cannot rely on the continued existence of the
object unless it knows that at least one reference will
continue to exist. Normally, the caller will have no
way of knowing this, and must therefore carefully avoid
referencing the object after the call to kref_sub().

Interested readers are encouraged to work around this
limitation using RCU, in particular, call_rcu(). ❑

Quick Quiz 13.5: p.276

Why not just pass kfree() as the release function?

Answer:
Because the kref structure normally is embedded in a
larger structure, and it is necessary to free the entire
structure, not just the kref field. This is normally ac-
complished by defining a wrapper function that does a
container_of() and then a kfree(). ❑

Quick Quiz 13.6: p.277

Why can’t the check for a zero reference count be made
in a simple “if” statement with an atomic increment in
its “then” clause?

Answer:
Suppose that the “if” condition completed, finding the
reference counter value equal to one. Suppose that a
release operation executes, decrementing the reference
counter to zero and therefore starting cleanup operations.
But now the “then” clause can increment the counter
back to a value of one, allowing the object to be used after
it has been cleaned up.

This use-after-cleanup bug is every bit as bad as a
full-fledged use-after-free bug. ❑

v2024.12.27a

558 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 13.7: p.279

Why don’t all sequence-locking use cases replicate the
data in this fashion?

Answer:
Such replication is impractical if the data is too large, as
it might be in the Schrödinger’s-zoo example described in
Section 13.4.2.

Such replication is unnecessary if delays are prevented,
for example, when updaters disable interrupts when run-
ning on bare-metal hardware (that is, without the use of a
vCPU-preemption-prone hypervisor).

Alternatively, if readers can tolerate the occasional
delay, then replication is again unnecessary. Consider the
example of reader-writer locking, where writers always
delay readers and vice versa.

However, if the data to be replicated is reasonably small,
if delays are possible, and if readers cannot tolerate these
delays, replicating the data is an excellent approach. ❑

Quick Quiz 13.8: p.280

Is it possible to write-acquire the sequence lock on the
new element before it is inserted instead of acquiring
that of the old element before it is removed?

Answer:
Yes, and the details are left as an exercise to the reader.

The term tombstone is sometimes used to refer to the
element with the old name after its sequence lock is
acquired. Similarly, the term birthstone is sometimes
used to refer to the element with the new name while its
sequence lock is still held. ❑

Quick Quiz 13.9: p.280

Is it possible to avoid the global lock?

Answer:
Yes, and one way to do this would be to use per-hash-chain
locks. The updater could acquire lock(s) corresponding
to both the old and the new element, acquiring them in
address order. In this case, the insertion and removal
operations would of course need to refrain from acquiring
and releasing these same per-hash-chain locks. This
complexity can be worthwhile if rename operations are
frequent, and of course can allow rename operations to
execute concurrently. ❑

Quick Quiz 13.10: p.281

Why on earth did we need that global lock in the first
place?

Answer:
A given thread’s __thread variables vanish when that
thread exits. It is therefore necessary to synchronize any
operation that accesses other threads’ __thread variables
with thread exit. Without such synchronization, accesses
to __thread variable of a just-exited thread will result in
segmentation faults. ❑

Quick Quiz 13.11: p.281

Hey!!! Line 48 of Listing 13.5 modifies a value in a
pre-existing countarray structure! Didn’t you say that
this structure, once made available to read_count(),
remained constant???

Answer:
Indeed I did say that. And it would be possible to make
count_register_thread() allocate a new structure,
much as count_unregister_thread() currently does.

But this is unnecessary. Recall the derivation of the
error bounds of read_count() that was based on the
snapshots of memory. Because new threads start with
initial counter values of zero, the derivation holds even
if we add a new thread partway through read_count()’s
execution. So, interestingly enough, when adding a new
thread, this implementation gets the effect of allocating
a new structure, but without actually having to do the
allocation. ❑

Quick Quiz 13.12: p.282

Given the fixed-size counterp array, exactly how does
this code avoid a fixed upper bound on the number of
threads???

Answer:
You are quite right, that array does in fact reimpose
the fixed upper limit. This limit may be avoided by
tracking threads with a linked list, as is done in userspace
RCU [DMS+12a]. Doing something similar for this code
is left as an exercise for the reader. ❑

Quick Quiz 13.13: p.282

Wow! Listing 13.5 contains 70 lines of code, compared
to only 42 in Listing 5.4. Is this extra complexity really
worth it?

v2024.12.27a

E.13. PUTTING IT ALL TOGETHER 559

Listing E.9: Localized Correlated Measurement Fields
1 struct measurement {
2 double meas_1;
3 double meas_2;
4 double meas_3;
5 };
6
7 struct animal {
8 char name[40];
9 double age;

10 struct measurement *mp;
11 struct measurement meas;
12 char photo[0]; /* large bitmap. */
13 };

Answer:
This of course needs to be decided on a case-by-case basis.
If you need an implementation of read_count() that
scales linearly, then the lock-based implementation shown
in Listing 5.4 simply will not work for you. On the other
hand, if calls to read_count() are sufficiently rare, then
the lock-based version is simpler and might thus be better,
although much of the size difference is due to the structure
definition, memory allocation, and NULL return checking.

Of course, a better question is “Why doesn’t the lan-
guage implement cross-thread access to __thread vari-
ables?” After all, such an implementation would make
both the locking and the use of RCU unnecessary. This
would in turn enable an implementation that was even
simpler than the one shown in Listing 5.4, but with all the
scalability and performance benefits of the implementation
shown in Listing 13.5! ❑

Quick Quiz 13.14: p.284

But cant’t the approach shown in Listing 13.9 result
in extra cache misses, in turn resulting in additional
read-side overhead?

Answer:
Indeed it can.

One way to avoid this cache-miss overhead is shown in
Listing E.9: Simply embed an instance of a measurement
structure named meas into the animal structure, and point
the ->mp field at this ->meas field.

Measurement updates can then be carried out as follows:

1. Allocate a new measurement structure and place
the new measurements into it.

2. Use rcu_assign_pointer() to point ->mp to this
new structure.

3. Wait for a grace period to elapse, for example using
either synchronize_rcu() or call_rcu().

4. Copy the measurements from the new measurement
structure into the embedded ->meas field.

5. Use rcu_assign_pointer() to point ->mp back
to the old embedded ->meas field.

6. After another grace period elapses, free up the new
measurement structure.

This approach uses a heavier weight update procedure
to eliminate the extra cache miss in the common case. The
extra cache miss will be incurred only while an update is
actually in progress. ❑

Quick Quiz 13.15: p.284

But how does this scan work while a resizable hash table
is being resized? In that case, neither the old nor the
new hash table is guaranteed to contain all the elements
in the hash table!

Answer:
True, resizable hash tables as described in Section 10.4
cannot be fully scanned while being resized. One simple
way around this is to acquire the hashtab structure’s
->ht_lock while scanning, but this prevents more than
one scan from proceeding concurrently.

Another approach is for updates to mutate the old hash
table as well as the new one while resizing is in progress.
This would allow scans to find all elements in the old
hash table. Implementing this is left as an exercise for the
reader. ❑

Quick Quiz 13.16: p.287

But how would this work with a resizable hash table,
such as the one described in Section 10.4?

Answer:
In this case, more care is required because the hash table
might well be resized during the time that we momentarily
exited the RCU read-side critical section. Worse yet,
the resize operation can be expected to free the old hash
buckets, leaving us pointing to the freelist.

But it is not sufficient to prevent the old hash buckets
from being freed. It is also necessary to ensure that those
buckets continue to be updated.

One way to handle this is to have a reference count
on each set of buckets, which is initially set to the value
one. A full-table scan would acquire a reference at the
beginning of the scan (but only if the reference is non-zero)
and release it at the end of the scan. The resizing would

v2024.12.27a

560 APPENDIX E. ANSWERS TO QUICK QUIZZES

populate the new buckets, release the reference, wait for
a grace period, and then wait for the reference to go to
zero. Once the reference was zero, the resizing could let
updaters forget about the old hash buckets and then free it.

Actual implementation is left to the interested reader,
who will gain much insight from this task. ❑

Quick Quiz 13.17: p.288

How much do these specializations really save? Are
they really worth it?

Answer:
The answer to the first question is left as an exercise to
the reader. Try specializing the resizable hash table and
see how much performance improvement results. The
second question cannot be answered in general, but must
instead be answered with respect to a specific use case.
Some use cases are extremely sensitive to performance
and scalability, while others are less so. ❑

E.14 Advanced Synchronization

Quick Quiz 14.1: p.292

Given that there will always be a sharply limited number
of CPUs available, is population obliviousness really
useful?

Answer:
Given the surprisingly limited scalability of any num-
ber of NBS algorithms, population obliviousness can be
surprisingly useful. Nevertheless, the overall point of
the question is valid. It is not normally helpful for an
algorithm to scale beyond the size of the largest system it
is ever going to run on. ❑

Quick Quiz 14.2: p.293

Wait! In order to dequeue all elements, both the ->head
and ->tail pointers must be changed, which cannot be
done atomically on typical computer systems. So how
is this supposed to work???

Answer:
One pointer at a time!

First, atomically exchange the ->head pointer with
NULL. If the return value from the atomic exchange
operation is NULL, the queue was empty and you are done.

And if someone else attempts a dequeue-all at this point,
they will get back a NULL pointer.

Otherwise, atomically exchange the ->tail pointer
with a pointer to the now-NULL ->head pointer. The
return value from the atomic exchange operation is a
pointer to the ->next field of the eventual last element on
the list.

Producing and testing actual code is left as an exercise
for the interested and enthusiastic reader, as are strategies
for handling half-enqueued elements. ❑

Quick Quiz 14.3: p.294

So why not ditch antique languages like C and C++ for
something more modern?

Answer:
That won’t help unless the more-modern languages pro-
ponents are energetic enough to write their own compiler
backends. The usual practice of re-using existing back-
ends also reuses charming properties such as refusal to
support pointers to lifetime-ended objects. ❑

Quick Quiz 14.4: p.295

Why does anyone care about demonic schedulers?

Answer:
A demonic scheduler is one way to model an insanely
overloaded system. After all, if you have an algorithm that
you can prove runs reasonably given a demonic scheduler,
mere overload should be no problem, right?

On the other hand, it is only reasonable to ask if a
demonic scheduler is really the best way to model overload
conditions. And perhaps it is time for more accurate
models. For one thing, a system might be overloaded in
any of a number of ways. After all, an NBS algorithm that
works fine on a demonic scheduler might or might not
do well in out-of-memory conditions, when mass storage
fills, or when the network is congested.

Except that systems’ core counts have been increasing,
which means that an overloaded system is quite likely to
be running more than one concurrent program.15 In that
case, even if a demonic scheduler is not so demonic as
to inject idle cycles while there are runnable tasks, it is
easy to imagine such a scheduler consistently favoring
the other program over yours. If both programs could

15 As a point of reference, back in the mid-1990s, Paul witnessed
a 16-CPU system running about 20 instances of a certain high-end
proprietary database.

v2024.12.27a

E.14. ADVANCED SYNCHRONIZATION 561

consume all available CPU, then this scheduler might not
run your program at all.

One way to avoid these issues is to simply avoid over-
load conditions. This is often the preferred approach in
production, where load balancers direct traffic away from
overloaded systems. And if all systems are overloaded,
it is not unheard of to simply shed load, that is, to drop
the low-priority incoming requests. Nor is this approach
limited to computing, as those who have suffered through
a rolling blackout can attest. But load-shedding is often
considered a bad thing by those whose load is being shed.

As always, choose wisely! ❑

Quick Quiz 14.5: p.297

It seems like the various members of the NBS hierarchy
are rather useless. So why bother with them at all???

Answer:
One advantage of the members of the NBS hierarchy is
that they are reasonably simple to define and use from
a theoretical viewpoint. We can hope that work done in
the NBS arena will help lay the groundwork for analysis
of real-world forward-progress guarantees for concurrent
real-time programs. However, as of 2022 it appears that
trace-based methodologies are in the lead [dOCdO19].

So why bother learning about NBS at all?
Because a great many people know of it, and are vaguely

aware that it is somehow related to real-time computing.
Their response to your carefully designed real-time con-
straints might well be of the form “Bah, just use wait-free
algorithms!”. In the all-too-common case where they are
very convincing to your management, you will need to
understand NBS in order to bring the discussion back to
reality. I hope that this section has provided you with the
required depth of understanding.

Another thing to note is that learning about the NBS
hierarchy is probably no more harmful than learning
about transfinite numbers of the computational-complexity
hierarchy. In all three cases, it is important to avoid over-
applying the theory. Which is in and of itself good
practice! ❑

Quick Quiz 14.6: p.300

But what about battery-powered systems? They don’t
require energy flowing into the system as a whole.

Answer:
Sooner or later, the battery must be recharged, which
requires energy to flow into the system. ❑

Quick Quiz 14.7: p.301

But given the results from queueing theory, won’t low
utilization merely improve the average response time
rather than improving the worst-case response time?
And isn’t worst-case response time all that most real-
time systems really care about?

Answer:
Yes, but . . .

Those queueing-theory results assume infinite “calling
populations”, which in the Linux kernel might correspond
to an infinite number of tasks. As of early 2021, no real
system supports an infinite number of tasks, so results
assuming infinite calling populations should be expected
to have less-than-infinite applicability.

Other queueing-theory results have finite calling
populations, which feature sharply bounded response
times [HL86]. These results better model real systems,
and these models do predict reductions in both average
and worst-case response times as utilizations decrease.
These results can be extended to model concurrent sys-
tems that use synchronization mechanisms such as lock-
ing [Bra11, SM04a].

In short, queueing-theory results that accurately de-
scribe real-world real-time systems show that worst-case
response time decreases with decreasing utilization. ❑

Quick Quiz 14.8: p.302

Formal verification is already quite capable, benefiting
from decades of intensive study. Are additional advances
really required, or is this just a practitioner’s excuse to
continue to lazily ignore the awesome power of formal
verification?

Answer:
Perhaps this situation is just a theoretician’s excuse to avoid
diving into the messy world of real software? Perhaps
more constructively, the following advances are required:

1. Formal verification needs to handle larger software
artifacts. The largest verification efforts have been
for systems of only about 10,000 lines of code, and
those have been verifying much simpler properties
than real-time latencies.

2. Hardware vendors will need to publish formal tim-
ing guarantees. This used to be common practice
back when hardware was much simpler, but today’s
complex hardware results in excessively complex ex-
pressions for worst-case performance. Unfortunately,

v2024.12.27a

562 APPENDIX E. ANSWERS TO QUICK QUIZZES

energy-efficiency concerns are pushing vendors in
the direction of even more complexity.

3. Timing analysis needs to be integrated into develop-
ment methodologies and IDEs.

All that said, there is hope, given recent work for-
malizing the memory models of real computer sys-
tems [AMP+11, AKNT13]. On the other hand, formal
verification has just as much trouble as does testing with
the astronomical number of variants of the Linux kernel
that can be constructed from different combinations of its
tens of thousands of Kconfig options. Sometimes life is
hard! ❑

Quick Quiz 14.9: p.302

Differentiating real-time from non-real-time based on
what can “be achieved straightforwardly by non-real-
time systems and applications” is a travesty! There is
absolutely no theoretical basis for such a distinction!!!
Can’t we do better than that???

Answer:
This distinction is admittedly unsatisfying from a strictly
theoretical perspective. But on the other hand, it is exactly
what the developer needs in order to decide whether the
application can be cheaply and easily developed using
standard non-real-time approaches, or whether the more
difficult and expensive real-time approaches are required.
In other words, although theory is quite important, for
those of us called upon to complete practical projects,
theory supports practice, never the other way around. ❑

Quick Quiz 14.10: p.310

But if you only allow one reader at a time to read-acquire
a reader-writer lock, isn’t that the same as an exclusive
lock???

Answer:
Indeed it is, other than the API. And the API is important
because it allows the Linux kernel to offer real-time capa-
bilities without having the -rt patchset grow to ridiculous
sizes.

However, this approach clearly and severely limits read-
side scalability. The Linux kernel’s -rt patchset was long
able to live with this limitation for several reasons: (1) Re-
al-time systems have traditionally been relatively small,
(2) Real-time systems have generally focused on process
control, thus being unaffected by scalability limitations in

the I/O subsystems, and (3) Many of the Linux kernel’s
reader-writer locks have been converted to RCU.

However, the day came when it was absolutely necessary
to permit concurrent readers, as described in the text
following this quiz. ❑

Quick Quiz 14.11: p.311

Suppose that preemption occurs just after the load from
t->rcu_read_unlock_special.s on line 12 of List-
ing 14.3. Mightn’t that result in the task failing to
invoke rcu_read_unlock_special(), thus failing to
remove itself from the list of tasks blocking the current
grace period, in turn causing that grace period to extend
indefinitely?

Answer:
That is a real problem, and it is solved in RCU’s scheduler
hook. If that scheduler hook sees that the value of t->
rcu_read_lock_nesting is negative, it invokes rcu_
read_unlock_special() if needed before allowing the
context switch to complete. ❑

Quick Quiz 14.12: p.314

But isn’t correct operation despite fail-stop bugs a valu-
able fault-tolerance property?

Answer:
Yes and no.

Yes in that non-blocking algorithms can provide fault
tolerance in the face of fail-stop bugs, but no in that this
is grossly insufficient for practical fault tolerance. For
example, suppose you had a wait-free queue, and further
suppose that a thread has just dequeued an element. If
that thread now succumbs to a fail-stop bug, the element it
has just dequeued is effectively lost. True fault tolerance
requires way more than mere non-blocking properties,
and is beyond the scope of this book. ❑

Quick Quiz 14.13: p.315

I couldn’t help but spot the word “include” before this
list. Are there other constraints?

Answer:
Indeed there are, and lots of them. However, they tend to
be specific to a given situation, and many of them can be
thought of as refinements of some of the constraints listed
above. For example, the many constraints on choices of
data structure will help meeting the “Bounded time spent
in any given critical section” constraint. ❑

v2024.12.27a

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 563

Quick Quiz 14.14: p.316

Given that real-time systems are often used for safety-
critical applications, and given that runtime memory
allocation is forbidden in many safety-critical situations,
what is with the call to malloc()???

Answer:
In early 2016, projects forbidding runtime memory al-
location were also not at all interested in multithreaded
computing. So the runtime memory allocation is not an
additional obstacle to safety criticality.

However, by 2020 runtime memory allocation in multi-
core real-time systems was gaining some traction. ❑

Quick Quiz 14.15: p.316

Don’t you need some kind of synchronization to protect
update_cal()?

Answer:
Indeed you do, and you could use any of a number of
techniques discussed earlier in this book. One of those
techniques is use of a single updater thread, which would
result in exactly the code shown in update_cal() in
Listing 14.6. ❑

E.15 Advanced Synchronization:
Memory Ordering

Quick Quiz 15.1: p.319

This chapter has been rewritten since the first edition,
and heavily edited since the second edition. Did memory
ordering change all that since 2014, let alone since 2021?

Answer:
The earlier memory-ordering section had its roots in a
pair of Linux Journal articles [McK05a, McK05b] dating
back to 2005. Since then, the C and C++ memory mod-
els [Bec11] have been formalized (and critiqued [BS14,
BD14, VBC+15, BMN+15, LVK+17, BGV17]), exe-
cutable formal memory models for computer systems have
become the norm [MSS12, McK11d, SSA+11, AMP+11,
AKNT13, AKT13, AMT14, MS14, FSP+17, ARM17],
and there is even a memory model for the Linux ker-
nel [AMM+17a, AMM+17b, AMM+18], along with a
paper describing differences between the C11 and Linux
memory models [MWPF18].

The kernel concurrency sanitizer (KCSAN) [EMV+20a,
EMV+20b], based in part on RacerD [BGOS18] and
implementing LKMM, has also been added to the Linux
kernel and is now heavily used.

Finally, there are now better ways of describing the
Linux-kernel memory model (LKMM).

Given all this progress, substantial change was required.
❑

Quick Quiz 15.2: p.322

But what about reader-writer locking?

Answer:
Reader-writer locking works the same as does exclusive
locking, with the proviso that ordering is guaranteed only
between a pair of conflicting critical sections. This means
that a read-side critical section will be ordered before a
later write-side critical section and vice versa. But this
also means that there is no guarantee of ordering between
a pair of read-side critical sections unless there is an
intervening write-side critical section.

As of mid-2023, LKMM does not yet model reader-
writer locking, but this is on the to-do list. ❑

Quick Quiz 15.3: p.324

Why is it necessary to use heavier-weight ordering for
load-to-store and store-to-store links, but not for store-
to-load links? What on earth makes store-to-load links
so special???

Answer:
Recall that load-to-store and store-to-store links can be
counter-temporal, as illustrated by Figures 15.15 and 15.16
in Section 15.3.7.2. This counter-temporal nature of
load-to-store and store-to-store links necessitates strong
ordering.

In constrast, store-to-load links are temporal, as illus-
trated by Listings 15.12 and 15.13. This temporal nature
of store-to-load links permits use of minimal ordering. ❑

Quick Quiz 15.4: p.325

The compiler can also reorder Thread P0()’s and
Thread P1()’s memory accesses in Listing 15.1, right?

Answer:
In general, compiler optimizations carry out more exten-
sive and profound reorderings than CPUs can. However,
in this case, the volatile accesses in READ_ONCE() and

v2024.12.27a

564 APPENDIX E. ANSWERS TO QUICK QUIZZES

WRITE_ONCE() prevent the compiler from reordering.
And also from doing much else as well, so the examples
in this chapter will be making heavy use of READ_ONCE()
and WRITE_ONCE(). See Section 15.4 for more detail on
the need for READ_ONCE() and WRITE_ONCE(). ❑

Quick Quiz 15.5: p.326

But wait!!! On row 2 of Table 15.1 both x0 and x1 each
have two values at the same time, namely zero and two.
How can that possibly work???

Answer:
There is an underlying cache-coherence protocol that
straightens things out, which are discussed in Appen-
dix C.2. But if you think that a given variable having two
values at the same time is surprising, just wait until you
get to Section 15.3.1! ❑

Quick Quiz 15.6: p.328

But don’t the values also need to be flushed from the
cache to main memory?

Answer:
Perhaps surprisingly, not necessarily! On some systems,
if the two variables are being used heavily, they might be
bounced back and forth between the CPUs’ caches and
never land in main memory. ❑

Quick Quiz 15.7: p.329

The rows in Table 15.3 seem quite random and confused.
Whatever is the conceptual basis of this table???

Answer:
The rows correspond roughly to hardware mechanisms of
increasing power and overhead.

The WRITE_ONCE() row captures the fact that accesses
to a single variable are always fully ordered, as indicated
by the “SV” column. Note that all other operations
providing ordering against accesses to multiple variables
also provide this same-variable ordering.

The READ_ONCE() row captures the fact that (as of
2021) compilers and CPUs do not indulge in user-visible
speculative stores, so that any store whose address, data,
or execution depends on a prior load is guaranteed to
happen after that load completes. However, this guarantee
assumes that these dependencies have been constructed
carefully, as described in Sections 15.4.2 and 15.4.3.

The “_relaxed() RMW operation” row captures the
fact that a value-returning _relaxed() RMW has done

a load and a store, which are every bit as good as a
READ_ONCE() and a WRITE_ONCE(), respectively.

The *_dereference() row captures the address
and data dependency ordering provided by rcu_
dereference() and friends. Again, these dependen-
cies must been constructed carefully, as described in
Section 15.4.2.

The “Successful *_acquire()” row captures the fact
that many CPUs have special “acquire” forms of loads
and of atomic RMW instructions, and that many other
CPUs have lightweight memory-barrier instructions that
order prior loads against subsequent loads and stores.

The “Successful *_release()” row captures the fact
that many CPUs have special “release” forms of stores
and of atomic RMW instructions, and that many other
CPUs have lightweight memory-barrier instructions that
order prior loads and stores against subsequent stores.

The smp_rmb() row captures the fact that many CPUs
have lightweight memory-barrier instructions that order
prior loads against subsequent loads. Similarly, the smp_
wmb() row captures the fact that many CPUs have light-
weight memory-barrier instructions that order prior stores
against subsequent stores.

None of the ordering operations thus far require prior
stores to be ordered against subsequent loads, which means
that these operations need not interfere with store buffers,
whose main purpose in life is in fact to reorder prior
stores against subsequent loads. The lightweight nature
of these operations is precisely due to their policy of
store-buffer non-interference. However, as noted earlier, it
is sometimes necessary to interfere with the store buffer in
order to prevent prior stores from being reordered against
later stores, which brings us to the remaining rows in this
table.

The smp_mb() row corresponds to the full memory
barrier available on most platforms, with Itanium being
the exception that proves the rule. However, even on
Itanium, smp_mb() provides full ordering with respect
to READ_ONCE() and WRITE_ONCE(), as discussed in
Section 15.6.4.

The “Successful full-strength non-void RMW” row
captures the fact that on some platforms (such as x86)
atomic RMW instructions provide full ordering both be-
fore and after. The Linux kernel therefore requires that
full-strength non-void atomic RMW operations provide
full ordering in cases where these operations succeed.
(Full-strength atomic RMW operation’s names do not end
in _relaxed, _acquire, or _release.) As noted earlier,

v2024.12.27a

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 565

the case where these operations do not succeed is covered
by the “_relaxed() RMW operation” row.

However, the Linux kernel does not require that either
void or _relaxed() atomic RMW operations provide
any ordering whatsoever, with the canonical example
being atomic_inc(). Therefore, these operations, along
with failing non-void atomic RMW operations may be
preceded by smp_mb__before_atomic() and followed
by smp_mb__after_atomic() to provide full ordering
for any accesses preceding or following both. No ordering
need be provided for accesses between the smp_mb__
before_atomic() (or, similarly, the smp_mb__after_
atomic()) and the atomic RMW operation, as indicated
by the “a” entries on the smp_mb__before_atomic()
and smp_mb__after_atomic() rows of the table.

In short, the structure of this table is dictated by the
properties of the underlying hardware, which are con-
strained by nothing other than the laws of physics, which
were covered back in Chapter 3. That is, the table is not
random, although it is quite possible that you are confused.
❑

Quick Quiz 15.8: p.329

Why is Table 15.3 missing smp_mb__after_unlock_
lock() and smp_mb__after_spinlock()?

Answer:
These two primitives are rather specialized, and at present
seem difficult to fit into Table 15.3. The smp_mb__after_
unlock_lock() primitive is intended to be placed im-
mediately after a lock acquisition, and ensures that all
CPUs see all accesses in prior critical sections as happen-
ing before all accesses following the smp_mb__after_
unlock_lock() and also before all accesses in later
critical sections. Here “all CPUs” includes those CPUs
not holding that lock, and “prior critical sections” in-
cludes all prior critical sections for the lock in question
as well as all prior critical sections for all other locks
that were released by the same CPU that executed the
smp_mb__after_unlock_lock().

The smp_mb__after_spinlock() provides the same
guarantees as does smp_mb__after_unlock_lock(),
but also provides additional visibility guarantees for other
accesses performed by the CPU that executed the smp_
mb__after_spinlock(). Given any store S performed
prior to any earlier lock acquisition and any load L
performed after the smp_mb__after_spinlock(), all
CPUs will see S as happening before L. In other words,
if a CPU performs a store S, acquires a lock, executes an

smp_mb__after_spinlock(), then performs a load L,
all CPUs will see S as happening before L. ❑

Quick Quiz 15.9: p.329

But how can I know that a given project can be designed
and coded within the confines of these rules of thumb?

Answer:
Much of the purpose of the remainder of this chapter is to
answer exactly that question! ❑

Quick Quiz 15.10: p.331

How can you tell which memory barriers are strong
enough for a given use case?

Answer:
Ah, that is a deep question whose answer requires most
of the rest of this chapter. But the short answer is that
smp_mb() is almost always strong enough, albeit at some
cost. ❑

Quick Quiz 15.11: p.332

Wait!!! Where do I find this tooling that automatically
analyzes litmus tests???

Answer:
Get version v4.17 (or later) of the Linux-kernel source
code, then follow the instructions in tools/memory-
model/README to install the needed tools. Then follow
the further instructions to run these tools on the litmus
test of your choice. ❑

Quick Quiz 15.12: p.332

What assumption is the code fragment in Listing 15.3
making that might not be valid on real hardware?

Answer:
The code assumes that as soon as a given CPU stops seeing
its own value, it will immediately see the final agreed-upon
value. On real hardware, some of the CPUs might well
see several intermediate results before converging on the
final value. The actual code used to produce the data in
the figures discussed later in this section was therefore
somewhat more complex. ❑

v2024.12.27a

566 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz 15.13: p.333

How could CPUs possibly have different views of the
value of a single variable at the same time?

Answer:
As discussed in Section 15.2.1, many CPUs have store
buffers that record the values of recent stores, which do not
become globally visible until the corresponding cache line
makes its way to the CPU. Therefore, it is quite possible
for each CPU to see its own value for a given variable
(in its own store buffer) at a single point in time—and
for main memory to hold yet another value. One of the
reasons that memory barriers were invented was to allow
software to deal gracefully with situations like this one.

Fortunately, software rarely cares about the fact that
multiple CPUs might see multiple values for the same
variable. ❑

Quick Quiz 15.14: p.333

Why do CPUs 2 and 3 come to agreement so quickly,
when it takes so long for CPUs 1 and 4 to come to the
party?

Answer:
CPUs 2 and 3 are a pair of hardware threads on the same
core, sharing the same cache hierarchy, and therefore have
very low communications latencies. This is a NUMA, or,
more accurately, a NUCA effect.

This leads to the question of why CPUs 2 and 3 ever
disagree at all. One possible reason is that they each
might have a small amount of private cache in addition to a
larger shared cache. Another possible reason is instruction
reordering, given the short 10-nanosecond duration of
the disagreement and the total lack of memory-ordering
operations in the code fragment. ❑

Quick Quiz 15.15: p.333

But why make load-load reordering visible to the user?
Why not just use speculative execution to allow execution
to proceed in the common case where there are no
intervening stores, in which case the reordering cannot
be visible anyway?

Answer:
They can and many do, otherwise systems containing
strongly ordered CPUs would be slow indeed. However,
speculative execution does have its downsides, especially
if speculation must be rolled back frequently, particularly
on battery-powered systems. Speculative execution can

also introduce side channels, which might in turn be
exploited to exfiltrate information. But perhaps future
systems will be able to overcome these disadvantages.
Until then, we can expect vendors to continue producing
weakly ordered CPUs. ❑

Quick Quiz 15.16: p.336

Why should strongly ordered systems pay the perfor-
mance price of unnecessary smp_rmb() and smp_
wmb() invocations? Shouldn’t weakly ordered systems
shoulder the full cost of their misordering choices???

Answer:
That is in fact exactly what happens. On strongly ordered
systems, smp_rmb() and smp_wmb() emit no instructions,
but instead just constrain the compiler. Thus, in this case,
weakly ordered systems do in fact shoulder the full cost
of their memory-ordering choices. ❑

Quick Quiz 15.17: p.336

Must an address dependency begin with a load instruc-
tion? Why not something like xchg_relaxed(), which
also loads a value from memory?

Answer:
Yes, pretty much any instruction that loads a value from
memory can start an address dependency, including certain
atomic operations such as xchg_relaxed(). The same
is true of the control and data dependencies discussed in
Sections 15.3.5 and 15.3.4.

However, in all three cases, it is often the case that if
you are going to start your dependency with an atomic
operation, it will be more convenient and maintainable to
instead use an atomic operation with acquire semantics,
in this example, xchg_acquire() or maybe even just the
fully ordered xchg(). ❑

Quick Quiz 15.18: p.337

But how do we know that all platforms really avoid trig-
gering the exists clauses in Listings 15.10 and 15.11?

Answer:
Answering this requires identifying three major groups
of platforms: (1) Total-store-order (TSO) platforms,
(2) Weakly ordered platforms, and (3) DEC Alpha.

The TSO platforms order all pairs of memory references
except for prior stores against later loads. Because the
address dependency on lines 18 and 19 of Listing 15.10

v2024.12.27a

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 567

is instead a load followed by another load, TSO platforms
preserve this address dependency. They also preserve the
address dependency on lines 17 and 18 of Listing 15.11
because this is a load followed by a store. Because address
dependencies must start with a load, TSO platforms im-
plicitly but completely respect them, give or take compiler
optimizations, hence the need for READ_ONCE().

Weakly ordered platforms don’t necessarily maintain
ordering of unrelated accesses. However, the address
dependencies in Listings 15.10 and 15.11 are not unrelated:
There is an address dependency. The hardware tracks
dependencies and maintains the needed ordering.

There is one (famous) exception to this rule for weakly
ordered platforms, and that exception is DEC Alpha for
load-to-load address dependencies. And this is why, in
Linux kernels predating v4.15, DEC Alpha requires the
explicit memory barrier supplied for it by the now-obsolete
lockless_dereference() on line 18 of Listing 15.10.
However, DEC Alpha does track load-to-store address
dependencies, which is why line 17 of Listing 15.11 does
not need a lockless_dereference(), even in Linux
kernels predating v4.15.

To sum up, current platforms either respect address
dependencies implicitly, as is the case for TSO platforms
(x86, mainframe, SPARC, . . .), have hardware tracking for
address dependencies (Arm, PowerPC, MIPS, . . .), have
the required memory barriers supplied by READ_ONCE()
(DEC Alpha in Linux kernel v4.15 and later), or supplied
by rcu_dereference() (DEC Alpha in Linux kernel
v4.14 and earlier). ❑

Quick Quiz 15.19: p.337

Why the use of smp_wmb() in Listings 15.10 and 15.11?
Wouldn’t smp_store_release() be a better choice?

Answer:
In most cases, smp_store_release() is indeed a better
choice. However, smp_wmb() was there first in the Linux
kernel, so it is still good to understand how to use it. ❑

Quick Quiz 15.20: p.337

SP, MP, LB, and now S. Where do all these litmus-test
abbreviations come from and how can anyone keep track
of them?

Answer:
The best scorecard is the infamous test6.pdf [SSA+11].
Unfortunately, not all of the abbreviations have catchy

expansions like SB (store buffering), MP (message pass-
ing), and LB (load buffering), but at least the list of
abbreviations is readily available. ❑

Quick Quiz 15.21: p.338

But wait!!! Line 17 of Listing 15.12 uses READ_ONCE(),
which marks the load as volatile, which means that the
compiler absolutely must emit the load instruction even
if the value is later multiplied by zero. So how can the
compiler possibly break this data dependency?

Answer:
Yes, the compiler absolutely must emit a load instruction
for a volatile load. But if you multiply the value loaded
by zero, the compiler is well within its rights to substitute
a constant zero for the result of that multiplication, which
will break the data dependency on many platforms.

Worse yet, if the dependent store does not use WRITE_
ONCE(), the compiler could hoist it above the load, which
would cause even TSO platforms to fail to provide ordering.
❑

Quick Quiz 15.22: p.339

Wouldn’t control dependencies be more robust if they
were mandated by language standards???

Answer:
But of course! And perhaps in the fullness of time they
will be so mandated. ❑

Quick Quiz 15.23: p.339

But in Listing 15.15, wouldn’t be just as bad if P2()’s
r1 and r2 obtained the values 2 and 1, respectively,
while P3()’s r3 and r4 obtained the values 1 and 2,
respectively?

Answer:
Yes, it would. Feel free to modify the exists clause to
check for that outcome and see what happens. ❑

Quick Quiz 15.24: p.340

Can you give a specific example showing different be-
havior for multicopy atomic on the one hand and other-
multicopy atomic on the other?

Answer:
Listing E.10 (C-MP-OMCA+o-o-o+o-rmb-o.litmus)
shows such a test.

v2024.12.27a

568 APPENDIX E. ANSWERS TO QUICK QUIZZES

Listing E.10: Litmus Test Distinguishing Multicopy Atomic
From Other Multicopy Atomic

1 C C-MP-OMCA+o-o-o+o-rmb-o
2
3 {}
4
5 P0(int *x, int *y)
6 {
7 int r0;
8
9 WRITE_ONCE(*x, 1);

10 r0 = READ_ONCE(*x);
11 WRITE_ONCE(*y, r0);
12 }
13
14 P1(int *x, int *y)
15 {
16 int r1;
17 int r2;
18
19 r1 = READ_ONCE(*y);
20 smp_rmb();
21 r2 = READ_ONCE(*x);
22 }
23
24 exists (1:r1=1 /\ 1:r2=0)

On a multicopy-atomic platform, P0()’s store to x
on line 9 must become visible to both P0() and P1()
simultaneously. Because this store becomes visible to
P0() on line 10, before P0()’s store to y on line 11,
P0()’s store to x must become visible before its store to
y everywhere, including P1(). Therefore, if P1()’s load
from y on line 19 returns the value 1, so must its load from
x on line 21, given that the smp_rmb() on line 20 forces
these two loads to execute in order. Therefore, the exists
clause on line 24 cannot trigger on a multicopy-atomic
platform.

In contrast, on an other-multicopy-atomic platform,
P0() could see its own store early, so that there would be
no constraint on the order of visibility of the two stores
from P1(), which in turn allows the exists clause to
trigger. ❑

Quick Quiz 15.25: p.341

Then who would even think of designing a system with
shared store buffers???

Answer:
This is in fact a very natural design for any system hav-
ing multiple hardware threads per core. Natural from a
hardware point of view, that is! ❑

Quick Quiz 15.26: p.341

But just how is it fair that P0() and P1() must share a

store buffer and a cache, but P2() gets one each of its
very own???

Answer:
Presumably there is a P3(), as is in fact shown in Fig-
ure 15.13, that shares P2()’s store buffer and cache. But
not necessarily. Some platforms allow different cores to
disable different numbers of threads, allowing the hard-
ware to adjust to the needs of the workload at hand. For
example, a single-threaded critical-path portion of the
workload might be assigned to a core with only one thread
enabled, thus allowing the single thread running that por-
tion of the workload to use the entire capabilities of that
core. Other more highly parallel but cache-miss-prone
portions of the workload might be assigned to cores with
all hardware threads enabled to provide improved through-
put. This improved throughput could be due to the fact
that while one hardware thread is stalled on a cache miss,
the other hardware threads can make forward progress.

In such cases, performance requirements override quaint
human notions of fairness. ❑

Quick Quiz 15.27: p.341

Referring to Table 15.4, why on earth would P0()’s store
take so long to complete when P1()’s store complete
so quickly? In other words, does the exists clause on
line 28 of Listing 15.16 really trigger on real systems?

Answer:
You need to face the fact that it really can trigger. Akira
Yokosawa used the litmus7 tool to run this litmus test on a
POWER8 system. Out of 1,000,000,000 runs, 4 triggered
the exists clause. Thus, triggering the exists clause
is not merely a one-in-a-million occurrence, but rather a
one-in-a-hundred-million occurrence. But it nevertheless
really does trigger on real systems. ❑

Quick Quiz 15.28: p.342

But it is not necessary to worry about propagation unless
there are at least three threads in the litmus test, right?

Answer:
Wrong.

Listing E.11 (C-R+o-wmb-o+o-mb-o.litmus) shows
a two-thread litmus test that requires propagation due to
the fact that it only has store-to-store and load-to-store
links between its pair of threads. Even though P0() is
fully ordered by the smp_wmb() and P1() is fully ordered

v2024.12.27a

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 569

Listing E.11: R Litmus Test With Write Memory Barrier (No
Ordering)

1 C C-R+o-wmb-o+o-mb-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 1);
8 smp_wmb();
9 WRITE_ONCE(*x1, 1);

10 }
11
12 P1(int *x0, int *x1)
13 {
14 int r2;
15
16 WRITE_ONCE(*x1, 2);
17 smp_mb();
18 r2 = READ_ONCE(*x0);
19 }
20
21 exists (1:r2=0 /\ x1=2)

by the smp_mb(), the counter-temporal nature of the links
means that the exists clause on line 21 really can trigger.
To prevent this triggering, the smp_wmb() on line 8 must
become an smp_mb(), bringing propagation into play
twice, once for each non-temporal link. ❑

Quick Quiz 15.29: p.344

But given that smp_mb() has the propagation property,
why doesn’t the smp_mb() on line 25 of Listing 15.18
prevent the exists clause from triggering?

Answer:
As a rough rule of thumb, the smp_mb() barrier’s propaga-
tion property is sufficient to maintain ordering through only
one load-to-store link between processes. Unfortunately,
Listing 15.18 has not one but two load-to-store links, with
the first being from the READ_ONCE() on line 17 to the
WRITE_ONCE() on line 24 and the second being from the
READ_ONCE() on line 26 to the WRITE_ONCE() on line 7.
Therefore, preventing the exists clause from triggering
should be expected to require not one but two instances
of smp_mb().

As a special exception to this rule of thumb, a release-
acquire chain can have one load-to-store link between
processes and still prohibit the cycle. ❑

Quick Quiz 15.30: p.344

But for litmus tests having only ordered stores, as
shown in Listing 15.20 (C-2+2W+o-wmb-o+o-wmb-
o.litmus), research shows that the cycle is prohib-
ited, even in weakly ordered systems such as Arm and

Listing E.12: 2+2W Litmus Test (No Ordering)
1 C C-2+2W+o-o+o-o
2
3 {}
4
5 P0(int *x0, int *x1)
6 {
7 WRITE_ONCE(*x0, 1);
8 WRITE_ONCE(*x1, 2);
9 }

10
11 P1(int *x0, int *x1)
12 {
13 WRITE_ONCE(*x1, 1);
14 WRITE_ONCE(*x0, 2);
15 }
16
17 exists (x0=1 /\ x1=1)

Power [SSA+11]. Given that, is store-to-store ordering
really always counter-temporal???

Answer:
This litmus test is indeed a very interesting curiosity.
Its ordering apparently occurs naturally given typical
weakly ordered hardware design, which would normally
be considered a great gift from the relevant laws of physics
and cache-coherency-protocol mathematics.

Unfortunately, no one has been able to come up with a
software use case for this gift that does not have a much
better alternative implementation. Therefore, neither the
C11 nor the Linux kernel memory models provide any
guarantee corresponding to Listing 15.20. This means
that the exists clause on line 19 can trigger.

Of course, without the barrier, there are no ordering
guarantees, even on real weakly ordered hardware, as
shown in Listing E.12 (C-2+2W+o-o+o-o.litmus). ❑

Quick Quiz 15.31: p.344

Why don’t we just stick to sanely ordered CPU families
like x86, so that time will always be on our side???

Answer:
Sorry to be the one to break it to you, but x86 CPUs have
store buffers and they are not afraid to use them.

The data shown in Figures E.8–E.14 was obtained from
a two-socket x86 system having a total of 80 hardware
threads.16

Figure E.8 is from a program similar to the one that
generated Figure 15.10 on page 334, but showing the
number of distinct opinions per unit time, where each

16 Intel(R)Xeon(R)Gold 6138 CPU @ 2.00GHz, for those
wanting more details.

v2024.12.27a

570 APPENDIX E. ANSWERS TO QUICK QUIZZES

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r o

f S
im

ul
ta

ne
ou

s
V

al
ue

s

Time (Timestamp Periods)

Figure E.8: x86 CPUs Can Disagree

Time

CPU 0

t

Winning
Store

Counter-
Intuitive
Store

Other
Store

Old
Value

Older
Value

Final
Value

-tco

CPU 1

CPU 2

Figure E.9: Is Store-to-Store Counter-Temporal on x86?

timestamp period is 0.5 nanoseconds.17 As you can see,
there is a significant period of time during which there are
more than 40 distinct opinions as to the value of a single
shared variable. Even on x86.

But perhaps we might hope that on x86, the last CPU
to execute its store in global time order would “win”,
that is, the final value of the shared variable would be
that of that last store. If so, any store starting after the
“winning” store finished would overwrite the winning store.
In contrast, we know that on weakly ordered systems, a
counter-intuitive store such as that shown at the bottom
of Figure E.9 could read the old value, despite the fact
that it started 𝑡 timestamp periods after the winning store

17 Recall that each CPU writes its own number to a single shared
variable, which each CPU repeatedly polls, recording time and value at
each change in value.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-2500 -2000 -1500 -1000 -500 0 500

Fr
eq

ue
nc

y
(a

rb
. u

ni
t)

Store-to-Store Latency (Timestamp Periods)

Figure E.10: Store-to-Store is Counter-Temporal on x86

Time

t

Store

Counter-Intuitive
Load Still Gets

Old Value

Load Gets
Old Value

Old
Value

New
Value

-t

fr

fr

CPU 0

CPU 1

CPU 2

Figure E.11: Is Load-to-Store Counter-Temporal on x86?

completed, as depicted in the figure by the time interval
that is labelled −𝑡.18

However, Figure E.10 dashes any fond hope of x86
refusing to indulge in counter-intuitive stores. The data in
this figure summarizes the results from 79,000 runs of the
type that generated Figure E.8, and is a histogram of the
minimum time elapsed between the start of a non-winning
CPU’s store and the end of the winning CPU’s store.
Of course, if this value is negative, the winning store
completed (though its value might not have propagated
past the store buffer) before some other store even started.
And the negative-time data points in that figure show that
this counter-temporal behavior really happens most of the
time, even on x86.

But perhaps we could instead hope that once a store had
executed, any future load from that same variable might
be guaranteed to return the new value. In contrast, we

18 That is completed from the viewpoint of the instruction stream
containing that store. The value stored might well remain in the store
buffer for long afterwards.

v2024.12.27a

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 571

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-200 -150 -100 -50 0 50

Fr
eq

ue
nc

y
(a

rb
. u

ni
t)

Load-to-Store Latency (Timestamp Periods)

Figure E.12: Load-to-Store is Counter-Temporal on x86

Time

-t

Store

Counter-Intuitive
Load Gets
New Value

Load Gets
New Value

Old
Value

New
Value

t

rf

rf

CPU 0

CPU 1

CPU 2

Figure E.13: Is Store-to-Load Counter-Temporal on x86?

know that on weakly ordered systems, a counter-intuitive
load such as that shown at the bottom of Figure E.11 could
return the old value, despite having started 𝑡 timestamp
periods after the end of the store, again, as depicted in the
figure by the −𝑡.

However, Figure E.12 dashes any fond hopes that loads
executing after a given store would see that store’s value
(or some later value). This data is generated by 1,000
runs of a program in which the parent thread spawns the
children, each of which polls a shared variable. After all
the children are running, the parent writes a new value
to the shared variable. The quantity histogrammed in the
figure is the time from just after the store until just before
the last load of the old value. And most of these data
points lie on the negative x axis, clearly demonstrating the
counter-temporal nature of cross-thread load-to-store.

It is only reasonable to assume that a load that ends
before a store starts will be unable to load that store’s
value, as shown in Figure E.13, even on weakly ordered

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350

Fr
eq

ue
nc

y
(a

rb
. u

ni
t)

Store-to-Load Latency (Timestamp Periods)

Figure E.14: Store-to-Load is Temporal on x86

systems. And the data points from all 1,000 runs shown
in Figure E.14, lie on the positive x axis, so in this case,
our temporal hopes have been fulfilled.

These results should be no surprise. Even on x86,
the cache line shuttles between cores and sockets, and
Figure E.8 indicates that a given store can remain in its
CPU’s store buffer for a a number of microseconds, which
is more than enough time for today’s multi-GHz CPUs to
detect counter-temporal behavior.

However, for the store-to-load case, the laws of physics
guarantee temporal ordering because the finite speed of
light and the non-zero size of atoms guarantees that some
time will pass between a store and a load on some other
CPU that reads that store’s value.

Alert readers may have noticed that the distribution
shown in Figure E.10 is nearly monomodal, which those in
Figure E.12 and Figure E.14 are decidedly trimodal. Such
readers are encouraged to consider why that might be, per-
haps referring to CodeSamples/cpu/perftemporal.
sh and the scripts and programs that it invokes.

And all readers are encouraged to note that even on
relatively strongly ordered CPUs such as x86, store-to-
store and load-to-store IPC links can be counter-temporal.
❑

Quick Quiz 15.32: p.345

Can you construct a litmus test like that in Listing 15.21
that uses only dependencies?

Answer:
Listing E.13 shows a somewhat nonsensical but very real
example. Creating a more useful (but still real) litmus test
is left as an exercise for the reader. ❑

v2024.12.27a

572 APPENDIX E. ANSWERS TO QUICK QUIZZES

Listing E.13: LB Litmus Test With No Acquires
1 C C-LB+o-data-o+o-data-o+o-data-o
2
3 {
4 x1=1;
5 x2=2;
6 }
7
8 P0(int *x0, int *x1)
9 {

10 int r2;
11
12 r2 = READ_ONCE(*x0);
13 WRITE_ONCE(*x1, r2);
14 }
15
16 P1(int *x1, int *x2)
17 {
18 int r2;
19
20 r2 = READ_ONCE(*x1);
21 WRITE_ONCE(*x2, r2);
22 }
23
24 P2(int *x2, int *x0)
25 {
26 int r2;
27
28 r2 = READ_ONCE(*x2);
29 WRITE_ONCE(*x0, r2);
30 }
31
32 exists (0:r2=2 /\ 1:r2=0 /\ 2:r2=1)

Quick Quiz 15.33: p.346

Suppose we have a short release-acquire chain along
with one load-to-store link and one store-to-store link,
like that shown in Listing 15.25. Given that there is only
one of each type of non-store-to-load link, the exists
cannot trigger, right?

Answer:
Wrong. It is the number of non-store-to-load links that
matters. If there is only one non-store-to-load link, a
release-acquire chain can prevent the exists clause from
triggering. However, if there is more than one non-store-
to-load link, be they store-to-store, load-to-store, or any
combination thereof, it is necessary to have at least one
full barrier (smp_mb() or better) between each non-store-
to-load link. In Listing 15.25, preventing the exists
clause from triggering therefore requires an additional full
barrier between either P0()’s or P1()’s accesses. ❑

Quick Quiz 15.34: p.347

There are store-to-load links, load-to-store links, and
store-to-store links. But what about load-to-load links?

Answer:
The problem with the concept of load-to-load links is
that if the two loads from the same variable return the
same value, there is no way to determine their ordering.
The only way to determine their ordering is if they return
different values, in which case there had to have been an
intervening store. And that intervening store means that
there is no load-to-load link, but rather a load-to-store link
followed by a store-to-load link. ❑

Quick Quiz 15.35: p.350

What happens if that lwsync instruction is instead a
sync instruction?

Answer:
The counter-intuitive outcome cannot happen. (Try it!) ❑

Quick Quiz 15.36: p.352

Why not place a barrier() call immediately before a
plain store to prevent the compiler from inventing stores?

Answer:
Because it would not work. Although the compiler
would be prevented from inventing a store prior to the
barrier(), nothing would prevent it from inventing a
store between that barrier() and the plain store. ❑

Quick Quiz 15.37: p.353

Why can’t you simply dereference the pointer before com-
paring it to &reserve_int on line 6 of Listing 15.28?

Answer:
For first, it might be necessary to invoke handle_
reserve() before do_something_with().

But more relevant to memory ordering, the compiler is
often within its rights to hoist the comparison ahead of
the dereferences, which would allow the compiler to use
&reserve_int instead of the variable p that the hardware
has tagged with a dependency. ❑

Quick Quiz 15.38: p.353

But it should be safe to compare two pointer variables,
right? After all, the compiler doesn’t know the value of
either, so how can it possibly learn anything from the
comparison?

v2024.12.27a

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 573

Listing E.14: Breakable Dependencies With Non-Constant
Comparisons

1 int *gp1;
2 int *p;
3 int *q;
4
5 p = rcu_dereference(gp1);
6 q = get_a_pointer();
7 if (p == q)
8 handle_equality(p);
9 do_something_with(*p);

Listing E.15: Broken Dependencies With Non-Constant Com-
parisons

1 int *gp1;
2 int *p;
3 int *q;
4
5 p = rcu_dereference(gp1);
6 q = get_a_pointer();
7 if (p == q) {
8 handle_equality(q);
9 do_something_with(*q);

10 } else {
11 do_something_with(*p);
12 }

Answer:
Unfortunately, the compiler really can learn enough to
break your dependency chain, for example, as shown in
Listing E.14. The compiler is within its rights to transform
this code into that shown in Listing E.15, and might
well make this transformation due to register pressure
if handle_equality() was inlined and needed a lot
of registers. Line 9 of this transformed code uses q,
which although equal to p, is not necessarily tagged by
the hardware as carrying a dependency. Therefore, this
transformed code does not necessarily guarantee that line 9
is ordered after line 5.19 ❑

Quick Quiz 15.39: p.354

But doesn’t the condition in line 35 supply a control
dependency that would keep line 36 ordered after line 34?

Answer:
Yes, but no. Yes, there is a control dependency, but control
dependencies do not order later loads, only later stores. If
you really need ordering, you could place an smp_rmb()
between lines 35 and 36. Or better yet, have updater()
allocate two structures instead of reusing the structure.
For more information, see Section 15.4.3. ❑

19 Kudos to Linus Torvalds for providing this example.

Quick Quiz 15.40: p.355

But there is a READ_ONCE(), so how can the compiler
prove anything about the value of q?

Answer:
Given the simple if statement comparing against zero,
it is hard to imagine the compiler proving anything. But
suppose that later code executed a division by q. Because
division by zero is undefined behavior, as of 2023, many
compilers will assume that the value of q must be non-zero,
and will thus remove that if statement, thus uncondition-
ally executing the WRITE_ONCE(), in turn destroying the
control dependency.

There are some who argue (correctly, in Paul’s view)
that back-propagating undefined behavior across volatile
accesses constitutes a compiler bug, but many compiler
writers insist that this is not a bug, but rather a valuable
optimization. ❑

Quick Quiz 15.41: p.356

Can’t you instead add an smp_mb() to P1() in List-
ing 15.32?

Answer:
Not given the Linux kernel memory model. (Try it!)
However, you can instead replace P0()’s WRITE_ONCE()
with smp_store_release(), which usually has less
overhead than does adding an smp_mb(). ❑

Quick Quiz 15.42: p.358

But doesn’t PowerPC have weak unlock-lock ordering
properties within the Linux kernel, allowing a write
before the unlock to be reordered with a read after the
lock?

Answer:
Yes, but only from the perspective of a third thread not
holding that lock. In contrast, memory allocators need
only concern themselves with the two threads migrating
the memory. It is after all the developer’s responsibility
to properly synchronize with any other threads that need
access to the newly migrated block of memory. ❑

Quick Quiz 15.43: p.361

But if there are three critical sections, isn’t it true that
CPUs not holding the lock will observe the accesses
from the first and the third critical section as being
ordered?

v2024.12.27a

574 APPENDIX E. ANSWERS TO QUICK QUIZZES

Listing E.16: Accesses Between Multiple Different-CPU Criti-
cal Sections

1 C Lock-across-unlock-lock-3
2
3 {}
4
5 P0(int *x, spinlock_t *sp)
6 {
7 spin_lock(sp);
8 WRITE_ONCE(*x, 1);
9 spin_unlock(sp);

10 }
11
12 P1(int *x, int *y, int *z, spinlock_t *sp)
13 {
14 int r1;
15
16 spin_lock(sp);
17 r1 = READ_ONCE(*x);
18 WRITE_ONCE(*z, 1);
19 spin_unlock(sp);
20 }
21
22 P2(int *x, int *y, int *z, spinlock_t *sp)
23 {
24 int r1;
25 int r2;
26
27 spin_lock(sp);
28 r1 = READ_ONCE(*z);
29 r2 = READ_ONCE(*y);
30 spin_unlock(sp);
31 }
32
33 P3(int *x, int *y, spinlock_t *sp)
34 {
35 int r1;
36
37 WRITE_ONCE(*y, 1);
38 smp_mb();
39 r1 = READ_ONCE(*x);
40 }
41
42 exists (1:r1=1 /\ 2:r1=1 /\ 2:r2=0 /\ 3:r1=0)

Answer:
No.

Listing E.16 shows an example three-critical-section
chain (Lock-across-unlock-lock-3.litmus). Run-
ning this litmus test shows that the exists clause can still
be satisfied, so this additional critical section is still not
sufficient to force ordering.

However, as the reader can verify, placing an smp_mb__
after_spinlock() after either P1()’s or P2()’s lock
acquisition does suffice to force ordering. ❑

Quick Quiz 15.44: p.361

But if spin_is_locked() returns false, don’t we
also know that no other CPU or thread is holding the
corresponding lock?

Answer:
No. By the time that the code inspects the return value

from spin_is_locked(), some other CPU or thread
might well have acquired the corresponding lock. ❑

Quick Quiz 15.45: p.365

Wait a minute! In QSBR implementations of RCU, no
code is emitted for rcu_read_lock() and rcu_read_
unlock(). This means that the RCU read-side critical
section in Listing 15.45 isn’t just empty, it is completely
nonexistent!!! So how can something that doesn’t exist
at all possibly have any effect whatsoever on ordering???

Answer:
Because in QSBR, RCU read-side critical sections don’t
actually disappear. Instead, they are extended in both
directions until a quiescent state is encountered. For
example, in the Linux kernel, the critical section might be
extended back to the most recent schedule() call and
ahead to the next schedule() call. Of course, in non-
QSBR implementations, rcu_read_lock() and rcu_
read_unlock() really do emit code, which can clearly
provide ordering. And within the Linux kernel, even
the QSBR implementation has a compiler barrier() in
rcu_read_lock() and rcu_read_unlock(), which is
necessary to prevent the compiler from moving memory
accesses that might result in page faults into the RCU
read-side critical section.

Therefore, strange though it might seem, empty RCU
read-side critical sections really can and do provide some
degree of ordering. ❑

Quick Quiz 15.46: p.365

Can P1()’s accesses be reordered in the litmus tests
shown in Listings 15.43, 15.44, and 15.45 in the same
way that they were reordered going from Listing 15.38
to Listing 15.39?

Answer:
No, because none of these later litmus tests have more than
one access within their RCU read-side critical sections.
But what about swapping the accesses, for example, in
Listing 15.43, placing P1()’s WRITE_ONCE() within its
critical section and the READ_ONCE() before its critical
section?

Swapping the accesses allows both instances of r2 to
have a final value of zero, in other words, although RCU
read-side critical sections’ ordering properties can extend
outside of those critical sections, the same is not true of

v2024.12.27a

E.15. ADVANCED SYNCHRONIZATION: MEMORY ORDERING 575

their reordering properties. Checking this with herd and
explaining why is left as an exercise for the reader. ❑

Quick Quiz 15.47: p.368

What would happen if the smp_mb() was instead added
between P2()’s accesses in Listing 15.47?

Answer:
The cycle would again be forbidden. Further analysis is
left as an exercise for the reader. ❑

Quick Quiz 15.48: p.370

What happens to code between an atomic operation and
an smp_mb__after_atomic()?

Answer:
First, please don’t do this!

But if you do, this intervening code will either be
ordered after the atomic operation or before the smp_
mb__after_atomic(), depending on the architecture,
but not both. This also applies to smp_mb__before_
atomic() and smp_mb__after_spinlock(), that is,
both the uncertain ordering of the intervening code and
the plea to avoid such code. ❑

Quick Quiz 15.49: p.372

Why does Alpha’s READ_ONCE() include an mb() rather
than rmb()?

Answer:
Alpha has only mb and wmb instructions, so smp_rmb()
would be implemented by the Alpha mb instruction in
either case. In addition, at the time that the Linux kernel
started relying on dependency ordering, it was not clear
that Alpha ordered dependent stores, and thus smp_mb()
was therefore the safe choice.

However, given the aforementioned v5.9 changes to
READ_ONCE() and a few of Alpha’s atomic read-modify-
write operations, no Linux-kernel core code need con-
cern itself with DEC Alpha, thus greatly reducing Paul
E. McKenney’s incentive to remove Alpha support from
the kernel. ❑

Quick Quiz 15.50: p.372

Isn’t DEC Alpha significant as having the weakest pos-
sible memory ordering?

Answer:
Although DEC Alpha does take considerable flak, it

Listing E.17: Userspace RCU Code Reordering
1 static inline int rcu_gp_ongoing(unsigned long *ctr)
2 {
3 unsigned long v;
4
5 v = LOAD_SHARED(*ctr);
6 return v && (v != rcu_gp_ctr);
7 }
8
9 static void update_counter_and_wait(void)

10 {
11 struct rcu_reader *index;
12
13 STORE_SHARED(rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
14 barrier();
15 list_for_each_entry(index, ®istry, node) {
16 while (rcu_gp_ongoing(&index->ctr))
17 msleep(10);
18 }
19 }
20
21 void synchronize_rcu(void)
22 {
23 unsigned long was_online;
24
25 was_online = rcu_reader.ctr;
26 smp_mb();
27 if (was_online)
28 STORE_SHARED(rcu_reader.ctr, 0);
29 mutex_lock(&rcu_gp_lock);
30 update_counter_and_wait();
31 mutex_unlock(&rcu_gp_lock);
32 if (was_online)
33 STORE_SHARED(rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
34 smp_mb();
35 }

does avoid reordering reads from the same CPU to the
same variable. It also avoids the out-of-thin-air problem
that plagues the Java and C11 memory models [BD14,
BMN+15, BS14, Boe20, Gol19, Jef14, MB20, MJST16,
Š11, VBC+15]. ❑

Quick Quiz 15.51: p.374

Given that hardware can have a half memory barrier,
why don’t locking primitives allow the compiler to move
memory-reference instructions into lock-based critical
sections?

Answer:
In fact, as we saw in Section 15.6.3 and will see in
Section 15.6.6, hardware really does implement partial
memory-ordering instructions and it also turns out that
these really are used to construct locking primitives. How-
ever, these locking primitives use full compiler barriers,
thus preventing the compiler from reordering memory-
reference instructions both out of and into the correspond-
ing critical section.

To see why the compiler is forbidden from doing reorder-
ing that is permitted by hardware, consider the following

v2024.12.27a

576 APPENDIX E. ANSWERS TO QUICK QUIZZES

sample code in Listing E.17. This code is based on the
userspace RCU update-side code [DMS+12a, Supplemen-
tary Materials Figure 5].

Suppose that the compiler reordered lines 27 and 28
into the critical section starting at line 29. Now suppose
that two updaters start executing synchronize_rcu()
at about the same time. Then consider the following
sequence of events:

1. CPU 0 acquires the lock at line 29.

2. Line 27 determines that CPU 0 was online, so it
clears its own counter at line 28. (Recall that lines 27
and 28 have been reordered by the compiler to follow
line 29).

3. CPU 0 invokes update_counter_and_wait()
from line 30.

4. CPU 0 invokes rcu_gp_ongoing() on itself at
line 16, and line 5 sees that CPU 0 is in a quies-
cent state. Control therefore returns to update_
counter_and_wait(), and line 15 advances to
CPU 1.

5. CPU 1 invokes synchronize_rcu(), but because
CPU 0 already holds the lock, CPU 1 blocks wait-
ing for this lock to become available. Because the
compiler reordered lines 27 and 28 to follow line 29,
CPU 1 does not clear its own counter, despite having
been online.

6. CPU 0 invokes rcu_gp_ongoing() on CPU 1 at
line 16, and line 5 sees that CPU 1 is not in a quiescent
state. The while loop at line 16 therefore never exits.

So the compiler’s reordering results in a deadlock. In
contrast, hardware reordering is temporary, so that CPU 1
might undertake its first attempt to acquire the mutex
on line 29 before executing lines 27 and 28, but it will
eventually execute lines 27 and 28. Because hardware
reordering only results in a short delay, it can be tolerated.
On the other hand, because compiler reordering results in
a deadlock, it must be prohibited.

Some research efforts have used hardware transactional
memory to allow compilers to safely reorder more aggres-
sively, but the overhead of hardware transactions has thus
far made such optimizations unattractive. ❑

E.16 Ease of Use

Quick Quiz 16.1: p.381

Can a similar algorithm be used when deleting elements?

Answer:
Yes. However, since each thread must hold the locks of
three consecutive elements to delete the middle one, if
there are 𝑁 threads, there must be 2𝑁 + 1 elements (rather
than just 𝑁 + 1) in order to avoid deadlock. ❑

Quick Quiz 16.2: p.381

Yetch! What ever possessed someone to come up with
an algorithm that deserves to be shaved as much as this
one does???

Answer:
That would be Paul.

He was considering the Dining Philosopher’s Prob-
lem, which involves a rather unsanitary spaghetti dinner
attended by five philosophers. Given that there are five
plates and but five forks on the table, and given that each
philosopher requires two forks at a time to eat, one is
supposed to come up with a fork-allocation algorithm that
avoids deadlock. Paul’s response was “Sheesh! Just get
five more forks!”

This in itself was OK, but Paul then applied this same
solution to circular linked lists.

This would not have been so bad either, but he had to
go and tell someone about it! ❑

Quick Quiz 16.3: p.381

Give an exception to this rule.

Answer:
One exception would be a difficult and complex algorithm
that was the only one known to work in a given situation.
Another exception would be a difficult and complex algo-
rithm that was nonetheless the simplest of the set known
to work in a given situation. However, even in these cases,
it may be very worthwhile to spend a little time trying
to come up with a simpler algorithm! After all, if you
managed to invent the first algorithm to do some task, it
shouldn’t be that hard to go on to invent a simpler one. ❑

v2024.12.27a

E.17. CONFLICTING VISIONS OF THE FUTURE 577

E.17 Conflicting Visions of the Fu-
ture

Quick Quiz 17.1: p.390

But suppose that an application exits while holding a
pthread_mutex_lock() that happens to be located in
a file-mapped region of memory?

Answer:
Indeed, in this case the lock would persist, much to the
consternation of other processes attempting to acquire this
lock that is held by a process that no longer exists. Which
is why great care is required when using pthread_mutex
objects located in file-mapped memory regions. ❑

Quick Quiz 17.2: p.391

What about non-persistent primitives represented by data
structures in mmap() regions of memory? What happens
when there is an exec() within a critical section of such
a primitive?

Answer:
If the exec()ed program maps those same regions of
memory, then this program could in principle simply
release the lock. The question as to whether this approach
is sound from a software-engineering viewpoint is left as
an exercise for the reader. ❑

Quick Quiz 17.3: p.397

MV-RLU looks pretty good! Doesn’t it beat RCU hands
down?

Answer:
One might get that impression from a quick read of the
abstract, but more careful readers will notice the “for a
wide range of workloads” phrase in the last sentence. It
turns out that this phrase is quite important:

1. Their RCU evaluation uses synchronous grace pe-
riods, which needlessly throttle updates, as noted
in their Section 6.2.1. See Figure 10.10 page 199
of this book to see that the venerable asynchronous
call_rcu() primitive enables RCU to perform and
scale quite well with large numbers of updaters. Fur-
thermore, in Section 3.7 of their paper, the authors
admit that asynchronous grace periods are important
to MV-RLU scalability. A fair comparison would
also allow RCU the benefits of asynchrony.

2. They use a poorly tuned 1,000-bucket hash table con-
taining 10,000 elements. In addition, their 448 hard-
ware threads need considerably more than 1,000 buck-
ets to avoid the lock contention that they correctly
state limits RCU performance in their benchmarks.
A useful comparison would feature a properly tuned
hash table.

3. Their RCU hash table used per-bucket locks, which
they call out as a bottleneck, which is not a surprise
given the long hash chains and small ratio of buckets
to threads. A number of their competing mecha-
nisms instead use lockfree techniques, thus avoiding
the per-bucket-lock bottleneck, which cynics might
claim sheds some light on the authors’ otherwise
inexplicable choice of poorly tuned hash tables. The
first graph in the middle row of the authors’ Figure 4
show what RCU can achieve if not hobbled by ar-
tificial bottlenecks, as does the first portion of the
second graph in that same row.

4. Their linked-list operation permits RLU to do con-
current modifications of different elements in the
list, while RCU is forced to serialize updates. Again,
RCU has always worked just fine in conjunction with
lockless updaters, a fact that has been set forth in
academic literature that the authors cited [DMS+12a].
A fair comparison would use the same style of update
for RCU as it does for MV-RLU.

5. The authors fail to consider combining RCU and
sequence locking, which is used in the Linux kernel to
give readers coherent views of multi-pointer updates.

6. The authors fail to consider RCU-based solutions to
the Issaquah Challenge [McK16a], which also gives
readers a coherent view of multi-pointer updates,
albeit with a weaker view of “coherent”.

It is surprising that the anonymous reviewers of this
paper did not demand an apples-to-apples comparison
of MV-RLU and RCU. Nevertheless, the authors should
be congratulated on producing an academic paper that
presents an all-too-rare example of good scalability com-
bined with strong read-side coherence. They are also to be
congratulated on overcoming the traditional academic prej-
udice against asynchronous grace periods, which greatly
aided their scalability.

Interestingly enough, RLU and RCU take different
approaches to avoid the inherent limitations of STM noted
by Hagit Attiya et al. [AHM09]. RCU avoids providing

v2024.12.27a

578 APPENDIX E. ANSWERS TO QUICK QUIZZES

strict serializability and RLU avoids providing invisible
read-only transactions, both thus avoiding the limitations.
❑

Quick Quiz 17.4: p.398

Why not get with the times and apply machine learning
to contention management?

Answer:
Many transactions have sub-microsecond overheads, so
it would be all too easy to burn more CPU on machine
learning than was saved by more efficiently executing
transactions. Machine learning might nevertheless have
a role to play in tuning contention managers to specific
workloads. It would of course be even better to not need
the tuning, but sometimes “better” is unattainable. ❑

Quick Quiz 17.5: p.399

Given things like spin_trylock(), how does it make
any sense at all to claim that TM introduces the concept
of failure???

Answer:
When using locking, spin_trylock() is a choice, with
a corresponding failure-free choice being spin_lock(),
which is used in the common case, as in there are more than
100 times as many calls to spin_lock() than to spin_
trylock() in the v5.11 Linux kernel. When using TM,
the only failure-free choice is the irrevocable transaction,
which is not used in the common case. In fact, the
irrevocable transaction is not even available in all TM
implementations. ❑

Quick Quiz 17.6: p.399

What is to learn? Why not just use TM for memory-
based data structures and locking for those rare cases
featuring the many silly corner cases listed in this silly
section???

Answer:
The year 2005 just called, and it wants its incandescent
TM marketing hype back.

In the year 2023, TM still has significant proving to
do, even with the advent of HTM, which is covered in the
upcoming Section 17.3. ❑

Quick Quiz 17.7: p.402

Why would it matter that oft-written variables shared
the cache line with the lock variable?

Answer:
If the lock is in the same cacheline as some of the variables
that it is protecting, then writes to those variables by
one CPU will invalidate that cache line for all the other
CPUs. These invalidations will generate large numbers of
conflicts and retries, perhaps even degrading performance
and scalability compared to locking. ❑

Quick Quiz 17.8: p.402

Why are relatively small updates important to HTM
performance and scalability?

Answer:
The larger the updates, the greater the probability of
conflict, and thus the greater probability of retries, which
degrade performance. ❑

Quick Quiz 17.9: p.404

How could a red-black tree possibly efficiently enu-
merate all elements of the tree regardless of choice of
synchronization mechanism???

Answer:
In many cases, the enumeration need not be exact. In these
cases, hazard pointers or RCU may be used to protect
readers, which provides low probability of conflict with
any given insertion or deletion. ❑

Quick Quiz 17.10: p.404

But why can’t a debugger emulate single stepping by
setting breakpoints at successive lines of the transaction,
relying on the retry to retrace the steps of the earlier
instances of the transaction?

Answer:
This scheme might work with reasonably high probability,
but it can fail in ways that would be quite surprising to
most users. To see this, consider the following transaction:

1 begin_trans();
2 if (a) {
3 do_one_thing();
4 do_another_thing();
5 } else {
6 do_a_third_thing();
7 do_a_fourth_thing();
8 }
9 end_trans();

v2024.12.27a

E.17. CONFLICTING VISIONS OF THE FUTURE 579

Suppose that the user sets a breakpoint at line 4, which
triggers, aborting the transaction and entering the debugger.
Suppose that between the time that the breakpoint triggers
and the debugger gets around to stopping all the threads,
some other thread sets the value of a to zero. When the
poor user attempts to single-step the program, surprise!
The program is now in the else-clause instead of the
then-clause.

This is not what I call an easy-to-use debugger. ❑

Quick Quiz 17.11: p.405

But why would anyone need an empty lock-based critical
section???

Answer:
See the answer to Quick Quiz 7.20 in Section 7.2.1.

However, it is claimed that given a strongly atomic HTM
implementation without forward-progress guarantees, any
memory-based locking design based on empty critical
sections will operate correctly in the presence of transac-
tional lock elision. Although I have not seen a proof of
this statement, there is a straightforward rationale for this
claim. The main idea is that in a strongly atomic HTM
implementation, the results of a given transaction are not
visible until after the transaction completes successfully.
Therefore, if you can see that a transaction has started, it
is guaranteed to have already completed, which means
that a subsequent empty lock-based critical section will
successfully “wait” on it—after all, there is no waiting
required.

This line of reasoning does not apply to weakly atomic
systems (including many STM implementation), and it
also does not apply to lock-based programs that use means
other than memory to communicate. One such means
is the passage of time (for example, in hard real-time
systems) or flow of priority (for example, in soft real-time
systems).

Locking designs that rely on priority boosting are of
particular interest. ❑

Quick Quiz 17.12: p.405

Can’t transactional lock elision trivially handle locking’s
time-based messaging semantics by simply choosing not
to elide empty lock-based critical sections?

Answer:
It could do so, but this would be both unnecessary and
insufficient.

It would be unnecessary in cases where the empty
critical section was due to conditional compilation. Here,
it might well be that the only purpose of the lock was to
protect data, so eliding it completely would be the right
thing to do. In fact, leaving the empty lock-based critical
section would degrade performance and scalability.

On the other hand, it is possible for a non-empty lock-
based critical section to be relying on both the data-
protection and time-based messaging semantics of locking.
Using transactional lock elision in such a case would be
incorrect, and would result in bugs. ❑

Quick Quiz 17.13: p.405

Given modern hardware [MOZ09], how can anyone
possibly expect parallel software relying on timing to
work?

Answer:
The short answer is that on commonplace commodity
hardware, synchronization designs based on any sort of
fine-grained timing are foolhardy and cannot be expected
to operate correctly under all conditions.

That said, there are systems designed for hard real-time
use that are much more deterministic. In the (very un-
likely) event that you are using such a system, here is a
toy example showing how time-based synchronization can
work. Again, do not try this on commodity microproces-
sors, as they have highly nondeterministic performance
characteristics.

This example uses multiple worker threads along with
a control thread. Each worker thread corresponds to an
outbound data feed, and records the current time (for
example, from the clock_gettime() system call) in a
per-thread my_timestamp variable after executing each
unit of work. The real-time nature of this example results
in the following set of constraints:

1. It is a fatal error for a given worker thread to fail to
update its timestamp for a time period of more than
MAX_LOOP_TIME.

2. Locks are used sparingly to access and update global
state.

3. Locks are granted in strict FIFO order within a given
thread priority.

When worker threads complete their feed, they must
disentangle themselves from the rest of the application
and place a status value in a per-thread my_status vari-
able that is initialized to -1. Threads do not exit; they

v2024.12.27a

580 APPENDIX E. ANSWERS TO QUICK QUIZZES

instead are placed on a thread pool to accommodate later
processing requirements. The control thread assigns (and
re-assigns) worker threads as needed, and also maintains
a histogram of thread statuses. The control thread runs
at a real-time priority no higher than that of the worker
threads.

Worker threads’ code is as follows:

1 int my_status = -1; /* Thread local. */
2
3 while (continue_working()) {
4 enqueue_any_new_work();
5 wp = dequeue_work();
6 do_work(wp);
7 my_timestamp = clock_gettime(...);
8 }
9

10 acquire_lock(&departing_thread_lock);
11
12 /*
13 * Disentangle from application, might
14 * acquire other locks, can take much longer
15 * than MAX_LOOP_TIME, especially if many
16 * threads exit concurrently.
17 */
18 my_status = get_return_status();
19 release_lock(&departing_thread_lock);
20
21 /* thread awaits repurposing. */

The control thread’s code is as follows:

1 for (;;) {
2 for_each_thread(t) {
3 ct = clock_gettime(...);
4 d = ct - per_thread(my_timestamp, t);
5 if (d >= MAX_LOOP_TIME) {
6 /* thread departing. */
7 acquire_lock(&departing_thread_lock);
8 release_lock(&departing_thread_lock);
9 i = per_thread(my_status, t);

10 status_hist[i]++; /* Bug if TLE! */
11 }
12 }
13 /* Repurpose threads as needed. */
14 }

Line 5 uses the passage of time to deduce that the thread
has exited, executing lines 6 and 10 if so. The empty
lock-based critical section on lines 7 and 8 guarantees that
any thread in the process of exiting completes (remember
that locks are granted in FIFO order!).

Once again, do not try this sort of thing on commodity
microprocessors. After all, it is difficult enough to get this
right on systems specifically designed for hard real-time
use! ❑

Quick Quiz 17.14: p.406

But the boostee() function in Listing 17.1 alternatively
acquires its locks in reverse order! Won’t this result in
deadlock?

Answer:
No deadlock will result. To arrive at deadlock, two differ-
ent threads must each acquire the two locks in opposite
orders, which does not happen in this example. However,
deadlock detectors such as lockdep [Cor06a] will flag this
as a false positive. ❑

Quick Quiz 17.15: p.406

So a bunch of people set out to supplant locking, and
they mostly end up just optimizing locking???

Answer:
At least they accomplished something useful! And perhaps
there will continue to be additional HTM progress over
time [SNGK17, SBN+20, GGK18, PMDY20]. ❑

Quick Quiz 17.16: p.409

Tables 17.1 and 17.2 state that hardware is only starting
to become available. But hasn’t HTM hardware support
been widely available for almost a full decade?

Answer:
Yes and no. It appears that implementing even the HTM
subset of TM in real hardware is a bit trickier than it
appears [JSG12, Was14, Int20a, Int21, Lar21]. Therefore,
the sad fact is that “starting to become available” is all
too accurate as of 2021. In fact, vendors are beginning to
deprecate their HTM implementations [Int20c, Book III
Appendix A]. ❑

Quick Quiz 17.17: p.413

But given continued work, isn’t it inevitable that HTM
will eventually deliver on the full TM vision?

Answer:
Maybe?

Please review Chapter 3, especially the discussion of
Table 3.1 that outlines the cost of fine-grained global agree-
ment. Also please review the discussion of Figure 9.22,
which shows the scalability benefits of avoiding the need
for global agreement.

TM is primarily intended for fine-grained synchro-
nization, and, for each group of concurrent transactions,
requires global agreement that either: (1) The transactions

v2024.12.27a

E.17. CONFLICTING VISIONS OF THE FUTURE 581

are ordered, or (2) The transactions do not conflict. It is of
course possible for only some transactions in a concurrent
group to conflict, in which case only those conflicting
transactions must be ordered. Therefore, the material
covered in Chapter 3 and in the discussion of Figure 9.22
both apply directly to TM.

It is of course true that very smart people continue work-
ing on transactional memory, and they can be expected to
continue to make advances. However, TM’s requirements
for global agreement conflict with the laws of physics that
were discussed in Chapter 3, and this conflict will likely
continue to impose hard limits on TM performance and
scalability in the general case. ❑

Quick Quiz 17.18: p.413

This list is ridiculously utopian! Why not stick to the
current state of the formal-verification art?

Answer:
You are welcome to your opinion on what is and is not
utopian, but I will be paying more attention to people
actually making progress on the items in that list than to
anyone who might be objecting to them. This might have
something to do with my long experience with people
attempting to talk me out of specific things that their
favorite tools cannot handle.

In the meantime, please feel free to read the papers
written by the people who are actually making progress,
for example, this one [DFLO19]. ❑

Quick Quiz 17.19: p.414

Given the groundbreaking nature of the various verifiers
used in the seL4 project, why doesn’t this chapter cover
them in more depth?

Answer:
There can be no doubt that the verifiers used by the
seL4 project are quite capable. However, seL4 started
as a single-CPU project. And although seL4 has gained
multi-processor capabilities, it is currently using very
coarse-grained locking that is similar to the Linux kernel’s
old Big Kernel Lock (BKL). There will hopefully come a
day when it makes sense to add seL4’s verifiers to a book
on parallel programming, but this is not yet that day. ❑

Quick Quiz 17.20: p.415

Why bother with a separate filter command on line 27
of Listing 17.2 instead of just adding the condition to

Table E.6: Emulating Locking: Performance Comparison
(s)

cmpxchg_acquire() xchg_acquire()

Lock filter exists filter exists

2 0.004 0.022 0.039 0.027 0.058
3 0.041 0.743 1.653 0.968 3.203
4 0.374 59.565 151.962 74.818 500.96
5 4.905

the exists clause? And wouldn’t it be simpler to use
xchg_acquire() instead of cmpxchg_acquire()?

Answer:
The filter clause causes the herd tool to discard ex-
ecutions at an earlier stage of processing than does the
exists clause, which provides significant speedups.

As for xchg_acquire(), this atomic operation will do
a write whether or not lock acquisition succeeds, which
means that a model using xchg_acquire() will have
more operations than one using cmpxchg_acquire(),
which won’t do a write in the failed-acquisition case. More
writes means more combinatorial to explode, as shown in
Table E.6 (C-SB+l-o-o-u+l-o-o-*u.litmus, C-SB+
l-o-o-u+l-o-o-u*-C.litmus, C-SB+l-o-o-u+l-
o-o-u*-CE.litmus, C-SB+l-o-o-u+l-o-o-u*-X.
litmus, and C-SB+l-o-o-u+l-o-o-u*-XE.litmus).
This table clearly shows that cmpxchg_acquire() out-
performs xchg_acquire() and that use of the filter
clause outperforms use of the exists clause. ❑

Quick Quiz 17.21: p.416

How do we know that the MTBFs of known bugs is a
good estimate of the MTBFs of bugs that have not yet
been located?

Answer:
We don’t, but it does not matter.

To see this, note that the 7 % figure only applies to
injected bugs that were subsequently located: It neces-
sarily ignores any injected bugs that were never found.
Therefore, the MTBF statistics of known bugs is likely to
be a good approximation of that of the injected bugs that
are subsequently located.

A key point in this whole section is that we should
be more concerned about bugs that inconvenience users
than about other bugs that never actually manifest. This
of course is not to say that we should completely ignore

v2024.12.27a

582 APPENDIX E. ANSWERS TO QUICK QUIZZES

bugs that have not yet inconvenienced users, just that we
should properly prioritize our efforts so as to fix the most
important and urgent bugs first. ❑

Quick Quiz 17.22: p.416

But the formal-verification tools should immediately
find all the bugs introduced by the fixes, so why is this a
problem?

Answer:
It is a problem because real-world formal-verification tools
(as opposed to those that exist only in the imaginations of
the more vociferous proponents of formal verification) are
not omniscient, and thus are only able to locate certain
types of bugs. For but one example, formal-verification
tools are unlikely to spot a bug corresponding to an
omitted assertion or, equivalently, a bug corresponding to
an undiscovered portion of the specification. ❑

Quick Quiz 17.23: p.417

But many formal-verification tools can only find one
bug at a time, so that each bug must be fixed before the
tool can locate the next. How can bug-fix efforts be
prioritized given such a tool?

Answer:
One approach is to provide a simple fix that might not be
suitable for a production environment, but which allows
the tool to locate the next bug. Another approach is to
restrict configuration or inputs so that the bugs located
thus far cannot occur. There are a number of similar
approaches, but the common theme is that fixing the bug
from the tool’s viewpoint is usually much easier than
constructing and validating a production-quality fix, and
the key point is to prioritize the larger efforts required to
construct and validate the production-quality fixes. ❑

Quick Quiz 17.24: p.417

How would testing stack up in the scorecard shown in
Table 17.5?

Answer:
It would be blue all the way down, with the possible
exception of the third row (overhead) which might well be
marked down for testing’s difficulty finding improbable
bugs.

On the other hand, improbable bugs are often also
irrelevant bugs, so your mileage may vary.

Much depends on the size of your installed base. If your
code is only ever going to run on (say) 10,000 systems,
Murphy can actually be a really nice guy. Everything that
can go wrong, will. Eventually. Perhaps in geologic time.

But if your code is running on 20 billion systems, like
the Linux kernel was said to be by late 2017, Murphy can
be a real jerk! Everything that can go wrong, will, and it
can go wrong really quickly!!! ❑

Quick Quiz 17.25: p.417

But aren’t there a great many more formal-verification
systems than are shown in Table 17.5?

Answer:
Indeed there are! This table focuses on those that Paul
has used, but others are proving to be useful. Formal veri-
fication has been heavily used in the seL4 project [SM13],
and its tools can now handle modest levels of concurrency.
More recently, Catalin Marinas used Lamport’s TLA
tool [Lam02] to locate some forward-progress bugs in
the Linux kernel’s queued spinlock implementation. Will
Deacon fixed these bugs [Dea18], and Catalin verified
Will’s fixes [Mar18].

Lighter-weight formal verification tools have been
used heavily in production [LBD+04, BBC+10, Coo18,
SAE+18, DFLO19]. ❑

E.18 Important Questions

Quick Quiz A.1: p.426

Wait!!! Why should reading out of a timestamp register
be more expensive than reading out of any other machine
register???

Answer:
One problem is that software developers have this annoying
habit of expecting time to advance predictably, and to
be synchronized across the system. Such predictability
and synchronization does not fit well with the need to
change CPU core clock frequencies in order to provide
adequate user experience on the one hand and to conserve
energy on the other. Most solutions to these conflicting
requirements have the timestamp registers in a different
clock domain than the CPU core, and reliably crossing
an clock-domain boundary between two unrelated clocks
requires at least three clock periods of the slower of the
two clocks.

v2024.12.27a

E.19. “TOY” RCU IMPLEMENTATIONS 583

As a result, reading a timestamp can easily consume
tens or even hundreds of nanoseconds on a system with
multi-GHz CPU core clock frequencies. ❑

Quick Quiz A.2: p.427

What SMP coding errors can you see in these examples?
See time.c for full code.

Answer:
Here are errors you might have found:

1. Missing barrier() or volatile on tight loops.

2. Missing memory barriers on update side.

3. Lack of synchronization between producer and con-
sumer. ❑

Quick Quiz A.3: p.429

How could there be such a large gap between successive
consumer reads? See timelocked.c for full code.

Answer:
Here are a few reasons for such gaps:

1. The consumer might be preempted for long time
periods.

2. A long-running interrupt might delay the consumer.

3. Cache misses might delay the consumer.

4. The producer might also be running on a faster CPU
than is the consumer (for example, one of the CPUs
might have had to decrease its clock frequency due to
heat-dissipation or power-consumption constraints).
❑

Quick Quiz A.4: p.430

But if fully ordered implementations cannot offer
stronger guarantees than the better performing and more
scalable weakly ordered implementations, why bother
with full ordering?

Answer:
Because strongly ordered implementations are sometimes
able to provide greater consistency among sets of calls to
functions accessing a given data structure. For example,
compare the atomic counter of Listing 5.2 to the statistical
counter of Section 5.2. Suppose that one thread is adding

the value 3 and another is adding the value 5, while two
other threads are concurrently reading the counter’s value.
With atomic counters, it is not possible for one of the
readers to obtain the value 3 while the other obtains the
value 5. With statistical counters, this outcome really can
happen. In fact, in some computing environments, this
outcome can happen even on relatively strongly ordered
hardware such as x86.

Therefore, if your user happen to need this admittedly
unusual level of consistency, you should avoid weakly
ordered statistical counters. ❑

Quick Quiz A.5: p.431

Suppose a portion of a program uses RCU read-side
primitives as its only synchronization mechanism. Is
this parallelism or concurrency?

Answer:
Yes. ❑

Quick Quiz A.6: p.431

In what part of the second (scheduler-based) perspective
would the lock-based single-thread-per-CPU workload
be considered “concurrent”?

Answer:
The people who would like to arbitrarily subdivide and
interleave the workload. Of course, an arbitrary subdi-
vision might end up separating a lock acquisition from
the corresponding lock release, which would prevent any
other thread from acquiring that lock. If the locks were
pure spinlocks, this could even result in deadlock. ❑

E.19 “Toy” RCU Implementations

Quick Quiz B.1: p.433

Why wouldn’t any deadlock in the RCU implementation
in Listing B.1 also be a deadlock in any other RCU
implementation?

Answer:
Suppose the functions foo() and bar() in Listing E.18
are invoked concurrently from different CPUs. Then
foo() will acquire my_lock() on line 3, while bar()
will acquire rcu_gp_lock on line 13.

When foo() advances to line 4, it will attempt to
acquire rcu_gp_lock, which is held by bar(). Then

v2024.12.27a

584 APPENDIX E. ANSWERS TO QUICK QUIZZES

Listing E.18: Deadlock in Lock-Based RCU Implementation
1 void foo(void)
2 {
3 spin_lock(&my_lock);
4 rcu_read_lock();
5 do_something();
6 rcu_read_unlock();
7 do_something_else();
8 spin_unlock(&my_lock);
9 }

10
11 void bar(void)
12 {
13 rcu_read_lock();
14 spin_lock(&my_lock);
15 do_some_other_thing();
16 spin_unlock(&my_lock);
17 do_whatever();
18 rcu_read_unlock();
19 }

when bar() advances to line 14, it will attempt to acquire
my_lock, which is held by foo().

Each function is then waiting for a lock that the other
holds, a classic deadlock.

Other RCU implementations neither spin nor block in
rcu_read_lock(), hence avoiding deadlocks. ❑

Quick Quiz B.2: p.433

Why not simply use reader-writer locks in the RCU
implementation in Listing B.1 in order to allow RCU
readers to proceed in parallel?

Answer:
One could in fact use reader-writer locks in this manner.
However, textbook reader-writer locks suffer from memory
contention, so that the RCU read-side critical sections
would need to be quite long to actually permit parallel
execution [McK03].

On the other hand, use of a reader-writer lock that
is read-acquired in rcu_read_lock() would avoid the
deadlock condition noted above. ❑

Quick Quiz B.3: p.434

Wouldn’t it be cleaner to acquire all the locks, and
then release them all in the loop from lines 15–18 of
Listing B.2? After all, with this change, there would be
a point in time when there were no readers, simplifying
things greatly.

Answer:
Making this change would re-introduce the deadlock, so
no, it would not be cleaner. ❑

Quick Quiz B.4: p.434

Is the implementation shown in Listing B.2 free from
deadlocks? Why or why not?

Answer:
One deadlock is where a lock is held across
synchronize_rcu(), and that same lock is acquired
within an RCU read-side critical section. However, this
situation could deadlock any correctly designed RCU
implementation. After all, the synchronize_rcu()
primitive must wait for all pre-existing RCU read-side
critical sections to complete, but if one of those critical
sections is spinning on a lock held by the thread executing
the synchronize_rcu(), we have a deadlock inherent
in the definition of RCU.

Another deadlock happens when attempting to nest
RCU read-side critical sections. This deadlock is peculiar
to this implementation, and might be avoided by using
recursive locks, or by using reader-writer locks that are
read-acquired by rcu_read_lock() and write-acquired
by synchronize_rcu().

However, if we exclude the above two cases, this im-
plementation of RCU does not introduce any deadlock
situations. This is because only time some other thread’s
lock is acquired is when executing synchronize_rcu(),
and in that case, the lock is immediately released, pro-
hibiting a deadlock cycle that does not involve a lock held
across the synchronize_rcu() which is the first case
above. ❑

Quick Quiz B.5: p.434

Isn’t one advantage of the RCU algorithm shown in
Listing B.2 that it uses only primitives that are widely
available, for example, in POSIX pthreads?

Answer:
This is indeed an advantage, but do not forget that rcu_
dereference() and rcu_assign_pointer() are still
required, which means volatile manipulation for rcu_
dereference() and memory barriers for rcu_assign_
pointer(). Of course, many Alpha CPUs require mem-
ory barriers for both primitives. ❑

Quick Quiz B.6: p.435

But what if you hold a lock across a call to
synchronize_rcu(), and then acquire that same lock
within an RCU read-side critical section?

v2024.12.27a

E.19. “TOY” RCU IMPLEMENTATIONS 585

Answer:
Indeed, this would deadlock any legal RCU implemen-
tation. But is rcu_read_lock() really participating in
the deadlock cycle? If you believe that it is, then please
ask yourself this same question when looking at the RCU
implementation in Appendix B.9. ❑

Quick Quiz B.7: p.435

How can the grace period possibly elapse in 40
nanoseconds when synchronize_rcu() contains a
10-millisecond delay?

Answer:
The update-side test was run in absence of readers, so the
poll() system call was never invoked. In addition, the
actual code has this poll() system call commented out,
the better to evaluate the true overhead of the update-side
code. Any production uses of this code would be better
served by using the poll() system call, but then again,
production uses would be even better served by other
implementations shown later in this section. ❑

Quick Quiz B.8: p.435

Why not simply make rcu_read_lock() wait when
a concurrent synchronize_rcu() has been waiting
too long in the RCU implementation in Listing B.3?
Wouldn’t that prevent synchronize_rcu() from starv-
ing?

Answer:
Although this would in fact eliminate the starvation, it
would also mean that rcu_read_lock() would spin or
block waiting for the writer, which is in turn waiting on
readers. If one of these readers is attempting to acquire a
lock that the spinning/blocking rcu_read_lock() holds,
we again have deadlock.

In short, the cure is worse than the disease. See Appen-
dix B.4 for a proper cure. ❑

Quick Quiz B.9: p.436

Why the memory barrier on line 5 of synchronize_
rcu() in Listing B.6 given that there is a spin-lock
acquisition immediately after?

Answer:
The spin-lock acquisition only guarantees that the spin-
lock’s critical section will not “bleed out” to precede the
acquisition. It in no way guarantees that code preceding
the spin-lock acquisition won’t be reordered into the

critical section. Such reordering could cause a removal
from an RCU-protected list to be reordered to follow the
complementing of rcu_idx, which could allow a newly
starting RCU read-side critical section to see the recently
removed data element.

Exercise for the reader: Use a tool such as
Promela/spin to determine which (if any) of the memory
barriers in Listing B.6 are really needed. See Chapter 12
for information on using these tools. The first correct and
complete response will be credited. ❑

Quick Quiz B.10: p.437

Why is the counter flipped twice in Listing B.6?
Shouldn’t a single flip-and-wait cycle be sufficient?

Answer:
Both flips are absolutely required. To see this, consider
the following sequence of events:

1 Line 8 of rcu_read_lock() in Listing B.5 picks
up rcu_idx, finding its value to be zero.

2 Line 8 of synchronize_rcu() in Listing B.6 com-
plements the value of rcu_idx, setting its value to
one.

3 Lines 10–12 of synchronize_rcu() find that the
value of rcu_refcnt[0] is zero, and thus returns.
(Recall that the question is asking what happens if
lines 13–20 are omitted.)

4 Lines 9 and 10 of rcu_read_lock() store the value
zero to this thread’s instance of rcu_read_idx and
increments rcu_refcnt[0], respectively. Execu-
tion then proceeds into the RCU read-side critical
section.

5 Another instance of synchronize_rcu() again
complements rcu_idx, this time setting its value
to zero. Because rcu_refcnt[1] is zero,
synchronize_rcu() returns immediately. (Re-
call that rcu_read_lock() incremented rcu_
refcnt[0], not rcu_refcnt[1]!)

6 The grace period that started in step 5 has been
allowed to end, despite the fact that the RCU read-
side critical section that started beforehand in step 4
has not completed. This violates RCU semantics, and
could allow the update to free a data element that the
RCU read-side critical section was still referencing.

v2024.12.27a

586 APPENDIX E. ANSWERS TO QUICK QUIZZES

Exercise for the reader: What happens if rcu_read_
lock() is preempted for a very long time (hours!) just
after line 8? Does this implementation operate correctly
in that case? Why or why not? The first correct and
complete response will be credited. ❑

Quick Quiz B.11: p.437

Given that atomic increment and decrement are so expen-
sive, why not just use non-atomic increment on line 10
and a non-atomic decrement on line 25 of Listing B.5?

Answer:
Using non-atomic operations would cause increments and
decrements to be lost, in turn causing the implementation
to fail. See Appendix B.5 for a safe way to use non-
atomic operations in rcu_read_lock() and rcu_read_
unlock(). ❑

Quick Quiz B.12: p.437

Come off it! We can see the atomic_read() primi-
tive in rcu_read_lock()!!! So why are you trying
to pretend that rcu_read_lock() contains no atomic
operations???

Answer:
The atomic_read() primitives does not actually execute
atomic machine instructions, but rather does a normal
load from an atomic_t. Its sole purpose is to keep
the compiler’s type-checking happy. If the Linux kernel
ran on 8-bit CPUs, it would also need to prevent “store
tearing”, which could happen due to the need to store a
16-bit pointer with two eight-bit accesses on some 8-bit
systems. But thankfully, it seems that no one runs Linux
on 8-bit systems. ❑

Quick Quiz B.13: p.438

Great, if we have 𝑁 threads, we can have 2𝑁 ten-
millisecond waits (one set per flip_counter_and_
wait() invocation, and even that assumes that we wait
only once for each thread). Don’t we need the grace
period to complete much more quickly?

Answer:
Keep in mind that we only wait for a given thread if that
thread is still in a pre-existing RCU read-side critical sec-
tion, and that waiting for one hold-out thread gives all the
other threads a chance to complete any pre-existing RCU
read-side critical sections that they might still be executing.

So the only way that we would wait for 2𝑁 intervals would
be if the last thread still remained in a pre-existing RCU
read-side critical section despite all the waiting for all the
prior threads. In short, this implementation will not wait
unnecessarily.

However, if you are stress-testing code that uses RCU,
you might want to comment out the poll() statement
in order to better catch bugs that incorrectly retain a
reference to an RCU-protected data element outside of an
RCU read-side critical section. ❑

Quick Quiz B.14: p.440

All of these toy RCU implementations have either
atomic operations in rcu_read_lock() and rcu_
read_unlock(), or synchronize_rcu() overhead
that increases linearly with the number of threads. Un-
der what circumstances could an RCU implementation
enjoy lightweight implementations for all three of these
primitives, all having deterministic (O (1)) overheads
and latencies?

Answer:
Special-purpose uniprocessor implementations of RCU
can attain this ideal [McK09a]. ❑

Quick Quiz B.15: p.440

If any even value is sufficient to tell synchronize_
rcu() to ignore a given task, why don’t lines 11 and 12
of Listing B.14 simply assign zero to rcu_reader_gp?

Answer:
Assigning zero (or any other even-numbered constant)
would in fact work, but assigning the value of rcu_gp_
ctr can provide a valuable debugging aid, as it gives the
developer an idea of when the corresponding thread last
exited an RCU read-side critical section. ❑

Quick Quiz B.16: p.441

Why are the memory barriers on lines 19 and 31 of List-
ing B.14 needed? Aren’t the memory barriers inherent
in the locking primitives on lines 20 and 30 sufficient?

Answer:
These memory barriers are required because the locking
primitives are only guaranteed to confine the critical
section. The locking primitives are under absolutely no
obligation to keep other code from bleeding in to the
critical section. The pair of memory barriers are therefore

v2024.12.27a

E.19. “TOY” RCU IMPLEMENTATIONS 587

requires to prevent this sort of code motion, whether
performed by the compiler or by the CPU. ❑

Quick Quiz B.17: p.441

Couldn’t the update-side batching optimization de-
scribed in Appendix B.6 be applied to the implementa-
tion shown in Listing B.14?

Answer:
Indeed it could, with a few modifications. This work is
left as an exercise for the reader. ❑

Quick Quiz B.18: p.441

Is the possibility of readers being preempted in lines 3–4
of Listing B.14 a real problem, in other words, is there a
real sequence of events that could lead to failure? If not,
why not? If so, what is the sequence of events, and how
can the failure be addressed?

Answer:
It is a real problem, there is a sequence of events leading
to failure, and there are a number of possible ways of
addressing it. For more details, see the Quick Quizzes
near the end of Appendix B.8. The reason for locating
the discussion there is to (1) give you more time to think
about it, and (2) because the nesting support added in that
section greatly reduces the time required to overflow the
counter. ❑

Quick Quiz B.19: p.442

Why not simply maintain a separate per-thread nesting-
level variable, as was done in previous section, rather
than having all this complicated bit manipulation?

Answer:
The apparent simplicity of the separate per-thread variable
is a red herring. This approach incurs much greater
complexity in the guise of careful ordering of operations,
especially if signal handlers are to be permitted to contain
RCU read-side critical sections. But don’t take my word
for it, code it up and see what you end up with! ❑

Quick Quiz B.20: p.442

Given the algorithm shown in Listing B.16, how could
you double the time required to overflow the global
rcu_gp_ctr?

Answer:
One way would be to replace the magnitude compar-
ison on lines 32 and 33 with an inequality check of
the per-thread rcu_reader_gp variable against rcu_gp_
ctr+RCU_GP_CTR_BOTTOM_BIT. ❑

Quick Quiz B.21: p.442

Again, given the algorithm shown in Listing B.16, is
counter overflow fatal? Why or why not? If it is fatal,
what can be done to fix it?

Answer:
It can indeed be fatal. To see this, consider the following
sequence of events:

1. Thread 0 enters rcu_read_lock(), determines that
it is not nested, and therefore fetches the value of
the global rcu_gp_ctr. Thread 0 is then preempted
for an extremely long time (before storing to its
per-thread rcu_reader_gp variable).

2. Other threads repeatedly invoke synchronize_
rcu(), so that the new value of the global rcu_gp_
ctr is now RCU_GP_CTR_BOTTOM_BIT less than it
was when thread 0 fetched it.

3. Thread 0 now starts running again, and stores into its
per-thread rcu_reader_gp variable. The value it
stores is RCU_GP_CTR_BOTTOM_BIT+1 greater than
that of the global rcu_gp_ctr.

4. Thread 0 acquires a reference to RCU-protected data
element A.

5. Thread 1 now removes the data element A that
thread 0 just acquired a reference to.

6. Thread 1 invokes synchronize_rcu(), which in-
crements the global rcu_gp_ctr by RCU_GP_CTR_
BOTTOM_BIT. It then checks all of the per-thread
rcu_reader_gp variables, but thread 0’s value (in-
correctly) indicates that it started after thread 1’s call
to synchronize_rcu(), so thread 1 does not wait
for thread 0 to complete its RCU read-side critical
section.

7. Thread 1 then frees up data element A, which thread 0
is still referencing.

Note that scenario can also occur in the implementation
presented in Appendix B.7.

One strategy for fixing this problem is to use 64-bit
counters so that the time required to overflow them would

v2024.12.27a

588 APPENDIX E. ANSWERS TO QUICK QUIZZES

exceed the useful lifetime of the computer system. Note
that non-antique members of the 32-bit x86 CPU family
allow atomic manipulation of 64-bit counters via the
cmpxchg64b instruction.

Another strategy is to limit the rate at which grace
periods are permitted to occur in order to achieve a similar
effect. For example, synchronize_rcu() could record
the last time that it was invoked, and any subsequent
invocation would then check this time and block as needed
to force the desired spacing. For example, if the low-order
four bits of the counter were reserved for nesting, and if
grace periods were permitted to occur at most ten times
per second, then it would take more than 300 days for the
counter to overflow. However, this approach is not helpful
if there is any possibility that the system will be fully
loaded with CPU-bound high-priority real-time threads
for the full 300 days. (A remote possibility, perhaps, but
best to consider it ahead of time.)

A third approach is to administratively abolish real-
time threads from the system in question. In this case,
the preempted process will age up in priority, thus getting
to run long before the counter had a chance to overflow.
Of course, this approach is less than helpful for real-time
applications.

A fourth approach would be for rcu_read_lock() to
recheck the value of the global rcu_gp_ctr after storing
to its per-thread rcu_reader_gp counter, retrying if the
new value of the global rcu_gp_ctr is inappropriate.
This works, but introduces non-deterministic execution
time into rcu_read_lock(). On the other hand, if your
application is being preempted long enough for the counter
to overflow, you have no hope of deterministic execution
time in any case!

A fifth approach is for the grace period process to wait
for all readers to become aware of the new grace period.
This works nicely in theory, but hangs if a reader blocks
indefinitely outside of an RCU read-side critical section.

A final approach is, oddly enough, to use a single-bit
grace-period counter and for each call to synchronize_
rcu() to take two passes through its algorithm. This is
the approached use by userspace RCU [Des09b], and is
described in detail in the journal article and supplementary
materials [DMS+12a, Appendix D]. ❑

Quick Quiz B.22: p.443

Doesn’t the additional memory barrier shown on line 14
of Listing B.18 greatly increase the overhead of rcu_
quiescent_state()?

Answer:
Indeed it does! An application using this implementa-
tion of RCU should therefore invoke rcu_quiescent_
state() sparingly, instead using rcu_read_lock() and
rcu_read_unlock() most of the time.

However, this memory barrier is absolutely required so
that other threads will see the store on lines 12–13 before
any subsequent RCU read-side critical sections executed
by the caller. ❑

Quick Quiz B.23: p.443

Why are the two memory barriers on lines 11 and 14 of
Listing B.18 needed?

Answer:
The memory barrier on line 11 prevents any RCU read-
side critical sections that might precede the call to rcu_
thread_offline() won’t be reordered by either the com-
piler or the CPU to follow the assignment on lines 12–13.
The memory barrier on line 14 is, strictly speaking, unnec-
essary, as it is illegal to have any RCU read-side critical
sections following the call to rcu_thread_offline().
❑

Quick Quiz B.24: p.444

To be sure, the clock frequencies of POWER systems
in 2008 were quite high, but even a 5 GHz clock fre-
quency is insufficient to allow loops to be executed in
50 picoseconds! What is going on here?

Answer:
Since the measurement loop contains a pair of empty
functions, the compiler optimizes it away. The measure-
ment loop takes 1,000 passes between each call to rcu_
quiescent_state(), so this measurement is roughly
one thousandth of the overhead of a single call to rcu_
quiescent_state(). ❑

Quick Quiz B.25: p.444

Why would the fact that the code is in a library make
any difference for how easy it is to use the RCU imple-
mentation shown in Listings B.18 and B.19?

Answer:
A library function has absolutely no control over the
caller, and thus cannot force the caller to invoke rcu_
quiescent_state() periodically. On the other hand,
a library function that made many references to a given
RCU-protected data structure might be able to invoke

v2024.12.27a

E.20. WHY MEMORY BARRIERS? 589

rcu_thread_online() upon entry, rcu_quiescent_
state() periodically, and rcu_thread_offline()
upon exit. ❑

Quick Quiz B.26: p.444

But what if you hold a lock across a call to
synchronize_rcu(), and then acquire that same lock
within an RCU read-side critical section? This should
be a deadlock, but how can a primitive that generates
absolutely no code possibly participate in a deadlock
cycle?

Answer:
Please note that the RCU read-side critical section is
in effect extended beyond the enclosing rcu_read_
lock() and rcu_read_unlock(), out to the previous
and next call to rcu_quiescent_state(). This rcu_
quiescent_state() can be thought of as an rcu_
read_unlock() immediately followed by an rcu_read_
lock().

Even so, the actual deadlock itself will involve the
lock acquisition in the RCU read-side critical section and
the synchronize_rcu(), never the rcu_quiescent_
state(). ❑

Quick Quiz B.27: p.445

Given that grace periods are prohibited within RCU read-
side critical sections, how can an RCU data structure
possibly be updated while in an RCU read-side critical
section?

Answer:
This situation is one reason for the existence of asynchro-
nous grace-period primitives such as call_rcu(). This
primitive may be invoked within an RCU read-side critical
section, and the specified RCU callback will in turn be
invoked at a later time, after a grace period has elapsed.

The ability to perform an RCU update while within
an RCU read-side critical section can be extremely con-
venient, and is analogous to a (mythical) unconditional
read-to-write upgrade for reader-writer locking. ❑

E.20 Why Memory Barriers?

Quick Quiz C.1: p.450

Where does a writeback message originate from and
where does it go to?

Answer:
The writeback message originates from a given CPU, or
in some designs from a given level of a given CPU’s
cache—or even from a cache that might be shared among
several CPUs. The key point is that a given cache does
not have room for a given data item, so some other piece
of data must be ejected from the cache to make room. If
there is some other piece of data that is duplicated in some
other cache or in memory, then that piece of data may be
simply discarded, with no writeback message required.

On the other hand, if every piece of data that might
be ejected has been modified so that the only up-to-date
copy is in this cache, then one of those data items must be
copied somewhere else. This copy operation is undertaken
using a “writeback message”.

The destination of the writeback message has to be
something that is able to store the new value. This might
be main memory, but it also might be some other cache. If
it is a cache, it is normally a higher-level cache for the same
CPU, for example, a level-1 cache might write back to a
level-2 cache. However, some hardware designs permit
cross-CPU writebacks, so that CPU 0’s cache might send
a writeback message to CPU 1. This would normally
be done if CPU 1 had somehow indicated an interest in
the data, for example, by having recently issued a read
request.

In short, a writeback message is sent from some part of
the system that is short of space, and is received by some
other part of the system that can accommodate the data.
❑

Quick Quiz C.2: p.450

What happens if two CPUs attempt to invalidate the
same cache line concurrently?

Answer:
One of the CPUs gains access to the shared bus first, and
that CPU “wins”. The other CPU must invalidate its copy
of the cache line and transmit an “invalidate acknowledge”
message to the other CPU.

Of course, the losing CPU can be expected to immedi-
ately issue a “read invalidate” transaction, so the winning
CPU’s victory will be quite ephemeral. ❑

v2024.12.27a

590 APPENDIX E. ANSWERS TO QUICK QUIZZES

Quick Quiz C.3: p.450

When an “invalidate” message appears in a large mul-
tiprocessor, every CPU must give an “invalidate ac-
knowledge” response. Wouldn’t the resulting “storm” of
“invalidate acknowledge” responses totally saturate the
system bus?

Answer:
It might, if large-scale multiprocessors were in fact im-
plemented that way. Larger multiprocessors, particularly
NUMA machines, tend to use so-called “directory-based”
cache-coherence protocols to avoid this and other prob-
lems. ❑

Quick Quiz C.4: p.450

If SMP machines are really using message passing
anyway, why bother with SMP at all?

Answer:
There has been quite a bit of controversy on this topic
over the past few decades. One answer is that the cache-
coherence protocols are quite simple, and therefore can
be implemented directly in hardware, gaining bandwidths
and latencies unattainable by software message passing.
Another answer is that the real truth is to be found in
economics due to the relative prices of large SMP machines
and that of clusters of smaller SMP machines. A third
answer is that the SMP programming model is easier to
use than that of distributed systems, but a rebuttal might
note the appearance of HPC clusters and MPI. And so the
argument continues. ❑

Quick Quiz C.5: p.451

How does the hardware handle the delayed transitions
described above?

Answer:
Usually by adding additional states, though these addi-
tional states need not be actually stored with the cache
line, due to the fact that only a few lines at a time will
be transitioning. The need to delay transitions is but one
issue that results in real-world cache coherence protocols
being much more complex than the over-simplified MESI
protocol described in this appendix. Hennessy and Patter-
son’s classic introduction to computer architecture [HP95]
covers many of these issues. ❑

Quick Quiz C.6: p.452

What sequence of operations would put the CPUs’ caches
all back into the “invalid” state?

Answer:
There is no such sequence, at least in absence of special
“flush my cache” instructions in the CPU’s instruction set.
Most CPUs do have such instructions. ❑

Quick Quiz C.7: p.453

But then why do uniprocessors also have store buffers?

Answer:
Because the purpose of store buffers is not just to
hide acknowledgement latencies in multiprocessor cache-
coherence protocols, but to hide memory latencies in
general. Because memory is much slower than is cache
on uniprocessors, store buffers on uniprocessors can help
to hide write-miss memory latencies. ❑

Quick Quiz C.8: p.453

So store-buffer entries are variable length? Isn’t that
difficult to implement in hardware?

Answer:
Here are two ways for hardware to easily handle variable-
length stores.

First, each store-buffer entry could be a single byte wide.
Then an 64-bit store would consume eight store-buffer
entries. This approach is simple and flexible, but one
disadvantage is that each entry would need to replicate
much of the address that was stored to.

Second, each store-buffer entry could be double the
size of a cache line, with half of the bits containing the
values stored, and the other half indicating which bits
had been stored to. So, assuming a 32-bit cache line,
a single-byte store of 0x5a to the low-order byte of a
given cache line would result in 0xXXXXXX5a for the
first half and 0x000000ff for the second half, where
the values labeled X are arbitrary because they would
be ignored. This approach allows multiple consecutive
stores corresponding to a given cache line to be merged
into a single store-buffer entry, but is space-inefficient for
random stores of single bytes.

Much more complex and efficient schemes are of course
used by actual hardware designers. ❑

v2024.12.27a

E.20. WHY MEMORY BARRIERS? 591

Quick Quiz C.9: p.455

In step 1 above, why does CPU 0 need to issue a “read
invalidate” rather than a simple “invalidate”? After all,
foo() will overwrite the variable a in any case, so why
should it care about the old value of a?

Answer:
Because the cache line in question contains more data
than just the variable a. Issuing “invalidate” instead of the
needed “read invalidate” would cause that other data to be
lost, which would constitute a serious bug in the hardware.
❑

Quick Quiz C.10: p.455

In step 4 above, don’t systems avoid that store to memory?

Answer:
Yes, they do. But to do so, they add states beyond the
MESI quadruple that this example is working within. ❑

Quick Quiz C.11: p.455

In step 9 above, did bar() read a stale value from a, or
did its reads of b and a get reordered?

Answer:
It could be either, depending on the hardware implemen-
tation. And it really does not matter which. After all, the
bar() function’s assert() cannot tell the difference! ❑

Quick Quiz C.12: p.456

After step 15 in Appendix C.3.3 on page 456, both CPUs
might drop the cache line containing the new value of
“b”. Wouldn’t that cause this new value to be lost?

Answer:
It might, and that is why real hardware takes steps to
avoid this problem. A traditional approach, pointed out by
Vasilevsky Alexander, is to write this cache line back to
main memory before marking the cache line as “shared”.
A more efficient (though more complex) approach is to use
additional state to indicate whether or not the cache line
is “dirty”, allowing the writeback to happen. Year-2000
systems went further, using much more state in order
to avoid redundant writebacks [CSG99, Figure 8.42]. It
would be reasonable to assume that complexity has not
decreased in the meantime. ❑

Quick Quiz C.13: p.458

In step 1 of the first scenario in Appendix C.4.3, why
is an “invalidate” sent instead of a ”read invalidate”
message? Doesn’t CPU 0 need the values of the other
variables that share this cache line with “a”?

Answer:
CPU 0 already has the values of these variables, given that
it has a read-only copy of the cache line containing “a”.
Therefore, all CPU 0 need do is to cause the other CPUs
to discard their copies of this cache line. An “invalidate”
message therefore suffices. ❑

Quick Quiz C.14: p.458

Say what??? Why do we need a memory barrier
here, given that the CPU cannot possibly execute the
assert() until after the while loop completes?

Answer:
Suppose that memory barrier was omitted.

Keep in mind that CPUs are free to speculatively execute
later loads, which can have the effect of executing the
assertion before the while loop completes. Furthermore,
compilers assume that only the currently executing thread
is updating the variables, and this assumption allows the
compiler to hoist the load of a to precede the loop.

In fact, some compilers would transform the loop to a
branch around an infinite loop as follows:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7

8 void bar(void)
9 {

10 if (b == 0)
11 for (;;)
12 continue;
13 assert(a == 1);
14 }

Given this optimization, the code would behave in a
completely different way than the original code. If bar()
observed “b == 0”, the assertion could of course not
be reached at all due to the infinite loop. However, if
bar() loaded the value “1” just as “foo()” stored it,
the CPU might still have the old zero value of “a” in its
cache, which would cause the assertion to fire. You should
of course use volatile casts (for example, those volatile

v2024.12.27a

592 APPENDIX E. ANSWERS TO QUICK QUIZZES

casts implied by the C11 relaxed atomic load operation)
to prevent the compiler from optimizing your parallel
code into oblivion. But volatile casts would not prevent
a weakly ordered CPU from loading the old value for “a”
from its cache, which means that this code also requires
the explicit memory barrier in “bar()”.

In short, both compilers and CPUs aggressively apply
code-reordering optimizations, so you must clearly com-
municate your constraints using the compiler directives
and memory barriers provided for this purpose. ❑

Quick Quiz C.15: p.459

Instead of all of this marking of invalidation-queue
entries and stalling of loads, why not simply force an
immediate flush of the invalidation queue?

Answer:
An immediate flush of the invalidation queue would do
the trick. Except that the common-case super-scalar CPU
is executing many instructions at once, and not necessarily
even in the expected order. So what would “immediate”
even mean? The answer is clearly “not much”.

Nevertheless, for simpler CPUs that execute instruc-
tions serially, flushing the invalidation queue might be a
reasonable implementation strategy. ❑

Quick Quiz C.16: p.459

But can’t full memory barriers impose global ordering?
After all, isn’t that needed to provide the ordering shown
in Listing 12.27?

Answer:
Sort of.

Note well that this litmus test has not one but two
full memory-barrier instructions, namely the two sync
instructions executed by P2 and P3.

It is the interaction of those two instructions that pro-
vides the global ordering, not just their individual execu-
tion. For example, each of those two sync instructions
might stall waiting for all CPUs to process their invali-
dation queues before allowing subsequent instructions to
execute.20 ❑

Quick Quiz C.17: p.460

Does the guarantee that each CPU sees its own memory
accesses in order also guarantee that each user-level

20 Real-life hardware of course applies many optimizations to mini-
mize the resulting stalls.

thread will see its own memory accesses in order? Why
or why not?

Answer:
No. Consider the case where a thread migrates from one
CPU to another, and where the destination CPU perceives
the source CPU’s recent memory operations out of order.
To preserve user-mode sanity, kernel hackers must use
memory barriers in the context-switch path. However,
the locking already required to safely do a context switch
should automatically provide the memory barriers needed
to cause the user-level task to see its own accesses in
order. That said, if you are designing a super-optimized
scheduler, either in the kernel or at user level, please keep
this scenario in mind! ❑

Quick Quiz C.18: p.460

Could this code be fixed by inserting a memory barrier
between CPU 1’s “while” and assignment to “c”? Why
or why not?

Answer:
No. Such a memory barrier would only force ordering
local to CPU 1. It would have no effect on the relative
ordering of CPU 0’s and CPU 1’s accesses, so the asser-
tion could still fail. However, all mainstream computer
systems provide one mechanism or another to provide
“transitivity”, which provides intuitive causal ordering: If
B saw the effects of A’s accesses, and C saw the effects
of B’s accesses, then C must also see the effects of A’s
accesses. In short, hardware designers have taken at least
a little pity on software developers. ❑

Quick Quiz C.19: p.461

Suppose that lines 3–5 for CPUs 1 and 2 in Listing C.3
are in an interrupt handler, and that the CPU 2’s line 9
runs at process level. In other words, the code in all
three columns of the table runs on the same CPU, but
the first two columns run in an interrupt handler, and
the third column runs at process level, so that the code
in third column can be interrupted by the code in the
first two columns. What changes, if any, are required
to enable the code to work correctly, in other words, to
prevent the assertion from firing?

Answer:
The assertion must ensure that the load of “e” precedes
that of “a”. In the Linux kernel, the barrier() primitive
may be used to accomplish this in much the same way

v2024.12.27a

E.20. WHY MEMORY BARRIERS? 593

that the memory barrier was used in the assertions in the
previous examples. For example, the assertion can be
modified as follows:

r1 = e;
barrier();
assert(r1 == 0 || a == 1);

No changes are needed to the code in the first two
columns, because interrupt handlers run atomically from
the perspective of the interrupted code. ❑

Quick Quiz C.20: p.461

If CPU 2 executed an assert(e==0||c==1) in the
example in Listing C.3, would this assert ever trigger?

Answer:
The result depends on whether the CPU supports “transi-
tivity”. In other words, CPU 0 stored to “e” after seeing
CPU 1’s store to “c”, with a memory barrier between
CPU 0’s load from “c” and store to “e”. If some other
CPU sees CPU 0’s store to “e”, is it also guaranteed to
see CPU 1’s store?

All CPUs I am aware of claim to provide transitivity. ❑

v2024.12.27a

594 APPENDIX E. ANSWERS TO QUICK QUIZZES

v2024.12.27a

Dictionaries are inherently circular in nature.

Self Reference in word definitions, David Levary et al.Glossary

Acquire Load: A read from memory that has acquire
semantics. Normal use cases pair an acquire load
with a release store, in which case if the load returns
the value stored, then all code executed by the loading
CPU after that acquire load will see the effects of
all memory-reference instructions executed by the
storing CPU prior to that release store. Acquiring a
lock provides similar memory-ordering semantics,
hence the “acquire” in “acquire load”. (See also
“memory barrier” and “release store”.)

Address dependency: The value returned by a load in-
struction is used to compute a later memory-reference
instruction’s address. Address dependencies provide
weak memory ordering as described in Section 15.3.3.
However, because compilers do not understand them,
address dependencies are fragile, so please pay close
attention to the potential difficulties discussed in
Section 15.4.2.

Amdahl’s Law: If sufficient numbers of CPUs are used
to run a job that has both a sequential portion and a
concurrent portion, performance and scalability will
be limited by the overhead of the sequential portion.

Associativity: The number of cache lines that can be held
simultaneously in a given cache, when all of these
cache lines hash identically in that cache. A cache
that could hold four cache lines for each possible hash
value would be termed a “four-way set-associative”
cache, while a cache that could hold only one cache
line for each possible hash value would be termed a
“direct-mapped” cache. A cache whose associativity
was equal to its capacity would be termed a “fully
associative” cache. Fully associative caches have the
advantage of eliminating associativity misses, but,
due to hardware limitations, fully associative caches
are normally quite limited in size. The associativity
of the large caches found on modern microprocessors
typically range from two-way to eight-way.

Associativity Miss: A cache miss incurred because the
corresponding CPU has recently accessed more data
hashing to a given set of the cache than will fit in
that set. Fully associative caches are not subject
to associativity misses (or, equivalently, in fully
associative caches, associativity and capacity misses
are identical).

Atomic: An operation is considered “atomic” if it is
not possible to observe any intermediate state. For
example, on most CPUs, a store to a properly aligned
pointer is atomic, because other CPUs will see either
the old value or the new value, but are guaranteed
not to see some mixed value containing some pieces
of the new and old values.

Atomic Read-Modify-Write Operation: An atomic op-
eration that both reads and writes memory is con-
sidered an atomic read-modify-write operation, or
atomic RMW operation for short. Although the
value written usually depends on the value read,
atomic_xchg() is the exception that proves this
rule.

Bounded Wait Free: A forward-progress guarantee in
which every thread makes progress within a specific
finite period of time, the specific time being the
bound.

Bounded Population-Oblivious Wait Free: A forward-
progress guarantee in which every thread makes
progress within a specific finite period of time, the
specific time being the bound, where this bound is
independent of the number of threads.

Cache: In modern computer systems, CPUs have caches
in which to hold frequently used data. These caches
can be thought of as hardware hash tables with very
simple hash functions, but in which each hash bucket
(termed a “set” by hardware types) can hold only a
limited number of data items. The number of data
items that can be held by each of a cache’s hash

595

v2024.12.27a

596 GLOSSARY

buckets is termed the cache’s “associativity”. These
data items are normally called “cache lines”, which
can be thought of a fixed-length blocks of data that
circulate among the CPUs and memory.

Cache Coherence: A property of most modern SMP
machines where all CPUs will observe a sequence
of values for a given variable that is consistent with
at least one global order of values for that variable.
Cache coherence also guarantees that at the end of
a group of stores to a given variable, all CPUs will
agree on the final value for that variable. Note that
cache coherence applies only to the series of values
taken on by a single variable. In contrast, the memory
consistency model for a given machine describes the
order in which loads and stores to groups of variables
will appear to occur. See Section 15.3.6 for more
information.

Cache-Coherence Protocol: A communications proto-
col, normally implemented in hardware, that enforces
memory consistency and ordering, preventing dif-
ferent CPUs from seeing inconsistent views of data
held in their caches.

Cache Geometry: The size and associativity of a cache is
termed its geometry. Each cache may be thought of
as a two-dimensional array, with rows of cache lines
(“sets”) that have the same hash value, and columns
of cache lines (“ways”) in which every cache line
has a different hash value. The associativity of a
given cache is its number of columns (hence the
name “way”—a two-way set-associative cache has
two “ways”), and the size of the cache is its number
of rows multiplied by its number of columns.

Cache Line: (1) The unit of data that circulates among
the CPUs and memory, usually a moderate power of
two in size. Typical cache-line sizes range from 16
to 256 bytes.
(2) A physical location in a CPU cache capable of
holding one cache-line unit of data.
(3) A physical location in memory capable of holding
one cache-line unit of data, but that it also aligned
on a cache-line boundary. For example, the address
of the first word of a cache line in memory will end
in 0x00 on systems with 256-byte cache lines.

Cache Miss: A cache miss occurs when data needed
by the CPU is not in that CPU’s cache. The data
might be missing because of a number of reasons,

including: (1) This CPU has never accessed the data
before (“warm-up” miss), (2) This CPU has recently
accessed more data than would fit in its cache, so that
some of the older data had to be removed (“capacity”
miss), (3) This CPU has recently accessed more data
in a given set1 than that set could hold (“associativity”
miss), (4) Some other CPU has written to the data
(or some other data in the same cache line) since
this CPU has accessed it (“communication” miss), or
(5) This CPU attempted to write to a cache line that
is currently read-only, possibly due to that line being
replicated in other CPUs’ caches (“write” miss). Note
that cache misses can be split into multiple partially
overlapping categories, for example, read misses vs.
write misses as opposed to the above categorization.

Capacity Miss: A cache miss incurred because the corre-
sponding CPU has recently accessed more data than
will fit into the cache.

CAS: Compare-and-swap operation, which is an atomic
operation that takes a pointer, and old value, and
a new value. If the pointed-to value is equal to
the old value, it is atomically replaced with the
new value. There is some variety in CAS API.
One variation returns the actual pointed-to value,
so that the caller compares the CAS return value to
the specified old value, with equality indicating a
successful CAS operation. Another variation returns
a boolean success indication, in which case a pointer
to the old value may be passed in, and if so, the old
value is updated in the CAS failure case.

Clash Free: A forward-progress guarantee in which, in
the absence of contention, at least one thread makes
progress within a finite period of time.

Code Locking: A simple locking design in which a
“global lock” is used to protect a set of critical sections,
so that access by a given thread to that set is granted
or denied based only on the set of threads currently
occupying the set of critical sections, not based on
what data the thread intends to access. The scalability
of a code-locked program is limited by the code;
increasing the size of the data set will normally not
increase scalability (in fact, will typically decrease
scalability by increasing “lock contention”). Contrast
with “data locking”.

1 In hardware-cache terminology, the word “set” is used in the same
way that the word “bucket” is used when discussing software caches.

v2024.12.27a

597

Combinatorial Explosion: Denotes the exponential in-
crease in executions that formal-verification tools
must analyze as problem size increases.

Combinatorial Implosion: Denotes the exponential de-
crease in executions that formal-verification tools
must analyze when a given code fragment is parti-
tioned.

Communication Miss: A cache miss incurred because
some other CPU has written to the cache line since
the last time this CPU accessed it.

Concurrent: In this book, a synonym of parallel. Please
see Appendix A.6 on page 431 for a discussion of
the recent distinction between these two terms.

Control dependency: The value returned by a load in-
struction is used to determine whether or not a later
store instruction is executed. Control dependen-
cies provide weak memory ordering as described
in Section 15.3.5. However, because compilers do
not understand them, control dependencies are ex-
ceedingly fragile, so please avoid using them. If
severe performance requirements mean that you ab-
solutely must use control dependencies, please care-
fully consider the potential calamities discussed in
Section 15.4.3. Also, please think carefully about
alternative approaches that might permit you to meet
your performance requirements without use of con-
trol dependencies.

Critical Section: A section of code guarded by some
synchronization mechanism, so that its execution
constrained by that primitive. For example, if a set
of critical sections are guarded by the same global
lock, then only one of those critical sections may be
executing at a given time. If a thread is executing in
one such critical section, any other threads must wait
until the first thread completes before executing any
of the critical sections in the set.

Data dependency: The value returned by a load instruc-
tion is used to compute the value stored by a later
store instruction. Data dependencies provide weak
memory ordering as described in Section 15.3.4.
However, because compilers do not understand them,
data dependencies are fragile, so please pay close
attention to the potential difficulties discussed in
Section 15.4.2.

Data Locking: A scalable locking design in which each
instance of a given data structure has its own lock. If
each thread is using a different instance of the data
structure, then all of the threads may be executing
in the set of critical sections simultaneously. Data
locking has the advantage of automatically scaling
to increasing numbers of CPUs as the number of in-
stances of data grows. Contrast with “code locking”.

Data Race: A race condition in which several CPUs or
threads access a variable concurrently, and in which
at least one of those accesses is a store and at least
one of those accesses is a plain access. It is important
to note that while the presence of data races often
indicates the presence of bugs, the absence of data
races in no way implies the absence of bugs. (See
“Plain access” and “Race condition”.)

Deadlock: A failure mode in which each of several
threads is unable to make progress until some other
thread makes progress. For example, if two threads
acquire a pair of locks in opposite orders, dead-
lock can result. More information is provided in
Section 7.1.1.

Deadlock Free: A forward-progress guarantee in which,
in the absence of failures, at least one thread makes
progress within a finite period of time.

Direct-Mapped Cache: A cache with only one way, so
that it may hold only one cache line with a given
hash value.

Efficiency: A measure of effectiveness normally ex-
pressed as a ratio of some metric actually achieved to
some maximum value. The maximum value might
be a theoretical maximum, but in parallel program-
ming is often based on the corresponding measured
single-threaded metric.

Embarrassingly Parallel: A problem or algorithm where
adding threads does not significantly increase the
overall cost of the computation, resulting in linear
speedups as threads are added (assuming sufficient
CPUs are available).

Energy Efficiency: Shorthand for “energy-efficient use”
in which the goal is to carry out a given computation
with reduced energy consumption. Sublinear scala-
bility can be an obstacle to energy-efficient use of a
multicore system.

v2024.12.27a

598 GLOSSARY

Epoch-Based Reclamation (EBR): An RCU implemen-
tation style put forward by Keir Fraser [Fra03, Fra04,
FH07].

Existence Guarantee: An existence guarantee is pro-
vided by a synchronization mechanism that prevents
a given dynamically allocated object from being
freed for the duration of that guarantee. For example,
RCU provides existence guarantees for the duration
of RCU read-side critical sections. A similar but
strictly weaker guarantee is provided by type-safe
memory.

Exclusive Lock: An exclusive lock is a mutual-exclusion
mechanism that permits only one thread at a time
into the set of critical sections guarded by that lock.

False Sharing: If two CPUs each frequently write to one
of a pair of data items, but the pair of data items
are located in the same cache line, this cache line
will be repeatedly invalidated, “ping-ponging” back
and forth between the two CPUs’ caches. This is
a common cause of “cache thrashing”, also called
“cacheline bouncing” (the latter most commonly in the
Linux community). False sharing can dramatically
reduce both performance and scalability.

Forward-Progress Guarantee: Algorithms or programs
that guarantee that execution will progress at some
rate under specified conditions. Academic forward-
progress guarantees are grouped into a formal hi-
erarchy shown in Section 14.2. A wide variety of
practical forward-progress guarantees are provided
by real-time systems, as discussed in Section 14.3.

Fragmentation: A memory pool that has a large amount
of unused memory, but not laid out to permit satisfy-
ing a relatively small request is said to be fragmented.
External fragmentation occurs when the space is
divided up into small fragments lying between allo-
cated blocks of memory, while internal fragmentation
occurs when specific requests or types of requests
have been allotted more memory than they actually
requested.

Fully Associative Cache: A fully associative cache con-
tains only one set, so that it can hold any subset of
memory that fits within its capacity.

Grace Period: A grace period is any contiguous time
interval such that any RCU read-side critical section

that began before the start of that interval has com-
pleted before the end of that same interval. Many
RCU implementations define a grace period to be a
time interval during which each thread has passed
through at least one quiescent state. Since RCU
read-side critical sections by definition cannot con-
tain quiescent states, these two definitions are almost
always interchangeable.

Hardware Transactional Memory (HTM): A
transactional-memory system based on hardware
instructions provided for this purpose, as discussed
in Section 17.3. (See “Transactional memory”.)

Hazard Pointer: A scalable counterpart to a reference
counter in which an object’s reference count is repre-
sented implicitly by a count of the number of special
hazard pointers referencing that object.

Heisenbug: A timing-sensitive bug that disappears from
sight when you add print statements or tracing in an
attempt to track it down.

Hot Spot: Data structure that is very heavily used, result-
ing in high levels of contention on the corresponding
lock. One example of this situation would be a hash
table with a poorly chosen hash function.

Humiliatingly Parallel: A problem or algorithm where
adding threads significantly decreases the overall
cost of the computation, resulting in large superlinear
speedups as threads are added (assuming sufficient
CPUs are available).

Immutable: In this book, a synonym for read-mostly.

Invalidation: When a CPU wishes to write to a data
item, it must first ensure that this data item is not
present in any other CPUs’ cache. If necessary, the
item is removed from the other CPUs’ caches via
“invalidation” messages from the writing CPUs to
any CPUs having a copy in their caches.

IPI: Inter-processor interrupt, which is an interrupt sent
from one CPU to another. IPIs are used heavily in
the Linux kernel, for example, within the scheduler
to alert CPUs that a high-priority process is now
runnable.

IRQ: Interrupt request, often used as an abbreviation for
“interrupt” within the Linux kernel community, as in
“irq handler”.

v2024.12.27a

599

Latency: The wall-clock time required for a given opera-
tion to complete.

Linearizable: A sequence of operations is “linearizable”
if there is at least one global ordering of the sequence
that is consistent with the observations of all CPUs
and/or threads. Linearizability is much prized by
many researchers, but less useful in practice than one
might expect [HKLP12].

Livelock: A failure mode in which each of several threads
is able to execute, but in which a repeating series of
failed operations prevents any of the threads from
making any useful forward progress. For example,
incorrect use of conditional locking (for example,
spin_trylock() in the Linux kernel) can result
in livelock. More information is provided in Sec-
tion 7.1.2.

Lock: A software abstraction that can be used to guard
critical sections, as such, an example of a “mutual
exclusion mechanism”. An “exclusive lock” permits
only one thread at a time into the set of critical
sections guarded by that lock, while a “reader-writer
lock” permits any number of reading threads, or but
one writing thread, into the set of critical sections
guarded by that lock. (Just to be clear, the presence
of a writer thread in any of a given reader-writer
lock’s critical sections will prevent any reader from
entering any of that lock’s critical sections and vice
versa.)

Lock Contention: A lock is said to be suffering con-
tention when it is being used so heavily that there is
often a CPU waiting on it. Reducing lock contention
is often a concern when designing parallel algorithms
and when implementing parallel programs.

Lock Free: A forward-progress guarantee in which at
least one thread makes progress within a finite period
of time.

Marked Access: A source-code memory access that uses
a special function or macro, such as READ_ONCE(),
WRITE_ONCE(), atomic_inc(), and so on, in order
to protect that access from compiler and/or hardware
optimizations. In contrast, a plain access simply
mentions the name of the object being accessed,
so that in the following, line 2 is the plain-access
equivalent of line 1:

1 WRITE_ONCE(a, READ_ONCE(b) + READ_ONCE(c));
2 a = b + c;

Memory: From the viewpoint of memory models, the
main memory, caches, and store buffers in which
values might be stored. However, this term is often
used to denote the main memory itself, excluding
caches and store buffers.

Memory Barrier: A compiler directive that might also
include a special memory-barrier instruction. The
purpose of a memory barrier is to order memory-
reference instructions that executed before the mem-
ory barrier to precede those that will execute follow-
ing that memory barrier. (See also “read memory
barrier” and “write memory barrier”.)

Memory Consistency: A set of properties that impose
constraints on the order in which accesses to groups
of variables appear to occur. Memory consistency
models range from sequential consistency, a very con-
straining model popular in academic circles, through
process consistency, release consistency, and weak
consistency.

MESI Protocol: The cache-coherence protocol featur-
ing modified, exclusive, shared, and invalid (MESI)
states, so that this protocol is named after the states
that the cache lines in a given cache can take on. A
modified line has been recently written to by this
CPU, and is the sole representative of the current
value of the corresponding memory location. An
exclusive cache line has not been written to, but this
CPU has the right to write to it at any time, as the
line is guaranteed not to be replicated into any other
CPU’s cache (though the corresponding location in
main memory is up to date). A shared cache line is
(or might be) replicated in some other CPUs’ cache,
meaning that this CPU must interact with those other
CPUs before writing to this cache line. An invalid
cache line contains no value, instead representing
“empty space” in the cache into which data from
memory might be loaded.

Moore’s Law: A 1965 empirical projection by Gordon
Moore that transistor density increases exponentially
over time [Moo65].

Mutual-Exclusion Mechanism: A software abstraction
that regulates threads’ access to “critical sections”
and corresponding data.

NMI: Non-maskable interrupt. As the name indicates,
this is an extremely high-priority interrupt that cannot
be masked. These are used for hardware-specific

v2024.12.27a

600 GLOSSARY

purposes such as profiling. The advantage of using
NMIs for profiling is that it allows you to profile code
that runs with interrupts disabled.

Non-Blocking: A group of academic forward-progress
guarantees that includes bounded population-
oblivious wait free, bounded wait free, wait free,
lock free, obstruction free, clash free, starvation
free, and deadlock free. See Section 14.2 for more
information.

Non-Blocking Synchronization (NBS): The use of
algorithms, mechanisms, or techniques that provide
non-blocking forward-progress guarantees. NBS is
often used in a more restrictive sense of providing one
of the stronger forward-progress guarantees, usually
wait free or lock free, but sometimes also obstruction
free. (See “Non-blocking”.)

NUCA: Non-uniform cache architecture, where groups
of CPUs share caches and/or store buffers. CPUs
in a group can therefore exchange cache lines with
each other much more quickly than they can with
CPUs in other groups. Systems comprised of CPUs
with hardware threads will generally have a NUCA
architecture.

NUMA: Non-uniform memory architecture, where mem-
ory is split into banks and each such bank is “close” to
a group of CPUs, the group being termed a “NUMA
node”. An example NUMA machine is Sequent’s
NUMA-Q system, where each group of four CPUs
had a bank of memory nearby. The CPUs in a given
group can access their memory much more quickly
than another group’s memory.

NUMA Node: A group of closely placed CPUs and
associated memory within a larger NUMA machines.

Obstruction Free: A forward-progress guarantee in
which, in the absence of contention, every thread
makes progress within a finite period of time.

Overhead: Operations that must be executed, but which
do not contribute directly to the work that must be
accomplished. For example, lock acquisition and
release is normally considered to be overhead, and
specifically to be synchronization overhead.

Parallel: In this book, a synonym of concurrent. Please
see Appendix A.6 on page 431 for a discussion of
the recent distinction between these two terms.

Performance: Rate at which work is done, expressed as
work per unit time. If this work is fully serialized,
then the performance will be the reciprocal of the
mean latency of the work items.

Pipelined CPU: A CPU with a pipeline, which is an
internal flow of instructions internal to the CPU that
is in some way similar to an assembly line, with
many of the same advantages and disadvantages. In
the 1960s through the early 1980s, pipelined CPUs
were the province of supercomputers, but started
appearing in microprocessors (such as the 80486) in
the late 1980s.

Plain Access: A source-code memory access that simply
mentions the name of the object being accessed. (See
“Marked access”.)

Process Consistency: A memory-consistency model in
which each CPU’s stores appear to occur in program
order, but in which different CPUs might see accesses
from more than one CPU as occurring in different
orders.

Program Order: The order in which a given thread’s
instructions would be executed by a now-mythical “in-
order” CPU that completely executed each instruction
before proceeding to the next instruction. (The reason
such CPUs are now the stuff of ancient myths and
legends is that they were extremely slow. These
dinosaurs were one of the many victims of Moore’s-
Law-driven increases in CPU clock frequency. Some
claim that these beasts will roam the earth once again,
others vehemently disagree.)

Quiescent State: In RCU, a point in the code where there
can be no references held to RCU-protected data
structures, which is normally any point outside of an
RCU read-side critical section. Any interval of time
during which all threads pass through at least one
quiescent state each is termed a “grace period”.

Quiescent-State-Based Reclamation (QSBR): An
RCU implementation style characterized by ex-
plicit quiescent states. In QSBR implementa-
tions, read-side markers (rcu_read_lock() and
rcu_read_unlock() in the Linux kernel) are no-
ops [MS98a, SM95]. Hooks in other parts of the
software (for example, the Linux-kernel scheduler)
provide the quiescent states.

v2024.12.27a

601

Race Condition: Any situation where multiple CPUs or
threads can interact, though this term is often used
in cases where such interaction is undesirable. (See
“Data race”.)

RCU-Protected Data: A block of dynamically allocated
memory whose freeing will be deferred such that
an RCU grace period will elapse between the time
that there were no longer any RCU-reader-accessible
pointers to that block and the time that that block is
freed. This ensures that no RCU readers will have
access to that block at the time that it is freed.

RCU-Protected Pointer: A pointer to RCU-protected
data. Such pointers must be handled carefully, for ex-
ample, any reader that intends to dereference an RCU-
protected pointer must use rcu_dereference() (or
stronger) to load that pointer, and any updater must
use rcu_assign_pointer() (or stronger) to store
to that pointer. More information is provided in
Section 15.4.2.

RCU Read-Side Critical Section: A section of code
protected by RCU, for example, beginning with
rcu_read_lock() and ending with rcu_read_
unlock(). (See “Read-side critical section”.)

Read-Copy Update (RCU): A synchronization mech-
anism that can be thought of as a replacement for
reader-writer locking or reference counting. RCU
provides extremely low-overhead access for readers,
while writers incur additional overhead maintaining
old versions for the benefit of pre-existing readers.
Readers neither block nor spin, and thus cannot par-
ticipate in deadlocks, however, they also can see stale
data and can run concurrently with updates. RCU
is thus best-suited for read-mostly situations where
stale data can either be tolerated (as in routing tables)
or avoided (as in the Linux kernel’s System V IPC
implementation).

Read Memory Barrier: A memory barrier that is only
guaranteed to affect the ordering of load instructions,
that is, reads from memory. (See also “memory
barrier” and “write memory barrier”.)

Read Miss: A cache miss incurred because the corre-
sponding CPU attempted to either read from or write
to a cache line that is absent from its cache. Note that
cache lines are normally larger than machine words,
so a store instruction must read an entire cache line
in order to be able to write to a portion of it.

Read Mostly: Read-mostly data is (again, as the name im-
plies) rarely updated. However, it might be updated
at any time.

Read Only: Read-only data is, as the name implies, never
updated except by beginning-of-time initialization.
In this book, a synonym for immutable.

Read-Side Critical Section: A section of code guarded
by read-acquisition of some reader-writer synchro-
nization mechanism. For example, if one set of
critical sections are guarded by read-acquisition of a
given global reader-writer lock, while a second set
of critical section are guarded by write-acquisition
of that same reader-writer lock, then the first set of
critical sections will be the read-side critical sections
for that lock. Any number of threads may concur-
rently execute the read-side critical sections, but only
if no thread is executing one of the write-side critical
sections. (See also “RCU read-side critical section”.)

Reader-Writer Lock: A reader-writer lock is a mutual-
exclusion mechanism that permits any number of
reading threads, or but one writing thread, into the
set of critical sections guarded by that lock. Threads
attempting to write must wait until all pre-existing
reading threads release the lock, and, similarly, if
there is a pre-existing writer, any threads attempting
to write must wait for the writer to release the lock.
A key concern for reader-writer locks is “fairness”:
Can an unending stream of readers starve a writer or
vice versa?

Real Time: A situation in which getting the correct result
is not sufficient, but where this result must also be
obtained within a given amount of time.

Reference Count: A counter that tracks the number of
users of a given object or entity. Reference counters
provide existence guarantees and are sometimes used
to implement garbage collectors.

Release Store: A write to memory that has release se-
mantics. Normal use cases pair an acquire load with
a release store, in which case if the load returns the
value stored, then all code executed by the loading
CPU after that acquire load will see the effects of
all memory-reference instructions executed by the
storing CPU prior to that release store. Releasing a
lock provides similar memory-ordering semantics,
hence the “release” in “release store”. (See also
“acquire load” and “memory barrier”.)

v2024.12.27a

602 GLOSSARY

Scalability: A measure of how effectively a given system
is able to utilize additional resources. For paral-
lel computing, the additional resources are usually
additional CPUs.

Sequence Lock: A reader-writer synchronization mech-
anism in which readers retry their operations if a
writer was present.

Sequential Consistency: A memory-consistency model
where all memory references appear to occur in an
order consistent with a single global order, and where
each CPU’s memory references appear to all CPUs
to occur in program order.

Software Transactional Memory (HTM): A
transactional-memory system capable running on
computer systems without special hardware support.
(See “Transactional memory”.)

Starvation: A condition where at least one CPU or thread
is unable to make progress due to an unfortunate
series of resource-allocation decisions, as discussed
in Section 7.1.2. For example, in a multisocket
system, CPUs on one socket having privileged access
to the data structure implementing a given lock could
prevent CPUs on other sockets from ever acquiring
that lock.

Starvation Free: A forward-progress guarantee in which,
in the absence of failures, every thread makes
progress within a finite period of time.

Store Buffer: A small set of internal registers used by
a given CPU to record pending stores while the
corresponding cache lines are making their way to
that CPU. Also called “store queue”.

Store Forwarding: An arrangement where a given CPU
refers to its store buffer as well as its cache so as to
ensure that the software sees the memory operations
performed by this CPU as if they were carried out in
program order.

Superscalar CPU: A scalar (non-vector) CPU capable
of executing multiple instructions concurrently. This
is a step up from a pipelined CPU that executes
multiple instructions in an assembly-line fashion—in
a superscalar CPU, each stage of the pipeline would
be capable of handling more than one instruction.
For example, if the conditions were exactly right, the
Intel Pentium Pro CPU from the mid-1990s could

execute two (and sometimes three) instructions per
clock cycle. Thus, a 200 MHz Pentium Pro CPU
could “retire”, or complete the execution of, up to
400 million instructions per second.

Synchronization: Means for avoiding destructive inter-
actions among CPUs or threads. Synchronization
mechanisms include atomic RMW operations, mem-
ory barriers, locking, reference counting, hazard
pointers, sequence locking, RCU, non-blocking syn-
chronization, and transactional memory.

Teachable: A topic, concept, method, or mechanism that
teachers believe that they understand completely and
are therefore comfortable teaching.

Throughput: A performance metric featuring work items
completed per unit time.

Transactional Lock Elision (TLE): The use of transac-
tional memory to emulate locking. Synchronization
is instead carried out by conflicting accesses to the
data to be protected by the lock. In some cases,
this can increase performance because TLE avoids
contention on the lock word [PD11, Kle14, FIMR16,
PMDY20].

Transactional Memory (TM): A synchronization mech-
anism that gathers groups of memory accesses so
as to execute them atomically from the viewpoint of
transactions on other CPUs or threads, discussed in
Sections 17.2 and 17.3.

Type-Safe Memory: Type-safe memory [GC96] is pro-
vided by a synchronization mechanism that prevents
a given dynamically allocated object from chang-
ing to an incompatible type. Note that the object
might well be freed and then reallocated, but the
reallocated object is guaranteed to be of a compatible
type. Within the Linux kernel, type-safe memory
is provided within RCU read-side critical sections
for memory allocated from slabs marked with the
SLAB_TYPESAFE_BY_RCU flag. The strictly stronger
existence guarantee also prevents freeing of the pro-
tected object.

Unbounded Transactional Memory (UTM): A
transactional-memory system based on hardware
instructions provided for this purpose, but with spe-
cial hardware or software capabilities that allow
a given transaction to have a very large memory
footprint. Such a system would at least partially

v2024.12.27a

603

avoid HTM’s transaction-size limitations called out
in Section 17.3.2.1. (See “Hardware transactional
memory”.)

Unfairness: A condition where the progress of at least
one CPU or thread is impeded by an unfortunate
series of resource-allocation decisions, as discussed
in Section 7.1.2. Extreme levels of unfairness are
termed “starvation”.

Unteachable: A topic, concept, method, or mechanism
that the teacher does not understand well is therefore
uncomfortable teaching.

Vector CPU: A CPU that can apply a single instruction
to multiple items of data concurrently. In the 1960s
through the 1980s, only supercomputers had vector
capabilities, but the advent of MMX in x86 CPUs and
VMX in PowerPC CPUs brought vector processing
to the masses.

Wait Free: A forward-progress guarantee in which every
thread makes progress within a finite period of time.

Warm-up Miss: A cache miss incurred because the cor-
responding cache line never was in the corresponding
CPU’s cache. In a benchmark, warm-up misses can
be avoided during the measurement phase by warm-
ing the cache with a few pre-measurement-phase
iterations of the benchmark.

Write Memory Barrier: A memory barrier that is only
guaranteed to affect the ordering of store instructions,
that is, writes to memory. (See also “memory barrier”
and “read memory barrier”.)

Write Miss: A cache miss incurred because the corre-
sponding CPU attempted to write to a cache line that
is read-only, for example, due to that cache line being
replicated in other CPUs’ caches.

Write Mostly: Write-mostly data is (yet again, as the
name implies) frequently updated.

Write-Side Critical Section: A section of code guarded
by write-acquisition of some reader-writer synchro-
nization mechanism. For example, if one set of
critical sections are guarded by write-acquisition of
a given global reader-writer lock, while a second set
of critical section are guarded by read-acquisition of
that same reader-writer lock, then the first set of criti-
cal sections will be the write-side critical sections for

that lock. Only one thread may execute in the write-
side critical section at a time, and even then only if
there are no threads are executing concurrently in
any of the corresponding read-side critical sections.

v2024.12.27a

604 GLOSSARY

v2024.12.27a

Bibliography

[AA14] Maya Arbel and Hagit Attiya. Concurrent updates with RCU: Search tree
as an example. In Proceedings of the 2014 ACM Symposium on Principles
of Distributed Computing, PODC ’14, page 196–205, Paris, France, 2014.
ACM.

[AAKL06] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, and Charles E.
Leiserson. Unbounded transactional memory. IEEE Micro, pages 59–69,
January-February 2006.

[AB13] Samy Al Bahra. Nonblocking algorithms and scalable multicore programming.
Commun. ACM, 56(7):50–61, July 2013.

[ABD+97] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,
Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vande-
voorde, Carl A. Waldspurger, and William E. Weihl. Continuous profiling:
Where have all the cycles gone? In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pages 1–14, New York, NY, October 1997.

[ACA+18] A. Aljuhni, C. E. Chow, A. Aljaedi, S. Yusuf, and F. Torres-Reyes. Towards
understanding application performance and system behavior with the full
dynticks feature. In 2018 IEEE 8th Annual Computing and Communication
Workshop and Conference (CCWC), pages 394–401, 2018.

[ACHS13] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. Are lock-free concurrent
algorithms practically wait-free?, December 2013. ArXiv:1311.3200v2.

[ACMS03] Andrea Arcangeli, Mingming Cao, Paul E. McKenney, and Dipankar Sarma.
Using read-copy update techniques for System V IPC in the Linux 2.5 kernel.
In Proceedings of the 2003 USENIX Annual Technical Conference (FREENIX
Track), pages 297–310, San Antonio, Texas, USA, June 2003. USENIX
Association.

[Ada11] Andrew Adamatzky. Slime mould solves maze in one pass . . . assisted by
gradient of chemo-attractants, August 2011. arXiv:1108.4956.

[ADF+19] Jade Alglave, Will Deacon, Boqun Feng, David Howells, Daniel Lustig, Luc
Maranget, Paul E. McKenney, Andrea Parri, Nicholas Piggin, Alan Stern,
Akira Yokosawa, and Peter Zĳlstra. Who’s afraid of a big bad optimizing
compiler?, July 2019. Linux Weekly News.

[Adv02] Advanced Micro Devices. AMD x86-64 Architecture Programmer’s Manual
Volumes 1–5, 2002.

[AGH+11a] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M.
Michael, and Martin Vechev. Laws of order: Expensive synchronization in
concurrent algorithms cannot be eliminated. In 38th ACM SIGACT-SIGPLAN

605

https://dx.doi.org/10.1145/2611462.2611471
https://dx.doi.org/10.1145/2611462.2611471
https://dx.doi.org/10.1109/MM.2006.26
https://dx.doi.org/10.1145/2483852.2483866
https://dx.doi.org/10.1145/265924.265925
https://dx.doi.org/10.1145/265924.265925
https://dx.doi.org/10.1109/CCWC.2018.8301733
https://dx.doi.org/10.1109/CCWC.2018.8301733
https://dx.doi.org/10.1109/CCWC.2018.8301733
https://arxiv.org/abs/1311.3200v2
https://arxiv.org/abs/1311.3200v2
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli.pdf
https://arxiv.org/abs/1108.4956
https://arxiv.org/abs/1108.4956
https://lwn.net/Articles/793253/
https://lwn.net/Articles/793253/
https://dx.doi.org/10.1145/1926385.1926442
https://dx.doi.org/10.1145/1926385.1926442

v2024.12.27a

606 BIBLIOGRAPHY

Symposium on Principles of Programming Languages, pages 487–498, Austin,
TX, USA, 2011. ACM.

[AGH+11b] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M.
Michael, and Martin Vechev. Laws of order: Expensive synchronization in
concurrent algorithms cannot be eliminated. SIGPLAN Not., 46(1):487–498,
January 2011.

[AH22] Krzysztof R. Apt and Tony Hoare, editors. Edsger Wybe Dĳkstra: His
Life,Work, and Legacy, volume 45. Association for Computing Machinery,
New York, NY, USA, 1 edition, 2022.

[AHM09] Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-
access parallel implementations of transactional memory. In Proceedings
of the twenty-first annual symposium on Parallelism in algorithms and
architectures, SPAA ’09, pages 69–78, Calgary, AB, Canada, 2009. ACM.

[AHS+03] J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. Da Silva,
O. Krieger, M. A. Auslander, D. J. Edelsohn, B. Gamsa, G. R. Ganger,
P. McKenney, M. Ostrowski, B. Rosenburg, M. Stumm, and J. Xenidis.
Enabling autonomic behavior in systems software with hot swapping. IBM
Systems Journal, 42(1):60–76, January 2003.

[AKK+14] Dan Alistarh, Justin Kopinsky, Petr Kuznetsov, Srivatsan Ravi, and Nir Shavit.
Inherent limitations of hybrid transactional memory. CoRR, abs/1405.5689,
2014.

[AKNT13] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig.
Software verification for weak memory via program transformation. In
Proceedings of the 22nd European conference on Programming Languages
and Systems, ESOP’13, pages 512–532, Rome, Italy, 2013. Springer-Verlag.

[AKT13] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for
efficient Bounded Model Checking of concurrent software. In Computer
Aided Verification (CAV), volume 8044 of LNCS, pages 141–157. Springer,
2013.

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford University
Press, New York, 1979.

[Alg13] Jade Alglave. Weakness is a virtue. In (EC)2 2013: 6th International
Workshop on Exploiting Concurrency Efficiently and Correctly, page 3, 2013.

[AM15] Maya Arbel and Adam Morrison. Predicate RCU: An RCU for scalable
concurrent updates. SIGPLAN Not., 50(8):21–30, January 2015.

[Amd67] Gene Amdahl. Validity of the single processor approach to achieving large-
scale computing capabilities. In AFIPS Conference Proceedings, AFIPS ’67
(Spring), pages 483–485, Atlantic City, New Jersey, 1967. Association for
Computing Machinery.

[AMD20] AMD. Professional compute products - GPUOpen, March 2020. https:
//gpuopen.com/professional-compute/.

[AMM+17a] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan
Stern. A formal kernel memory-ordering model (part 1), April 2017. https:
//lwn.net/Articles/718628/.

https://dx.doi.org/10.1145/1925844.1926442
https://dx.doi.org/10.1145/1925844.1926442
https://dx.doi.org/10.1145/1583991.1584015
https://dx.doi.org/10.1145/1583991.1584015
https://dx.doi.org/10.1147/sj.421.0060
http://arxiv.org/abs/1405.5689
https://dx.doi.org/10.1007/978-3-642-37036-6_28
https://dx.doi.org/10.1007/978-3-642-39799-8_9
https://dx.doi.org/10.1007/978-3-642-39799-8_9
http://www0.cs.ucl.ac.uk/staff/j.alglave/papers/ec213.pdf
https://dx.doi.org/10.1145/2858788.2688518
https://dx.doi.org/10.1145/2858788.2688518
https://dx.doi.org/10.1145/1465482.1465560
https://dx.doi.org/10.1145/1465482.1465560
https://gpuopen.com/professional-compute/
https://gpuopen.com/professional-compute/
https://lwn.net/Articles/718628/
https://lwn.net/Articles/718628/

v2024.12.27a

BIBLIOGRAPHY 607

[AMM+17b] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan
Stern. A formal kernel memory-ordering model (part 2), April 2017. https:
//lwn.net/Articles/720550/.

[AMM+18] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern.
Frightening small children and disconcerting grown-ups: Concurrency in the
Linux kernel. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’18, pages 405–418, Williamsburg, VA, USA, 2018. ACM.

[AMP+11] Jade Alglave, Luc Maranget, Pankaj Pawan, Susmit Sarkar, Peter Sewell, Derek
Williams, and Francesco Zappa Nardelli. PPCMEM/ARMMEM: A tool for
exploring the POWER and ARM memory models, June 2011. https://www.
cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Model-
ling, simulation, testing, and data-mining for weak memory. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, pages 40–40, Edinburgh, United Kingdom,
2014. ACM.

[And90] T. E. Anderson. The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
1(1):6–16, January 1990.

[And91] Gregory R. Andrews. Concurrent Programming, Principles, and Practices.
Benjamin Cummins, 1991.

[And19] Jim Anderson. Software transactional memory for real-time systems, August
2019. https://www.cs.unc.edu/~anderson/projects/rtstm.html.

[And23] Daniel Anderson. Lock-free atomic shared pointers without a split reference
count? It can be done!, October 2023. CPPCON https://www.youtube.
com/watch?v=lNPZV9Iqo3U.

[ARM10] ARM Limited. ARM Architecture Reference Manual: ARMv7-A and ARMv7-R
Edition, 2010.

[ARM17] ARM Limited. ARM Architecture Reference Manual (ARMv8, for ARMv8-A
architecture profile), 2017.

[Ash15] Mike Ash. Concurrent memory deallocation in the objective-c runtime, May
2015. mikeash.com: just this guy, you know?

[ATC+11] Ege Akpinar, Sasa Tomic, Adrian Cristal, Osman Unsal, and Mateo Valero. A
comprehensive study of conflict resolution policies in hardware transactional
memory. In TRANSACT 2011, New Orleans, LA, USA, June 2011. ACM
SIGPLAN.

[ATS09] Ali-Reza Adl-Tabatabai and Tatiana Shpeisman. Draft specification of transac-
tional language constructs for C++, August 2009. URL: https://software.
intel.com/sites/default/files/ee/47/21569 [broken as of July
2023].

[ATSG12] Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, and Justin Gottschlich. Draft
specification of transactional language constructs for C++ version 1.1, Febru-
ary 2012. URL: https://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1613.pdf.

https://lwn.net/Articles/720550/
https://lwn.net/Articles/720550/
https://dx.doi.org/10.1145/3173162.3177156
https://dx.doi.org/10.1145/3173162.3177156
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
https://dx.doi.org/10.1145/2594291.2594347
https://dx.doi.org/10.1145/2594291.2594347
https://dx.doi.org/10.1109/71.80120
https://dx.doi.org/10.1109/71.80120
https://www.cs.unc.edu/~anderson/projects/rtstm.html
https://www.youtube.com/watch?v=lNPZV9Iqo3U
https://www.youtube.com/watch?v=lNPZV9Iqo3U
https://www.mikeash.com/pyblog/friday-qa-2015-05-29-concurrent-memory-deallocation-in-the-objective-c-runtime.html
http://www.cs.purdue.edu/transact11/web/papers/Akpinar.pdf
http://www.cs.purdue.edu/transact11/web/papers/Akpinar.pdf
http://www.cs.purdue.edu/transact11/web/papers/Akpinar.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1613.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1613.pdf

v2024.12.27a

608 BIBLIOGRAPHY

[Att10] Hagit Attiya. The inherent complexity of transactional memory and what to
do about it. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, PODC ’10, pages 1–5, Zurich,
Switzerland, 2010. ACM.

[Aur08] Valerie Aurora. KHB: Synthesis: an efficient implementation of fundamental
operating systems services, February 2008. https://lwn.net/Articles/
270081/.

[BA01] Jeff Bonwick and Jonathan Adams. Magazines and vmem: Extending the
slab allocator to many CPUs and arbitrary resources. In USENIX Annual
Technical Conference, General Track 2001, pages 15–33, 2001.

[Bah11a] Samy Al Bahra. ck_epoch: Support per-object destructors, Oc-
tober 2011. https://github.com/concurrencykit/ck/commit/
10ffb2e6f1737a30e2dcf3862d105ad45fcd60a4.

[Bah11b] Samy Al Bahra. ck_hp.c, February 2011. Hazard pointers: https://
github.com/concurrencykit/ck/blob/master/src/ck_hp.c.

[Bah11c] Samy Al Bahra. ck_sequence.h, February 2011. Sequence
locking: https://github.com/concurrencykit/ck/blob/master/
include/ck_sequence.h.

[Bas18] JF Bastien. P1152R0: Deprecating volatile, October 2018. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html.

[BBC+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A
few billion lines of code later: Using static analysis to find bugs in the real
world. Commun. ACM, 53(2):66–75, February 2010.

[BCR03] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collector
with low overhead and consistent utilization. SIGPLAN Not., 38(1):285–298,
2003.

[BD13] Paolo Bonzini and Mike Day. RCU implementation for Qemu, August
2013. https://lists.gnu.org/archive/html/qemu-devel/2013-
08/msg02055.html.

[BD14] Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-thin-
air results. In Proceedings of the Workshop on Memory Systems Performance
and Correctness, MSPC ’14, pages 7:1–7:6, Edinburgh, United Kingdom,
2014. ACM.

[Bec11] Pete Becker. Working draft, standard for programming language C++,
February 2011. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2011/n3242.pdf.

[BG87] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Inc., 1987.
[BGHZ16] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi. Fast

and robust memory reclamation for concurrent data structures. In Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’16, pages 349–359, Pacific Grove, California, USA, 2016. ACM.

[BGOS18] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey.
Racerd: Compositional static race detection. Proc. ACM Program. Lang.,
2(OOPSLA), October 2018.

https://dx.doi.org/10.1145/1835698.1835699
https://dx.doi.org/10.1145/1835698.1835699
https://lwn.net/Articles/270081/
https://lwn.net/Articles/270081/
https://www.usenix.org/legacy/event/usenix01/full_papers/bonwick/bonwick.pdf
https://www.usenix.org/legacy/event/usenix01/full_papers/bonwick/bonwick.pdf
https://github.com/concurrencykit/ck/commit/10ffb2e6f1737a30e2dcf3862d105ad45fcd60a4
https://github.com/concurrencykit/ck/commit/10ffb2e6f1737a30e2dcf3862d105ad45fcd60a4
https://github.com/concurrencykit/ck/blob/master/src/ck_hp.c
https://github.com/concurrencykit/ck/blob/master/src/ck_hp.c
https://github.com/concurrencykit/ck/blob/master/include/ck_sequence.h
https://github.com/concurrencykit/ck/blob/master/include/ck_sequence.h
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html
https://dx.doi.org/10.1145/1646353.1646374
https://dx.doi.org/10.1145/1646353.1646374
https://dx.doi.org/10.1145/1646353.1646374
https://dx.doi.org/10.1145/640128.604155
https://dx.doi.org/10.1145/640128.604155
https://lists.gnu.org/archive/html/qemu-devel/2013-08/msg02055.html
https://lists.gnu.org/archive/html/qemu-devel/2013-08/msg02055.html
https://dx.doi.org/10.1145/2618128.2618134
https://dx.doi.org/10.1145/2618128.2618134
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
https://dx.doi.org/10.1145/2935764.2935790
https://dx.doi.org/10.1145/2935764.2935790
https://dx.doi.org/10.1145/3276514

v2024.12.27a

BIBLIOGRAPHY 609

[BGV17] Hans-J. Boehm, Olivier Giroux, and Viktor Vafeiades. P0668r1: Revising
the C++ memory model, July 2017. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2017/p0668r1.html.

[Bha14] Srivatsa S. Bhat. percpu_rwlock: Implement the core design of per-CPU
reader-writer locks, February 2014. https://patchwork.kernel.org/
patch/2157401/.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison Wesley Publishing
Company, 1987.

[BHS07] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented
Software Architecture Volume 4: A Pattern Language for Distributed Com-
puting. Wiley, Chichester, West Sussex, England, 2007.

[Bir89] Andrew D. Birrell. An Introduction to Programming with Threads. Digital
Systems Research Center, January 1989.

[BJ12] Rex Black and Capers Jones. Economics of software quality: An interview
with Capers Jones, part 1 of 2 (podcast transcript), January 2012. https:
//www.informit.com/articles/article.aspx?p=1824791.

[BK85] Bob Beck and Bob Kasten. VLSI assist in building a multiprocessor UNIX
system. In USENIX Conference Proceedings, pages 255–275, Portland, OR,
June 1985. USENIX Association.

[BLM05] C. Blundell, E. C. Lewis, and M. Martin. Deconstructing trans-
actional semantics: The subtleties of atomicity. In Annual Work-
shop on Duplicating, Deconstructing, and Debunking (WDDD), June
2005. Available: http://acg.cis.upenn.edu/papers/wddd05_
atomic_semantics.pdf [Viewed February 28, 2021].

[BLM06] C. Blundell, E. C. Lewis, and M. Martin. Subtleties of transac-
tional memory and atomicity semantics. Computer Architecture Letters,
5(2), 2006. Available: http://acg.cis.upenn.edu/papers/cal06_
atomic_semantics.pdf [Viewed February 28, 2021].

[BM18] JF Bastien and Paul E. McKenney. P0750r1: Consume, February
2018. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2018/p0750r1.html.

[BMMM05] Luke Browning, Thomas Mathews, Paul E. McKenney, and James Moody.
Apparatus, method, and computer program product for converting simple locks
in a multiprocessor system. US Patent 6,842,809, Assigned to International
Business Machines Corporation, Washington, DC, January 2005.

[BMN+15] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod,
and Peter Sewell. The problem of programming language concurrency
semantics. In Jan Vitek, editor, Programming Languages and Systems,
volume 9032 of Lecture Notes in Computer Science, pages 283–307. Springer
Berlin Heidelberg, 2015.

[BMP08] R. F. Berry, P. E. McKenney, and F. N. Parr. Responsive systems: An
introduction. IBM Systems Journal, 47(2):197–206, April 2008.

[Boe05] Hans-J. Boehm. Threads cannot be implemented as a library. SIGPLAN Not.,
40(6):261–268, June 2005.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0668r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0668r1.html
https://patchwork.kernel.org/patch/2157401/
https://patchwork.kernel.org/patch/2157401/
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-35.pdf
https://www.informit.com/articles/article.aspx?p=1824791
https://www.informit.com/articles/article.aspx?p=1824791
http://acg.cis.upenn.edu/papers/wddd05_atomic_semantics.pdf
http://acg.cis.upenn.edu/papers/wddd05_atomic_semantics.pdf
https://dx.doi.org/10.1109/L-CA.2006.18
https://dx.doi.org/10.1109/L-CA.2006.18
http://acg.cis.upenn.edu/papers/cal06_atomic_semantics.pdf
http://acg.cis.upenn.edu/papers/cal06_atomic_semantics.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0750r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0750r1.html
https://www.google.com/patents/US6842809
https://www.google.com/patents/US6842809
https://dx.doi.org/10.1007/978-3-662-46669-8_12
https://dx.doi.org/10.1007/978-3-662-46669-8_12
https://dx.doi.org/10.1147/sj.472.0197
https://dx.doi.org/10.1147/sj.472.0197
https://dx.doi.org/10.1145/1064978.1065042

v2024.12.27a

610 BIBLIOGRAPHY

[Boe09] Hans-J. Boehm. Transactional memory should be an implementation tech-
nique, not a programming interface. In HOTPAR 2009, page 6, Berke-
ley, CA, USA, March 2009. Available: https://www.usenix.org/
event/hotpar09/tech/full_papers/boehm/boehm.pdf [Viewed May
24, 2009].

[Boe20] Hans Boehm. “Undefined behavior” and the concurrency memory model,
August 2020. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2020/p2215r0.pdf.

[Boh01] Kristoffer Bohmann. Response time still matters, July 2001. URL: http://
www.bohmann.dk/articles/response_time_still_matters.html
[broken, November 2016].

[Bon13] Paolo Bonzini. seqlock: introduce read-write seqlock, Sep-
tember 2013. https://git.qemu.org/?p=qemu.git;a=commit;h=
ea753d81e8b085d679f13e4a6023e003e9854d51.

[Bon15] Paolo Bonzini. rcu: add rcu library, February
2015. https://git.qemu.org/?p=qemu.git;a=commit;h=
7911747bd46123ef8d8eef2ee49422bb8a4b274f.

[Bon21a] Paolo Bonzini. An introduction to lockless algorithms, February 2021.
Available: https://lwn.net/Articles/844224/ [Viewed February 19,
2021].

[Bon21b] Paolo Bonzini. Lockless patterns: an introduction to compare-and-swap,
March 2021. Available: https://lwn.net/Articles/847973/ [Viewed
March 13, 2021].

[Bon21c] Paolo Bonzini. Lockless patterns: full memory barriers, March 2021. Avail-
able: https://lwn.net/Articles/847481/ [Viewed March 8, 2021].

[Bon21d] Paolo Bonzini. Lockless patterns: more read-modify-write operations, March
2021. Available: https://lwn.net/Articles/849237/ [Viewed March
19, 2021].

[Bon21e] Paolo Bonzini. Lockless patterns: relaxed access and partial memory bar-
riers, February 2021. Available: https://lwn.net/Articles/846700/
[Viewed February 27, 2021].

[Bon21f] Paolo Bonzini. Lockless patterns: some final topics, March 2021. Available:
https://lwn.net/Articles/850202/ [Viewed March 19, 2021].

[Bor06] Richard Bornat. Dividing the sheep from the goats, January 2006. Seminar at
School of Computing, Univ. of Kent. Abstract is available at https://www.
cs.kent.ac.uk/seminar_archive/2005_06/abs_2006_01_24.html.
Retracted in July 2014: http://www.eis.mdx.ac.uk/staffpages/r_
bornat/papers/camel_hump_retraction.pdf.

[Bos10] Keith Bostic. Switch lockless programming style from epoch to hazard refer-
ences, January 2010. https://github.com/wiredtiger/wiredtiger/
commit/dddc21014fc494a956778360a14d96c762495e09.

[Bos23] Mara Bos. Rust Atomics and Locks. O’Reilly Media, Inc., Sebastopol, CA,
USA, 2023.

[BPP+16] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. The IX operating system: Com-
bining low latency, high throughput, and efficiency in a protected dataplane.
ACM Trans. Comput. Syst., 34(4):11:1–11:39, December 2016.

https://www.usenix.org/event/hotpar09/tech/full_papers/boehm/boehm.pdf
https://www.usenix.org/event/hotpar09/tech/full_papers/boehm/boehm.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2215r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2215r0.pdf
https://git.qemu.org/?p=qemu.git;a=commit;h=ea753d81e8b085d679f13e4a6023e003e9854d51
https://git.qemu.org/?p=qemu.git;a=commit;h=ea753d81e8b085d679f13e4a6023e003e9854d51
https://git.qemu.org/?p=qemu.git;a=commit;h=7911747bd46123ef8d8eef2ee49422bb8a4b274f
https://git.qemu.org/?p=qemu.git;a=commit;h=7911747bd46123ef8d8eef2ee49422bb8a4b274f
https://lwn.net/Articles/844224/
https://lwn.net/Articles/847973/
https://lwn.net/Articles/847481/
https://lwn.net/Articles/849237/
https://lwn.net/Articles/846700/
https://lwn.net/Articles/850202/
https://www.cs.kent.ac.uk/seminar_archive/2005_06/abs_2006_01_24.html
https://www.cs.kent.ac.uk/seminar_archive/2005_06/abs_2006_01_24.html
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf
https://github.com/wiredtiger/wiredtiger/commit/dddc21014fc494a956778360a14d96c762495e09
https://github.com/wiredtiger/wiredtiger/commit/dddc21014fc494a956778360a14d96c762495e09
https://dx.doi.org/10.1145/2997641
https://dx.doi.org/10.1145/2997641

v2024.12.27a

BIBLIOGRAPHY 611

[Bra07] Reg Braithwaite. Don’t overthink fizzbuzz, January 2007. http://weblog.
raganwald.com/2007/01/dont-overthink-fizzbuzz.html.

[Bra11] Björn Brandenburg. Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2011. URL: https://www.cs.unc.edu/~anderson/diss/
bbbdiss.pdf.

[Bro15a] Neil Brown. Pathname lookup in Linux, June 2015. https://lwn.net/
Articles/649115/.

[Bro15b] Neil Brown. RCU-walk: faster pathname lookup in Linux, July 2015.
https://lwn.net/Articles/649729/.

[Bro15c] Neil Brown. A walk among the symlinks, July 2015. https://lwn.net/
Articles/650786/.

[BS75] Paul J. Brown and Ronald M. Smith. Shared data controlled by a plurality of
users, May 1975. US Patent 3,886,525, filed June 29, 1973.

[BS14] Mark Batty and Peter Sewell. The thin-air problem, February 2014. https:
//www.cl.cam.ac.uk/~pes20/cpp/notes42.html.

[But97] David Butenhof. Programming with POSIX Threads. Addison-Wesley, Boston,
MA, USA, 1997.

[BW14] Silas Boyd-Wickizer. Optimizing Communications Bottlenecks in Multipro-
cessor Operating Systems Kernels. PhD thesis, Massachusetts Institute of
Technology, 2014. https://pdos.csail.mit.edu/papers/sbw-phd-
thesis.pdf.

[BWCM+10] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of
Linux scalability to many cores. In 9th USENIX Symposium on Operating
System Design and Implementation, pages 1–16, Vancouver, BC, Canada,
October 2010. USENIX.

[CAK+96] Crispin Cowan, Tito Autrey, Charles Krasic, Calton Pu, and Jonathan Walpole.
Fast concurrent dynamic linking for an adaptive operating system. In Interna-
tional Conference on Configurable Distributed Systems (ICCDS’96), pages
108–115, Annapolis, MD, May 1996.

[CBF13] UPC Consortium, Dan Bonachea, and Gary Funck. UPC language and library
specifications, version 1.3. Technical report, UPC Consortium, November
2013.

[CBM+08] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu,
Stefanie Chiras, and Siddhartha Chatterjee. Software transactional memory:
Why is it only a research toy? ACM Queue, September 2008.

[Chi22] A.A. Chien. Computer Architecture for Scientists. Cambridge University
Press, 2022.

[CHP71] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers”
and “writers”. Communications of the ACM, 14(10):667–668, October 1971.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2004),
volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer,
2004.

http://weblog.raganwald.com/2007/01/dont-overthink-fizzbuzz.html
http://weblog.raganwald.com/2007/01/dont-overthink-fizzbuzz.html
https://www.cs.unc.edu/~anderson/diss/bbbdiss.pdf
https://www.cs.unc.edu/~anderson/diss/bbbdiss.pdf
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/650786/
https://lwn.net/Articles/650786/
https://www.google.com/patents/US3886525
https://www.google.com/patents/US3886525
https://www.cl.cam.ac.uk/~pes20/cpp/notes42.html
https://www.cl.cam.ac.uk/~pes20/cpp/notes42.html
https://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf
https://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf
https://dx.doi.org/10.1109/CDS.1996.509352
https://dx.doi.org/10.2172/1134233
https://dx.doi.org/10.2172/1134233
https://dx.doi.org/10.1145/1454456.1454466
https://dx.doi.org/10.1145/1454456.1454466
https://books.google.com/books?id=QS2bzgEACAAJ
https://dx.doi.org/10.1145/362759.362813
https://dx.doi.org/10.1145/362759.362813
https://dx.doi.org/10.1007/978-3-540-24730-2_15
https://dx.doi.org/10.1007/978-3-540-24730-2_15

v2024.12.27a

612 BIBLIOGRAPHY

[CKZ12] Austin Clements, Frans Kaashoek, and Nickolai Zeldovich. Scalable address
spaces using RCU balanced trees. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2012), pages 199–210, London,
UK, March 2012. ACM.

[CKZ+13] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris,
and Eddie Kohler. The scalable commutativity rule: Designing scalable
software for multicore processors. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages 1–17,
Farminton, Pennsylvania, 2013. ACM.

[Cli09] Cliff Click. And now some hardware transactional memory comments..., Feb-
ruary 2009. URL: http://www.cliffc.org/blog/2009/02/25/and-
now-some-hardware-transactional-memory-comments/.

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. MIT electrical engineering and computer science
series. MIT Press, 2001.

[CnRR18] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Unifying con-
current objects and distributed tasks: Interval-linearizability. J. ACM, 65(6),
November 2018.

[Com01] Compaq Computer Corporation. Shared memory, threads, inter-
process communication, August 2001. Zipped archive: wiz_
2637.txt in https://www.digiater.nl/openvms/freeware/v70/
ask_the_wizard/wizard.zip.

[Coo18] Byron Cook. Formal reasoning about the security of amazon web ser-
vices. In Hana Chockler and Georg Weissenbacher, editors, Computer Aided
Verification, pages 38–47, Cham, 2018. Springer International Publishing.

[Cor02] Compaq Computer Corporation. Alpha Architecture Reference Manual.
Digital Press, fourth edition, 2002.

[Cor03] Jonathan Corbet. Driver porting: mutual exclusion with seqlocks, February
2003. https://lwn.net/Articles/22818/.

[Cor04a] Jonathan Corbet. Approaches to realtime Linux, October 2004. URL:
https://lwn.net/Articles/106010/.

[Cor04b] Jonathan Corbet. Finding kernel problems automatically, June 2004. https:
//lwn.net/Articles/87538/.

[Cor04c] Jonathan Corbet. Realtime preemption, part 2, October 2004. URL: https:
//lwn.net/Articles/107269/.

[Cor06a] Jonathan Corbet. The kernel lock validator, May 2006. Available: https:
//lwn.net/Articles/185666/ [Viewed: March 26, 2010].

[Cor06b] Jonathan Corbet. Priority inheritance in the kernel, April 2006. Available:
https://lwn.net/Articles/178253/ [Viewed June 29, 2009].

[Cor10a] Jonathan Corbet. Dcache scalability and RCU-walk, December 2010. Avail-
able: https://lwn.net/Articles/419811/ [Viewed May 29, 2017].

[Cor10b] Jonathan Corbet. sys_membarrier(), January 2010. https://lwn.net/
Articles/369567/.

[Cor10c] Jonathan Corbet. sys_membarrier(), January 2010. https://lwn.net/
Articles/369567/.

https://dx.doi.org/10.1145/2150976.2150998
https://dx.doi.org/10.1145/2150976.2150998
https://dx.doi.org/10.1145/2517349.2522712
https://dx.doi.org/10.1145/2517349.2522712
http://www.cliffc.org/blog/2009/02/25/and-now-some-hardware-transactional-memory-comments/
http://www.cliffc.org/blog/2009/02/25/and-now-some-hardware-transactional-memory-comments/
https://dx.doi.org/10.1145/3266457
https://dx.doi.org/10.1145/3266457
https://www.digiater.nl/openvms/freeware/v70/ask_the_wizard/wizard.zip
https://www.digiater.nl/openvms/freeware/v70/ask_the_wizard/wizard.zip
https://lwn.net/Articles/22818/
https://lwn.net/Articles/106010/
https://lwn.net/Articles/87538/
https://lwn.net/Articles/87538/
https://lwn.net/Articles/107269/
https://lwn.net/Articles/107269/
https://lwn.net/Articles/185666/
https://lwn.net/Articles/185666/
https://lwn.net/Articles/178253/
https://lwn.net/Articles/419811/
https://lwn.net/Articles/369567/
https://lwn.net/Articles/369567/
https://lwn.net/Articles/369567/
https://lwn.net/Articles/369567/

v2024.12.27a

BIBLIOGRAPHY 613

[Cor11] Jonathan Corbet. How to ruin linus’s vacation, July 2011. Available:
https://lwn.net/Articles/452117/ [Viewed May 29, 2017].

[Cor12] Jonathan Corbet. ACCESS_ONCE(), August 2012. https://lwn.net/
Articles/508991/.

[Cor13] Jonathan Corbet. (Nearly) full tickless operation in 3.10, May 2013. https:
//lwn.net/Articles/549580/.

[Cor14a] Jonathan Corbet. ACCESS_ONCE() and compiler bugs, December 2014.
https://lwn.net/Articles/624126/.

[Cor14b] Jonathan Corbet. MCS locks and qspinlocks, March 2014. https://lwn.
net/Articles/590243/.

[Cor14c] Jonathan Corbet. Relativistic hash tables, part 1: Algorithms, September
2014. https://lwn.net/Articles/612021/.

[Cor14d] Jonathan Corbet. Relativistic hash tables, part 2: Implementation, September
2014. https://lwn.net/Articles/612100/.

[Cor16] Jonathan Corbet. Time to move to C11 atomics?, June 2016. https:
//lwn.net/Articles/691128/.

[Cor18] Jonathan Corbet. membarrier(2), October 2018. https://man7.org/
linux/man-pages/man2/membarrier.2.html.

[Cor19] Jonathan Corbet. Finding race conditions with KCSAN, October 2019.
https://lwn.net/Articles/802128/.

[Cra93] Travis Craig. Building FIFO and priority-queuing spin locks from atomic swap.
Technical Report 93-02-02, University of Washington, Seattle, Washington,
February 1993.

[CRKH05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux
Device Drivers. O’Reilly Media, Inc., third edition, 2005. URL: https:
//lwn.net/Kernel/LDD3/.

[CSG99] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer
Architecture: a Hardware/Software Approach. Morgan Kaufman, 1999.

[cut17] crates.io user ticki. conc v0.5.0: Hazard-pointer-based concurrent memory
reclamation, August 2017. https://crates.io/crates/conc.

[Dat82] C. J. Date. An Introduction to Database Systems, volume 1. Addison-Wesley
Publishing Company, 1982.

[DBA09] Saeed Dehnadi, Richard Bornat, and Ray Adams. Meta-analysis of the
effect of consistency on success in early learning of programming. In PPIG
2009, pages 1–13, University of Limerick, Ireland, June 2009. Psychology of
Programming Interest Group.

[DCW+11] Luke Dalessandro, Francois Carouge, Sean White, Yossi Lev, Mark Moir,
Michael L. Scott, and Michael F. Spear. Hybrid NOrec: A case study in the
effectiveness of best effort hardware transactional memory. In Proceedings of
the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), ASPLOS ’11, page 39–52,
Newport Beach, CA, USA, 2011. ACM.

[Dea18] Will Deacon. [PATCH 00/10] kernel/locking: qspinlock improvements, April
2018. https://lore.kernel.org/lkml/1522947547-24081-1-git-
send-email-will.deacon@arm.com/.

https://lwn.net/Articles/452117/
https://lwn.net/Articles/508991/
https://lwn.net/Articles/508991/
https://lwn.net/Articles/549580/
https://lwn.net/Articles/549580/
https://lwn.net/Articles/624126/
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/
https://lwn.net/Articles/612021/
https://lwn.net/Articles/612100/
https://lwn.net/Articles/691128/
https://lwn.net/Articles/691128/
https://man7.org/linux/man-pages/man2/membarrier.2.html
https://man7.org/linux/man-pages/man2/membarrier.2.html
https://lwn.net/Articles/802128/
ftp://ftp.cs.washington.edu/tr/1993/02/UW-CSE-93-02-02.pdf
https://lwn.net/Kernel/LDD3/
https://lwn.net/Kernel/LDD3/
https://crates.io/crates/conc
https://www.ppig.org/files/2009-PPIG-21st-dehnadi.pdf
https://www.ppig.org/files/2009-PPIG-21st-dehnadi.pdf
https://dx.doi.org/10.1145/1961295.1950373
https://dx.doi.org/10.1145/1961295.1950373
https://lore.kernel.org/lkml/1522947547-24081-1-git-send-email-will.deacon@arm.com/
https://lore.kernel.org/lkml/1522947547-24081-1-git-send-email-will.deacon@arm.com/

v2024.12.27a

614 BIBLIOGRAPHY

[Dea19] Will Deacon. Re: [PATCH 1/1] Fix: trace sched switch start/stop racy updates,
August 2019. https://lore.kernel.org/lkml/20190821103200.
kpufwtviqhpbuv2n@willie-the-truck/.

[Den15] Peter Denning. Perspectives on OS foundations. In SOSP History Day 2015,
SOSP ’15, pages 3:1–3:46, Monterey, California, 2015. ACM.

[Dep17] Department of Computing and Information Systems, University of Melbourne.
CSIRAC: Our first computer, 2017? https://cis.unimelb.edu.au/
about/csirac/.

[Des09a] Mathieu Desnoyers. Low-Impact Operating System Tracing. PhD
thesis, Ecole Polytechnique de Montréal, December 2009. Available:
https://lttng.org/files/thesis/desnoyers-dissertation-
2009-12-v27.pdf [Viewed February 27, 2021].

[Des09b] Mathieu Desnoyers. [RFC git tree] userspace RCU (urcu) for Linux, February
2009. https://liburcu.org.

[Des17] Mathieu Desnoyers. membarrier: expedited private command, july 2017.
https://lwn.net/Articles/729144/.

[DFGG11] Aleksandar Dragovejic, Pascal Felber, Vincent Gramoli, and Rachid Guerraoui.
Why STM can be more than a research toy. Communications of the ACM,
pages 70–77, April 2011.

[DFLO19] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
Scaling static analyses at facebook. Commun. ACM, 62(8):62–70, July 2019.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. SIGOPS Oper. Syst. Rev., 41(6):205–220, October 2007.

[DHK12] Vĳay D’Silva, Leopold Haller, and Daniel Kroening. Satisfiability solvers are
static analyzers. In Static Analysis Symposium (SAS), volume 7460 of LNCS,
pages 317–333. Springer, 2012.

[DHL+08] Dave Dice, Maurice Herlihy, Doug Lea, Yossi Lev, Victor Luchangco, Wayne
Mesard, Mark Moir, Kevin Moore, and Dan Nussbaum. Applications of the
adaptive transactional memory test platform. In 3rd ACM SIGPLAN Workshop
on Transactional Computing, pages 1–10, Salt Lake City, UT, USA, February
2008.

[Dĳ65] E. W. Dĳkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, Sept 1965.

[Dĳ68] Edsger W. Dĳkstra. Letters to the editor: Go to statement considered harmful.
Commun. ACM, 11(3):147–148, March 1968.

[Dĳ71] Edsger W. Dĳkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1(2):115–138, 1971. Available: https://www.cs.utexas.
edu/users/EWD/ewd03xx/EWD310.PDF [Viewed January 13, 2008].

[DKS89] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simulation
of a fair queuing algorithm. SIGCOMM ’89, pages 1–12, 1989.

[DLM+10] Dave Dice, Yossi Lev, Virendra J. Marathe, Mark Moir, Dan Nussbaum,
and Marek Oleszewski. Simplifying concurrent algorithms by exploiting
hardware transactional memory. In Proceedings of the 22nd ACM symposium

https://lore.kernel.org/lkml/20190821103200.kpufwtviqhpbuv2n@willie-the-truck/
https://lore.kernel.org/lkml/20190821103200.kpufwtviqhpbuv2n@willie-the-truck/
https://dx.doi.org/10.1145/2830903.2830904
https://cis.unimelb.edu.au/about/csirac/
https://cis.unimelb.edu.au/about/csirac/
https://lttng.org/files/thesis/desnoyers-dissertation-2009-12-v27.pdf
https://lttng.org/files/thesis/desnoyers-dissertation-2009-12-v27.pdf
https://liburcu.org
https://lwn.net/Articles/729144/
https://dx.doi.org/10.1145/1924421.1924440
https://dx.doi.org/10.1145/3338112
https://dx.doi.org/10.1145/1323293.1294281
https://dx.doi.org/10.1145/1323293.1294281
https://dx.doi.org/10.1007/978-3-642-33125-1_22
https://dx.doi.org/10.1007/978-3-642-33125-1_22
http://wwwa.unine.ch/transact08/papers/Dice-Applications.pdf
http://wwwa.unine.ch/transact08/papers/Dice-Applications.pdf
https://dx.doi.org/10.1145/365559.365617
https://dx.doi.org/10.1145/362929.362947
https://dx.doi.org/10.1007/BF00289519
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
https://www.icsi.berkeley.edu/icsi/node/5171
https://www.icsi.berkeley.edu/icsi/node/5171
https://dx.doi.org/10.1145/1810479.1810537
https://dx.doi.org/10.1145/1810479.1810537

v2024.12.27a

BIBLIOGRAPHY 615

on Parallelism in algorithms and architectures, SPAA ’10, pages 325–334,
Thira, Santorini, Greece, 2010. ACM.

[DLMN09] Dave Dice, Yossi Lev, Mark Moir, and Dan Nussbaum. Early experience with
a commercial hardware transactional memory implementation. In Fourteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’09), pages 157–168, Washington,
DC, USA, March 2009.

[DMD13] Mathieu Desnoyers, Paul E. McKenney, and Michel R. Dagenais. Multi-core
systems modeling for formal verification of parallel algorithms. SIGOPS
Oper. Syst. Rev., 47(2):51–65, July 2013.

[DMLP79] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social processes
and proofs of theorems and programs. Commun. ACM, 22(5):271–280, May
1979.

[DMS+12a] Mathieu Desnoyers, Paul E. McKenney, Alan Stern, Michel R. Dagenais, and
Jonathan Walpole. User-level implementations of read-copy update. IEEE
Transactions on Parallel and Distributed Systems, 23:375–382, 2012.

[DMS12b] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: a general
technique for designing numa locks. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’12, page 247–256, New Orleans, Louisiana, USA, 2012. Association
for Computing Machinery.

[DMS12c] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: a general
technique for designing numa locks. SIGPLAN Not., 47(8):247–256, feb
2012.

[dO18a] Daniel Bristot de Oliveira. Deadline scheduler part 2 – details and usage,
January 2018. URL: https://lwn.net/Articles/743946/.

[dO18b] Daniel Bristot de Oliveira. Deadline scheduling part 1 – overview and theory,
January 2018. URL: https://lwn.net/Articles/743740/.

[dOCdO19] Daniel Bristot de Oliveira, Tommaso Cucinotta, and Rômulo Silva de Oliveira.
Modeling the behavior of threads in the PREEMPT_RT Linux kernel using
automata. SIGBED Rev., 16(3):63–68, November 2019.

[Don21] Jason Donenfeld. Introduce WireGuardNT, August 2021. Git
commit: https://git.zx2c4.com/wireguard-nt/commit/?id=
d64c53776d7f72751d7bd580ead9846139c8f12f.

[Dov90] Ken F. Dove. A high capacity TCP/IP in parallel STREAMS. In UKUUG
Conference Proceedings, London, June 1990.

[Dow20] Travis Downs. Gathering intel on Intel AVX-512 transitions, Jan-
uary 2020. https://travisdowns.github.io/blog/2020/01/17/
avxfreq1.html.

[Dre11] Ulrich Drepper. Futexes are tricky. Technical Report FAT2011, Red Hat, Inc.,
Raleigh, NC, USA, November 2011.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proc.
International Symposium on Distributed Computing. Springer Verlag, 2006.

[Duf10a] Joe Duffy. A (brief) retrospective on transactional memory,
January 2010. http://joeduffyblog.com/2010/01/03/a-brief-
retrospective-on-transactional-memory/.

https://dx.doi.org/10.1145/1508244.1508263
https://dx.doi.org/10.1145/1508244.1508263
https://dx.doi.org/10.1145/2506164.2506174
https://dx.doi.org/10.1145/2506164.2506174
https://dx.doi.org/10.1145/359104.359106
https://dx.doi.org/10.1145/359104.359106
https://dx.doi.org/10.1109/TPDS.2011.159
https://dx.doi.org/10.1145/2145816.2145848
https://dx.doi.org/10.1145/2145816.2145848
https://dx.doi.org/10.1145/2370036.2145848
https://dx.doi.org/10.1145/2370036.2145848
https://lwn.net/Articles/743946/
https://lwn.net/Articles/743740/
https://dx.doi.org/10.1145/3373400.3373410
https://dx.doi.org/10.1145/3373400.3373410
https://git.zx2c4.com/wireguard-nt/commit/?id=d64c53776d7f72751d7bd580ead9846139c8f12f
https://git.zx2c4.com/wireguard-nt/commit/?id=d64c53776d7f72751d7bd580ead9846139c8f12f
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://www.akkadia.org/drepper/futex.pdf
https://dx.doi.org/10.1007/11864219_14
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory/
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory/

v2024.12.27a

616 BIBLIOGRAPHY

[Duf10b] Joe Duffy. More thoughts on transactional memory, May
2010. http://joeduffyblog.com/2010/05/16/more-thoughts-on-
transactional-memory/.

[Dug10] Abhinav Duggal. Stopping data races using redflag. Master’s thesis, Stony
Brook University, 2010.

[Eas71] William B. Easton. Process synchronization without long-term interlock. In
Proceedings of the Third ACM Symposium on Operating Systems Principles,
SOSP ’71, pages 95–100, Palo Alto, California, USA, 1971. Association for
Computing Machinery.

[Edg13] Jake Edge. The future of realtime Linux, November 2013. URL: https:
//lwn.net/Articles/572740/.

[Edg14] Jake Edge. The future of the realtime patch set, October 2014. URL:
https://lwn.net/Articles/617140/.

[Edg22] Jake Edge. Introducing io_uring_spawn, September 2022. https://lwn.
net/Articles/908268/.

[EGCD03] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC language specifica-
tions v1.1, May 2003. URL: http://upc.gwu.edu [broken, February 27,
2021].

[EGMdB11] Stephane Eranian, Eric Gouriou, Tipp Moseley, and Willem de Bruĳn. Linux
kernel profiling with perf, June 2011. https://perf.wiki.kernel.org/
index.php/Tutorial.

[Ell80] Carla Schlatter Ellis. Concurrent search and insertion in AVL trees. IEEE
Transactions on Computers, C-29(9):811–817, September 1980.

[ELLM07] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. SNZI: scalable
NonZero indicators. In Proceedings of the twenty-sixth annual ACM sym-
posium on Principles of distributed computing, PODC ’07, pages 13–22,
Portland, Oregon, USA, 2007. ACM.

[EMV+20a] Marco Elver, Paul E. McKenney, Dmitry Vyukov, Andrey Konovalov, Alexan-
der Potapenko, Kostya Serebryany, Alan Stern, Andrea Parri, Akira Yokosawa,
Peter Zĳlstra, Will Deacon, Daniel Lustig, Boqun Feng, Joel Fernandes, Jade
Alglave, and Luc Maranget. Concurrency bugs should fear the big bad
data-race detector (part 1), April 2020. Linux Weekly News.

[EMV+20b] Marco Elver, Paul E. McKenney, Dmitry Vyukov, Andrey Konovalov, Alexan-
der Potapenko, Kostya Serebryany, Alan Stern, Andrea Parri, Akira Yokosawa,
Peter Zĳlstra, Will Deacon, Daniel Lustig, Boqun Feng, Joel Fernandes, Jade
Alglave, and Luc Maranget. Concurrency bugs should fear the big bad
data-race detector (part 2), April 2020. Linux Weekly News.

[Eng68] Douglas Engelbart. The demo, December 1968. URL: http://thedemo.
org/.

[ENS05] Ryan Eccles, Blair Nonneck, and Deborah A. Stacey. Exploring parallel
programming knowledge in the novice. In HPCS ’05: Proceedings of the
19th International Symposium on High Performance Computing Systems and
Applications, pages 97–102, Guelph, Ontario, Canada, 2005. IEEE Computer
Society.

[Eri08] Christer Ericson. Aiding pathfinding with cellular automata, June 2008.
http://realtimecollisiondetection.net/blog/?p=57.

http://joeduffyblog.com/2010/05/16/more-thoughts-on-transactional-memory/
http://joeduffyblog.com/2010/05/16/more-thoughts-on-transactional-memory/
https://core.ac.uk/display/22595987
https://dx.doi.org/10.1145/800212.806505
https://lwn.net/Articles/572740/
https://lwn.net/Articles/572740/
https://lwn.net/Articles/617140/
https://lwn.net/Articles/908268/
https://lwn.net/Articles/908268/
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://dx.doi.org/10.1109/TC.1980.1675680
https://dx.doi.org/10.1145/1281100.1281106
https://dx.doi.org/10.1145/1281100.1281106
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://lwn.net/Articles/816854/
http://thedemo.org/
http://thedemo.org/
https://dx.doi.org/10.1109/HPCS.2005.26
https://dx.doi.org/10.1109/HPCS.2005.26
http://realtimecollisiondetection.net/blog/?p=57

v2024.12.27a

BIBLIOGRAPHY 617

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison Wesley, 1990.

[ES05] Ryan Eccles and Deborah A. Stacey. Understanding the parallel programmer.
In HPCS ’05: Proceedings of the 19th International Symposium on High
Performance Computing Systems and Applications, pages 156–160, Guelph,
Ontario, Canada, 2005. IEEE Computer Society.

[ETH11] ETH Zurich. Parallel solver for a perfect maze, March
2011. URL: http://nativesystems.inf.ethz.ch/pub/Main/
WebHomeLecturesParallelProgrammingExercises/pp2011hw04.
pdf [broken, November 2016].

[Eva11] Jason Evans. Scalable memory allocation using jemalloc, Janu-
ary 2011. https://engineering.fb.com/2011/01/03/core-data/
scalable-memory-allocation-using-jemalloc/.

[Fel50] W. Feller. An Introduction to Probability Theory and its Applications. John
Wiley, 1950.

[Fen73] J. Fennel. Instruction selection in a two-program counter instruction unit.
Technical Report US Patent 3,728,692, Assigned to International Business
Machines Corp, Washington, DC, April 1973.

[Fen15] Boqun Feng. powerpc: Make value-returning atomics fully ordered, November
2015. Git commit: https://git.kernel.org/linus/49e9cf3f0c04.

[FH07] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM
Trans. Comput. Syst., 25(2):1–61, 2007.

[FIMR16] Pascal Felber, Shady Issa, Alexander Matveev, and Paolo Romano. Hardware
read-write lock elision. In Proceedings of the Eleventh European Confer-
ence on Computer Systems, EuroSys ’16, London, United Kingdom, 2016.
Association for Computing Machinery.

[Fos10] Ron Fosner. Scalable multithreaded programming with tasks. MSDN Mag-
azine, 2010(11):60–69, November 2010. http://msdn.microsoft.com/
en-us/magazine/gg309176.aspx.

[FPB79] Jr. Frederick P. Brooks. The Mythical Man-Month. Addison-Wesley, 1979.
[Fra03] Keir Anthony Fraser. Practical Lock-Freedom. PhD thesis, King’s College,

University of Cambridge, 2003.
[Fra04] Keir Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579,

University of Cambridge, Computer Laboratory, February 2004.
[FRK02] Hubertus Francke, Rusty Russell, and Matthew Kirkwood. Fuss, futexes

and furwocks: Fast userlevel locking in linux. In Ottawa Linux Symposium,
pages 479–495, June 2002. Available: https://www.kernel.org/doc/
ols/2002/ols2002-pages-479-495.pdf [Viewed May 22, 2011].

[FSP+17] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc
Maranget, Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell.
Mixed-size concurrency: ARM, POWER, C/C++11, and SC. SIGPLAN Not.,
52(1):429–442, January 2017.

[GAJM15] Alex Groce, Iftekhar Ahmed, Carlos Jensen, and Paul E. McKenney. How
verified is my code? falsification-driven verification (t). In Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated Software

https://dx.doi.org/10.1109/HPCS.2005.49
https://engineering.fb.com/2011/01/03/core-data/scalable-memory-allocation-using-jemalloc/
https://engineering.fb.com/2011/01/03/core-data/scalable-memory-allocation-using-jemalloc/
https://patents.google.com/patent/US3728692A/en
https://git.kernel.org/linus/49e9cf3f0c04
https://dx.doi.org/10.1145/1233307.1233309
https://dx.doi.org/10.1145/2901318.2901346
https://dx.doi.org/10.1145/2901318.2901346
http://msdn.microsoft.com/en-us/magazine/gg309176.aspx
http://msdn.microsoft.com/en-us/magazine/gg309176.aspx
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://dx.doi.org/10.1145/3093333.3009839
https://dx.doi.org/10.1109/ASE.2015.40
https://dx.doi.org/10.1109/ASE.2015.40

v2024.12.27a

618 BIBLIOGRAPHY

Engineering (ASE), ASE ’15, pages 737–748, Washington, DC, USA, 2015.
IEEE Computer Society.

[Gar90] Arun Garg. Parallel STREAMS: a multi-processor implementation. In
USENIX Conference Proceedings, pages 163–176, Berkeley CA, February
1990. USENIX Association. Available: https://archive.org/details/
1990-proceedings-winter-dc/page/163/mode/2up.

[Gar07] Bryan Gardiner. IDF: Gordon Moore predicts end of Moore’s law (again),
September 2007. Available: https://www.wired.com/2007/09/idf-
gordon-mo-1/ [Viewed: February 27, 2021].

[GC96] Michael Greenwald and David R. Cheriton. The synergy between non-
blocking synchronization and operating system structure. In Proceedings of
the Second Symposium on Operating Systems Design and Implementation,
pages 123–136, Seattle, WA, October 1996. USENIX Association.

[GDZE10] Olga Golovanevsky, Alon Dayan, Ayal Zaks, and David Edelsohn. Trace-based
data layout optimizations for multi-core processors. In Proceedings of the 5th
International Conference on High Performance Embedded Architectures and
Compilers, HiPEAC’10, pages 81–95, Pisa, Italy, 2010. Springer-Verlag.

[GG14] Vincent Gramoli and Rachid Guerraoui. Democratizing transactional pro-
gramming. Commun. ACM, 57(1):86–93, January 2014.

[GGK18] Christina Giannoula, Georgios Goumas, and Nectarios Koziris. Combining
HTM with RCU to speed up graph coloring on multicore platforms. In Rio
Yokota, Michèle Weiland, David Keyes, and Carsten Trinitis, editors, High
Performance Computing, pages 350–369, Cham, 2018. Springer International
Publishing.

[GGL+19] Rachid Guerraoui, Hugo Guiroux, Renaud Lachaize, Vivien Quéma, and
Vasileios Trigonakis. Lock–unlock: Is that all? a pragmatic analysis of
locking in software systems. ACM Trans. Comput. Syst., 36(1):1:1–1:149,
March 2019.

[Gha95] Kourosh Gharachorloo. Memory consistency models for shared-memory
multiprocessors. Technical Report CSL-TR-95-685, Computer Systems
Laboratory, Departments of Electrical Engineering and Computer Science,
Stanford University, Stanford, CA, December 1995. Available: https://
www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-9.pdf [Viewed:
October 11, 2004].

[GHH+14] Alex Groce, Klaus Havelund, Gerard J. Holzmann, Rajeev Joshi, and Ru-Gang
Xu. Establishing flight software reliability: testing, model checking, constraint-
solving, monitoring and learning. Ann. Math. Artif. Intell., 70(4):315–349,
2014.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[GKAS99] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado:
Maximizing locality and concurrency in a shared memory multiprocessor
operating system. In Proceedings of the 3rd Symposium on Operating System
Design and Implementation, pages 87–100, New Orleans, LA, February 1999.

https://archive.org/details/1990-proceedings-winter-dc/page/163/mode/2up
https://archive.org/details/1990-proceedings-winter-dc/page/163/mode/2up
https://www.wired.com/2007/09/idf-gordon-mo-1/
https://www.wired.com/2007/09/idf-gordon-mo-1/
https://dx.doi.org/10.1145/238721.238767
https://dx.doi.org/10.1145/238721.238767
https://dx.doi.org/10.1007/978-3-642-11515-8_8
https://dx.doi.org/10.1007/978-3-642-11515-8_8
https://dx.doi.org/10.1145/2541883.2541900
https://dx.doi.org/10.1145/2541883.2541900
https://dx.doi.org/10.1145/3301501
https://dx.doi.org/10.1145/3301501
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-9.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-9.pdf
https://dx.doi.org/10.1007/s10472-014-9408-8
https://dx.doi.org/10.1007/s10472-014-9408-8
https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf

v2024.12.27a

BIBLIOGRAPHY 619

[GKP13] Justin Gottschlich, Rob Knauerhase, and Gilles Pokam. But how do we really
debug transactional memory? In 5th USENIX Workshop on Hot Topics in
Parallelism (HotPar 2013), San Jose, CA, USA, June 2013.

[GKPS95] Ben Gamsa, Orran Krieger, E. Parsons, and Michael Stumm. Performance
issues for multiprocessor operating systems, November 1995. Technical Re-
port CSRI-339, Available: ftp://ftp.cs.toronto.edu/pub/reports/
csri/339/339.ps.

[Gla18] Stjepan Glavina. Merge remaining subcrates, November 2018.
https://github.com/crossbeam-rs/crossbeam/commit/
d9b1e3429450a64b490f68c08bd191417e68f00c.

[Gle10] Thomas Gleixner. Realtime linux: academia v. reality, July 2010. URL:
https://lwn.net/Articles/397422/.

[Gle12] Thomas Gleixner. Linux -rt kvm guest demo, December 2012. Personal
communication.

[GMTW08] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole. The read-copy-
update mechanism for supporting real-time applications on shared-memory
multiprocessor systems with Linux. IBM Systems Journal, 47(2):221–236,
May 2008.

[Gol18a] David Goldblatt. Add the Seq module, a simple seqlock implementa-
tion, April 2018. https://github.com/jemalloc/jemalloc/tree/
06a8c40b36403e902748d3f2a14e6dd43488ae89.

[Gol18b] David Goldblatt. P1202: Asymmetric fences, October 2018. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1202r0.pdf.

[Gol19] David Goldblatt. There might not be an elegant OOTA fix, October
2019. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1916r0.pdf.

[Gol22] David Goldblatt. P1202r5: Asymmetric fences, November
2022. https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p1202r5.pdf.

[GPB+07] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and
Doug Lea. Java: Concurrency in Practice. Addison Wesley, Upper Saddle
River, NJ, USA, 2007.

[Gra91] Jim Gray. The Benchmark Handbook for Database and Transaction Processing
Systems. Morgan Kaufmann, 1991.

[Gra02] Jim Gray. Super-servers: Commodity computer clusters pose a software chal-
lenge, April 2002. Available: http://research.microsoft.com/en-
us/um/people/gray/papers/superservers(4t_computers).doc
[Viewed: June 23, 2004].

[Gre19] Brendan Gregg. BPF Performance Tools: Linux System and Application
Observability. Addison-Wesley Professional, 1st edition, 2019.

[Gri00] Scott Griffen. Internet pioneers: Doug englebart, May 2000. Available:
https://www.ibiblio.org/pioneers/englebart.html [Viewed No-
vember 28, 2008].

[Gri17] Rainer Grimm. Concurrency with Modern C++. Leanpub, 2017.

https://www.usenix.org/system/files/conference/hotpar13/hotpar13-gottschlich.pdf
https://www.usenix.org/system/files/conference/hotpar13/hotpar13-gottschlich.pdf
ftp://ftp.cs.toronto.edu/pub/reports/csri/339/339.ps
ftp://ftp.cs.toronto.edu/pub/reports/csri/339/339.ps
https://github.com/crossbeam-rs/crossbeam/commit/d9b1e3429450a64b490f68c08bd191417e68f00c
https://github.com/crossbeam-rs/crossbeam/commit/d9b1e3429450a64b490f68c08bd191417e68f00c
https://lwn.net/Articles/397422/
https://dx.doi.org/10.1147/sj.472.0221
https://dx.doi.org/10.1147/sj.472.0221
https://dx.doi.org/10.1147/sj.472.0221
https://github.com/jemalloc/jemalloc/tree/06a8c40b36403e902748d3f2a14e6dd43488ae89
https://github.com/jemalloc/jemalloc/tree/06a8c40b36403e902748d3f2a14e6dd43488ae89
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1202r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1202r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1202r5.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1202r5.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/superservers(4t_computers).doc
http://research.microsoft.com/en-us/um/people/gray/papers/superservers(4t_computers).doc
https://www.ibiblio.org/pioneers/englebart.html

v2024.12.27a

620 BIBLIOGRAPHY

[Gro01] The Open Group. Single UNIX specification, July 2001. http://www.
opengroup.org/onlinepubs/007908799/index.html.

[Gro07] Dan Grossman. The transactional memory / garbage collection analogy. In
OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference on
Object oriented programming systems and applications, pages 695–706, Mont-
real, Quebec, Canada, October 2007. ACM. Available: https://homes.cs.
washington.edu/~djg/papers/analogy_oopsla07.pdf [Viewed Feb-
ruary 27, 2021].

[GRY12] Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. Verify-
ing highly concurrent algorithms with grace (extended version), July
2012. https://software.imdea.org/~gotsman/papers/recycling-
esop13-ext.pdf.

[GRY13] Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. Verifying concurrent
memory reclamation algorithms with grace. In ESOP’13: European Sympo-
sium on Programming, pages 249–269, Rome, Italy, 2013. Springer-Verlag.

[GT90] Gary Graunke and Shreekant Thakkar. Synchronization algorithms for
shared-memory multiprocessors. IEEE Computer, 23(6):60–69, June 1990.

[Gui18] Hugo Guiroux. Understanding the performance of mutual exclusion algo-
rithms on modern multicore machines. PhD thesis, Université Grenoble Alpes,
2018. https://hugoguiroux.github.io/assets/these.pdf.

[Gwy15] David Gwynne. introduce srp, which according to the manpage i wrote is
short for “shared reference pointers”., July 2015. https://github.com/
openbsd/src/blob/HEAD/sys/kern/kern_srp.c.

[GYW+19] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing
Guan, and Haibo Chen. Pisces: A scalable and efficient persistent transactional
memory. In Proceedings of the 2019 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’19, pages 913–928, Renton, WA, USA,
2019. USENIX Association.

[Har01] Timothy L. Harris. A pragmatic implementation of non-blocking linked-
lists. In Proc. 15th Intl. Conf. on Distributed Computing, pages 300–314.
Springer-Verlag, 2001.

[Har16] "No Bugs" Hare. Infographics: Operation costs in CPU clock cycles, Sep-
tember 2016. http://ithare.com/infographics-operation-costs-
in-cpu-clock-cycles/.

[Hay20] Timothy Hayes. A shift to concurrency, October 2020. https:
//community.arm.com/developer/research/b/articles/posts/
arms-transactional-memory-extension-support-.

[HCS+05] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, and Victor Basili.
Parallel programmer productivity: A case study of novice parallel pro-
grammers. In SC ’05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, page 35, Seattle, WA, USA, 2005. IEEE Computer Society.

[HCW+04] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg, Mike
Chen, Christos Kozyrakis, and Kunle Olukotun. Programming with trans-
actional coherence and consistency (TCC). In Proceedings of the Tenth

http://www.opengroup.org/onlinepubs/007908799/index.html
http://www.opengroup.org/onlinepubs/007908799/index.html
https://dx.doi.org/10.1145/1297027.1297080
https://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
https://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
https://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf
https://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf
https://dx.doi.org/10.1007/978-3-642-37036-6_15
https://dx.doi.org/10.1007/978-3-642-37036-6_15
https://dx.doi.org/10.1109/2.55501
https://dx.doi.org/10.1109/2.55501
https://hugoguiroux.github.io/assets/these.pdf
https://github.com/openbsd/src/blob/HEAD/sys/kern/kern_srp.c
https://github.com/openbsd/src/blob/HEAD/sys/kern/kern_srp.c
http://dl.acm.org/citation.cfm?id=3358807.3358885
http://dl.acm.org/citation.cfm?id=3358807.3358885
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
https://community.arm.com/developer/research/b/articles/posts/arms-transactional-memory-extension-support-
https://community.arm.com/developer/research/b/articles/posts/arms-transactional-memory-extension-support-
https://community.arm.com/developer/research/b/articles/posts/arms-transactional-memory-extension-support-
https://dx.doi.org/10.1109/SC.2005.53
https://dx.doi.org/10.1109/SC.2005.53

v2024.12.27a

BIBLIOGRAPHY 621

International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Boston, MA, USA, 2004. ACM Press. Avail-
able: http://csl.stanford.edu/~christos/publications/2004.
programming_tcc.asplos.pdf [Viewed December 23, 2006].

[Hei27] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4):172–198, 1927.
English translation in “Quantum theory and measurement” by Wheeler and
Zurek.

[Her90] Maurice P. Herlihy. A methodology for implementing highly concurrent
data structures. In Proceedings of the 2nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 197–206, Seattle,
WA, USA, March 1990.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124–149,
January 1991.

[Her93] Maurice Herlihy. A methodology for implementing highly concurrent data ob-
jects. ACM Transactions on Programming Languages and Systems, 15(5):745–
770, November 1993.

[Her05] Maurice Herlihy. The transactional manifesto: software engineering and
non-blocking synchronization. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation,
pages 280–280, Chicago, IL, USA, 2005. ACM Press.

[Her11] Benjamin Herrenschmidt. powerpc: Fix atomic_xxx_return barrier seman-
tics, November 2011. Git commit: https://git.kernel.org/linus/
b97021f85517.

[HHK+13] A. Haas, T.A. Henzinger, C.M. Kirsch, M. Lippautz, H. Payer, A. Sezgin,
and A. Sokolova. Distributed queues in shared memory—multicore perfor-
mance and scalability through quantitative relaxation. In Proc. International
Conference on Computing Frontiers, Ischia, Italy, 2013. ACM.

[HKLP12] Andreas Haas, Christoph M. Kirsch, Michael Lippautz, and Hannes Payer.
How FIFO is your concurrent FIFO queue? In Proceedings of the Workshop
on Relaxing Synchronization for Multicore and Manycore Scalability, Tucson,
AZ USA, October 2012.

[HL86] Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations
Research. Holden-Day, 1986.

[HLM02] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender prob-
lem: A mechanism for supporting dynamic-sized, lock-free data structures.
In Proceedings of 16th International Symposium on Distributed Computing,
pages 339–353, Toulouse, France, October 2002.

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free
synchronization: Double-ended queues as an example. In Proceedings of
the 23rd IEEE International Conference on Distributed Computing Systems
(ICDCS), pages 73–82, Providence, RI, May 2003. The Institute of Electrical
and Electronics Engineers, Inc.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III.
Software transactional memory for dynamic-sized data structures. In Proceed-
ings of the 22th Annual ACM SIGOPS Symposium on Principles of Distributed

http://csl.stanford.edu/~christos/publications/2004.programming_tcc.asplos.pdf
http://csl.stanford.edu/~christos/publications/2004.programming_tcc.asplos.pdf
https://dx.doi.org/10.1145/99163.99185
https://dx.doi.org/10.1145/99163.99185
https://dx.doi.org/10.1145/114005.102808
https://dx.doi.org/10.1145/161468.161469
https://dx.doi.org/10.1145/161468.161469
https://dx.doi.org/10.1145/1065010.1065011
https://dx.doi.org/10.1145/1065010.1065011
https://git.kernel.org/linus/b97021f85517
https://git.kernel.org/linus/b97021f85517
https://dx.doi.org/10.1145/2482767.2482789
https://dx.doi.org/10.1145/2482767.2482789
https://dx.doi.org/10.1145/2414729.2414731
https://dx.doi.org/10.1007/3-540-36108-1_23
https://dx.doi.org/10.1007/3-540-36108-1_23
https://www.cs.brown.edu/people/mph/HerlihyLM03/main.pdf
https://www.cs.brown.edu/people/mph/HerlihyLM03/main.pdf

v2024.12.27a

622 BIBLIOGRAPHY

Computing, pages 92–101. Association for Computing Machinery, July 2003.
Available: http://research.sun.com/scalable/pubs/PODC03.pdf
[Viewed December 22, 2006].

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA ’93: Proceeding of the 20th

Annual International Symposium on Computer Architecture, pages 289–300,
San Diego, CA, USA, May 1993.

[HMB06] Thomas E. Hart, Paul E. McKenney, and Angela Demke Brown. Making lock-
less synchronization fast: Performance implications of memory reclamation.
In 20th IEEE International Parallel and Distributed Processing Symposium,
Rhodes, Greece, April 2006. Available: http://www.rdrop.com/users/
paulmck/RCU/hart_ipdps06.pdf [Viewed April 28, 2008].

[HMBW07] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan
Walpole. Performance of memory reclamation for lockless synchronization.
J. Parallel Distrib. Comput., 67(12):1270–1285, 2007.

[HMDZ06] David Howells, Paul E. McKenney, Will Deacon, and Peter Zĳlstra. Linux
kernel memory barriers, March 2006. https://www.kernel.org/doc/
Documentation/memory-barriers.txt.

[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Commu-
nications of the ACM, 17(10):549–557, October 1974.

[Hol03] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, MA, USA, 2003.

[Hor18] Jann Horn. Reading privileged memory with a side-channel, Jan-
uary 2018. https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html.

[HOS89] James P. Hennessy, Damian L. Osisek, and Joseph W. Seigh II. Passive
serialization in a multitasking environment. Technical Report US Patent
4,809,168, Assigned to International Business Machines Corp, Washington,
DC, February 1989.

[How12] Phil Howard. Extending Relativistic Programming to Multiple Writers. PhD
thesis, Portland State University, 2012.

[HP95] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufman, 1995.

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach, Sixth Edition. Morgan Kaufman, 2017.

[Hra13] Adam Hraška. Read-copy-update for helenos. Master’s thesis, Charles
University in Prague, Faculty of Mathematics and Physics, Department of
Distributed and Dependable Systems, 2013.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, Burlington, MA, USA, 2008.

[HSLS20] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The Art
of Multiprocessor Programming, 2nd Edition. Morgan Kaufmann, Burlington,
MA, USA, 2020.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–
492, July 1990.

http://research.sun.com/scalable/pubs/PODC03.pdf
https://dx.doi.org/10.1145/165123.165164
https://dx.doi.org/10.1145/165123.165164
https://dx.doi.org/10.1109/IPDPS.2006.1639261
https://dx.doi.org/10.1109/IPDPS.2006.1639261
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf
https://dx.doi.org/10.1016/j.jpdc.2007.04.010
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://dx.doi.org/10.1145/355620.361161
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://patents.google.com/patent/US4809168A/en
https://patents.google.com/patent/US4809168A/en
https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1113&context=open_access_etds
http://www.helenos.org/doc/theses/ah-thesis.pdf
https://dx.doi.org/10.1145/78969.78972
https://dx.doi.org/10.1145/78969.78972

v2024.12.27a

BIBLIOGRAPHY 623

[HW92] Wilson C. Hsieh and William E. Weihl. Scalable reader-writer locks for
parallel systems. In Proceedings of the 6th International Parallel Processing
Symposium, pages 216–230, Beverly Hills, CA, USA, March 1992.

[HW11] Philip W. Howard and Jonathan Walpole. A relativistic enhancement to
software transactional memory. In Proceedings of the 3rd USENIX conference
on Hot topics in parallelism, HotPar’11, pages 1–6, Berkeley, CA, 2011.
USENIX Association.

[HW14] Philip W. Howard and Jonathan Walpole. Relativistic red-black trees. Con-
currency and Computation: Practice and Experience, 26(16):2684–2712,
November 2014.

[IBM94] IBM Microelectronics and Motorola. PowerPC Microprocessor Family: The
Programming Environments, 1994.

[Inm85] Jack Inman. Implementing loosely coupled functions on tightly coupled
engines. In USENIX Conference Proceedings, pages 277–298, Portland, OR,
June 1985. USENIX Association.

[Inm07] Bill Inmon. Time value of information, January 2007. URL: http://www.b-
eye-network.com/view/3365 [broken, February 2021].

[Int92] International Standards Organization. Information Technology - Data-
base Language SQL. ISO, 1992. Available (Second informal review
draft of ISO/IEC 9075:1992): http://www.contrib.andrew.cmu.edu/
~shadow/sql/sql1992.txt [Viewed September 19, 2008].

[Int02a] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual
Volume 2: System Architecture, 2002.

[Int02b] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual
Volume 3: Instruction Set Reference, 2002.

[Int04a] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual
Volume 2B: Instruction Set Reference, N-Z, 2004.

[Int04b] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual
Volume 3: System Programming Guide, 2004.

[Int04c] International Business Machines Corporation. z/Architecture principles of
operation, May 2004. Available: http://publibz.boulder.ibm.com/
epubs/pdf/dz9zr003.pdf [Viewed: February 16, 2005].

[Int07] Intel Corporation. Intel 64 Architecture Memory Ordering White Paper, 2007.

[Int11] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A: System Programming Guide, Part 1, 2011.
Available: http://www.intel.com/Assets/PDF/manual/253668.pdf
[Viewed: February 12, 2011].

[Int16] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A: System Programming Guide, Part 1, 2016.

[Int20a] Intel. Desktop 4th Generation Intel® Core™ Processor Family, Desktop Intel®
Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family,
April 2020. http://www.intel.com/content/dam/www/public/us/
en/documents/specification-updates/4th-gen-core-family-
desktop-specification-update.pdf.

https://dx.doi.org/10.1109/IPPS.1992.222989
https://dx.doi.org/10.1109/IPPS.1992.222989
https://www.usenix.org/legacy/event/hotpar11/tech/final_files/Howard.pdf
https://www.usenix.org/legacy/event/hotpar11/tech/final_files/Howard.pdf
https://dx.doi.org/10.1002/cpe.3157
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://publibz.boulder.ibm.com/epubs/pdf/dz9zr003.pdf
http://publibz.boulder.ibm.com/epubs/pdf/dz9zr003.pdf
http://www.intel.com/Assets/PDF/manual/253668.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-family-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-family-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-family-desktop-specification-update.pdf

v2024.12.27a

624 BIBLIOGRAPHY

[Int20b] Intel Corporation. Intel Transactional Synchronization Extensions
(Intel TSX) Programming Considerations, 2021.1 edition, December
2020. In Intel C++ Compiler Classic Developer Guide and Reference,
https://software.intel.com/content/dam/develop/external/
us/en/documents/cpp_compiler_classic.pdf, page 1506.

[Int20c] International Business Machines Corporation. Power ISA™Version 3.1, 2020.
[Int21] Intel. Performance monitoring impact of Intel® Transac-

tional Synchronization Extension memory ordering issue, June
2021. https://www.intel.com/content/dam/support/us/en/
documents/processors/Performance-Monitoring-Impact-of-
TSX-Memory-Ordering-Issue-604224.pdf.

[Jac88] Van Jacobson. Congestion avoidance and control. In SIGCOMM ’88, pages
314–329, August 1988.

[Jac93] Van Jacobson. Avoid read-side locking via delayed free, September 1993.
private communication.

[Jac08] Daniel Jackson. MapReduce course, January 2008. Available: https:
//sites.google.com/site/mriap2008/ [Viewed January 3, 2013].

[JED] JEDEC. mega (M) (as a prefix to units of semiconductor storage capacity)
[online].

[Jef14] Alan Jeffrey. Jmm revision status, July 2014. https://mail.openjdk.
java.net/pipermail/jmm-dev/2014-July/000072.html.

[JJKD21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Safe
systems programming in Rust. Commun. ACM, 64(4):144–152, March 2021.

[JLK16a] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel ad-
dress space layout randomization (KASLR) with Intel TSX, July
2016. Black Hat USA 2018 https://www.blackhat.com/us-
16/briefings.html#breaking-kernel-address-space-layout-
randomization-kaslr-with-intel-tsx.

[JLK16b] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address space
layout randomization with Intel TSX. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,
pages 380–392, Vienna, Austria, 2016. ACM.

[JMRR02] Benedict Joseph Jackson, Paul E. McKenney, Ramakrishnan Rajamony, and
Ronald Lynn Rockhold. Scalable interruptible queue locks for shared-memory
multiprocessor. US Patent 6,473,819, Assigned to International Business
Machines Corporation, Washington, DC, October 2002.

[Joh77] Stephen Johnson. Lint, a C program checker, December 1977. Computer
Science Technical Report 65, Bell Laboratories.

[Joh95] Aju John. Dynamic vnodes – design and implementation. In USENIX Winter
1995, pages 11–23, New Orleans, LA, January 1995. USENIX Associa-
tion. Available: https://www.usenix.org/publications/library/
proceedings/neworl/full_papers/john.a [Viewed October 1, 2010].

[Jon11] Dave Jones. Trinity: A system call fuzzer. In 13th Ottawa Linux Symposium,
Ottawa, Canada, June 2011. Project repository: https://github.com/
kernelslacker/trinity.

https://software.intel.com/content/dam/develop/external/us/en/documents/cpp_compiler_classic.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/cpp_compiler_classic.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://dx.doi.org/10.1145/52324.52356
https://sites.google.com/site/mriap2008/
https://sites.google.com/site/mriap2008/
https://www.jedec.org/standards-documents/dictionary/terms/mega-m-prefix-units-semiconductor-storage-capacity
https://mail.openjdk.java.net/pipermail/jmm-dev/2014-July/000072.html
https://mail.openjdk.java.net/pipermail/jmm-dev/2014-July/000072.html
https://dx.doi.org/10.1145/3418295
https://dx.doi.org/10.1145/3418295
https://www.blackhat.com/us-16/briefings.html#breaking-kernel-address-space-layout-randomization-kaslr-with-intel-tsx
https://www.blackhat.com/us-16/briefings.html#breaking-kernel-address-space-layout-randomization-kaslr-with-intel-tsx
https://www.blackhat.com/us-16/briefings.html#breaking-kernel-address-space-layout-randomization-kaslr-with-intel-tsx
https://dx.doi.org/10.1145/2976749.2978321
https://dx.doi.org/10.1145/2976749.2978321
https://www.google.com/patents/US6473819
https://www.google.com/patents/US6473819
https://www.usenix.org/publications/library/proceedings/neworl/full_papers/john.a
https://www.usenix.org/publications/library/proceedings/neworl/full_papers/john.a
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity

v2024.12.27a

BIBLIOGRAPHY 625

[JSG12] Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional mem-
ory architecture and implementation for IBM System z. In Proceedings
of the 45th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 45, pages 25–36, Vancouver B.C. Canada, December 2012.
Presentation slides: https://www.microarch.org/micro45/talks-
posters/3-jacobi-presentation.pdf.

[Kaa15] Frans Kaashoek. Parallel computing and the os. In SOSP History Day,
October 2015.

[KCH+06] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kumar, and
Anthony Nguyen. Hybrid transactional memory. In Proceedings of the
ACM SIGPLAN 2006 Symposium on Principles and Practice of Parallel
Programming, New York, New York, United States, 2006. ACM SIGPLAN.

[KDI20] Alex Kogan, Dave Dice, and Shady Issa. Scalable range locks for scalable
address spaces and beyond. In Proceedings of the Fifteenth European
Conference on Computer Systems, EuroSys ’20, Heraklion, Greece, 2020.
Association for Computing Machinery.

[Kel17] Michael J. Kelly. How might the manufacturability of the hardware at
device level impact on exascale computing?, 2017. Keynote speech at
Multicore World 2017, URL: https://openparallel.com/multicore-
world-2017/program-2017/abstracts2017/.

[Ken20] Chris Kennelly. TCMalloc overview, February 2020. https://google.
github.io/tcmalloc/overview.html.

[KFC11] KFC. Memristor processor solves mazes, March 2011. URL: https:
//www.technologyreview.com/2011/03/03/196572/memristor-
processor-solves-mazes/.

[Khi14] Maxim Khizhinsky. Memory management schemes, June 2014.
https://kukuruku.co/post/lock-free-data-structures-the-
inside-memory-management-schemes/.

[Khi15] Max Khiszinsky. Lock-free data structures. the inside. RCU, February
2015. https://kukuruku.co/post/lock-free-data-structures-
the-inside-rcu/.

[Kis14] Jan Kiszka. Real-time virtualization - how crazy are we? In Linux Plumbers
Conference, Duesseldorf, Germany, October 2014. URL: https://blog.
linuxplumbersconf.org/2014/ocw/proposals/1935.

[Kiv13] Avi Kivity. rcu: add basic read-copy-update implementation, Au-
gust 2013. https://github.com/cloudius-systems/osv/commit/
94b69794fb9e6c99d78ca9a58ddaee1c31256b43.

[Kiv14a] Avi Kivity. rcu hashtable, July 2014. https:
//github.com/cloudius-systems/osv/commit/
7fa2728e5d03b2174b4a39d94b21940d11926e90.

[Kiv14b] Avi Kivity. rcu: introduce an rcu list type, April 2014.
https://github.com/cloudius-systems/osv/commit/
4e46586093aeaf339fef8e08d123a6f6b0abde5b.

[KL80] H. T. Kung and Philip L. Lehman. Concurrent manipulation of binary search
trees. ACM Transactions on Database Systems, 5(3):354–382, September
1980.

https://dx.doi.org/10.1109/MICRO.2012.12
https://dx.doi.org/10.1109/MICRO.2012.12
https://www.microarch.org/micro45/talks-posters/3-jacobi-presentation.pdf
https://www.microarch.org/micro45/talks-posters/3-jacobi-presentation.pdf
https://sigops.org/sosp/sosp15/history/08-kaashoek-slides.pdf
https://dx.doi.org/10.1145/1122971.1123003
https://dx.doi.org/10.1145/3342195.3387533
https://dx.doi.org/10.1145/3342195.3387533
https://openparallel.com/multicore-world-2017/program-2017/abstracts2017/
https://openparallel.com/multicore-world-2017/program-2017/abstracts2017/
https://google.github.io/tcmalloc/overview.html
https://google.github.io/tcmalloc/overview.html
https://www.technologyreview.com/2011/03/03/196572/memristor-processor-solves-mazes/
https://www.technologyreview.com/2011/03/03/196572/memristor-processor-solves-mazes/
https://www.technologyreview.com/2011/03/03/196572/memristor-processor-solves-mazes/
https://kukuruku.co/post/lock-free-data-structures-the-inside-memory-management-schemes/
https://kukuruku.co/post/lock-free-data-structures-the-inside-memory-management-schemes/
https://kukuruku.co/post/lock-free-data-structures-the-inside-rcu/
https://kukuruku.co/post/lock-free-data-structures-the-inside-rcu/
https://blog.linuxplumbersconf.org/2014/ocw/proposals/1935
https://blog.linuxplumbersconf.org/2014/ocw/proposals/1935
https://github.com/cloudius-systems/osv/commit/94b69794fb9e6c99d78ca9a58ddaee1c31256b43
https://github.com/cloudius-systems/osv/commit/94b69794fb9e6c99d78ca9a58ddaee1c31256b43
https://github.com/cloudius-systems/osv/commit/7fa2728e5d03b2174b4a39d94b21940d11926e90
https://github.com/cloudius-systems/osv/commit/7fa2728e5d03b2174b4a39d94b21940d11926e90
https://github.com/cloudius-systems/osv/commit/7fa2728e5d03b2174b4a39d94b21940d11926e90
https://github.com/cloudius-systems/osv/commit/4e46586093aeaf339fef8e08d123a6f6b0abde5b
https://github.com/cloudius-systems/osv/commit/4e46586093aeaf339fef8e08d123a6f6b0abde5b
https://dx.doi.org/10.1145/320613.320619
https://dx.doi.org/10.1145/320613.320619

v2024.12.27a

626 BIBLIOGRAPHY

[Kle14] Andi Kleen. Scaling existing lock-based applications with lock elision.
Commun. ACM, 57(3):52–56, March 2014.

[Kle17] Matt Klein. Envoy threading model, July 2017. https://blog.
envoyproxy.io/envoy-threading-model-a8d44b922310.

[Kli23] Matt Kline. Garbage collection for systems programmers, September 2023.
https://bitbashing.io/gc-for-systems-programmers.html.

[KLP12] Christoph M. Kirsch, Michael Lippautz, and Hannes Payer. Fast and scalable
k-FIFO queues. Technical Report 2012-04, University of Salzburg, Salzburg,
Austria, June 2012.

[KM13] Konstantin Khlebnikov and Paul E. McKenney. RCU: non-atomic assignment
to long/pointer variables in gcc, January 2013. https://lore.kernel.
org/lkml/50F52FC8.4000701@openvz.org/.

[KMK+19] Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Madhava Krishnan Ramanathan,
and Changwoo Min. Mv-rlu: Scaling read-log-update with multi-versioning.
In Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS
’19, pages 779–792, Providence, RI, USA, 2019. ACM.

[Kni86] Tom Knight. An architecture for mostly functional languages. In Proceedings
of the 1986 ACM Conference on LISP and Functional Programming, LFP
’86, pages 105–112, Cambridge, Massachusetts, USA, 1986. ACM.

[Kni08] John U. Knickerbocker. 3D chip technology. IBM Journal of Research and
Development, 52(6), November 2008. URL: http://www.research.ibm.
com/journal/rd52-6.html [Link to each article is broken as of November
2016; Available via https://ieeexplore.ieee.org/xpl/tocresult.
jsp?isnumber=5388557].

[Knu73] Donald Knuth. The Art of Computer Programming. Addison-Wesley, 1973.
[Kra17] Vlad Krasnov. On the dangers of Intel’s frequency scaling, No-

vember 2017. https://blog.cloudflare.com/on-the-dangers-of-
intels-frequency-scaling/.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Springer Publishing Company, Incorporated, 1 edition, 2008.

[KS17a] Michalis Kokologiannakis and Konstantinos Sagonas. Stateless model
checking of the Linux kernel’s hierarchical read-copy update (Tree RCU).
Technical report, National Technical University of Athens, January 2017.
https://github.com/michalis-/rcu/blob/master/rcupaper.pdf.

[KS17b] Michalis Kokologiannakis and Konstantinos Sagonas. Stateless model check-
ing of the Linux kernel’s hierarchical read-copy-update (Tree RCU). In
Proceedings of International SPIN Symposium on Model Checking of Soft-
ware, SPIN 2017, New York, NY, USA, July 2017. ACM.

[KS19] Michalis Kokologiannakis and Konstantinos Sagonas. Stateless model check-
ing of the Linux kernel’s read-copy update (RCU). Int. J. Softw. Tools Technol.
Transf., 21(3):287–306, June 2019.

[KWS97] Leonidas Kontothanassis, Robert W. Wisniewski, and Michael L. Scott.
Scheduler-conscious synchronization. ACM Transactions on Computer Sys-
tems, 15(1):3–40, February 1997.

https://dx.doi.org/10.1145/2576793
https://blog.envoyproxy.io/envoy-threading-model-a8d44b922310
https://blog.envoyproxy.io/envoy-threading-model-a8d44b922310
https://bitbashing.io/gc-for-systems-programmers.html
https://www.cosy.sbg.ac.at/research/tr/2012-04_Kirsch_Lippautz_Payer.pdf
https://www.cosy.sbg.ac.at/research/tr/2012-04_Kirsch_Lippautz_Payer.pdf
https://lore.kernel.org/lkml/50F52FC8.4000701@openvz.org/
https://lore.kernel.org/lkml/50F52FC8.4000701@openvz.org/
https://dx.doi.org/10.1145/3297858.3304040
https://dx.doi.org/10.1145/319838.319854
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5388557
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5388557
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://github.com/michalis-/rcu/blob/master/rcupaper.pdf
https://dx.doi.org/doi.org/10.1145/3092282.3092287
https://dx.doi.org/doi.org/10.1145/3092282.3092287
https://dx.doi.org/10.1007/s10009-019-00514-6
https://dx.doi.org/10.1007/s10009-019-00514-6
https://dx.doi.org/10.1145/244764.244765

v2024.12.27a

BIBLIOGRAPHY 627

[LA94] Beng-Hong Lim and Anant Agarwal. Reactive synchronization algorithms
for multiprocessors. In Proceedings of the sixth international conference
on Architectural support for programming languages and operating systems,
ASPLOS VI, pages 25–35, San Jose, California, USA, October 1994. ACM.

[Lam74] Leslie Lamport. A new solution of Dĳkstra’s concurrent programming
problem. Communications of the ACM, 17(8):453–455, August 1974.

[Lam77] Leslie Lamport. Concurrent reading and writing. Commun. ACM, 20(11):806–
811, November 1977.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[Lar21] Michael Larabel. Intel to disable TSX by default on more CPUs with new
microcode, June 2021. https://www.phoronix.com/scan.php?page=
news_item&px=Intel-TSX-Off-New-Microcode.

[LBD+04] James R. Larus, Thomas Ball, Manuvir Das, Robert DeLine, Manuel Fah-
ndrich, Jon Pincus, Sriram K. Rajamani, and Ramanathan Venkatapathy.
Righting software. IEEE Softw., 21(3):92–100, May 2004.

[Lea97] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison Wesley Longman, Reading, MA, USA, 1997.

[Lem18] Daniel Lemire. AVX-512: when and how to use these new instructions, Sep-
tember 2018. https://lemire.me/blog/2018/09/07/avx-512-when-
and-how-to-use-these-new-instructions/.

[LGW+15] H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J.
Starke, C. May, R. Odaira, and T. Nakaike. Transactional memory support
in the IBM POWER8 processor. IBM J. Res. Dev., 59(1):8:1–8:14, January
2015.

[LHF05] Michael Lyons, Bill Hay, and Brad Frey. PowerPC storage model and AIX
programming, November 2005. http://www.ibm.com/developerworks/
systems/articles/powerpc.html [broken, August 2023].

[Lis88] Barbara Liskov. Distributed programming in Argus. Commun. ACM,
31(3):300–312, 1988.

[LLO09] Yossi Lev, Victor Luchangco, and Marek Olszewski. Scalable reader-writer
locks. In SPAA ’09: Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures, pages 101–110, Calgary, AB,
Canada, 2009. ACM.

[LLS13] Yujie Liu, Victor Luchangco, and Michael Spear. Mindicators: A scalable
approach to quiescence. In Proceedings of the 2013 IEEE 33rd International
Conference on Distributed Computing Systems, ICDCS ’13, pages 206–215,
Washington, DC, USA, 2013. IEEE Computer Society.

[LMKM16] Lihao Liang, Paul E. McKenney, Daniel Kroening, and Tom Melham.
Verification of the tree-based hierarchical read-copy update in the Linux
kernel. Technical report, Cornell University Library, October 2016.
https://arxiv.org/abs/1610.03052.

[LMKM18] Lihao Liang, Paul E. McKenney, Daniel Kroening, and Tom Melham. Verifi-
cation of tree-based hierarchical Read-Copy Update in the Linux Kernel. In
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, March 2018.

https://dx.doi.org/10.1145/195473.195490
https://dx.doi.org/10.1145/195473.195490
https://dx.doi.org/10.1145/361082.361093
https://dx.doi.org/10.1145/361082.361093
https://dx.doi.org/10.1145/359863.359878
https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://dx.doi.org/10.1109/MS.2004.1293079
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://dx.doi.org/10.1147/JRD.2014.2380199
https://dx.doi.org/10.1147/JRD.2014.2380199
https://dx.doi.org/10.1145/42392.42399
https://dx.doi.org/10.1145/1583991.1584020
https://dx.doi.org/10.1145/1583991.1584020
https://dx.doi.org/10.1109/ICDCS.2013.39
https://dx.doi.org/10.1109/ICDCS.2013.39
https://arxiv.org/abs/1610.03052
http://www.cs.ox.ac.uk/tom.melham/pub/Liang-2018-VTB.pdf
http://www.cs.ox.ac.uk/tom.melham/pub/Liang-2018-VTB.pdf

v2024.12.27a

628 BIBLIOGRAPHY

[Loc02] Doug Locke. Priority inheritance: The real story, July 2002. URL: http://
www.linuxdevices.com/articles/AT5698775833.html [broken, No-
vember 2016], page capture available at https://www.math.unipd.it/
%7Etullio/SCD/2007/Materiale/Locke.pdf.

[Lom77] D. B. Lomet. Process structuring, synchronization, and recovery using
atomic actions. SIGSOFT Softw. Eng. Notes, 2(2):128–137, 1977. URL:
http://portal.acm.org/citation.cfm?id=808319#.

[LR80] Butler W. Lampson and David D. Redell. Experience with processes and
monitors in Mesa. Communications of the ACM, 23(2):105–117, 1980.

[LS86] Vladimir Lanin and Dennis Shasha. A symmetric concurrent b-tree algorithm.
In ACM ’86: Proceedings of 1986 ACM Fall joint computer conference, pages
380–389, Dallas, Texas, United States, 1986. IEEE Computer Society Press.

[LS11] Yujie Liu and Michael Spear. Toxic transactions. In TRANSACT 2011, San
Jose, CA, USA, June 2011. ACM SIGPLAN.

[LSLK14] Carl Leonardsson, Kostis Sagonas, Truc Nguyen Lam, and Michalis
Kokologiannakis. Nidhugg, July 2014. https://github.com/nidhugg/
nidhugg.

[LVK+17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
Repairing sequential consistency in C/C++11. SIGPLAN Not., 52(6):618–632,
June 2017.

[LZC14] Ran Liu, Heng Zhang, and Haibo Chen. Scalable read-mostly synchroniza-
tion using passive reader-writer locks. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 219–230, Philadelphia, PA, June 2014.
USENIX Association.

[MAK+01] Paul E. McKenney, Jonathan Appavoo, Andi Kleen, Orran
Krieger, Rusty Russell, Dipankar Sarma, and Maneesh Soni.
Read-copy update. In Ottawa Linux Symposium, July 2001.
URL: https://www.kernel.org/doc/ols/2001/read-copy.pdf,
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.
05.01c.pdf.

[Mar17] Luc Maraget. Aarch64 model vs. hardware, May 2017. http://pauillac.
inria.fr/~maranget/cats7/model-aarch64/specific.html.

[Mar18] Catalin Marinas. Queued spinlocks model, March 2018.
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/
kernel-tla.git.

[Mas92] H. Massalin. Synthesis: An Efficient Implementation of Fundamental Op-
erating System Services. PhD thesis, Columbia University, New York, NY,
1992.

[Mat17] Norm Matloff. Programming on Parallel Machines. University of California,
Davis, Davis, CA, USA, 2017.

[MB20] Paul E. McKenney and Hans Boehm. P2055R0: A relaxed guide to mem-
ory_order_relaxed, January 2020. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2020/p2055r0.pdf.

[MBM+06] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and
David A. Wood. LogTM: Log-based transactional memory. In Proceedings

https://www.math.unipd.it/%7Etullio/SCD/2007/Materiale/Locke.pdf
https://www.math.unipd.it/%7Etullio/SCD/2007/Materiale/Locke.pdf
https://dx.doi.org/10.1145/390019.808319
https://dx.doi.org/10.1145/390019.808319
http://portal.acm.org/citation.cfm?id=808319#
https://dx.doi.org/10.1145/358818.358824
https://dx.doi.org/10.1145/358818.358824
http://portal.acm.org/citation.cfm?id=324589
https://www.cs.purdue.edu/transact11/web/papers/Liu.pdf
https://github.com/nidhugg/nidhugg
https://github.com/nidhugg/nidhugg
https://dx.doi.org/10.1145/3140587.3062352
https://www.usenix.org/conference/atc14/technical-sessions/presentation/liu
https://www.usenix.org/conference/atc14/technical-sessions/presentation/liu
https://www.kernel.org/doc/ols/2001/read-copy.pdf
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf
http://pauillac.inria.fr/~maranget/cats7/model-aarch64/specific.html
http://pauillac.inria.fr/~maranget/cats7/model-aarch64/specific.html
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git
https://dl.acm.org/doi/book/10.5555/143219
https://dl.acm.org/doi/book/10.5555/143219
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
https://dx.doi.org/10.1109/HPCA.2006.1598134

v2024.12.27a

BIBLIOGRAPHY 629

of the 12th Annual International Symposium on High Performance Com-
puter Architecture (HPCA-12), Austin, Texas, United States, 2006. IEEE.
Available: http://www.cs.wisc.edu/multifacet/papers/hpca06_
logtm.pdf [Viewed December 21, 2006].

[MBWW12] Paul E. McKenney, Silas Boyd-Wickizer, and Jonathan Walpole. RCU
usage in the linux kernel: One decade later, September 2012. Tech-
nical report paulmck.2012.09.17, http://rdrop.com/users/paulmck/
techreports/survey.2012.09.17a.pdf.

[McK90] Paul E. McKenney. Stochastic fairness queuing. In IEEE INFO-
COM’90 Proceedings, pages 733–740, San Francisco, June 1990. The
Institute of Electrical and Electronics Engineers, Inc. Revision avail-
able: http://www.rdrop.com/users/paulmck/scalability/paper/
sfq.2002.06.04.pdf [Viewed May 26, 2008].

[McK95] Paul E. McKenney. Differential profiling. In MASCOTS 1995, pages 237–241,
Toronto, Canada, January 1995.

[McK96a] Paul E. McKenney. Pattern Languages of Program Design, volume 2,
chapter 31: Selecting Locking Designs for Parallel Programs, pages 501–531.
Addison-Wesley, June 1996. Available: http://www.rdrop.com/users/
paulmck/scalability/paper/mutexdesignpat.pdf [Viewed February
17, 2005].

[McK96b] Paul E. McKenney. Selecting locking primitives for parallel programs.
Communications of the ACM, 39(10):75–82, October 1996.

[McK99] Paul E. McKenney. Differential profiling. Software - Practice and Experience,
29(3):219–234, 1999.

[McK01] Paul E. McKenney. RFC: patch to allow lock-free traversal of lists with
insertion, October 2001. Available: https://lore.kernel.org/lkml/
200110090155.f991tPt22329@eng4.beaverton.ibm.com/ [Viewed
January 05, 2021].

[McK03] Paul E. McKenney. Using RCU in the Linux 2.5 kernel. Linux Journal,
1(114):18–26, October 2003. Available: https://www.linuxjournal.
com/article/6993 [Viewed November 14, 2007].

[McK04] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-
Copy-Update Techniques in Operating System Kernels. PhD thesis, OGI
School of Science and Engineering at Oregon Health and Sciences University,
2004.

[McK05a] Paul E. McKenney. Memory ordering in modern microprocessors, part I.
Linux Journal, 1(136):52–57, August 2005. Available: https://www.
linuxjournal.com/article/8211 http://www.rdrop.com/users/
paulmck/scalability/paper/ordering.2007.09.19a.pdf [Viewed
November 30, 2007].

[McK05b] Paul E. McKenney. Memory ordering in modern microprocessors, part II.
Linux Journal, 1(137):78–82, September 2005. Available: https://www.
linuxjournal.com/article/8212 http://www.rdrop.com/users/
paulmck/scalability/paper/ordering.2007.09.19a.pdf [Viewed
November 30, 2007].

[McK05c] Paul E. McKenney. A realtime preemption overview, August 2005. URL:
https://lwn.net/Articles/146861/.

http://www.cs.wisc.edu/multifacet/papers/hpca06_logtm.pdf
http://www.cs.wisc.edu/multifacet/papers/hpca06_logtm.pdf
http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
https://dx.doi.org/10.1109/INFCOM.1990.91316
http://www.rdrop.com/users/paulmck/scalability/paper/sfq.2002.06.04.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/sfq.2002.06.04.pdf
https://dx.doi.org/10.1109/MASCOT.1995.378681
http://www.rdrop.com/users/paulmck/scalability/paper/mutexdesignpat.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/mutexdesignpat.pdf
https://dx.doi.org/10.1145/236156.236174
https://dx.doi.org/10.1002/(SICI)1097-024X(199903)29:3<219::AID-SPE230>3.0.CO;2-0
https://lore.kernel.org/lkml/200110090155.f991tPt22329@eng4.beaverton.ibm.com/
https://lore.kernel.org/lkml/200110090155.f991tPt22329@eng4.beaverton.ibm.com/
https://www.linuxjournal.com/article/6993
https://www.linuxjournal.com/article/6993
http://www.rdrop.com/~paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/~paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
https://www.linuxjournal.com/article/8211
https://www.linuxjournal.com/article/8211
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
https://www.linuxjournal.com/article/8212
https://www.linuxjournal.com/article/8212
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
https://lwn.net/Articles/146861/

v2024.12.27a

630 BIBLIOGRAPHY

[McK06] Paul E. McKenney. Sleepable RCU, October 2006. Available:
https://lwn.net/Articles/202847/ Revised: http://www.rdrop.
com/users/paulmck/RCU/srcu.2007.01.14a.pdf [Viewed August 21,
2006].

[McK07a] Paul E. McKenney. The design of preemptible read-copy-update, October
2007. Available: https://lwn.net/Articles/253651/ [Viewed October
25, 2007].

[McK07b] Paul E. McKenney. Immunize rcu_dereference() against crazy compiler
writers, October 2007. Git commit: https://git.kernel.org/linus/
97b430320ce7.

[McK07c] Paul E. McKenney. [PATCH] QRCU with lockless fastpath, February
2007. Available: https://lore.kernel.org/lkml/20070225062349.
GA17468@linux.vnet.ibm.com/.

[McK07d] Paul E. McKenney. Priority-boosting RCU read-side critical sections, February
2007. https://lwn.net/Articles/220677/.

[McK07e] Paul E. McKenney. RCU and unloadable modules, January 2007. Available:
https://lwn.net/Articles/217484/ [Viewed November 22, 2007].

[McK07f] Paul E. McKenney. Using Promela and Spin to verify parallel algorithms,
August 2007. Available: https://lwn.net/Articles/243851/ [Viewed
September 8, 2007].

[McK08a] Paul E. McKenney. Efficient support of consistent cyclic search with read-
copy update (lapsed). Technical Report US Patent 7,426,511, Assigned to
International Business Machines Corp, Washington, DC, September 2008.

[McK08b] Paul E. McKenney. Hierarchical RCU, November 2008. https://lwn.
net/Articles/305782/.

[McK08c] Paul E. McKenney. rcu: fix rcu_try_flip_waitack_needed() to prevent
grace-period stall, May 2008. Git commit: https://git.kernel.org/
linus/d7c0651390b6.

[McK08d] Paul E. McKenney. rcu: fix misplaced mb() in rcu_enter/exit_
nohz(), March 2008. Git commit: https://git.kernel.org/linus/
ae66be9b71b1.

[McK08e] Paul E. McKenney. RCU part 3: the RCU API, January 2008. Available:
https://lwn.net/Articles/264090/ [Viewed January 10, 2008].

[McK08f] Paul E. McKenney. "Tree RCU": scalable classic RCU implementa-
tion, December 2008. Git commit: https://git.kernel.org/linus/
64db4cfff99c.

[McK08g] Paul E. McKenney. What is RCU? part 2: Usage, January 2008. Available:
https://lwn.net/Articles/263130/ [Viewed January 4, 2008].

[McK09a] Paul E. McKenney. Re: [PATCH fyi] RCU: the bloatwatch edition, January
2009. Available: https://lore.kernel.org/lkml/20090114202044.
GJ6734@linux.vnet.ibm.com/.

[McK09b] Paul E. McKenney. Transactional memory everywhere?, September 2009.
https://paulmck.livejournal.com/13841.html.

[McK10] Paul E. McKenney. Efficient support of consistent cyclic search with read-
copy update (lapsed). Technical Report US Patent 7,814,082, Assigned to
International Business Machines Corp, Washington, DC, October 2010.

https://lwn.net/Articles/202847/
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
https://lwn.net/Articles/253651/
https://git.kernel.org/linus/97b430320ce7
https://git.kernel.org/linus/97b430320ce7
https://lore.kernel.org/lkml/20070225062349.GA17468@linux.vnet.ibm.com/
https://lore.kernel.org/lkml/20070225062349.GA17468@linux.vnet.ibm.com/
https://lwn.net/Articles/220677/
https://lwn.net/Articles/217484/
https://lwn.net/Articles/243851/
https://lwn.net/Articles/305782/
https://lwn.net/Articles/305782/
https://git.kernel.org/linus/d7c0651390b6
https://git.kernel.org/linus/d7c0651390b6
https://git.kernel.org/linus/ae66be9b71b1
https://git.kernel.org/linus/ae66be9b71b1
https://lwn.net/Articles/264090/
https://git.kernel.org/linus/64db4cfff99c
https://git.kernel.org/linus/64db4cfff99c
https://lwn.net/Articles/263130/
https://lore.kernel.org/lkml/20090114202044.GJ6734@linux.vnet.ibm.com/
https://lore.kernel.org/lkml/20090114202044.GJ6734@linux.vnet.ibm.com/
https://paulmck.livejournal.com/13841.html

v2024.12.27a

BIBLIOGRAPHY 631

[McK11a] Paul E. McKenney. 3.0 and RCU: what went wrong, July 2011. https:
//lwn.net/Articles/453002/.

[McK11b] Paul E. McKenney. Concurrent code and expensive instructions, January
2011. Available: https://lwn.net/Articles/423994 [Viewed January
28, 2011].

[McK11c] Paul E. McKenney. Transactional memory everywhere: Htm and
cache geometry, June 2011. https://paulmck.livejournal.com/tag/
transactional%20memory%20everywhere.

[McK11d] Paul E. McKenney. Validating memory barriers and atomic instructions,
December 2011. https://lwn.net/Articles/470681/.

[McK11e] Paul E. McKenney. Verifying parallel software: Can theory meet practice?,
January 2011. http://www.rdrop.com/users/paulmck/scalability/
paper/VericoTheoryPractice.2011.01.28a.pdf.

[McK12a] Paul E. McKenney. Beyond expert-only parallel programming? In Proceed-
ings of the 2012 ACM workshop on Relaxing synchronization for multicore
and manycore scalability, RACES ’12, pages 25–32, Tucson, Arizona, USA,
2012. ACM.

[McK12b] Paul E. McKenney. Making RCU safe for battery-powered devices, Feb-
ruary 2012. Available: http://www.rdrop.com/users/paulmck/RCU/
RCUdynticks.2012.02.15b.pdf [Viewed March 1, 2012].

[McK12c] Paul E. McKenney. Retrofitted parallelism considered grossly sub-optimal.
In 4th USENIX Workshop on Hot Topics on Parallelism, page 7, Berkeley, CA,
USA, June 2012.

[McK12d] Paul E. McKenney. Signed overflow optimization hazards in the kernel,
August 2012. https://lwn.net/Articles/511259/.

[McK12e] Paul E. McKenney. Transactional memory everywhere: Hardware
transactional lock elision, May 2012. Available: https://paulmck.
livejournal.com/32267.html [Viewed January 28, 2021].

[McK13] Paul E. McKenney. Structured deferral: synchronization via procrastination.
Commun. ACM, 56(7):40–49, July 2013.

[McK14a] Paul E. McKenney. C++ memory model meets high-update-rate data struc-
tures, September 2014. http://www2.rdrop.com/users/paulmck/RCU/
C++Updates.2014.09.11a.pdf.

[McK14b] Paul E. McKenney. Efficient support of consistent cyclic search with read-
copy update (lapsed). Technical Report US Patent 8,874,535, Assigned to
International Business Machines Corp, Washington, DC, October 2014.

[McK14c] Paul E. McKenney. Is Parallel Programming Hard, And, If So, What
Can You Do About It? (First Edition). kernel.org, Corvallis, OR, USA,
2014. https://kernel.org/pub/linux/kernel/people/paulmck/
perfbook/perfbook-e1.html.

[McK14d] Paul E. McKenney. N4037: Non-transactional implementation of atomic tree
move, May 2014. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n4037.pdf.

[McK14e] Paul E. McKenney. Proper care and feeding of return values from
rcu_dereference(), February 2014. https://www.kernel.org/doc/
Documentation/RCU/rcu_dereference.txt.

https://lwn.net/Articles/453002/
https://lwn.net/Articles/453002/
https://lwn.net/Articles/423994
https://paulmck.livejournal.com/tag/transactional%20memory%20everywhere
https://paulmck.livejournal.com/tag/transactional%20memory%20everywhere
https://lwn.net/Articles/470681/
http://www.rdrop.com/users/paulmck/scalability/paper/VericoTheoryPractice.2011.01.28a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/VericoTheoryPractice.2011.01.28a.pdf
https://dx.doi.org/10.1145/2414729.2414734
http://www.rdrop.com/users/paulmck/RCU/RCUdynticks.2012.02.15b.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdynticks.2012.02.15b.pdf
https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-grossly-sub-optimal
https://lwn.net/Articles/511259/
https://paulmck.livejournal.com/32267.html
https://paulmck.livejournal.com/32267.html
https://dx.doi.org/10.1145/2483852.2483867
http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf
http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e1.html
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4037.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4037.pdf
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt

v2024.12.27a

632 BIBLIOGRAPHY

[McK14f] Paul E. McKenney. The RCU API, 2014 edition, September 2014. https:
//lwn.net/Articles/609904/.

[McK14g] Paul E. McKenney. Recent read-mostly research, November 2014. https:
//lwn.net/Articles/619355/.

[McK15a] Paul E. McKenney. Formal verification and Linux-kernel concurrency.
In Compositional Verification Methods for Next-Generation Concurrency,
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2015. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

[McK15b] Paul E. McKenney. High-performance and scalable updates: The Issaquah
challenge, January 2015. http://www2.rdrop.com/users/paulmck/
scalability/paper/Updates.2015.01.16b.LCA.pdf.

[McK15c] Paul E. McKenney. [PATCH tip/core/rcu 01/10] rcu: Make
rcu_nmi_enter() handle nesting, January 2015. https:
//lore.kernel.org/lkml/1420651257-553-1-git-send-email-
paulmck@linux.vnet.ibm.com/.

[McK15d] Paul E. McKenney. Practical experience with formal verification tools. In
Verified Trustworthy Software Systems Specialist Meeting. The Royal Society,
April 2015. http://www.rdrop.com/users/paulmck/scalability/
paper/Validation.2016.04.06e.SpecMtg.pdf.

[McK15e] Paul E. McKenney. RCU requirements part 2 — parallelism and software
engineering, August 2015. https://lwn.net/Articles/652677/.

[McK15f] Paul E. McKenney. RCU requirements part 3, August 2015. https:
//lwn.net/Articles/653326/.

[McK15g] Paul E. McKenney. Re: [patch tip/locking/core v4 1/6] powerpc:
atomic: Make *xchg and *cmpxchg a full barrier, October 2015. Email
thread: https://lore.kernel.org/lkml/20151014201916.GB3910@
linux.vnet.ibm.com/.

[McK15h] Paul E. McKenney. Requirements for RCU part 1: the fundamentals, July
2015. https://lwn.net/Articles/652156/.

[McK16a] Paul E. McKenney. Beyond the Issaquah challenge: High-performance
scalable complex updates, September 2016. http://www2.rdrop.com/
users/paulmck/RCU/Updates.2016.09.19i.CPPCON.pdf.

[McK16b] Paul E. McKenney. High-performance and scalable updates: The Issaquah
challenge, June 2016. http://www2.rdrop.com/users/paulmck/RCU/
Updates.2016.06.01e.ACM.pdf.

[McK17] Paul E. McKenney. Verification challenge 6: Linux-kernel Tree RCU, June
2017. https://paulmck.livejournal.com/46993.html.

[McK19a] Paul E. McKenney. A critical RCU safety property is... Ease of use! In
Proceedings of the 12th ACM International Conference on Systems and
Storage, SYSTOR ’19, pages 132–143, Haifa, Israel, 2019. ACM.

[McK19b] Paul E. McKenney. The RCU API, 2019 edition, January 2019. https:
//lwn.net/Articles/777036/.

[McK19c] Paul E. McKenney. RCU’s first-ever CVE, and how i lived to tell the
tale, January 2019. linux.conf.au Slides: http://www.rdrop.com/users/
paulmck/RCU/cve.2019.01.23e.pdf Video: https://www.youtube.
com/watch?v=hZX1aokdNiY.

https://lwn.net/Articles/609904/
https://lwn.net/Articles/609904/
https://lwn.net/Articles/619355/
https://lwn.net/Articles/619355/
http://materials.dagstuhl.de/files/15/15191/15191.PaulMcKenney.Slides.pdf
http://www2.rdrop.com/users/paulmck/scalability/paper/Updates.2015.01.16b.LCA.pdf
http://www2.rdrop.com/users/paulmck/scalability/paper/Updates.2015.01.16b.LCA.pdf
https://lore.kernel.org/lkml/1420651257-553-1-git-send-email-paulmck@linux.vnet.ibm.com/
https://lore.kernel.org/lkml/1420651257-553-1-git-send-email-paulmck@linux.vnet.ibm.com/
https://lore.kernel.org/lkml/1420651257-553-1-git-send-email-paulmck@linux.vnet.ibm.com/
http://www.rdrop.com/users/paulmck/scalability/paper/Validation.2016.04.06e.SpecMtg.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/Validation.2016.04.06e.SpecMtg.pdf
https://lwn.net/Articles/652677/
https://lwn.net/Articles/653326/
https://lwn.net/Articles/653326/
https://lore.kernel.org/lkml/20151014201916.GB3910@linux.vnet.ibm.com/
https://lore.kernel.org/lkml/20151014201916.GB3910@linux.vnet.ibm.com/
https://lwn.net/Articles/652156/
http://www2.rdrop.com/users/paulmck/RCU/Updates.2016.09.19i.CPPCON.pdf
http://www2.rdrop.com/users/paulmck/RCU/Updates.2016.09.19i.CPPCON.pdf
http://www2.rdrop.com/users/paulmck/RCU/Updates.2016.06.01e.ACM.pdf
http://www2.rdrop.com/users/paulmck/RCU/Updates.2016.06.01e.ACM.pdf
https://paulmck.livejournal.com/46993.html
https://dx.doi.org/10.1145/3319647.3325836
https://lwn.net/Articles/777036/
https://lwn.net/Articles/777036/
http://www.rdrop.com/users/paulmck/RCU/cve.2019.01.23e.pdf
http://www.rdrop.com/users/paulmck/RCU/cve.2019.01.23e.pdf
https://www.youtube.com/watch?v=hZX1aokdNiY
https://www.youtube.com/watch?v=hZX1aokdNiY

v2024.12.27a

BIBLIOGRAPHY 633

[McK21] Paul E. McKenney. Unraveling RCU-usage mysteries (funda-
mentals), December 2021. Linux Foundation Mentorship Se-
ries: https://linuxfoundation.org/webinars/unraveling-rcu-
usage-mysteries/ Slides: http://www2.rdrop.com/~paulmck/RCU/
RCUusageFundamental.2021.12.07a.LF.pdf.

[McK22] Paul E. McKenney. Unraveling RCU-usage mysteries (additional
use cases), February 2022. Linux Foundation Mentorship Se-
ries: https://linuxfoundation.org/webinars/unraveling-
rcu-usage-mysteries-additional-use-cases/ Slides: https:
//events.linuxfoundation.org/wp-content/uploads/2022/02/
RCUusageAdditional.2022.02.22b.LF-1.pdf.

[MCM02] Paul E. McKenney, Kevin A. Closson, and Raghupathi Malige. Lingering locks
with fairness control for multi-node computer systems. US Patent 6,480,918,
Assigned to International Business Machines Corporation, Washington, DC,
November 2002.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors. Transactions of Computer
Systems, 9(1):21–65, February 1991.

[MD92] Paul E. McKenney and Ken F. Dove. Efficient demultiplexing of incoming
tcp packets. In SIGCOMM ’92, Proceedings of the Conference on Communi-
cations Architecture & Protocols, pages 269–279, Baltimore, MD, August
1992. Association for Computing Machinery.

[MDJ13a] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. The RCU-
protected list API, November 2013. https://lwn.net/Articles/
573441/.

[MDJ13b] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. The URCU hash
table API, November 2013. https://lwn.net/Articles/573432/.

[MDJ13c] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. URCU-protected
hash tables, November 2013. https://lwn.net/Articles/573431/.

[MDJ13d] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. URCU-protected
queues and stacks, November 2013. https://lwn.net/Articles/
573433/.

[MDJ13e] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. The URCU stack-
/queue API, November 2013. https://lwn.net/Articles/573434/.

[MDJ13f] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. User-space RCU,
November 2013. https://lwn.net/Articles/573424/.

[MDJ13g] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. The user-space
RCU API, November 2013. https://lwn.net/Articles/573439/.

[MDJ13h] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiangshan. User-space RCU:
Atomic-operation and utility API, November 2013. https://lwn.net/
Articles/573435/.

[MDJT13a] Paul E. McKenney, Mathieu Desnoyers, Lai Jiangshan, and Josh Triplett. The
RCU-barrier menagerie, November 2013. https://lwn.net/Articles/
573497/.

https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/
https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/
http://www2.rdrop.com/~paulmck/RCU/RCUusageFundamental.2021.12.07a.LF.pdf
http://www2.rdrop.com/~paulmck/RCU/RCUusageFundamental.2021.12.07a.LF.pdf
https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases/
https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases/
https://events.linuxfoundation.org/wp-content/uploads/2022/02/RCUusageAdditional.2022.02.22b.LF-1.pdf
https://events.linuxfoundation.org/wp-content/uploads/2022/02/RCUusageAdditional.2022.02.22b.LF-1.pdf
https://events.linuxfoundation.org/wp-content/uploads/2022/02/RCUusageAdditional.2022.02.22b.LF-1.pdf
https://www.google.com/patents/US6480918
https://www.google.com/patents/US6480918
https://dx.doi.org/10.1145/103727.103729
https://dx.doi.org/10.1145/103727.103729
https://dx.doi.org/10.1145/144179.144299
https://dx.doi.org/10.1145/144179.144299
https://lwn.net/Articles/573441/
https://lwn.net/Articles/573441/
https://lwn.net/Articles/573432/
https://lwn.net/Articles/573431/
https://lwn.net/Articles/573433/
https://lwn.net/Articles/573433/
https://lwn.net/Articles/573434/
https://lwn.net/Articles/573424/
https://lwn.net/Articles/573439/
https://lwn.net/Articles/573435/
https://lwn.net/Articles/573435/
https://lwn.net/Articles/573497/
https://lwn.net/Articles/573497/

v2024.12.27a

634 BIBLIOGRAPHY

[MDJT13b] Paul E. McKenney, Mathieu Desnoyers, Lai Jiangshan, and Josh Triplett.
User-space RCU: Memory-barrier menagerie, November 2013. https:
//lwn.net/Articles/573436/.

[MDR16] Paul E. McKenney, Will Deacon, and Luis R. Rodriguez. Semantics of MMIO
mapping attributes across architectures, August 2016. https://lwn.net/
Articles/698014/.

[MDSS20] Hans Meuer, Jack Dongarra, Erich Strohmaier, and Horst Simon. Top
500: The list, November 2020. Available: https://top500.org/lists/
[Viewed March 6, 2021].

[Men16] Alexis Menard. Move OneWriterSeqLock and SharedMemorySe-
qLockBuffer from content/ to device/base/synchronization, September
2016. https://source.chromium.org/chromium/chromium/src/+/
b39a3082846d5877a15e8b7e18d66cb142abe8af.

[Mer11] Rick Merritt. IBM plants transactional memory in CPU, August 2011.
EE Times https://www.eetimes.com/ibm-plants-transactional-
memory-in-cpu/.

[Met99] Panagiotis Takis Metaxas. Fast dithering on a data-parallel computer. In
Proceedings of the IASTED International Conference on Parallel and Distrib-
uted Computing and Systems, pages 570–576, Cambridge, MA, USA, 1999.
IASTED.

[MG92] Paul E. McKenney and Gary Graunke. Efficient buffer allocation on shared-
memory multiprocessors. In IEEE Workshop on the Architecture and Imple-
mentation of High Performance Communication Subsystems, pages 194–199,
Tucson, AZ, February 1992. The Institute of Electrical and Electronics
Engineers, Inc.

[MGM+09] Paul E. McKenney, Manish Gupta, Maged M. Michael, Phil Howard, Joshua
Triplett, and Jonathan Walpole. Is parallel programming hard, and if so,
why? Technical Report TR-09-02, Portland State University, Portland, OR,
USA, February 2009. URL: https://archives.pdx.edu/ds/psu/10386
[Viewed February 13, 2021].

[MHS12] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why on-chip coherence
is here to stay. Communications of the ACM, 55(7):78–89, July 2012.

[Mic02] Maged M. Michael. Safe memory reclamation for dynamic lock-free objects
using atomic reads and writes. In Proceedings of the 21st Annual ACM
Symposium on Principles of Distributed Computing, pages 21–30, August
2002.

[Mic03] Maged M. Michael. Cas-based lock-free algorithm for shared deques. In
Harald Kosch, László Böszörményi, and Hermann Hellwagner, editors, Euro-
Par, volume 2790 of Lecture Notes in Computer Science, pages 651–660.
Springer, 2003.

[Mic04a] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free
objects. IEEE Transactions on Parallel and Distributed Systems, 15(6):491–
504, June 2004.

[Mic04b] Maged M. Michael. Scalable lock-free dynamic memory allocation. SIGPLAN
Not., 39(6):35–46, 2004.

https://lwn.net/Articles/573436/
https://lwn.net/Articles/573436/
https://lwn.net/Articles/698014/
https://lwn.net/Articles/698014/
https://top500.org/lists/
https://source.chromium.org/chromium/chromium/src/+/b39a3082846d5877a15e8b7e18d66cb142abe8af
https://source.chromium.org/chromium/chromium/src/+/b39a3082846d5877a15e8b7e18d66cb142abe8af
https://www.eetimes.com/ibm-plants-transactional-memory-in-cpu/
https://www.eetimes.com/ibm-plants-transactional-memory-in-cpu/
http://cs.wellesley.edu/~pmetaxas/pdcs99.pdf
https://dx.doi.org/10.1109/HPCS.1992.759449
https://dx.doi.org/10.1109/HPCS.1992.759449
https://archives.pdx.edu/ds/psu/10386
https://dx.doi.org/10.1145/2209249.2209269
https://dx.doi.org/10.1145/2209249.2209269
https://dx.doi.org/10.1007/978-3-540-45209-6_92
https://dx.doi.org/10.1109/TPDS.2004.8
https://dx.doi.org/10.1109/TPDS.2004.8
https://dx.doi.org/10.1145/996893.996848

v2024.12.27a

BIBLIOGRAPHY 635

[Mic08] Microsoft. FlushProcessWriteBuffers function, 2008.
https://docs.microsoft.com/en-us/windows/desktop/
api/processthreadsapi/nf-processthreadsapi-
flushprocesswritebuffers.

[Mic18] Maged Michael. Rewrite from experimental, use of de-
terministic schedule, improvements, June 2018. Hazard
pointers: https://github.com/facebook/folly/commit/
d42832d2a529156275543c7fa7183e1321df605d.

[Mil06] David S. Miller. Re: [PATCH, RFC] RCU : OOM avoidance and lower latency,
January 2006. Available: https://lore.kernel.org/lkml/20060106.
231054.43576567.davem@davemloft.net/.

[MIM15] Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but at
what cost? In Proceedings of the 15th USENIX Conference on Hot Topics
in Operating Systems, HOTOS’15, page 14, Switzerland, 2015. USENIX
Association.

[MJST16] Paul E. McKenney, Alan Jeffrey, Ali Sezgin, and Tony Tye. P0422r0: Out-
of-thin-air execution is vacuous, July 2016. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2016/p0422r0.html.

[MK88] Marshall Kirk McKusick and Michael J. Karels. Design of a general purpose
memory allocator for the 4.3BSD UNIX kernel. In USENIX Conference
Proceedings, Berkeley CA, June 1988.

[MKM12] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM Euro-
pean Conference on Computer Systems, EuroSys ’12, pages 183–196, Bern,
Switzerland, 2012. ACM.

[ML82] Udi Manber and Richard E. Ladner. Concurrency control in a dynamic search
structure. Technical Report 82-01-01, Department of Computer Science,
University of Washington, Seattle, Washington, January 1982.

[ML84] Udi Manber and Richard E. Ladner. Concurrency control in a dynamic search
structure. ACM Transactions on Database Systems, 9(3):439–455, September
1984.

[MLH94] Peter Magnusson, Anders Landin, and Erik Hagersten. Efficient software
synchronization on large cache coherent multiprocessors. Technical Report
T94:07, Swedish Institute of Computer Science, Kista, Sweden, February
1994.

[MM00] Ingo Molnar and David S. Miller. brlock, March 2000. URL:
http://kernel.nic.funet.fi/pub/linux/kernel/v2.3/patch-
html/patch-2.3.49/linux_include_linux_brlock.h.html.

[MMM+20] Paul E. McKenney, Maged Michael, Jens Maurer, Peter Sewell, Martin Uecker,
Hans Boehm, Hubert Tong, Niall Douglas, Thomas Rodgers, Will Deacon,
Michael Wong, David Goldblatt, Kostya Serebryany, and Anthony Williams.
P1726R4: Pointer lifetime-end zap, July 2020. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2020/p1726r4.pdf.

[MMS19] Paul E. McKenney, Maged Michael, and Peter Sewell. N2369: Pointer
lifetime-end zap, April 2019. http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n2369.pdf.

https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://github.com/facebook/folly/commit/d42832d2a529156275543c7fa7183e1321df605d
https://github.com/facebook/folly/commit/d42832d2a529156275543c7fa7183e1321df605d
https://lore.kernel.org/lkml/20060106.231054.43576567.davem@davemloft.net/
https://lore.kernel.org/lkml/20060106.231054.43576567.davem@davemloft.net/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html
https://docs.freebsd.org/44doc/papers/kernmalloc.pdf
https://docs.freebsd.org/44doc/papers/kernmalloc.pdf
https://dx.doi.org/10.1145/2168836.2168855
https://dx.doi.org/10.1145/2168836.2168855
https://dx.doi.org/10.1145/1270.318576
https://dx.doi.org/10.1145/1270.318576
http://dl.acm.org/citation.cfm?id=869729
http://dl.acm.org/citation.cfm?id=869729
http://kernel.nic.funet.fi/pub/linux/kernel/v2.3/patch-html/patch-2.3.49/linux_include_linux_brlock.h.html
http://kernel.nic.funet.fi/pub/linux/kernel/v2.3/patch-html/patch-2.3.49/linux_include_linux_brlock.h.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1726r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1726r4.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf

v2024.12.27a

636 BIBLIOGRAPHY

[MMTW10] Paul E. McKenney, Maged M. Michael, Josh Triplett, and Jonathan Walpole.
Why the grass may not be greener on the other side: a comparison of locking
vs. transactional memory. ACM Operating Systems Review, 44(3), July 2010.

[MMW07] Paul E. McKenney, Maged Michael, and Jonathan Walpole. Why the grass may
not be greener on the other side: A comparison of locking vs. transactional
memory. In Programming Languages and Operating Systems, pages 1–5,
Stevenson, Washington, USA, October 2007. ACM SIGOPS.

[Mol05] Ingo Molnar. Index of /pub/linux/kernel/projects/rt, February 2005. URL:
https://www.kernel.org/pub/linux/kernel/projects/rt/.

[Mol06] Ingo Molnar. Lightweight robust futexes, March 2006. Available: https://
www.kernel.org/doc/Documentation/robust-futexes.txt [Viewed
February 14, 2021].

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, April 1965.

[Moo03] Gordon Moore. No exponential is forever–but we can delay forever. In IBM
Academy of Technology 2003 Annual Meeting, San Francisco, CA, October
2003.

[Moo20] Samuel K. Moore. Intel’s stacked nanosheet transistors could be the next step
in Moore’s Law process that builds two transistors—one directly atop the
other—will boost chip density. IEEE Spectrum, 57(12):4, 2020.

[Mor07] Richard Morris. Sir Tony Hoare: Geek of the week, August
2007. https://www.red-gate.com/simple-talk/opinion/geek-
of-the-week/sir-tony-hoare-geek-of-the-week/.

[MOZ09] Nicholas Mc Guire, Peter Odhiambo Okech, and Qingguo Zhou. Analysis
of inherent randomness of the linux kernel. In Eleventh Real Time Linux
Workshop, Dresden, Germany, September 2009.

[MP15a] Paul E. McKenney and Aravinda Prasad. Recent read-mostly research in
2015, December 2015. https://lwn.net/Articles/667593/.

[MP15b] Paul E. McKenney and Aravinda Prasad. Some more details on read-log-
update, December 2015. https://lwn.net/Articles/667720/.

[MPA+06] Paul E. McKenney, Chris Purcell, Algae, Ben Schumin, Gaius Cornelius,
Qwertyus, Neil Conway, Sbw, Blainster, Canis Rufus, Zoicon5, Anome, and
Hal Eisen. Read-copy update, July 2006. https://en.wikipedia.org/
wiki/Read-copy-update.

[MPI08] MPI Forum. Message passing interface forum, September 2008. Available:
http://www.mpi-forum.org/ [Viewed September 9, 2008].

[MR08] Paul E. McKenney and Steven Rostedt. Integrating and validating dynticks and
preemptable RCU, April 2008. Available: https://lwn.net/Articles/
279077/ [Viewed April 24, 2008].

[MRP+17] Paul E. McKenney, Torvald Riegel, Jeff Preshing, Hans Boehm, Clark Nelson,
Olivier Giroux, Lawrence Crowl, JF Bastian, and Michael Wong. Marking
memory order consume dependency chains, February 2017. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf.

[MS93] Paul E. McKenney and Jack Slingwine. Efficient kernel memory allocation
on shared-memory multiprocessors. In USENIX Conference Proceedings,

https://dx.doi.org/10.1145/1842733.1842749
https://dx.doi.org/10.1145/1842733.1842749
https://dx.doi.org/10.1145/1376789.1376798
https://dx.doi.org/10.1145/1376789.1376798
https://dx.doi.org/10.1145/1376789.1376798
https://www.kernel.org/pub/linux/kernel/projects/rt/
https://www.kernel.org/doc/Documentation/robust-futexes.txt
https://www.kernel.org/doc/Documentation/robust-futexes.txt
https://spectrum.ieee.org/intels-stacked-nanosheet-transistors-could-be-the-next-step-in-moores-law
https://spectrum.ieee.org/intels-stacked-nanosheet-transistors-could-be-the-next-step-in-moores-law
https://spectrum.ieee.org/intels-stacked-nanosheet-transistors-could-be-the-next-step-in-moores-law
https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/sir-tony-hoare-geek-of-the-week/
https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/sir-tony-hoare-geek-of-the-week/
https://www.osadl.org/?id=684
https://www.osadl.org/?id=684
https://lwn.net/Articles/667593/
https://lwn.net/Articles/667720/
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Read-copy-update
http://www.mpi-forum.org/
https://lwn.net/Articles/279077/
https://lwn.net/Articles/279077/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf

v2024.12.27a

BIBLIOGRAPHY 637

pages 295–306, Berkeley CA, February 1993. USENIX Association. Avail-
able: http://www.rdrop.com/users/paulmck/scalability/paper/
mpalloc.pdf [Viewed January 30, 2005].

[MS95] Maged M. Michael and Michael L. Scott. Correction of a memory management
method for lock-free data structures, December 1995. Technical Report TR599.

[MS96] M.M Michael and M. L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proc of the Fifteenth ACM
Symposium on Principles of Distributed Computing, pages 267–275, May
1996.

[MS98a] Paul E. McKenney and John D. Slingwine. Read-copy update: Using
execution history to solve concurrency problems. In Parallel and Distributed
Computing and Systems, pages 509–518, Las Vegas, NV, October 1998.

[MS98b] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory multiproces-
sors. J. Parallel Distrib. Comput., 51(1):1–26, 1998.

[MS01] Paul E. McKenney and Dipankar Sarma. Read-copy update mutual exclusion
in Linux, February 2001. Available: http://lse.sourceforge.net/
locking/rcu/rcupdate_doc.html [Viewed October 18, 2004].

[MS08] MySQL AB and Sun Microsystems. MySQL Downloads, November 2008.
Available: http://dev.mysql.com/downloads/ [Viewed November 26,
2008].

[MS09] Paul E. McKenney and Raul Silvera. Example POWER im-
plementation for C/C++ memory model, February 2009. Avail-
able: http://www.rdrop.com/users/paulmck/scalability/paper/
N2745r.2009.02.27a.html [Viewed: April 5, 2009].

[MS12] Alexander Matveev and Nir Shavit. Towards a fully pessimistic STM model.
In TRANSACT 2012, San Jose, CA, USA, February 2012. ACM SIGPLAN.

[MS14] Paul E. McKenney and Alan Stern. Axiomatic validation of memory barriers
and atomic instructions, August 2014. https://lwn.net/Articles/
608550/.

[MS18] Luc Maranget and Alan Stern. lock.cat, May 2018. https://github.com/
torvalds/linux/blob/master/tools/memory-model/lock.cat.

[MSA+02] Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran
Krieger, and Rusty Russell. Read-copy update. In Ottawa Linux Symposium,
pages 338–367, June 2002. Available: https://www.kernel.org/doc/
ols/2002/ols2002-pages-338-367.pdf [Viewed February 14, 2021].

[MSFM15] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. Read-
log-update: A lightweight synchronization mechanism for concurrent pro-
gramming. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 168–183, Monterey, California, 2015. ACM.

[MSK01] Paul E. McKenney, Jack Slingwine, and Phil Krueger. Experience with an
efficient parallel kernel memory allocator. Software – Practice and Experience,
31(3):235–257, March 2001.

[MSM05] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns
for Parallel Programming. Addison Wesley, Boston, MA, USA, 2005.

http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
https://pdfs.semanticscholar.org/cec0/ad7b0fc2d4d6ba45c6212d36217df1ff2bf2.pdf
https://pdfs.semanticscholar.org/cec0/ad7b0fc2d4d6ba45c6212d36217df1ff2bf2.pdf
https://dx.doi.org/10.1145/248052.248106
https://dx.doi.org/10.1145/248052.248106
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
https://dx.doi.org/10.1006/jpdc.1998.1446
https://dx.doi.org/10.1006/jpdc.1998.1446
https://dx.doi.org/10.1006/jpdc.1998.1446
http://lse.sourceforge.net/locking/rcu/rcupdate_doc.html
http://lse.sourceforge.net/locking/rcu/rcupdate_doc.html
http://dev.mysql.com/downloads/
http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2009.02.27a.html
http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2009.02.27a.html
http://transact2012.cse.lehigh.edu/papers/matveev.pdf
https://lwn.net/Articles/608550/
https://lwn.net/Articles/608550/
https://github.com/torvalds/linux/blob/master/tools/memory-model/lock.cat
https://github.com/torvalds/linux/blob/master/tools/memory-model/lock.cat
https://www.kernel.org/doc/ols/2002/ols2002-pages-338-367.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-338-367.pdf
https://dx.doi.org/10.1145/2815400.2815406
https://dx.doi.org/10.1145/2815400.2815406
https://dx.doi.org/10.1145/2815400.2815406
https://dx.doi.org/10.1002/spe.363
https://dx.doi.org/10.1002/spe.363

v2024.12.27a

638 BIBLIOGRAPHY

[MSS04] Paul E. McKenney, Dipankar Sarma, and Maneesh Soni. Scaling dcache with
RCU. Linux Journal, 1(118):38–46, January 2004.

[MSS12] Luc Maranget, Susmit Sarkar, and Peter Sewell. A tutorial introduction to
the ARM and POWER relaxed memory models, October 2012. https:
//www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf.

[MT01] Jose F. Martinez and Josep Torrellas. Speculative locks for concurrent execu-
tion of critical sections in shared-memory multiprocessors. In Workshop on
Memory Performance Issues, International Symposium on Computer Archi-
tecture, Gothenburg, Sweden, June 2001. Available: https://iacoma.cs.
uiuc.edu/iacoma-papers/wmpi_locks.pdf [Viewed June 23, 2004].

[MT02] Jose F. Martinez and Josep Torrellas. Speculative synchronization: Applying
thread-level speculation to explicitly parallel applications. In Proceedings of
the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 18–29, San Jose, CA, October 2002.

[Mud01] Trevor Mudge. POWER: A first-class architectural design constraint. IEEE
Computer, 34(4):52–58, April 2001.

[Mus20] Museum Victoria Australia. CSIRAC collection, 2020? URL: https:
//collections.museumsvictoria.com.au/articles/3145.

[MW05] Paul E. McKenney and Jonathan Walpole. RCU semantics: A first attempt, Jan-
uary 2005. Available: http://www.rdrop.com/users/paulmck/RCU/
rcu-semantics.2005.01.30a.pdf [Viewed December 6, 2009].

[MW07] Paul E. McKenney and Jonathan Walpole. What is RCU, fundamentally?, De-
cember 2007. Available: https://lwn.net/Articles/262464/ [Viewed
December 27, 2007].

[MW11] Paul E. McKenney and Jonathan Walpole. Efficient support of consistent
cyclic search with read-copy update and parallel updates (lapsed). Technical
Report US Patent 7,953,778, Assigned to International Business Machines
Corp, Washington, DC, May 2011.

[MWB+17] Paul E. McKenney, Michael Wong, Hans Boehm, Jens Maurer, Jeffrey Yasskin,
and JF Bastien. P0190R4: Proposal for new memory_order_consume
definition, July 2017. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2017/p0190r4.pdf.

[MWM+23a] Paul E. McKenney, Michael Wong, Maged M. Michael, Geoffrey Romer,
Andrew Hunter, Arthur O’Dwyer, Daisy Hollman, JF Bastien, Hans Boehm,
David Goldblatt, Frank Birbacher, Erik Rigtorp, Tomasz Kamiński, and Jens
Maurer. P2545R4: Read-copy update (RCU), March 2023. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2545r4.pdf.

[MWM+23b] Maged M. Michael, Michael Wong, Paul E. McKenney, Andrew Hunter,
Daisy S. Hollman, JF Bastien, Hans Boehm, David Goldblatt, Frank Bir-
bacher, and Mathias Stearn. P2545R3: Hazard Pointers for C++26, March
2023. https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2023/p2530r3.pdf.

[MWPF18] Paul E. McKenney, Ulrich Weigand, Andrea Parri, and Boqun Feng. Linux-
kernel memory model, September 2018. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2018/p0124r6.html.

[Mye79] Glenford J. Myers. The Art of Software Testing. Wiley, 1979.

https://www.linuxjournal.com/article/7124
https://www.linuxjournal.com/article/7124
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://iacoma.cs.uiuc.edu/iacoma-papers/wmpi_locks.pdf
https://iacoma.cs.uiuc.edu/iacoma-papers/wmpi_locks.pdf
http://iacoma.cs.uiuc.edu/iacoma-papers/asplos02.pdf
http://iacoma.cs.uiuc.edu/iacoma-papers/asplos02.pdf
https://dx.doi.org/10.1109/2.917539
https://collections.museumsvictoria.com.au/articles/3145
https://collections.museumsvictoria.com.au/articles/3145
http://www.rdrop.com/users/paulmck/RCU/rcu-semantics.2005.01.30a.pdf
http://www.rdrop.com/users/paulmck/RCU/rcu-semantics.2005.01.30a.pdf
https://lwn.net/Articles/262464/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0190r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0190r4.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2545r4.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2545r4.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html

v2024.12.27a

BIBLIOGRAPHY 639

[NA18] Catherine E. Nemitz and James H. Anderson. Work-in-progress: Lock-based
software transactional memory for real-time systems. In 2018 IEEE Real-Time
Systems Symposium, RTSS’18, pages 147–150, Nashville, TN, USA, 2018.
IEEE.

[Nag18] Honnappa Nagarahalli. rcu: add RCU library supporting QSBR mechanism,
May 2018. https://git.dpdk.org/dpdk/tree/lib/librte_rcu.

[Nata] National Institure of Standards and Technology. SI Unit rules and style
conventions [online].

[Natb] National Institure of Standards and Technology. Typefaces for Symbols in
Scientific Manuscripts [online].

[Nat19] National Institure of Standards and Technology. The international system of
units (SI). Technical Report NIST Special Publication 330 2019 EDITION,
U.S. Department of Commerce, Washington, D.C., 2019.

[Nes06a] Oleg Nesterov. Re: [patch] cpufreq: mark cpufreq_tsc() as
core_initcall_sync, November 2006. Available: https://lore.
kernel.org/lkml/20061119190027.GA3676@oleg/.

[Nes06b] Oleg Nesterov. Re: [rfc, patch 1/2] qrcu: "quick" srcu implementa-
tion, November 2006. Available: https://lore.kernel.org/lkml/
20061130015714.GC1350@oleg/.

[NSHW20] Vĳay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer
on Memory Consistency and Cache Coherence, Second Edition. Synthesis
Lectures on Computer Architecture. Morgan & Claypool, 2020.

[NVi17a] NVidia. Accelerated computing — training, January 2017. https://
developer.nvidia.com/accelerated-computing-training.

[NVi17b] NVidia. Existing university courses, January 2017. https://developer.
nvidia.com/educators/existing-courses.

[NZ13] Oleg Nesterov and Peter Zĳlstra. rcu: Create rcu_sync infrastructure,
October 2013. https://lore.kernel.org/lkml/20131002150518.
675931976@infradead.org/.

[O’H19] Peter W. O’Hearn. Incorrectness logic. Proc. ACM Program. Lang., 4(POPL),
December 2019.

[OHOC20] Robert O’Callahan, Kyle Huey, Devon O’Dell, and Terry Coatta. To catch
a failure: The record-and-replay approach to debugging: A discussion
with robert o’callahan, kyle huey, devon o’dell, and terry coatta. Queue,
18(1):61–79, February 2020.

[ON07] Robert Olsson and Stefan Nilsson. TRASH: A dynamic LC-trie and hash
data structure. In Workshop on High Performance Switching and Routing
(HPSR’07), May 2007.

[ONH+96] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and
Kunyung Chang. The case for a single-chip multiprocessor. In ASPLOS VII,
Cambridge, MA, USA, October 1996.

[Ope97] Open Group. The single UNIX specification, version 2: Threads, 1997.
Available: http://www.opengroup.org/onlinepubs/007908799/
xsh/threads.html [Viewed September 19, 2008].

https://dx.doi.org/10.1109/RTSS.2018.00026
https://dx.doi.org/10.1109/RTSS.2018.00026
https://git.dpdk.org/dpdk/tree/lib/librte_rcu
https://physics.nist.gov/cuu/Units/checklist.html
https://physics.nist.gov/cuu/Units/checklist.html
https://physics.nist.gov/cuu/pdf/typefaces.pdf
https://physics.nist.gov/cuu/pdf/typefaces.pdf
https://dx.doi.org/10.6028/NIST.SP.330-2019
https://dx.doi.org/10.6028/NIST.SP.330-2019
https://lore.kernel.org/lkml/20061119190027.GA3676@oleg/
https://lore.kernel.org/lkml/20061119190027.GA3676@oleg/
https://lore.kernel.org/lkml/20061130015714.GC1350@oleg/
https://lore.kernel.org/lkml/20061130015714.GC1350@oleg/
https://dx.doi.org/10.2200/S00962ED2V01Y201910CAC049
https://dx.doi.org/10.2200/S00962ED2V01Y201910CAC049
https://developer.nvidia.com/accelerated-computing-training
https://developer.nvidia.com/accelerated-computing-training
https://developer.nvidia.com/educators/existing-courses
https://developer.nvidia.com/educators/existing-courses
https://lore.kernel.org/lkml/20131002150518.675931976@infradead.org/
https://lore.kernel.org/lkml/20131002150518.675931976@infradead.org/
https://dx.doi.org/10.1145/3371078
https://dx.doi.org/10.1145/3387945.3391621
https://dx.doi.org/10.1145/3387945.3391621
https://dx.doi.org/10.1145/3387945.3391621
https://dx.doi.org/10.1109/HPSR.2007.4281239
https://dx.doi.org/10.1109/HPSR.2007.4281239
https://dx.doi.org/10.1145/237090.237140
http://www.opengroup.org/onlinepubs/007908799/xsh/threads.html
http://www.opengroup.org/onlinepubs/007908799/xsh/threads.html

v2024.12.27a

640 BIBLIOGRAPHY

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Proceedings of the 15th Interna-
tional Workshop on Computer Science Logic, CSL ’01, page 1–19, Berlin,
Heidelberg, 2001. Springer-Verlag.

[PAB+95] Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon
Inouye, Lakshmi Kethana, Jonathan Walpole, and Ke Zhang. Optimistic
incremental specialization: Streamlining a commercial operating system. In
15th ACM Symposium on Operating Systems Principles (SOSP’95), pages
314–321, Copper Mountain, CO, December 1995.

[Pat10] David Patterson. The trouble with multicore. IEEE Spectrum, 2010:28–32,
52–53, July 2010.

[PAT11] V Pankratius and A R Adl-Tabatabai. A study of transactional memory vs.
locks in practice. In Proceedings of the 23rd ACM symposium on Parallelism
in algorithms and architectures (2011), SPAA ’11, pages 43–52, San Jose,
CA, USA, 2011. ACM.

[PBCE20] Elizabeth Patitsas, Jesse Berlin, Michelle Craig, and Steve Easterbrook.
Evidence that computer science grades are not bimodal. Commun. ACM,
63(1):91–98, January 2020.

[PD11] Martin Pohlack and Stephan Diestelhorst. From lightweight hardware trans-
actional memory to lightweight lock elision. In TRANSACT 2011, San Jose,
CA, USA, June 2011. ACM SIGPLAN.

[Pen18] Roman Penyaev. [PATCH v2 01/26] introduce list_next_or_null_rr_rcu(), May
2018. https://lore.kernel.org/lkml/20180518130413.16997-2-
roman.penyaev@profitbricks.com/.

[Pet06] Jeremy Peters. From reuters, automatic trading linked to news events,
December 2006. URL: http://www.nytimes.com/2006/12/11/
technology/11reuters.html?ei=5088&en=e5e9416415a9eeb2&ex=
1323493200...

[Pig06] Nick Piggin. [patch 3/3] radix-tree: RCU lockless readside, June
2006. Available: https://lore.kernel.org/lkml/20060408134707.
22479.33814.sendpatchset@linux.site/.

[Pik17] Fedor G. Pikus. Read, copy, update... Then what?, September 2017. https:
//www.youtube.com/watch?v=rxQ5K9lo034.

[PMDY20] SeongJae Park, Paul E. McKenney, Laurent Dufour, and Heon Y. Yeom.
An htm-based update-side synchronization for rcu on numa systems. In
Proceedings of the Fifteenth European Conference on Computer Systems,
EuroSys ’20, Heraklion, Greece, 2020. Association for Computing Machinery.

[Pod10] Andrej Podzimek. Read-copy-update for opensolaris. Master’s thesis, Charles
University in Prague, 2010.

[Pok16] Michael Pokorny. The deadlock empire, February 2016. https://
deadlockempire.github.io/.

[Pos08] PostgreSQL Global Development Group. PostgreSQL, November 2008.
Available: https://www.postgresql.org/ [Viewed November 26, 2008].

[PTS+11] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall,
and Gilles Muller. Faults in Linux: Ten years later. In Proceedings of the

https://dx.doi.org/10.1145/224057.224080
https://dx.doi.org/10.1145/224057.224080
https://spectrum.ieee.org/computing/software/the-trouble-with-multicore
http://doi.acm.org/10.1145/1989493.1989500
http://doi.acm.org/10.1145/1989493.1989500
https://dx.doi.org/10.1145/3372161
http://www.cs.purdue.edu/transact11/web/presentations/Pohlack-slides.pdf
http://www.cs.purdue.edu/transact11/web/presentations/Pohlack-slides.pdf
https://lore.kernel.org/lkml/20180518130413.16997-2-roman.penyaev@profitbricks.com/
https://lore.kernel.org/lkml/20180518130413.16997-2-roman.penyaev@profitbricks.com/
http://www.nytimes.com/2006/12/11/technology/11reuters.html?ei=5088&en=e5e9416415a9eeb2&ex=1323493200...
http://www.nytimes.com/2006/12/11/technology/11reuters.html?ei=5088&en=e5e9416415a9eeb2&ex=1323493200...
http://www.nytimes.com/2006/12/11/technology/11reuters.html?ei=5088&en=e5e9416415a9eeb2&ex=1323493200...
https://lore.kernel.org/lkml/20060408134707.22479.33814.sendpatchset@linux.site/
https://lore.kernel.org/lkml/20060408134707.22479.33814.sendpatchset@linux.site/
https://www.youtube.com/watch?v=rxQ5K9lo034
https://www.youtube.com/watch?v=rxQ5K9lo034
https://dx.doi.org/10.1145/3342195.3387527
http://hdl.handle.net/20.500.11956/61313
https://deadlockempire.github.io/
https://deadlockempire.github.io/
https://www.postgresql.org/
http://dx.doi.org/10.1145/1950365.1950401

v2024.12.27a

BIBLIOGRAPHY 641

Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2011), pages 305–318, Newport
Beach, California, USA, March 2011. ACM.

[Pug90] William Pugh. Concurrent maintenance of skip lists. Technical Report
CS-TR-2222.1, Institute of Advanced Computer Science Studies, Department
of Computer Science, University of Maryland, College Park, Maryland, June
1990.

[Pug00] William Pugh. Reordering on an Alpha processor, 2000.
Available: https://www.cs.umd.edu/~pugh/java/memoryModel/
AlphaReordering.html [Viewed: June 23, 2004].

[Pul00] Geoffrey K. Pullum. How Dr. Seuss would prove the halting problem
undecidable. Mathematics Magazine, 73(4):319–320, 2000. http://www.
lel.ed.ac.uk/~gpullum/loopsnoop.html.

[PW07] Donald E. Porter and Emmett Witchel. Lessons from large
transactional systems, December 2007. Personal communication
<20071214220521.GA5721@olive-green.cs.utexas.edu>.

[Ras14] Mindaugas Rasiukevicius. NPF—progress and perspective. In AsiaBSDCon,
Tokyo, Japan, March 2014.

[Ras16] Mindaugas Rasiukevicius. Quiescent-state and epoch based reclamation, July
2016. https://github.com/rmind/libqsbr.

[Ray99] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly, 1999.

[RC15] Pedro Ramalhete and Andreia Correia. Poor man’s URCU, August
2015. https://github.com/pramalhe/ConcurrencyFreaks/blob/
master/papers/poormanurcu-2015.pdf.

[RCY23] Vishakha Ramani, Jiachen Chen, and Roy D. Yates. Lock-based or lock-less:
Which is fresh?, 2023. https://arxiv.org/abs/2304.11683.

[RD12] Ravi Rajwar and Martin Dixon. Intel transactional synchronization extensions,
September 2012. Intel Developer Forum (IDF) 2012 ARCS004.

[Reg10] John Regehr. A guide to undefined behavior in C and C++, part 1, July 2010.
https://blog.regehr.org/archives/213.

[Rei07] James Reinders. Intel Threading Building Blocks. O’Reilly, Sebastopol, CA,
USA, 2007.

[RG01] Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 34,
pages 294–305, Austin, TX, December 2001. The Institute of Electrical and
Electronics Engineers, Inc.

[RG02] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of
lock-based programs. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 5–17, Austin, TX, October 2002.

[RH02] Zoran Radović and Erik Hagersten. Efficient synchronization for nonuniform
communication architectures. In Proceedings of the 2002 ACM/IEEE Confer-
ence on Supercomputing, pages 1–13, Baltimore, Maryland, USA, November
2002. The Institute of Electrical and Electronics Engineers, Inc.

http://hdl.handle.net/1903/542
https://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
https://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.netbsd.org/~rmind/pub/npf_asiabsdcon_2014.pdf
https://github.com/rmind/libqsbr
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/poormanurcu-2015.pdf
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/poormanurcu-2015.pdf
https://arxiv.org/abs/2304.11683
https://arxiv.org/abs/2304.11683
https://arxiv.org/abs/2304.11683
https://blog.regehr.org/archives/213
http://pages.cs.wisc.edu/~rajwar/papers/micro01.pdf
http://pages.cs.wisc.edu/~rajwar/papers/micro01.pdf
https://dx.doi.org/10.1145/605397.605399
https://dx.doi.org/10.1145/605397.605399
https://dx.doi.org/10.1109/SC.2002.10038
https://dx.doi.org/10.1109/SC.2002.10038

v2024.12.27a

642 BIBLIOGRAPHY

[RH03] Zoran Radović and Erik Hagersten. Hierarchical backoff locks for nonuniform
communication architectures. In Proceedings of the Ninth International
Symposium on High Performance Computer Architecture (HPCA-9), pages
241–252, Anaheim, California, USA, February 2003.

[RH18] Geoff Romer and Andrew Hunter. An RAII interface for deferred reclama-
tion, March 2018. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2018/p0561r4.html.

[RHP+07] Chistopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E.
Ramadan, Aditya Bhandari, and Emmett Witchel. TxLinux: Using and
managing hardware transactional memory in an operating system. In
SOSP’07: Twenty-First ACM Symposium on Operating Systems Princi-
ples, Stevenson, WA, USA, October 2007. ACM SIGOPS. Available:
http://www.sosp2007.org/papers/sosp056-rossbach.pdf [Viewed
October 21, 2007].

[Rin13] Martin Rinard. Parallel synchronization-free approximate data structure
construction. In Proceedings of the 5th USENIX Conference on Hot Topics in
Parallelism, HotPar’13, page 6, San Jose, CA, 2013. USENIX Association.

[RK22] Marko Radosavljevic and Jack Kavalieros. Taking Moore’s Law to new
heights: When transistors can’t get any smaller, the only direction is up. IEEE
Spectrum, 59(12):32–37, 2022.

[RKM+10] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and David I.
August. Speculative parallelization using software multi-threaded transactions.
SIGARCH Comput. Archit. News, 38(1):65–76, 2010.

[RLPB18] Yuxin Ren, Guyue Liu, Gabriel Parmer, and Björn Brandenburg. Scalable
memory reclamation for multi-core, real-time systems. In Proceedings
of the 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), page 12, Porto, Portugal, April 2018. IEEE.

[RMF19] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. The
real-time Linux kernel: A survey on PREEMPT_RT. ACM Comput. Surv.,
52(1):18:1–18:36, February 2019.

[Ros06] Steven Rostedt. Lightweight PI-futexes, June 2006. Avail-
able: https://www.kernel.org/doc/html/latest/locking/pi-
futex.html [Viewed February 14, 2021].

[Ros10a] Steven Rostedt. tracing: Harry Potter and the Deathly Macros, December 2010.
Available: https://lwn.net/Articles/418710/ [Viewed: August 28,
2011].

[Ros10b] Steven Rostedt. Using the TRACE_EVENT() macro (part 1), March 2010.
Available: https://lwn.net/Articles/379903/ [Viewed: August 28,
2011].

[Ros10c] Steven Rostedt. Using the TRACE_EVENT() macro (part 2), March 2010.
Available: https://lwn.net/Articles/381064/ [Viewed: August 28,
2011].

[Ros10d] Steven Rostedt. Using the TRACE_EVENT() macro (part 3), April 2010.
Available: https://lwn.net/Articles/383362/ [Viewed: August 28,
2011].

https://dx.doi.org/10.1109/HPCA.2003.1183542
https://dx.doi.org/10.1109/HPCA.2003.1183542
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0561r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0561r4.html
https://dx.doi.org/10.1145/1294261.1294271
https://dx.doi.org/10.1145/1294261.1294271
http://www.sosp2007.org/papers/sosp056-rossbach.pdf
https://www.usenix.org/conference/hotpar13/workshop-program/presentation/rinard
https://www.usenix.org/conference/hotpar13/workshop-program/presentation/rinard
https://dx.doi.org/10.1109/MSPEC.2022.9976473
https://dx.doi.org/10.1109/MSPEC.2022.9976473
https://dx.doi.org/10.1145/1735970.1736030
https://dx.doi.org/10.1109/RTAS.2018.00025
https://dx.doi.org/10.1109/RTAS.2018.00025
https://dx.doi.org/10.1145/3297714
https://dx.doi.org/10.1145/3297714
https://www.kernel.org/doc/html/latest/locking/pi-futex.html
https://www.kernel.org/doc/html/latest/locking/pi-futex.html
https://lwn.net/Articles/418710/
https://lwn.net/Articles/379903/
https://lwn.net/Articles/381064/
https://lwn.net/Articles/383362/

v2024.12.27a

BIBLIOGRAPHY 643

[Ros11] Steven Rostedt. lockdep: How to read its cryptic output, September 2011.
http://www.linuxplumbersconf.org/2011/ocw/sessions/153.

[Roy17] Lance Roy. rcutorture: Add CBMC-based formal verification for SRCU,
January 2017. URL: https://www.spinics.net/lists/kernel/
msg2421833.html.

[RR20] Sergio Rajsbaum and Michel Raynal. Mastering concurrent computing
through sequential thinking. Commun. ACM, 63(1):78–87, January 2020.

[RRW08] Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel.
Dependence-aware transactional memory for increased concurrency. In
Proceedings of the 41st annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 41, pages 246–257, Washington, DC, USA, 2008.
IEEE Computer Society.

[RSB+97] Rajeev Rastogi, S. Seshadri, Philip Bohannon, Dennis W. Leinbaugh, Abra-
ham Silberschatz, and S. Sudarshan. Logical and physical versioning in main
memory databases. In Proceedings of the 23rd International Conference on
Very Large Data Bases, VLDB ’97, pages 86–95, San Francisco, CA, USA,
August 1997. Morgan Kaufmann Publishers Inc.

[RTY+87] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron,
David Black, William Bolosky, and Jonathan Chew. Machine-independent
virtual memory management for paged uniprocessor and multiprocessor
architectures. In 2nd Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 31–39, Palo Alto, CA, October
1987. Association for Computing Machinery.

[Rus00a] Rusty Russell. Re: modular net drivers, June 2000. URL: http://oss.
sgi.com/projects/netdev/archive/2000-06/msg00250.html [bro-
ken, February 15, 2021].

[Rus00b] Rusty Russell. Re: modular net drivers, June 2000. URL: http://oss.
sgi.com/projects/netdev/archive/2000-06/msg00254.html [bro-
ken, February 15, 2021].

[Rus03] Rusty Russell. Hanging out with smart people: or... things I learned being a
kernel monkey, July 2003. 2003 Ottawa Linux Symposium Keynote https://
ozlabs.org/~rusty/ols-2003-keynote/ols-keynote-2003.html.

[Rut17] Mark Rutland. compiler.h: Remove ACCESS_ONCE(), November 2017. Git
commit: https://git.kernel.org/linus/b899a850431e.

[SAE+18] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and
Ciera Jaspan. Lessons from building static analysis tools at google. Commun.
ACM, 61(4):58–66, March 2018.

[SAH+03] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Dilma Da Silva, Gre-
gory R. Ganger, Orran Krieger, Michael Stumm, Robert W. Wisniewski, Marc
Auslander, Michal Ostrowski, Bryan Rosenburg, and Jimi Xenidis. System
support for online reconfiguration. In Proceedings of the 2003 USENIX
Annual Technical Conference, pages 141–154, San Antonio, Texas, USA,
June 2003. USENIX Association.

[SATG+09] Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Robert Geva, Yang Ni, and
Adam Welc. Towards transactional memory semantics for C++. In SPAA
’09: Proceedings of the twenty-first annual symposium on Parallelism in

http://www.linuxplumbersconf.org/2011/ocw/sessions/153
https://www.spinics.net/lists/kernel/msg2421833.html
https://www.spinics.net/lists/kernel/msg2421833.html
https://dx.doi.org/10.1145/3363823
https://dx.doi.org/10.1145/3363823
https://dx.doi.org/10.1109/MICRO.2008.4771795
http://dl.acm.org/citation.cfm?id=645923.671017
http://dl.acm.org/citation.cfm?id=645923.671017
https://dl.acm.org/doi/10.1145/36206.36181
https://dl.acm.org/doi/10.1145/36206.36181
https://dl.acm.org/doi/10.1145/36206.36181
https://ozlabs.org/~rusty/ols-2003-keynote/ols-keynote-2003.html
https://ozlabs.org/~rusty/ols-2003-keynote/ols-keynote-2003.html
https://git.kernel.org/linus/b899a850431e
https://dx.doi.org/10.1145/3188720
https://www.usenix.org/legacy/events/usenix03/tech/full_papers/soules/soules.pdf
https://www.usenix.org/legacy/events/usenix03/tech/full_papers/soules/soules.pdf
https://dx.doi.org/10.1145/1583991.1584012

v2024.12.27a

644 BIBLIOGRAPHY

algorithms and architectures, pages 49–58, Calgary, AB, Canada, 2009.
ACM.

[SBN+20] Dimitrios Siakavaras, Panagiotis Billis, Konstantinos Nikas, Georgios
Goumas, and Nectarios Koziris. Efficient concurrent range queries in b+-trees
using rcu-htm. In Proceedings of the 32nd ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’20, page 571–573, Virtual Event,
USA, 2020. Association for Computing Machinery.

[SBV10] Martin Schoeberl, Florian Brandner, and Jan Vitek. RTTM: Real-time
transactional memory. In Proceedings of the 2010 ACM Symposium on
Applied Computing, pages 326–333, 01 2010.

[Sch35] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik. Natur-
wissenschaften, 23:807–812; 823–828; 844–849, November 1935.

[Sch94] Curt Schimmel. UNIX Systems for Modern Architectures: Symmetric Multi-
processing and Caching for Kernel Programmers. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1994.

[Sco06] Michael Scott. Programming Language Pragmatics. Morgan Kaufmann,
Burlington, MA, USA, 2006.

[Sco13] Michael L. Scott. Shared-Memory Synchronization. Morgan & Claypool,
San Rafael, CA, USA, 2013.

[Sco15] Michael Scott. Programming Language Pragmatics, 4th Edition. Morgan
Kaufmann, Burlington, MA, USA, 2015.

[Seq88] Sequent Computer Systems, Inc. Guide to Parallel Programming, 1988.
[Sew] Peter Sewell. Relaxed-memory concurrency. Available: https://www.cl.

cam.ac.uk/~pes20/weakmemory/ [Viewed: February 15, 2021].
[Sey12] Justin Seyster. Runtime Verification of Kernel-Level Concurrency Using

Compiler-Based Instrumentation. PhD thesis, Stony Brook University, 2012.
[SF95] Janice M. Stone and Robert P. Fitzgerald. Storage in the PowerPC. IEEE

Micro, 15(2):50–58, April 1995.
[Sha11] Nir Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76–84,

March 2011.
[She06] Gautham R. Shenoy. [patch 4/5] lock_cpu_hotplug: Redesign - lightweight

implementation of lock_cpu_hotplug, October 2006. Available: https:
//lore.kernel.org/lkml/20061026105731.GE11803@in.ibm.com/.

[SHW11] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Con-
sistency and Cache Coherence. Synthesis Lectures on Computer Architecture.
Morgan & Claypool, 2011.

[Slo10] Lubos Slovak. First steps for utilizing userspace RCU library,
July 2010. https://gitlab.labs.nic.cz/knot/knot-dns/commit/
f67acc0178ee9a781d7a63fb041b5d09eb5fb4a2.

[SM95] John D. Slingwine and Paul E. McKenney. Apparatus and method for
achieving reduced overhead mutual exclusion and maintaining coherency in
a multiprocessor system utilizing execution history and thread monitoring.
Technical Report US Patent 5,442,758, Assigned to International Business
Machines Corp, Washington, DC, August 1995.

https://dx.doi.org/10.1145/3350755.3400237
https://dx.doi.org/10.1145/3350755.3400237
https://dx.doi.org/10.1145/1774088.1774158
https://dx.doi.org/10.1145/1774088.1774158
https://www.cl.cam.ac.uk/~pes20/weakmemory/
https://www.cl.cam.ac.uk/~pes20/weakmemory/
http://hdl.handle.net/1951/59858
http://hdl.handle.net/1951/59858
https://dx.doi.org/10.1109/40.372352
https://dx.doi.org/10.1145/1897852.1897873
https://lore.kernel.org/lkml/20061026105731.GE11803@in.ibm.com/
https://lore.kernel.org/lkml/20061026105731.GE11803@in.ibm.com/
https://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016
https://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016
https://gitlab.labs.nic.cz/knot/knot-dns/commit/f67acc0178ee9a781d7a63fb041b5d09eb5fb4a2
https://gitlab.labs.nic.cz/knot/knot-dns/commit/f67acc0178ee9a781d7a63fb041b5d09eb5fb4a2
https://www.google.com/patents/US5442758
https://www.google.com/patents/US5442758
https://www.google.com/patents/US5442758

v2024.12.27a

BIBLIOGRAPHY 645

[SM97] John D. Slingwine and Paul E. McKenney. Method for maintaining data
coherency using thread activity summaries in a multicomputer system. Techni-
cal Report US Patent 5,608,893, Assigned to International Business Machines
Corp, Washington, DC, March 1997.

[SM98] John D. Slingwine and Paul E. McKenney. Apparatus and method for
achieving reduced overhead mutual exclusion and maintaining coherency in
a multiprocessor system utilizing execution history and thread monitoring.
Technical Report US Patent 5,727,209, Assigned to International Business
Machines Corp, Washington, DC, March 1998.

[SM04a] Dipankar Sarma and Paul E. McKenney. Issues with selected scalability
features of the 2.6 kernel. In Ottawa Linux Symposium, page 16, July
2004. https://www.kernel.org/doc/ols/2004/ols2004v2-pages-
195-208.pdf.

[SM04b] Dipankar Sarma and Paul E. McKenney. Making RCU safe for deep sub-
millisecond response realtime applications. In Proceedings of the 2004
USENIX Annual Technical Conference (FREENIX Track), pages 182–191,
Boston, MA, USA, June 2004. USENIX Association.

[SM13] Thomas Sewell and Toby Murray. Above and beyond: seL4 noninterference
and binary verification, May 2013. https://cps-vo.org/node/7706.

[Smi19] Richard Smith. Working draft, standard for programming language C++,
January 2019. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2019/n4800.pdf.

[SMS08] Michael Spear, Maged Michael, and Michael Scott. Inevitability mech-
anisms for software transactional memory. In 3rd ACM SIGPLAN Work-
shop on Transactional Computing, Salt Lake City, Utah, February 2008.
ACM. Available: http://www.cs.rochester.edu/u/scott/papers/
2008_TRANSACT_inevitability.pdf [Viewed January 10, 2009].

[SNGK17] Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas, and Nectarios
Koziris. Combining HTM and RCU to implement highly efficient balanced
binary search trees. In 12th ACM SIGPLAN Workshop on Transactional
Computing, Austin, TX, USA, February 2017.

[SPA94] SPARC International. The SPARC Architecture Manual, 1994. Avail-
able: https://sparc.org/wp-content/uploads/2014/01/SPARCV9.
pdf.gz.

[Spi77] Keith R. Spitz. Tell which is which and you’ll be rich, 1977. Inscription on
wall of dungeon.

[Spr01] Manfred Spraul. Re: RFC: patch to allow lock-free traversal of lists
with insertion, October 2001. URL: https://lore.kernel.org/lkml/
000901c150e2$97765470$010411ac@local/.

[Spr08] Manfred Spraul. [RFC, PATCH] state machine based rcu, Au-
gust 2008. Available: https://lore.kernel.org/lkml/48AD8969.
7060900@colorfullife.com/.

[SR84] Z. Segall and L. Rudolf. Dynamic decentralized cache schemes for MIMD
parallel processors. In 11th Annual International Symposium on Computer
Architecture, pages 340–347, June 1984.

https://www.google.com/patents/US5608893
https://www.google.com/patents/US5608893
https://www.google.com/patents/US5727209
https://www.google.com/patents/US5727209
https://www.google.com/patents/US5727209
https://www.kernel.org/doc/ols/2004/ols2004v2-pages-195-208.pdf
https://www.kernel.org/doc/ols/2004/ols2004v2-pages-195-208.pdf
http://www.rdrop.com/~paulmck/RCU/realtimeRCU.2004.06.12a.pdf
http://www.rdrop.com/~paulmck/RCU/realtimeRCU.2004.06.12a.pdf
https://cps-vo.org/node/7706
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4800.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4800.pdf
http://www.cs.rochester.edu/u/scott/papers/2008_TRANSACT_inevitability.pdf
http://www.cs.rochester.edu/u/scott/papers/2008_TRANSACT_inevitability.pdf
http://transact2017.cse.lehigh.edu/siakavaras.pdf
http://transact2017.cse.lehigh.edu/siakavaras.pdf
https://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
https://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
https://lore.kernel.org/lkml/000901c150e2$97765470$010411ac@local/
https://lore.kernel.org/lkml/000901c150e2$97765470$010411ac@local/
https://lore.kernel.org/lkml/48AD8969.7060900@colorfullife.com/
https://lore.kernel.org/lkml/48AD8969.7060900@colorfullife.com/
https://dx.doi.org/10.1145/800015.808203
https://dx.doi.org/10.1145/800015.808203

v2024.12.27a

646 BIBLIOGRAPHY

[SRK+11] Justin Seyster, Prabakar Radhakrishnan, Samriti Katoch, Abhinav Duggal,
Scott D. Stoller, and Erez Zadok. Redflag: a framework for analysis of
kernel-level concurrency. In Proceedings of the 11th international conference
on Algorithms and architectures for parallel processing - Volume Part I,
ICA3PP’11, pages 66–79, Melbourne, Australia, 2011. Springer-Verlag.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Transactions on
Computers, 39(9):1175–1185, 1990.

[SS94] Duane Szafron and Jonathan Schaeffer. Experimentally assessing the usability
of parallel programming systems. In IFIP WG10.3 Programming Environ-
ments for Massively Parallel Distributed Systems, pages 19.1–19.7, Monte
Verita, Ascona, Switzerland, 1994.

[SS05] William N. Scherer III and Michael L. Scott. Advanced contention man-
agement for dynamic software transactional memory. In Proceedings of the
24th Annual ACM SIGOPS Symposium on Principles of Distributed Com-
puting, pages 240–248. Association for Computing Machinery, July 2005.
Available: http://www.cs.rochester.edu/~scherer/papers/2005-
PODC-AdvCM.pdf [Viewed December 22, 2006].

[SS06] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash
tables. J. ACM, 53(3):379–405, May 2006.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.
POWER and ARM litmus tests, 2011. https://www.cl.cam.ac.uk/
~pes20/ppc-supplemental/test6.pdf.

[SSHT93] Janice S. Stone, Harold S. Stone, Philip Heidelberger, and John Turek.
Multiple reservations and the Oklahoma update. IEEE Parallel and Distributed
Technology Systems and Applications, 1(4):58–71, November 1993.

[SSRB00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture Volume 2: Patterns for Concurrent
and Networked Objects. Wiley, Chichester, West Sussex, England, 2000.

[SSVM02] S. Swaminathan, John Stultz, Jack Vogel, and Paul E. McKenney. Fairlocks –
a high performance fair locking scheme. In Proceedings of the 14th IASTED
International Conference on Parallel and Distributed Computing and Systems,
pages 246–251, Cambridge, MA, USA, November 2002.

[ST87] William E. Snaman and David W. Thiel. The VAX/VMS distributed lock
manager. Digital Technical Journal, 5:29–44, September 1987.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings
of the 14th Annual ACM Symposium on Principles of Distributed Computing,
pages 204–213, Ottawa, Ontario, Canada, August 1995.

[Ste92] W. Richard Stevens. Advanced Programming in the UNIX Environment.
Addison Wesley, 1992.

[Ste13] W. Richard Stevens. Advanced Programming in the UNIX Environment, 3rd
Edition. Addison Wesley, 2013.

[Sut08] Herb Sutter. Effective concurrency, 2008. Series in Dr. Dobbs Journal.
[Sut13] Adrian Sutton. Concurrent programming with the Disruptor, January 2013.

Presentation at Linux.conf.au 2013, URL: https://www.youtube.com/
watch?v=ItpT_vmRHyI.

http://dl.acm.org/citation.cfm?id=2075416.2075425
http://dl.acm.org/citation.cfm?id=2075416.2075425
https://dx.doi.org/10.1109/12.57058
https://dx.doi.org/10.1109/12.57058
https://dx.doi.org/10.1007/978-3-0348-8534-8_19
https://dx.doi.org/10.1007/978-3-0348-8534-8_19
http://www.cs.rochester.edu/~scherer/papers/2005-PODC-AdvCM.pdf
http://www.cs.rochester.edu/~scherer/papers/2005-PODC-AdvCM.pdf
https://dx.doi.org/10.1145/1147954.1147958
https://dx.doi.org/10.1145/1147954.1147958
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
https://dx.doi.org/10.1109/88.260295
https://www.researchgate.net/publication/221569047_Fairlocks_A_High_Performance_Fair_Locking_Scheme
https://www.researchgate.net/publication/221569047_Fairlocks_A_High_Performance_Fair_Locking_Scheme
https://dx.doi.org/10.1145/224964.224987
https://www.youtube.com/watch?v=ItpT_vmRHyI
https://www.youtube.com/watch?v=ItpT_vmRHyI

v2024.12.27a

BIBLIOGRAPHY 647

[SW95] Richard L. Sites and Richard T. Witek. Alpha AXP Architecture. Digital
Press, second edition, 1995.

[SWS16] Harshal Sheth, Aashish Welling, and Nihar Sheth. Read-copy up-
date in a garbage collected environment, 2016. MIT PRIMES
program: https://math.mit.edu/research/highschool/primes/
materials/2016/conf/10-1%20Sheth-Welling-Sheth.pdf.

[SZJ12] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. Eliminating
read barriers through procrastination and cleanliness. In Proceedings of the
2012 International Symposium on Memory Management, ISMM ’12, pages
49–60, Beĳing, China, 2012. ACM.

[Tal07] Nassim Nicholas Taleb. The Black Swan. Random House, 2007.
[TDV15] Joseph Tassarotti, Derek Dreyer, and Victor Vafeiadis. Verifying read-copy-

update in a logic for weak memory. In Proceedings of the 2015 Proceedings
of the 36th annual ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’15, pages 110–120, New York, NY, USA,
June 2015. ACM.

[The08] The Open MPI Project. Open MPI, November 2008. Available: http:
//www.open-mpi.org/software/ [Viewed November 26, 2008].

[The11] The Valgrind Developers. Valgrind, November 2011. http://www.
valgrind.org/.

[The12a] The NetBSD Foundation. pserialize(9), October 2012. http://netbsd.
gw.com/cgi-bin/man-cgi?pserialize+9+NetBSD-current.

[The12b] The OProfile Developers. Oprofile, April 2012. http://oprofile.
sourceforge.net.

[TMW11] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, scalable,
concurrent hash tables via relativistic programming. In Proceedings of the
2011 USENIX Annual Technical Conference, pages 145–158, Portland, OR
USA, June 2011. The USENIX Association.

[Tor01] Linus Torvalds. Re: [Lse-tech] Re: RFC: patch to al-
low lock-free traversal of lists with insertion, October 2001.
URLs: https://lore.kernel.org/lkml/Pine.LNX.4.33.
0110131015410.8707-100000@penguin.transmeta.com/, https:
//lore.kernel.org/lkml/Pine.LNX.4.33.0110131024480.8707-
100000@penguin.transmeta.com/.

[Tor02] Linus Torvalds. Linux 2.5.43, October 2002. Available: https:
//lore.kernel.org/lkml/Pine.LNX.4.44.0210152040540.1708-
100000@penguin.transmeta.com/.

[Tor03] Linus Torvalds. Linux 2.6, August 2003. Available: https://kernel.
org/pub/linux/kernel/v2.6 [Viewed February 16, 2021].

[Tor08] Linus Torvalds. Move ACCESS_ONCE() to <linux/compiler.h>, May 2008.
Git commit: https://git.kernel.org/linus/9c3cdc1f83a6.

[Tor19] Linus Torvalds. rcu: locking and unlocking need to always be at least
barriers, June 2019. Git commit: https://git.kernel.org/linus/
66be4e66a7f4.

[Tra01] Transaction Processing Performance Council. TPC, 2001. Available: http:
//www.tpc.org/ [Viewed December 7, 2008].

https://math.mit.edu/research/highschool/primes/materials/2016/conf/10-1%20Sheth-Welling-Sheth.pdf
https://math.mit.edu/research/highschool/primes/materials/2016/conf/10-1%20Sheth-Welling-Sheth.pdf
https://dx.doi.org/10.1145/2258996.2259005
https://dx.doi.org/10.1145/2258996.2259005
https://dx.doi.org/10.1145/2737924.2737992
https://dx.doi.org/10.1145/2737924.2737992
http://www.open-mpi.org/software/
http://www.open-mpi.org/software/
http://www.valgrind.org/
http://www.valgrind.org/
http://netbsd.gw.com/cgi-bin/man-cgi?pserialize+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?pserialize+9+NetBSD-current
http://oprofile.sourceforge.net
http://oprofile.sourceforge.net
http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
https://lore.kernel.org/lkml/Pine.LNX.4.33.0110131015410.8707-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.33.0110131015410.8707-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.33.0110131024480.8707-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.33.0110131024480.8707-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.33.0110131024480.8707-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.44.0210152040540.1708-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.44.0210152040540.1708-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.44.0210152040540.1708-100000@penguin.transmeta.com/
https://kernel.org/pub/linux/kernel/v2.6
https://kernel.org/pub/linux/kernel/v2.6
https://git.kernel.org/linus/9c3cdc1f83a6
https://git.kernel.org/linus/66be4e66a7f4
https://git.kernel.org/linus/66be4e66a7f4
http://www.tpc.org/
http://www.tpc.org/

v2024.12.27a

648 BIBLIOGRAPHY

[Tre86] R. K. Treiber. Systems programming: Coping with parallelism, April 1986.
RJ 5118.

[Tri12] Josh Triplett. Relativistic Causal Ordering: A Memory Model for Scalable
Concurrent Data Structures. PhD thesis, Portland State University, 2012.

[Tri22] Josh Triplett. Spawning processes faster and easier with io_uring, September
2022. https://www.youtube.com/watch?v=_h-kV8AYYqM&t=4074s.

[TS93] Hiroaki Takada and Ken Sakamura. A bounded spin lock algorithm with
preemption. Technical Report 93-02, University of Tokyo, Tokyo, Japan,
1993.

[TS95] H. Takada and K. Sakamura. Real-time scalability of nested spin locks. In
Proceedings of the 2nd International Workshop on Real-Time Computing
Systems and Applications, RTCSA ’95, pages 160–167, Tokyo, Japan, 1995.
IEEE Computer Society.

[Tsi17] Michael S. Tsirkin. locking/x86: Use LOCK ADD for smp_mb() instead
of MFENCE, October 2017. Git commit: https://git.kernel.org/
linus/450cbdd0125c.

[Tur37] Alan M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. In Proceedings of the London Mathematical Society, volume 42
of 2, pages 230–265, 1937.

[TZK+13] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy transactions in multicore in-memory databases. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 18–32, Farminton, Pennsylvania, 2013. ACM.

[Ung11] David Ungar. Everything you know (about parallel programming) is wrong!:
A wild screed about the future. In Dynamic Languages Symposium 2011,
Portland, OR, USA, October 2011. Invited talk presentation.

[Uni08a] University of California, Berkeley. BOINC: compute for science, October
2008. Available: http://boinc.berkeley.edu/ [Viewed January 31,
2008].

[Uni08b] University of California, Berkeley. SETI@HOME, December 2008. Available:
http://setiathome.berkeley.edu/ [Viewed January 31, 2008].

[Uni10] University of Maryland. Parallel maze solving, November 2010. URL: http:
//www.cs.umd.edu/class/fall2010/cmsc433/p3/ [broken, February
2021].

[Val95] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings
of the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’95, pages 214–222, Ottowa, Ontario, Canada, 1995.
ACM.

[Van18] Michal Vaner. ArcSwap, April 2018. https://crates.io/crates/arc-
swap.

[VBC+15] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset,
and Francesco Zappa Nardelli. Common compiler optimisations are invalid
in the c11 memory model and what we can do about it. SIGPLAN Not.,
50(1):209–220, January 2015.

https://doi.org/10.15760/etd.497
https://doi.org/10.15760/etd.497
https://lpc.events/event/16/contributions/1213/
https://www.youtube.com/watch?v=_h-kV8AYYqM&t=4074s
https://library.t.u-tokyo.ac.jp/cslib/tech-reports/TR93-02.ps.gz
https://library.t.u-tokyo.ac.jp/cslib/tech-reports/TR93-02.ps.gz
https://dx.doi.org/10.1109/RTCSA.1995.528766
https://git.kernel.org/linus/450cbdd0125c
https://git.kernel.org/linus/450cbdd0125c
https://dx.doi.org/10.1112/plms/s2-42.1.230
https://dx.doi.org/10.1112/plms/s2-42.1.230
https://dx.doi.org/10.1145/2517349.2522713
http://dynamic-languages-symposium.org/dls-11/program/media/Ungar_2011_EverythingYouKnowAboutParallelProgrammingIsWrongAWildScreedAboutTheFuture_Dls.pdf
http://dynamic-languages-symposium.org/dls-11/program/media/Ungar_2011_EverythingYouKnowAboutParallelProgrammingIsWrongAWildScreedAboutTheFuture_Dls.pdf
http://boinc.berkeley.edu/
http://setiathome.berkeley.edu/
https://dx.doi.org/10.1145/224964.224988
https://crates.io/crates/arc-swap
https://crates.io/crates/arc-swap
https://dx.doi.org/10.1145/2775051.2676995
https://dx.doi.org/10.1145/2775051.2676995

v2024.12.27a

BIBLIOGRAPHY 649

[VGS08] Haris Volos, Neelam Goyal, and Michael M. Swift. Pathological interac-
tion of locks with transactional memory. In 3rd ACM SIGPLAN Work-
shop on Transactional Computing, Salt Lake City, Utah, USA, Febru-
ary 2008. ACM. Available: http://www.cs.wisc.edu/multifacet/
papers/transact08_txlock.pdf [Viewed September 7, 2009].

[Vog09] Werner Vogels. Eventually consistent. Commun. ACM, 52:40–44, January
2009.

[Š11] Jaroslav Ševčík. Safe optimisations for shared-memory concurrent programs.
SIGPLAN Not., 46(6):306–316, June 2011.

[Was14] Scott Wasson. Errata prompts Intel to disable TSX in Haswell, early Broadwell
CPUs, August 2014. https://techreport.com/news/26911/errata-
prompts-intel-to-disable-tsx-in-haswell-early-broadwell-
cpus/.

[Wav16] Wave Computing, Inc. MIPS®Architecture For Programmers
Volume II-A: The MIPS64®Instruction Set Reference Manual,
2016. URL: https://s3-eu-west-1.amazonaws.com/downloads-
mips/documents/MD00087-2B-MIPS64BIS-AFP-6.06.pdf.

[Wei63] J. Weizenbaum. Symmetric list processor. Commun. ACM, 6(9):524–536,
September 1963.

[Wei12] Frédéric Weisbecker. Interruption timer périodique, 2012. http:
//www.dailymotion.com/video/xtxtew_interruption-timer-
periodique-frederic-weisbecker-kernel-recipes-12_tech.

[Wei13] Stewart Weiss. Unix lecture notes, May 2013. Avail-
able: http://www.compsci.hunter.cuny.edu/~sweiss/course_
materials/unix_lecture_notes/ [Viewed April 8, 2014].

[Wei22a] Frédéric Weisbecker. CPU isolation—A practical example (part 5), January
2022. URL: https://www.suse.com/c/cpu-isolation-practical-
example-part-5/.

[Wei22b] Frédéric Weisbecker. CPU isolation—Full dynticks internals (part 2), Feb-
ruary 2022. URL: https://www.suse.com/c/cpu-isolation-full-
dynticks-part2/.

[Wei22c] Frédéric Weisbecker. CPU isolation—Housekeeping and tradeoffs (part
4), May 2022. URL: https://www.suse.com/c/cpu-isolation-
housekeeping-and-tradeoffs-part-4/.

[Wei22d] Frédéric Weisbecker. CPU isolation—Introduction (part 1), Jan-
uary 2022. URL: https://www.suse.com/c/cpu-isolation-
introduction-part-1/.

[Wei22e] Frédéric Weisbecker. CPU isolation—Nohz_full (part 3), March 2022. URL:
https://www.suse.com/c/cpu-isolation-nohz_full-part-3/.

[Wei22f] Frédéric Weisbecker. CPU isolation—Nohz_full troubleshooting:
broken TSC/clocksource—by SUSE labs (part 6), November 2022.
URL: https://www.suse.com/c/cpu-isolation-nohz_full-
troubleshooting-tsc-clocksource-by-suse-labs-part-6/.

[Wik08] Wikipedia. Zilog Z80, 2008. Available: https://en.wikipedia.org/
wiki/Z80 [Viewed: December 7, 2008].

http://www.cs.wisc.edu/multifacet/papers/transact08_txlock.pdf
http://www.cs.wisc.edu/multifacet/papers/transact08_txlock.pdf
https://dx.doi.org/10.1145/1435417.1435432
https://dx.doi.org/10.1145/1993316.1993534
https://techreport.com/news/26911/errata-prompts-intel-to-disable-tsx-in-haswell-early-broadwell-cpus/
https://techreport.com/news/26911/errata-prompts-intel-to-disable-tsx-in-haswell-early-broadwell-cpus/
https://techreport.com/news/26911/errata-prompts-intel-to-disable-tsx-in-haswell-early-broadwell-cpus/
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00087-2B-MIPS64BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00087-2B-MIPS64BIS-AFP-6.06.pdf
https://dx.doi.org/10.1145/367593.367617
http://www.dailymotion.com/video/xtxtew_interruption-timer-periodique-frederic-weisbecker-kernel-recipes-12_tech
http://www.dailymotion.com/video/xtxtew_interruption-timer-periodique-frederic-weisbecker-kernel-recipes-12_tech
http://www.dailymotion.com/video/xtxtew_interruption-timer-periodique-frederic-weisbecker-kernel-recipes-12_tech
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/
https://www.suse.com/c/cpu-isolation-practical-example-part-5/
https://www.suse.com/c/cpu-isolation-practical-example-part-5/
https://www.suse.com/c/cpu-isolation-full-dynticks-part2/
https://www.suse.com/c/cpu-isolation-full-dynticks-part2/
https://www.suse.com/c/cpu-isolation-housekeeping-and-tradeoffs-part-4/
https://www.suse.com/c/cpu-isolation-housekeeping-and-tradeoffs-part-4/
https://www.suse.com/c/cpu-isolation-introduction-part-1/
https://www.suse.com/c/cpu-isolation-introduction-part-1/
https://www.suse.com/c/cpu-isolation-nohz_full-part-3/
https://www.suse.com/c/cpu-isolation-nohz_full-troubleshooting-tsc-clocksource-by-suse-labs-part-6/
https://www.suse.com/c/cpu-isolation-nohz_full-troubleshooting-tsc-clocksource-by-suse-labs-part-6/
https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/Z80

v2024.12.27a

650 BIBLIOGRAPHY

[Wik12] Wikipedia. Labyrinth, January 2012. https://en.wikipedia.org/wiki/
Labyrinth.

[Wil12] Anthony Williams. C++ Concurrency in Action: Practical Multithreading.
Manning, Shelter Island, NY, USA, 2012.

[Wil19] Anthony Williams. C++ Concurrency in Action, 2nd Edition. Manning,
Shelter Island, NY, USA, 2019.

[WKS94] Robert W. Wisniewski, Leonidas Kontothanassis, and Michael L. Scott.
Scalable spin locks for multiprogrammed systems. In 8th IEEE Int’l. Par-
allel Processing Symposium, Cancun, Mexico, April 1994. The Institute of
Electrical and Electronics Engineers, Inc.

[Won19] William G. Wong. Vhs or betamax. . . ccix or cxl. . . so many choices,
March 2019. https://www.electronicdesign.com/industrial-
automation/article/21807721/vhs-or-betamaxccix-or-cxlso-
many-choices.

[WTS96] Cai-Dong Wang, Hiroaki Takada, and Ken Sakamura. Priority inheritance
spin locks for multiprocessor real-time systems. In Proceedings of the 2nd
International Symposium on Parallel Architectures, Algorithms, and Networks,
ISPAN ’96, pages 70–76, Beĳing, China, 1996. IEEE Computer Society.

[xen14] xenomai.org. Xenomai, December 2014. URL: http://xenomai.org/.
[Xu10] Herbert Xu. bridge: Add core IGMP snooping support, February 2010.

Available: https://lore.kernel.org/netdev/E1NlbuT-00021C-0b@
gondolin.me.apana.org.au/.

[YHLR13] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar.
Performance evaluation of Intel® Transactional Synchronization Extensions
for high-performance computing. In Proceedings of SC13: International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’13, pages 19:1–19:11, Denver, Colorado, 2013. ACM.

[Yod04a] Victor Yodaiken. Against priority inheritance, September 2004. Available:
https://www.yodaiken.com/papers/inherit.pdf [Viewed May 26,
2007].

[Yod04b] Victor Yodaiken. Temporal inventory and real-time synchronization in RTLin-
uxPro, September 2004. URL: https://www.yodaiken.com/papers/
sync.pdf.

[Zel11] Cyril Zeller. CUDA C/C++ basics: Supercomputing 2011 tutorial, Novem-
ber 2011. https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-
basics.pdf.

[Zha89] Lixia Zhang. A New Architecture for Packet Switching Network Protocols.
PhD thesis, Massachusetts Institute of Technology, July 1989.

[Zĳ14] Peter Zĳlstra. Another go at speculative page faults, Oc-
tober 2014. https://lore.kernel.org/lkml/20141020215633.
717315139@infradead.org/.

https://en.wikipedia.org/wiki/Labyrinth
https://en.wikipedia.org/wiki/Labyrinth
https://dx.doi.org/10.1109/IPPS.1994.288245
https://www.electronicdesign.com/industrial-automation/article/21807721/vhs-or-betamaxccix-or-cxlso-many-choices
https://www.electronicdesign.com/industrial-automation/article/21807721/vhs-or-betamaxccix-or-cxlso-many-choices
https://www.electronicdesign.com/industrial-automation/article/21807721/vhs-or-betamaxccix-or-cxlso-many-choices
https://dx.doi.org/10.1109/ISPAN.1996.508963
https://dx.doi.org/10.1109/ISPAN.1996.508963
http://xenomai.org/
https://lore.kernel.org/netdev/E1NlbuT-00021C-0b@gondolin.me.apana.org.au/
https://lore.kernel.org/netdev/E1NlbuT-00021C-0b@gondolin.me.apana.org.au/
https://dx.doi.org/10.1145/2503210.2503232
https://dx.doi.org/10.1145/2503210.2503232
https://www.yodaiken.com/papers/inherit.pdf
https://www.yodaiken.com/papers/sync.pdf
https://www.yodaiken.com/papers/sync.pdf
https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf
https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf
http://hdl.handle.net/1721.1/14184
https://lore.kernel.org/lkml/20141020215633.717315139@infradead.org/
https://lore.kernel.org/lkml/20141020215633.717315139@infradead.org/

v2024.12.27a

If I have seen further it is by standing on the

shoulders of giants.

Isaac Newton, modernizedCredits

LATEX Advisor
Akira Yokosawa is this book’s LATEX advisor, which per-
haps most notably includes the care and feeding of the
style guide laid out in Appendix D. This work includes
table layout, listings, fonts, rendering of math, acronyms,
bibliography formatting, epigraphs, hyperlinks, paper size.
Akira also perfected the cross-referencing of quick quizzes,
allowing easy and exact navigation between quick quizzes
and their answers. He also added build options that permit
quick quizzes to be hidden and to be gathered at the end
of each chapter, textbook style.

This role also includes the build system, which Akira
has optimized and made much more user-friendly. His
enhancements have included automating response to bibli-
ography changes, automatically determining which source
files are present, and automatically generating listings
(with automatically generated hyperlinked line-number
references) from the source files.

Reviewers
• Alan Stern (Chapter 15).

• Andy Whitcroft (Section 9.5.2, Section 9.5.3).

• Artem Bityutskiy (Chapter 15, Appendix C).

• Dave Keck (Appendix C).

• David S. Horner (Section 12.1.5).

• Gautham Shenoy (Section 9.5.2, Section 9.5.3).

• “jarkao2”, AKA LWN guest #41960 (Section 9.5.3).

• Jonathan Walpole (Section 9.5.3).

• Josh Triplett (Chapter 12).

• Michael Factor (Section 17.2).

• Mike Fulton (Section 9.5.2).

• Peter Zĳlstra (Section 9.5.4).

• Richard Woodruff (Appendix C).

• Suparna Bhattacharya (Chapter 12).

• Vara Prasad (Section 12.1.5).

Reviewers whose feedback took the extremely welcome
form of a patch are credited in the git logs.

Machine Owners

Readers might have noticed some graphs showing scala-
bility data out to several hundred CPUs, courtesy of my
current employer, with special thanks to Paul Saab, Yashar
Bayani, Joe Boyd, and Kyle McMartin.

From back in my time at IBM, a great debt of thanks goes
to Martin Bligh, who originated the Advanced Build and
Test (ABAT) system at IBM’s Linux Technology Center,
as well as to Andy Whitcroft, Dustin Kirkland, and many
others who extended this system. Many thanks go also to a
great number of machine owners: Andrew Theurer, Andy
Whitcroft, Anton Blanchard, Chris McDermott, Cody
Schaefer, Darrick Wong, David “Shaggy” Kleikamp, Jon
M. Tollefson, Jose R. Santos, Marvin Heffler, Nathan
Lynch, Nishanth Aravamudan, Tim Pepper, and Tony
Breeds.

Original Publications

1. Section 2.4 (“What Makes Parallel Programming
Hard?”) on page 13 originally appeared in a Portland
State University Technical Report [MGM+09].

2. Section 4.3.4.1 (“Shared-Variable Shenanigans”)
on page 42 originally appeared in Linux Weekly
News [ADF+19].

651

v2024.12.27a

652 CREDITS

3. Section 6.5 (“Retrofitted Parallelism Considered
Grossly Sub-Optimal”) on page 96 originally ap-
peared in 4th USENIX Workshop on Hot Topics on
Parallelism [McK12c].

4. Section 9.5.2 (“RCU Fundamentals”) on page 148
originally appeared in Linux Weekly News [MW07].

5. Section 9.5.3 (“RCU Linux-Kernel API”) on
page 154 originally appeared in Linux Weekly
News [McK08e].

6. Section 9.5.4 (“RCU Usage”) on page 164 originally
appeared in Linux Weekly News [McK08g].

7. Section 9.5.5 (“RCU Related Work”) on
page 181 originally appeared in Linux Weekly
News [McK14g].

8. Section 9.5.5 (“RCU Related Work”) on page 181
originally appeared in Linux Weekly News [MP15a].

9. Chapter 12 (“Formal Verification”) on page 233
originally appeared in Linux Weekly News [McK07f,
MR08, McK11d].

10. Section 12.3 (“Axiomatic Approaches”) on page 264
originally appeared in Linux Weekly News [MS14].

11. Section 13.5.4 (“Correlated Fields”) on page 284
originally appeared in Oregon Graduate Insti-
tute [McK04].

12. Chapter 15 (“Advanced Synchronization: Memory
Ordering”) on page 319 originally appeared in the
Linux kernel [HMDZ06].

13. Chapter 15 (“Advanced Synchronization: Memory
Ordering”) on page 319 originally appeared in Linux
Weekly News [AMM+17a, AMM+17b].

14. Chapter 15 (“Advanced Synchronization: Memory
Ordering”) on page 319 originally appeared in ASP-
LOS ’18 [AMM+18].

15. Section 15.4.2 (“Address- and Data-Dependency Dif-
ficulties”) on page 352 originally appeared in the
Linux kernel [McK14e].

16. Section 15.6 (“Memory-Barrier Instructions For Spe-
cific CPUs”) on page 368 originally appeared in
Linux Journal [McK05a, McK05b].

Figure Credits
1. Figure 3.1 (p 17) by Melissa Broussard.

2. Figure 3.2 (p 18) by Melissa Broussard.

3. Figure 3.3 (p 18) by Melissa Broussard.

4. Figure 3.5 (p 19) by Melissa Broussard.

5. Figure 3.6 (p 20) by Melissa Broussard.

6. Figure 3.7 (p 20) by Melissa Broussard.

7. Figure 3.8 (p 21) by Melissa Broussard, remixed.

8. Figure 3.9 (p 21) by Melissa Broussard, remixed.

9. Figure 3.10 (p 22) by Melissa Broussard.

10. Figure 3.11 (p 22) by Melissa Broussard.

11. Figure 3.14 (p 27) by Melissa Broussard.

12. Figure 3.16 (p 28) by Shmuel Csaba Otto Traian,
CCSA4.0.

13. Figure 5.3 (p 53) by Melissa Broussard.

14. Figure 6.1 (p 76) by Kornilios Kourtis.

15. Figure 6.2 (p 77) by Melissa Broussard.

16. Figure 6.3 (p 77) by Kornilios Kourtis.

17. Figure 6.4 (p 77) by Kornilios Kourtis.

18. Figure 6.13 (p 87) by Melissa Broussard.

19. Figure 6.14 (p 88) by Melissa Broussard.

20. Figure 6.15 (p 88) by Melissa Broussard.

21. Figure 7.1 (p 104) by Melissa Broussard.

22. Figure 7.2 (p 104) by Melissa Broussard.

23. Figure 10.12 (p 200) by Melissa Broussard.

24. Figure 10.13 (p 200) by Melissa Broussard.

25. Figure 11.1 (p 213) by Melissa Broussard.

26. Figure 11.2 (p 213) by Melissa Broussard.

27. Figure 11.3 (p 220) by Melissa Broussard.

28. Figure 11.6 (p 232) by Melissa Broussard.

v2024.12.27a

OTHER SUPPORT 653

29. Figure 14.1 (p 298) by Melissa Broussard.

30. Figure 14.2 (p 299) by Melissa Broussard.

31. Figure 14.3 (p 300) by Melissa Broussard.

32. Figure 14.10 (p 308) by Melissa Broussard.

33. Figure 14.11 (p 308) by Melissa Broussard.

34. Figure 14.14 (p 310) by Melissa Broussard.

35. Figure 14.15 (p 317) by Sarah McKenney.

36. Figure 14.16 (p 317) by Sarah McKenney.

37. Figure 15.4 (p 327) by Wikipedia user “I, Appaloosa”
CC BY-SA 3.0, reformatted.

38. Figure 15.5 (p 327) by Wikipedia user “I, Appaloosa”
CC BY-SA 3.0, reformatted.

39. Figure 15.7 (p 328) by Melissa Broussard.

40. Figure 15.10 (p 334) by Akira Yokosawa.

41. Figure 15.26 (p 373) by Melissa Brossard.

42. Figure 16.2 (p 381) by Melissa Broussard.

43. Figure 17.1 (p 383) by Melissa Broussard.

44. Figure 17.2 (p 384) by Melissa Broussard.

45. Figure 17.3 (p 384) by Melissa Broussard.

46. Figure 17.4 (p 384) by Melissa Broussard.

47. Figure 17.5 (p 384) by Melissa Broussard, remixed.

48. Figure 17.9 (p 400) by Melissa Broussard.

49. Figure 17.10 (p 400) by Melissa Broussard.

50. Figure 17.11 (p 400) by Melissa Broussard.

51. Figure 17.12 (p 400) by Melissa Broussard.

52. Figure 18.1 (p 423) by Melissa Broussard.

53. Figure A.1 (p 426) by Melissa Broussard.

54. Figure E.2 (p 508) by Kornilios Kourtis.

Figure 9.33 was adapted from Fedor Pikus’s “When to
use RCU” slide [Pik17]. The discussion of mechanical
reference counters in Section 9.2 stemmed from a private
conversation with Dave Regan.

Other Support
We owe thanks to many CPU architects for patiently ex-
plaining the instruction- and memory-reordering features
of their CPUs, particularly Wayne Cardoza, Ed Silha, An-
ton Blanchard, Tim Slegel, Juergen Probst, Ingo Adlung,
Ravi Arimilli, Cathy May, Derek Williams, H. Peter An-
vin, Andy Glew, Leonid Yegoshin, Richard Grisenthwaite,
and Will Deacon. Wayne deserves special thanks for his
patience in explaining Alpha’s reordering of dependent
loads, a lesson that Paul resisted quite strenuously!

The bibtex-generation service of the Association for
Computing Machinery has saved us a huge amount of time
and effort compiling the bibliography, for which we are
grateful. Thanks are also due to Stamatis Karnouskos, who
convinced me to drag my antique bibliography database
kicking and screaming into the 21st century. Any technical
work of this sort owes thanks to the many individuals and
organizations that keep Internet and the World Wide Web
up and running, and this one is no exception.

Portions of this material are based upon work supported
by the National Science Foundation under Grant No. CNS-
0719851.

v2024.12.27a

654 CREDITS

v2024.12.27a

Acronyms

CAS compare and swap, 24, 29, 38, 48, 262, 274, 404,
487, 557, 596

CBMC C bounded model checker, 183, 267, 268, 413,
551

EBR epoch-based reclamation, 3, 182, 188, 598

HTM hardware transactional memory, 401, 402, 578–
580, 598

IPI inter-processor interrupt, 142, 372, 462, 598

IRQ interrupt request, 257, 308, 598

KCSAN kernel concurrency sanitizer, 216, 563

LKMM Linux kernel memory consistency model, 265,
359, 372, 563

NBS non-blocking synchronization, 82, 122, 181, 291,
387, 421, 426, 600

NMI non-maskable interrupt, 179, 246, 385, 599

NUCA non-uniform cache architecture, 460, 566, 600

NUMA non-uniform memory architecture, 112, 183, 195,
396, 566, 600

QSBR quiescent-state-based reclamation, 145, 165, 182,
183, 188, 197, 363, 600

RAII resource acquisition is initialization, 115

RCU read-copy update, 3, 142, 578, 598, 600, 601

STM software transactional memory, 403, 579, 602

TLE transactional lock elision, 405, 429, 602

TM transactional memory, 602

UTM unbounded transactional memory, 403, 602

655

v2024.12.27a

656 Acronyms

v2024.12.27a

Index

Bold: Major reference.
Underline: Definition.

Acquire load, 48, 149, 337, 595
Address dependency, see Dependency,

address
Ahmed, Iftekhar, 184
Alglave, Jade, 245, 261, 264, 362, 366
Amdahl’s Law, 7, 84, 100, 595
Anti-Heisenbug, see Heisenbug, anti-
Arbel, Maya, 182, 183
Ash, Mike, 183
Associativity, see Cache associativity
Associativity miss, see Cache miss,

associativity
Atomic, 19, 30, 38, 39, 48, 52, 57, 63, 595
Atomic read-modify-write operation, 329,

330, 450, 595
Attiya, Hagit, 182, 577

Belay, Adam, 183
Bhat, Srivatsa, 183
Bonzini, Paolo, 4
Bornat, Richard, 3
Bos, Mara, 4
Bounded population-oblivious wait free,

see Wait free, bounded
population-oblivious

Bounded wait free, see Wait free, bounded
Butenhof, David R., 3

C bounded model checker (CBMC), 183,
267, 268, 413, 551

Cache, 595
direct-mapped, 451, 597
fully associative, 403, 598

Cache associativity, 402, 448, 595
Cache coherence, 339, 372, 403, 596
Cache geometry, 448, 596
Cache line, 23, 52, 118, 288, 328, 341,

371, 401, 447, 596
Cache miss, 596

associativity, 448, 595
capacity, 448, 596
communication, 448, 597
read, 601
warm-up, 603
write, 448, 603

Cache-coherence protocol, 449, 596
Cache-invalidation latency, see Latency,

cache-invalidation
Cache-miss latency, see Latency,

cache-miss
Capacity miss, see Cache miss, capacity
Chen, Haibo, 183
Chien, Andrew, 4
Clash free, 292, 596
Clements, Austin, 181
Code locking, see Locking, code
Combinatorial explosion, 597
Combinatorial implosion, 597
Communication miss, see Cache miss,

communication
Compare and swap (CAS), 29, 38, 262,

274, 404, 487, 557, 596
Concurrent, 431, 597
Consistency

memory, 370, 599
process, 600
sequential, 279, 414, 602
weak, 373

Control dependency, see Dependency,
control

Corbet, Jonathan, 3
Correia, Andreia, 183
Critical section, 20, 37, 83, 86, 87, 91,

112, 119, 597
RCU read-side, 143, 149, 601
read-side, 114, 140, 601
write-side, 603

Data dependency, see Dependency, data
Data locking, see Locking, data
Data race, 34, 42, 103, 216, 352, 597
Deacon, Will, 43
Deadlock, 7, 15, 78, 103, 145, 203, 312,

354, 381, 392, 404, 597
Deadlock cycle, 433, 435
Deadlock free, 292, 597
Dependency

address, 336, 352, 371, 595
control, 338, 354, 372, 597
data, 337, 352, 597

Desnoyers, Mathieu, 181, 182
Dĳkstra, Edsger W., 1, 76
Dining philosophers problem, 75
Direct-mapped cache, see Cache,

direct-mapped
Dreyer, Derek, 183
Dufour, Laurent, 182

Efficiency, 9, 83, 89, 118, 431, 597
energy, 26, 227, 597

Embarrassingly parallel, 12, 89, 96, 597
Epoch-based reclamation (EBR), 182,

188, 598
Exclusive lock, see Lock, exclusive
Existence guarantee, 119, 169, 170, 185,

274, 511, 598

False sharing, 26, 80, 100, 198, 289, 499,
518, 540, 598

Felber, Pascal, 183
Forward-progress guarantee, 124, 183,

186, 291, 598
Fragmentation, 95, 598
Fraser, Keir, 182, 598
Full memory barrier, see Memory barrier,

full

657

v2024.12.27a

658 INDEX

Fully associative cache, see Cache, fully
associative

Generality, 8, 10, 29, 83
Giannoula, Christina, 183, 396
Gotsman, Alexey, 183
Grace period, 144, 155, 187, 196, 216,

245, 266, 277, 311, 362, 386, 433,
598

Grace-period latency, see Latency,
grace-period

Grimm, Rainer, 3
Groce, Alex, 184

Hardware transactional memory (HTM),
401, 402, 578–580, 598

Harris, Timothy, 182
Hawking, Stephen, 8
Hazard pointer, 135, 147, 153, 184, 195,

278, 289, 316, 388, 406, 512, 598
Heisenberg, Weiner, 200, 222
Heisenbug, 222, 598

anti-, 223
Hennessy, John L., 4, 17
Herlihy, Maurice P., 3
Hot spot, 89, 198, 598
Howard, Phil, 181
Howlett, Liam, 182
Hraska, Adam, 182
Humiliatingly parallel, 99, 598
Hunter, Andrew, 183

Immutable, 598
Inter-processor interrupt (IPI), 142, 372,

462, 598
Interrupt request (IRQ), 257, 308, 598
Invalidation, 448, 456, 578, 598

Jensen, Carlos, 184

Kaashoek, Frans, 181
Kernel concurrency sanitizer (KCSAN),

216, 563
Kim, Jaeho, 183
Knuth, Donald, 3, 181, 387
Kogan, Alex, 183
Kohler, Eddie, 182
Kokologiannakis, Michalis, 183
Kroah-Hartman, Greg, 3
Kroening, Daniel, 183
Kung, H. T., 3, 181

Latency, 19, 26, 301, 599
cache-invalidation, 457
cache-miss, 26

grace-period, 155, 441
memory, 385
memory-barrier, 197
message, 83
scheduling, 294

Lea, Doug, 4
Lehman, Philip L., 3, 181
Lespinasse, Michel, 182
Liang, Lihao, 183
Linearizable, 182, 291, 538, 599
Linux kernel memory consistency model

(LKMM), 265, 359, 372, 563
Liskov, Barbara, 182
Liu, Ran, 183
Liu, Yujie, 182
Livelock, 7, 15, 103, 111, 235, 405, 516,

599
Lock, 599

exclusive, 36, 113, 429, 598
reader-writer, 36, 113, 183, 601
sequence, 602

Lock contention, 58, 71, 80, 83, 87, 92,
112, 599

Lock free, 183, 292, 599
Locking, 103

code, 84, 85, 92, 596
data, 15, 84, 95, 597

Luchangco, Victor, 3, 182

Madden, Samuel, 182
Mao, Yandong, 182
Maranget, Luc, 261
Marked access, 599
Marlier, Patrick, 183
Matloff, Norm, 3
Mattson, Timothy G., 3
Matveev, Alexander, 183
McKenney, Paul E., 183, 184
Melham, Tom, 183
Memory, 599
Memory barrier, 20, 38, 83, 112, 136,

185, 197, 238, 274, 328, 385, 429,
434, 440, 447, 599

full, 141, 328, 359, 368, 370, 564
read, 354, 370, 459, 601
write, 370, 459, 603

Memory consistency, see Consistency,
memory

Memory latency, see Latency, memory
Memory-barrier latency, see Latency,

memory-barrier
Memory-barrier overhead, see Overhead,

memory-barrier
MESI protocol, 449, 599

Message latency, see Latency, message
Moore’s Law, 7, 9, 13, 17, 19, 27, 29, 85,

383, 385, 599
Morris, Robert, 182
Morrison, Adam, 183
Mutual-exclusion mechanism, 599

Nardelli, Francesco Zappa, 261
Nidhugg, 268, 413, 551
Non-blocking, 600
Non-blocking synchronization (NBS), 82,

122, 181, 291, 387, 421, 426, 600
Non-maskable interrupt (NMI), 179, 246,

385, 599
Non-uniform cache architecture (NUCA),

460, 566, 600
Non-uniform memory architecture

(NUMA), 112, 183, 195, 396, 566,
600

NUMA node, 15, 549, 600

Obstruction free, 292, 600
Overhead, 7, 22, 600

memory-barrier, 20

Parallel, 431, 600
Park, SeongJae, 183, 396
Patterson, David A., 4, 17
Pawan, Pankaj, 261
Penyaev, Roman, 266
Performance, 8, 83, 431, 600
Pikus, Fedor, 653
Pipelined CPU, 600
Plain access, 42, 50, 148, 350, 600
Podzimek, Andrej, 182
Process consistency, see Consistency,

process
Productivity, 8, 10, 83, 314, 394
Program order, 600
Promela, 233, 551

Quiescent state, 145, 258, 392, 443, 600
Quiescent-state-based reclamation

(QSBR), 145, 165, 183, 188, 197,
363, 600

Race condition, 7, 120, 223, 233, 234,
283, 331, 436, 601

Ramalhete, Pedro, 183
RCU read-side critical section, see

Critical section, RCU read-side
RCU-protected data, 527, 601
RCU-protected pointer, 143, 601
Read memory barrier, see Memory

barrier, read

v2024.12.27a

INDEX 659

Read mostly, 601
Read only, 601
Read-copy update (RCU), 142, 578, 601
Read-side critical section, see Critical

section, read-side
Reader-writer lock, see Lock,

reader-writer
Real time, 601
Reference count, 48, 51, 132, 178, 184,

274, 284, 395, 433, 496, 601
Regan, Dave, 653
Reinders, James, 4
Release store, 48, 355, 601
Reliability, 314
Resource acquisition is initialization

(RAII), 115
Rinetzky, Noam, 183
Romer, Geoff, 183
Roy, Lance, 183
Rubini, Alessandro, 3

Sagonas, Konstantinos, 183
Sarkar, Susmit, 261
Scalability, 9, 431, 602
Scheduling latency, see Latency,

scheduling
Schimmel, Curt, 4
Schmidt, Douglas C., 3
Scott, Michael, 3
Sequence lock, see Lock, sequence
Sequential consistency, see Consistency,

sequential
Sewell, Peter, 261

Shavit, Nir, 3, 183
Shenoy, Gautham, 183
Siakavaras, Dimitrios, 183, 396
Sivaramakrishnan, KC, 182
Software transactional memory (STM),

403, 579, 602
Sorin, Daniel, 4
Spear, Michael, 3, 182
Spin, 233
Starvation, 75, 103, 111, 117, 141, 279,

310, 396, 435, 516, 602
Starvation free, 292, 602
Stevens, W. Richard, 3
Store buffer, 602
Store forwarding, 602
Superscalar CPU, 602
Sutter, Herb, 4
Synchronization, 602

Tassarotti, Joseph, 183
Teachable, 602
Throughput, 602
Torvalds, Linus, 496, 535, 573
Transactional lock elision (TLE), 405,

429, 602
Transactional memory (TM), 602
Triplett, Josh, 181
Tu, Stephen, 182
Type-safe memory, 155, 169, 274, 602

Unbounded transactional memory (UTM),
403, 602

Uncertainty principle, 222

Unfairness, 103, 112, 117, 141, 603
Unteachable, 603

Vafeiadis, Viktor, 183
Vector CPU, 603

Wait free, 292, 603
bounded, 186, 292, 595
bounded population-oblivious, 292,

595
Walpole, Jon, 181
Weak consistency, see Consistency, weak
Weisbecker, Frédéric, 306
Weiss, Stewart, 3
Weizenbaum, Joseph, 181
Wilcox, Matthew, 182
Williams, Anthony, 3
Williams, Derek, 261
Write memory barrier, see Memory

barrier, write
Write miss, see Cache miss, write
Write mostly, 603
Write-side critical section, see Critical

section, write-side

Xu, Herbert, 181, 200, 535

Yang, Hongseok, 183

Zeldovich, Nickolai, 181
Zhang, Heng, 183
Zheng, Wenting, 182
Zĳlstra, Peter, 181

v2024.12.27a

660 INDEX

v2024.12.27a

API Index

(c): Cxx standard, (g): GCC extension, (k): Linux kernel,
(kh): Linux kernel historic, (pf): perfbook CodeSamples,
(px): POSIX, (ur): userspace RCU.

_Thread_local (c), 39, 49, 54
__ATOMIC_ACQUIRE (g), 39
__ATOMIC_ACQ_REL (g), 39
__ATOMIC_CONSUME (g), 39
__ATOMIC_RELAXED (g), 39
__ATOMIC_RELEASE (g), 39
__ATOMIC_SEQ_CST (g), 39
__atomic_load() (g), 39
__atomic_load_n() (g), 38, 39
__atomic_store() (g), 39
__atomic_store_n() (g), 38, 39
__atomic_thread_fence() (g), 39
__get_thread_var() (pf), 49, 54
__sync_add_and_fetch() (g), 38
__sync_and_and_fetch() (g), 38
__sync_bool_compare_and_

swap() (g), 38
__sync_fetch_and_add() (g), 38, 492
__sync_fetch_and_and() (g), 38
__sync_fetch_and_nand() (g), 38, 492
__sync_fetch_and_or() (g), 38
__sync_fetch_and_sub() (g), 38, 492
__sync_fetch_and_xor() (g), 38, 492
__sync_nand_and_fetch() (g), 38, 492
__sync_or_and_fetch() (g), 38
__sync_sub_and_fetch() (g), 38
__sync_synchronize() (g), 38
__sync_val_compare_and_swap() (g),

38
__sync_xor_and_fetch() (g), 38
__thread (g), 37, 39, 49, 54, 492

ACCESS_ONCE() (kh), 38, 493
atomic_add() (k), 48
atomic_add_return() (k), 48
atomic_add_unless() (k), 48
atomic_cmpxchg() (k), 48, 64
atomic_compare_exchange_

strong() (c), 39

atomic_compare_exchange_
weak() (c), 39

atomic_dec() (k), 48
atomic_dec_and_test() (k), 48
atomic_exchange() (c), 39
atomic_fetch_add() (c), 39
atomic_fetch_and() (c), 39
atomic_fetch_sub() (c), 39
atomic_fetch_xor() (c), 39
atomic_inc() (k), 48
atomic_inc_not_zero() (k), 48
atomic_load() (c), 38
atomic_load_explicit() (c), 39
atomic_read() (k), 48
atomic_set() (k), 48
atomic_signal_fence() (c), 38
atomic_store() (c), 38
atomic_sub() (k), 48
atomic_sub_and_test() (k), 48
atomic_t (k), 48, 63
atomic_thread_fence() (c), 38
atomic_xchg() (k), 48

barrier() (k), 38, 45, 47

call_rcu() (k), 108, 144, 155
call_rcu_tasks() (k), 157
call_srcu() (k), 157
cds_list_add() (ur), 196
cds_list_add_rcu() (ur), 196
cds_list_del_init() (ur), 196
cds_list_del_rcu() (ur), 196
cds_list_for_each_entry() (ur), 195
cds_list_for_each_entry_

rcu() (ur), 195
create_thread() (pf), 40

DECLARE_PER_THREAD() (pf), 49
DEFINE_PER_CPU() (k), 48, 49

DEFINE_PER_THREAD() (pf), 49
destroy_rcu_head() (k), 163
destroy_rcu_head_on_stack() (k),

163

exec() (px), 123
exit() (px), 32

for_each_running_thread() (pf), 40
for_each_thread() (pf), 40, 54
fork() (px), 32, 41, 49, 50, 123, 493, 495

get_nulls_value() (k), 160

hlist_del_rcu() (k), 163
hlist_for_each_entry_rcu() (k),

163

init_per_thread() (pf), 49
init_rcu_head() (k), 163
init_rcu_head_on_stack() (k), 163
is_a_nulls() (k), 160

kfree() (k), 162
kill() (px), 32
kmem_cache_create() (k), 155
kthread_create() (k), 40
kthread_should_stop() (k), 40
kthread_stop() (k), 40

list_add_rcu() (k), 163
list_for_each_entry_rcu() (k), 163
list_replace_rcu() (k), 160, 162
lockless_dereference() (kh), 337,

567

NR_THREADS (pf), 40

per_cpu() (k), 48
per_thread() (pf), 49, 54

661

v2024.12.27a

662 API INDEX

pthread_atfork() (px), 123
pthread_cond_wait() (px), 109
pthread_create() (px), 33
pthread_exit() (px), 33
pthread_getspecific() (px), 39
pthread_join() (px), 33
pthread_key_create() (px), 39
pthread_key_delete() (px), 39
pthread_kill() (px), 69
pthread_mutex_init() (px), 34
PTHREAD_MUTEX_INITIALIZER (px), 34
pthread_mutex_lock() (px), 34, 110
pthread_mutex_t (px), 34, 36, 109
pthread_mutex_unlock() (px), 34
pthread_rwlock_init() (px), 36
PTHREAD_RWLOCK_INITIALIZER (px), 36
pthread_rwlock_rdlock() (px), 36
pthread_rwlock_t (px), 36
pthread_rwlock_unlock() (px), 36
pthread_rwlock_wrlock() (px), 36
pthread_setspecific() (px), 39
pthread_t (px), 39

rcu_access_pointer() (k), 158
rcu_assign_pointer() (k), 144, 158
rcu_barrier() (k), 155
rcu_barrier_tasks() (k), 157
rcu_cpu_stall_reset() (k), 163
rcu_dereference() (k), 143, 158
rcu_dereference_check() (k), 158
rcu_dereference_protected() (k),

158
rcu_dereference_raw() (k), 159
rcu_dereference_raw_notrace() (k),

159
rcu_head (k), 163
rcu_head_after_call_rcu() (k), 163

rcu_head_init() (k), 163
rcu_init() (ur), 39
RCU_INIT_POINTER() (k), 158
rcu_is_watching() (k), 163
RCU_LOCKDEP_WARN() (k), 163
RCU_NONIDLE() (k), 163
rcu_pointer_handoff() (k), 158
RCU_POINTER_INITIALIZER() (k), 158
rcu_read_lock() (k), 143, 155
rcu_read_lock_bh() (k), 155
rcu_read_lock_bh_held() (k), 163
rcu_read_lock_held() (k), 163
rcu_read_lock_sched() (k), 155
rcu_read_lock_sched_held() (k),

163
rcu_read_unlock() (k), 143, 155
rcu_read_unlock_bh() (k), 155
rcu_read_unlock_sched() (k), 155
rcu_register_thread() (ur), 39
rcu_replace_pointer() (k), 158
rcu_sleep_check() (k), 163
rcu_unregister_thread() (ur), 39
READ_ONCE() (k), 35, 37–39, 43, 44, 46,

48, 490–493

schedule() (k), 157
schedule_timeout_

interruptible() (k), 40
sig_atomic_t (c), 44
SLAB_TYPESAFE_BY_RCU (k), 155
smp_init() (pf), 39
smp_load_acquire() (k), 48, 494
smp_mb() (k), 47
smp_read_barrier_depends() (kh),

371
smp_store_release() (k), 45, 48, 494
smp_thread_id() (pf), 40, 41, 494

smp_wmb() (k), 45
spin_lock() (k), 41
spin_lock_init() (k), 41
spin_trylock() (k), 41, 109
spin_unlock() (k), 41
spinlock_t (k), 41
srcu_barrier() (k), 157
srcu_read_lock() (k), 155
srcu_read_lock_held() (k), 163
srcu_read_unlock() (k), 155
srcu_struct (k), 155
struct task_struct (k), 40
synchronize_irq() (k), 530
synchronize_net() (k), 155
synchronize_rcu() (k), 144, 155
synchronize_rcu_expedited() (k),

155
synchronize_rcu_tasks() (k), 157
synchronize_srcu() (k), 157
synchronize_srcu_expedited() (k),

157

this_cpu_ptr() (k), 48
thread_id_t (pf), 40

unlikely() (k), 45

vfork() (px), 50, 495
volatile (c), 45–47, 50

wait() (px), 32, 33, 41, 49, 493
wait_all_threads() (pf), 40, 41
wait_thread() (pf), 40, 41
waitall() (px), 32
WRITE_ONCE() (k), 35, 38, 43, 44, 46, 48,

490, 493, 494

	1 How To Use This Book
	1.1 Roadmap
	1.2 Quick Quizzes
	1.3 Alternatives to This Book
	1.4 Sample Source Code
	1.5 Video Resources
	1.6 Whose Book Is This?

	2 Introduction
	2.1 Historic Parallel Programming Difficulties
	2.2 Parallel Programming Goals
	2.2.1 Performance
	2.2.2 Productivity
	2.2.3 Generality

	2.3 Alternatives to Parallel Programming
	2.3.1 Multiple Instances of a Sequential Application
	2.3.2 Use Existing Parallel Software
	2.3.3 Performance Optimization

	2.4 What Makes Parallel Programming Hard?
	2.4.1 Work Partitioning
	2.4.2 Parallel Access Control
	2.4.3 Resource Partitioning and Replication
	2.4.4 Interacting With Hardware
	2.4.5 Composite Capabilities
	2.4.6 How Do Languages and Environments Assist With These Tasks?

	2.5 Discussion

	3 Hardware and its Habits
	3.1 Overview
	3.1.1 Pipelined CPUs
	3.1.2 Memory References
	3.1.3 Atomic Operations
	3.1.4 Memory Barriers
	3.1.5 Functional Unit Failings
	3.1.6 Thermal Throttling
	3.1.7 Cache Misses
	3.1.8 I/O Operations

	3.2 Overheads
	3.2.1 Hardware System Architecture
	3.2.2 Costs of Operations
	3.2.3 Hardware Optimizations

	3.3 Hardware Free Lunch?
	3.3.1 Novel Materials and Processes
	3.3.2 Light, Not Electrons
	3.3.3 3D Integration
	3.3.4 Special-Purpose Accelerators
	3.3.5 Existing Parallel Software

	3.4 Software Design Implications

	4 Tools of the Trade
	4.1 Scripting Languages
	4.2 POSIX Multiprocessing
	4.2.1 POSIX Process Creation and Destruction
	4.2.2 POSIX Thread Creation and Destruction
	4.2.3 POSIX Locking
	4.2.4 POSIX Reader-Writer Locking
	4.2.5 Atomic Operations (GCC Classic)
	4.2.6 Atomic Operations (C11)
	4.2.7 Atomic Operations (Modern GCC)
	4.2.8 Per-Thread Variables

	4.3 Alternatives to POSIX Operations
	4.3.1 Organization and Initialization
	4.3.2 Thread Creation, Destruction, and Control
	4.3.3 Locking
	4.3.4 Accessing Shared Variables
	4.3.5 Atomic Operations
	4.3.6 Per-CPU Variables

	4.4 The Right Tool for the Job: How to Choose?

	5 Counting
	5.1 Why Isn't Concurrent Counting Trivial?
	5.2 Statistical Counters
	5.2.1 Design
	5.2.2 Array-Based Implementation
	5.2.3 Per-Thread-Variable-Based Implementation
	5.2.4 Eventually Consistent Implementation
	5.2.5 Discussion

	5.3 Approximate Limit Counters
	5.3.1 Design
	5.3.2 Simple Limit Counter Implementation
	5.3.3 Simple Limit Counter Discussion
	5.3.4 Approximate Limit Counter Implementation
	5.3.5 Approximate Limit Counter Discussion

	5.4 Exact Limit Counters
	5.4.1 Atomic Limit Counter Implementation
	5.4.2 Atomic Limit Counter Discussion
	5.4.3 Signal-Theft Limit Counter Design
	5.4.4 Signal-Theft Limit Counter Implementation
	5.4.5 Signal-Theft Limit Counter Discussion
	5.4.6 Applying Exact Limit Counters

	5.5 Parallel Counting Discussion
	5.5.1 Parallel Counting Validation
	5.5.2 Parallel Counting Performance
	5.5.3 Parallel Counting Specializations
	5.5.4 Parallel Counting Lessons

	6 Partitioning and Synchronization Design
	6.1 Partitioning Exercises
	6.1.1 Dining Philosophers Problem
	6.1.2 Double-Ended Queue
	6.1.3 Partitioning Example Discussion

	6.2 Design Criteria
	6.3 Synchronization Granularity
	6.3.1 Sequential Program
	6.3.2 Code Locking
	6.3.3 Data Locking
	6.3.4 Data Ownership
	6.3.5 Locking Granularity and Performance

	6.4 Parallel Fastpath
	6.4.1 Reader/Writer Locking
	6.4.2 Hierarchical Locking
	6.4.3 Resource Allocator Caches

	6.5 Beyond Partitioning
	6.5.1 Work-Queue Parallel Maze Solver
	6.5.2 Alternative Parallel Maze Solver
	6.5.3 Maze Validation
	6.5.4 Performance Comparison I
	6.5.5 Alternative Sequential Maze Solver
	6.5.6 Performance Comparison II
	6.5.7 Future Directions and Conclusions

	6.6 Partitioning, Parallelism, and Optimization

	7 Locking
	7.1 Staying Alive
	7.1.1 Deadlock
	7.1.2 Livelock and Starvation
	7.1.3 Unfairness
	7.1.4 Inefficiency

	7.2 Types of Locks
	7.2.1 Exclusive Locks
	7.2.2 Reader-Writer Locks
	7.2.3 Beyond Reader-Writer Locks
	7.2.4 Scoped Locking

	7.3 Locking Implementation Issues
	7.3.1 Sample Exclusive-Locking Implementation Based on Atomic Exchange
	7.3.2 Other Exclusive-Locking Implementations

	7.4 Lock-Based Existence Guarantees
	7.5 Locking: Hero or Villain?
	7.5.1 Locking For Applications: Hero!
	7.5.2 Locking For Parallel Libraries: Just Another Tool
	7.5.3 Locking For Parallelizing Sequential Libraries: Villain!

	7.6 Summary

	8 Data Ownership
	8.1 Multiple Processes
	8.2 Partial Data Ownership and pthreads
	8.3 Function Shipping
	8.4 Designated Thread
	8.5 Privatization
	8.6 Other Uses of Data Ownership

	9 Deferred Processing
	9.1 Running Example
	9.2 Reference Counting
	9.3 Hazard Pointers
	9.4 Sequence Locks
	9.5 Read-Copy Update (RCU)
	9.5.1 Introduction to RCU
	9.5.2 RCU Fundamentals
	9.5.3 RCU Linux-Kernel API
	9.5.4 RCU Usage
	9.5.5 RCU Related Work

	9.6 Which to Choose?
	9.6.1 Which to Choose? (Overview)
	9.6.2 Which to Choose? (Details)
	9.6.3 Which to Choose? (Production Use)

	9.7 What About Updates?

	10 Data Structures
	10.1 Motivating Application
	10.2 Partitionable Data Structures
	10.2.1 Hash-Table Design
	10.2.2 Hash-Table Implementation
	10.2.3 Hash-Table Performance

	10.3 Read-Mostly Data Structures
	10.3.1 RCU-Protected Hash Table Implementation
	10.3.2 RCU-Protected Hash Table Validation
	10.3.3 RCU-Protected Hash Table Performance
	10.3.4 RCU-Protected Hash Table Discussion

	10.4 Non-Partitionable Data Structures
	10.4.1 Resizable Hash Table Design
	10.4.2 Resizable Hash Table Implementation
	10.4.3 Resizable Hash Table Discussion
	10.4.4 Other Resizable Hash Tables

	10.5 Other Data Structures
	10.6 Summary

	11 Validation
	11.1 Introduction
	11.1.1 Where Do Bugs Come From?
	11.1.2 Required Mindset
	11.1.3 When Should Validation Start?
	11.1.4 The Open Source Way

	11.2 Tracing
	11.3 Assertions
	11.4 Static Analysis
	11.5 Code Review
	11.5.1 Inspection
	11.5.2 Walkthroughs
	11.5.3 Self-Inspection

	11.6 Probability and Heisenbugs
	11.6.1 Statistics for Discrete Testing
	11.6.2 Statistics Abuse for Discrete Testing
	11.6.3 Statistics for Continuous Testing
	11.6.4 Hunting Heisenbugs

	11.7 Performance Estimation
	11.7.1 Benchmarking
	11.7.2 Profiling
	11.7.3 Differential Profiling
	11.7.4 Microbenchmarking
	11.7.5 Isolation
	11.7.6 Detecting Interference

	11.8 Summary

	12 Formal Verification
	12.1 State-Space Search
	12.1.1 Promela and Spin
	12.1.2 How to Use Promela
	12.1.3 Promela Example: Locking
	12.1.4 Promela Example: QRCU
	12.1.5 Promela Parable: dynticks and Preemptible RCU
	12.1.6 Validating Preemptible RCU and dynticks

	12.2 Special-Purpose State-Space Search
	12.2.1 Anatomy of a Litmus Test
	12.2.2 What Does This Litmus Test Mean?
	12.2.3 Running a Litmus Test
	12.2.4 PPCMEM Discussion

	12.3 Axiomatic Approaches
	12.3.1 Axiomatic Approaches and Locking
	12.3.2 Axiomatic Approaches and RCU

	12.4 SAT Solvers
	12.5 Stateless Model Checkers
	12.6 Summary
	12.7 Choosing a Validation Plan

	13 Putting It All Together
	13.1 Counter Conundrums
	13.1.1 Counting Updates
	13.1.2 Counting Lookups

	13.2 Refurbish Reference Counting
	13.2.1 Implementation of Reference-Counting Categories
	13.2.2 Counter Optimizations

	13.3 Hazard-Pointer Helpers
	13.3.1 Scalable Reference Count
	13.3.2 Long-Duration Accesses

	13.4 Sequence-Locking Specials
	13.4.1 Dueling Sequence Locks
	13.4.2 Correlated Data Elements
	13.4.3 Atomic Move
	13.4.4 Upgrade to Writer

	13.5 RCU Rescues
	13.5.1 RCU and Per-Thread-Variable-Based Statistical Counters
	13.5.2 RCU and Counters for Removable I/O Devices
	13.5.3 Array and Length
	13.5.4 Correlated Fields
	13.5.5 Update-Friendly Traversal
	13.5.6 Scalable Reference Count Two
	13.5.7 Retriggered Grace Periods
	13.5.8 Long-Duration Accesses Two

	13.6 Micro-Optimization
	13.6.1 Specialization
	13.6.2 Bits and Bytes
	13.6.3 Hardware Considerations

	14 Advanced Synchronization
	14.1 Avoiding Locks
	14.2 Non-Blocking Synchronization
	14.2.1 Simple NBS
	14.2.2 Applicability of NBS Benefits
	14.2.3 NBS Discussion

	14.3 Parallel Real-Time Computing
	14.3.1 What is Real-Time Computing?
	14.3.2 Who Needs Real-Time?
	14.3.3 Who Needs Parallel Real-Time?
	14.3.4 Implementing Parallel Real-Time Systems
	14.3.5 Implementing Parallel Real-Time Operating Systems
	14.3.6 Implementing Parallel Real-Time Applications
	14.3.7 Real Time vs. Real Fast: How to Choose?

	15 Advanced Synchronization: Memory Ordering
	15.1 Memory-Model Intuitions
	15.1.1 Transitive Intuitions
	15.1.2 Rules of Thumb

	15.2 Ordering: Why and How?
	15.2.1 Why Hardware Misordering?
	15.2.2 How to Force Ordering?
	15.2.3 Basic Rules of Thumb

	15.3 Tricks and Traps
	15.3.1 Variables With Multiple Values
	15.3.2 Memory-Reference Reordering
	15.3.3 Address Dependencies
	15.3.4 Data Dependencies
	15.3.5 Control Dependencies
	15.3.6 Cache Coherence
	15.3.7 Multicopy Atomicity
	15.3.8 A Counter-Intuitive Case Study

	15.4 Compile-Time Consternation
	15.4.1 Memory-Reference Restrictions
	15.4.2 Address- and Data-Dependency Difficulties
	15.4.3 Control-Dependency Calamities

	15.5 Higher-Level Primitives
	15.5.1 Memory Allocation
	15.5.2 Locking
	15.5.3 RCU
	15.5.4 Higher-Level Primitives: Discussion

	15.6 Hardware Specifics
	15.6.1 Alpha
	15.6.2 Armv7-A/R
	15.6.3 Armv8
	15.6.4 Itanium
	15.6.5 MIPS
	15.6.6 POWER / PowerPC
	15.6.7 SPARC TSO
	15.6.8 x86
	15.6.9 z Systems
	15.6.10 Hardware Specifics: Discussion

	16 Ease of Use
	16.1 What is Easy?
	16.2 Rusty Scale for API Design
	16.3 Shaving the Mandelbrot Set

	17 Conflicting Visions of the Future
	17.1 The Future of CPU Technology Ain't What it Used to Be
	17.1.1 Uniprocessor Über Alles
	17.1.2 Multithreaded Mania
	17.1.3 More of the Same
	17.1.4 Crash Dummies Slamming into the Memory Wall
	17.1.5 Astounding Accelerators

	17.2 Transactional Memory
	17.2.1 Outside World
	17.2.2 Process Modification
	17.2.3 Synchronization
	17.2.4 Other Transactions
	17.2.5 Case Study: Sequence Locking
	17.2.6 Discussion

	17.3 Hardware Transactional Memory
	17.3.1 HTM Benefits WRT Locking
	17.3.2 HTM Weaknesses WRT Locking
	17.3.3 HTM Weaknesses WRT Locking When Augmented
	17.3.4 Where Does HTM Best Fit In?
	17.3.5 Potential Game Changers
	17.3.6 Conclusions

	17.4 Formal Regression Testing?
	17.4.1 Automatic Translation
	17.4.2 Environment
	17.4.3 Overhead
	17.4.4 Locate Bugs
	17.4.5 Minimal Scaffolding
	17.4.6 Relevant Bugs
	17.4.7 Formal Regression Scorecard

	17.5 Functional Programming for Parallelism
	17.6 Summary

	18 Looking Forward and Back
	A Important Questions
	A.1 Why Aren't Parallel Programs Always Faster?
	A.2 Why Not Remove Locking?
	A.3 What Time Is It?
	A.4 What Does ``After'' Mean?
	A.5 How Much Ordering Is Needed?
	A.5.1 Where is the Defining Data?
	A.5.2 Consistent Data Used Consistently?
	A.5.3 Is the Problem Partitionable?
	A.5.4 None of the Above?

	A.6 What is the Difference Between ``Concurrent'' and ``Parallel''?
	A.7 Why Is Software Buggy?

	B ``Toy'' RCU Implementations
	B.1 Lock-Based RCU
	B.2 Per-Thread Lock-Based RCU
	B.3 Simple Counter-Based RCU
	B.4 Starvation-Free Counter-Based RCU
	B.5 Scalable Counter-Based RCU
	B.6 Scalable Counter-Based RCU With Shared Grace Periods
	B.7 RCU Based on Free-Running Counter
	B.8 Nestable RCU Based on Free-Running Counter
	B.9 RCU Based on Quiescent States
	B.10 Summary of Toy RCU Implementations

	C Why Memory Barriers?
	C.1 Cache Structure
	C.2 Cache-Coherence Protocols
	C.2.1 MESI States
	C.2.2 MESI Protocol Messages
	C.2.3 MESI State Diagram
	C.2.4 MESI Protocol Example

	C.3 Stores Result in Unnecessary Stalls
	C.3.1 Store Buffers
	C.3.2 Store Forwarding
	C.3.3 Store Buffers and Memory Barriers

	C.4 Store Sequences Result in Unnecessary Stalls
	C.4.1 Invalidate Queues
	C.4.2 Invalidate Queues and Invalidate Acknowledge
	C.4.3 Invalidate Queues and Memory Barriers

	C.5 Read and Write Memory Barriers
	C.6 Example Memory-Barrier Sequences
	C.6.1 Ordering-Hostile Architecture
	C.6.2 Example 1
	C.6.3 Example 2
	C.6.4 Example 3

	C.7 Are Memory Barriers Forever?
	C.8 Advice to Hardware Designers

	D Style Guide
	D.1 Paul's Conventions
	D.2 NIST Style Guide
	D.2.1 Unit Symbol
	D.2.2 NIST Guide Yet To Be Followed

	D.3 LaTeX Conventions
	D.3.1 Monospace Font
	D.3.2 Cross-reference
	D.3.3 Non Breakable Spaces
	D.3.4 Hyphenation and Dashes
	D.3.5 Punctuation
	D.3.6 Floating Object Format
	D.3.7 Improvement Candidates

	E Answers to Quick Quizzes
	E.1 How To Use This Book
	E.2 Introduction
	E.3 Hardware and its Habits
	E.4 Tools of the Trade
	E.5 Counting
	E.6 Partitioning and Synchronization Design
	E.7 Locking
	E.8 Data Ownership
	E.9 Deferred Processing
	E.10 Data Structures
	E.11 Validation
	E.12 Formal Verification
	E.13 Putting It All Together
	E.14 Advanced Synchronization
	E.15 Advanced Synchronization: Memory Ordering
	E.16 Ease of Use
	E.17 Conflicting Visions of the Future
	E.18 Important Questions
	E.19 ``Toy'' RCU Implementations
	E.20 Why Memory Barriers?

	Glossary
	Bibliography
	Credits
	LaTeX Advisor
	Reviewers
	Machine Owners
	Original Publications
	Figure Credits
	Other Support

	Acronyms
	Index
	API Index

