
Scsh: The Reference Manual
Version 8.14

February 26, 2024

1

Contents

1 Introduction 4

1.1 Copyright & License . 4

1.2 Obtaining Scsh . 4

2 Process Notation 5

2.1 Extended Process Forms and I/O Redirections 5

2.1.1 Port and File Descriptor Sync . 6

2.2 Process Forms . 7

2.3 Using Extended Process Forms in Scheme 8

2.3.1 Procedures and Special Forms . 9

2.3.2 Interfacing Process Output to Scheme 9

2.4 More Complex Process Operations . 12

2.4.1 Pids and Ports Together . 12

2.4.2 Multiple Stream Capture . 12

2.5 Conditional Process Sequencing Forms 14

2.6 Process Filters . 15

3 System Calls 16

3.1 Errors . 16

3.1.1 Interactive Mode and Error Handling 18

3.2 I/O . 18

3.2.1 Standard RnRS I/O Procedures . 18

3.2.2 Port Manipulation and Standard Ports 18

3.2.3 String ports . 20

3.2.4 Revealed Ports and File Descriptors 21

2

3.2.5 Port-Mapping Machinery . 24

3.2.6 Unix I/O . 25

3.2.7 Buffered I/O . 27

3.3 Filesystem . 27

3.3.1 Manipulating Filesystem Objects 28

3.3.2 Querying File Information . 30

3.3.3 Traversing Directories . 35

3.3.4 Globbing . 36

3.3.5 Temporary Files . 38

3.4 Processes . 40

Index 45

Index 45

3

1 Introduction

This is the reference manual for scsh, a Unix shell that is embedded within Scheme. Scsh is
a Scheme designed for writing useful standalone Unix programs and shell scripts—it spans
a wide range of application, from “script” applications usually handled with sh, to more
standard systems applications usually written in C.

Scsh is built as a library on top of scheme48, and has two components: a process notation
for running programs and setting up pipelines and redirections, and a syscall library for
low-level access to the operating system.

This manual gives a complete description of scsh. A general discussion of the design prin-
ciples behind scsh can be found in a companion paper “A Scheme Shell“ (reference).

1.1 Copyright & License

Scsh is open source. The complete source comes with the standard distribution. Scsh has an
ideologically hip, BSD-style license.

We note that the code is a rich source for other Scheme implementations to mine. Not only
the code, but the APIs are available for implementors working on Scheme environments for
systems programming. These APIs represent years of work, and should provide a big head-
start on any related effort. (Just don’t call it “scsh,” unless it’s exactly compliant with the
scsh interfaces.)

Take all the code you like; we’ll just write more.

1.2 Obtaining Scsh

The current version of scsh is still in development. We’re using git as a source code man-
agement system, and the primary repository is hosted on github at scheme/scsh.

This section will be updated to point at the final distribution once the next version is released.

4

http://s48.org
https://github.com/scheme/scsh

2 Process Notation

Scsh has a notation for controlling Unix processes that takes the form of s-expressions; this
notation can then be embedded inside of standard Scheme code. The basic elements of this
notation are process forms, extended process forms, and redirections.

2.1 Extended Process Forms and I/O Redirections

An extended process form is a specification of a Unix process to run, in a particular I/O
environment:

epf ::= (pf redir-1 ... redir-n)

where pf is a process form and the redirs are redirection specs.

A redirection spec is one of:

(< [fdes] file-name) Open file for read.
(> [fdes] file-name) Open file create/truncate.
(<< [fdes] object) Use object’s printed rep.
(>> [fdes] file-name) Open file for append.
(= [fdes] fdes/port) Dup2
(- fdes/port) Close fdes/port
stdports 0,1,2 dup'd from standard ports.

The input redirections default to file descriptor 0; the output redirections default to file de-
scriptor 1.

The subforms of a redirection are implicitly backquoted, and symbols stand for their
print-names. So (> ,x) means “output to the file named by Scheme variable x,” and
(< /usr/shivers/.login) means “read from /usr/shivers/.login.”

Here are two more examples of I/O redirection:

(< ,(vector-ref fv i))
(>> 2 /tmp/buf)

These two redirections cause the file fv[i] to be opened on stdin, and /tmp/buf to be
opened for append writes on stderr.

The redirection (<< object) causes input to come from the printed representation of ob-
ject. For example,

(<< "The quick brown fox jumped over the lazy dog.")

5

causes reads from stdin to produce the characters of the above string. The object is converted
to its printed representation using the display procedure, so

(<< (A five element list))

is the same as

(<< "(A five element list)")

is the same as

(<< ,(reverse '(list element five A)))

(Here we use the implicit backquoting feature to compute the list to be printed.)

The redirection (= fdes fdes/port) causes fdes/port to be dup’d into file descriptor
fdes. For example, the redirection

(= 2 1)

causes stderr to be the same as stdout. fdes/port can also be a port, for example:

(= 2 ,(current-output-port))

causes stderr to be dup’d from the current output port. In this case, it is an error if the port is
not a file port (e.g., a string port).

More complex redirections can be accomplished using the begin process form, discussed
below, which gives the programmer full control of I/O redirection from Scheme.

2.1.1 Port and File Descriptor Sync

It’s important to remember that rebinding Scheme’s current I/O ports (e.g., using call-
with-input-file to rebind the value of (current-input-port)) does not automatically
“rebind” the file referenced by the Unix stdio file descriptors 0, 1, and 2. This is impossible
to do in general, since some Scheme ports are not representable as Unix file descriptors. For
example, many Scheme implementations provide “string ports,” that is, ports that collect
characters sent to them into memory buffers. The accumulated string can later be retrieved
from the port as a string. If a user were to bind (current-output-port) to such a port, it
would be impossible to associate file descriptor 1 with this port, as it cannot be represented
in Unix. So, if the user subsequently forked off some other program as a subprocess, that
program would of course not see the Scheme string port as its standard output.

6

To keep stdio synced with the values of Scheme’s current I/O ports, use the special redirec-
tion stdports. This causes 0, 1, 2 to be redirected from the current Scheme standard ports.
It is equivalent to the three redirections:

(= 0 ,(current-input-port))
(= 1 ,(current-output-port))
(= 2 ,(error-output-port))

The redirections are done in the indicated order. This will cause an error if one of the
current I/O ports isn’t a Unix port (e.g., if one is a string port). This Scheme/Unix I/O
synchronisation can also be had in Scheme code (as opposed to a redirection spec) with the
(stdports->stdio) procedure.

2.2 Process Forms

A process form specifies a computation to perform as an independent Unix process. It can
be one of the following:

(begin . scheme-code) ; Run scheme-code in a fork.
(| pf-1 ... pf-n) ; Simple pipeline (|+ connect-list pf-1 ... pf-
n) ; Complex pipeline
(epf . epf) ; An extended process form.
(prog arg-1 ... arg-n) ; Default: exec the program.

The default case (prog arg-1 ... arg-n) is also implicitly backquoted. That is, it is
equivalent to:

(begin (apply exec-path `(prog arg-1 ... arg-n)))

exec-path is the version of the exec() system call that uses scsh’s path list to search for
an executable. The program and the arguments must be either strings, symbols, or integers.
Symbols and integers are coerced to strings. A symbol’s print-name is used. Integers are
converted to strings in base 10. Using symbols instead of strings is convenient, since it
suppresses the clutter of the surrounding "..." quotation marks. To aid this purpose, scsh
reads symbols in a case-sensitive manner, so that you can say

(more Readme)

and get the right file.

A connect-list is a specification of how two processes are to be wired together by pipes.
It has the form ((from-1 from-2 ... to) ...) and is implicitly backquoted. For ex-
ample,

7

http://www.FreeBSD.org/cgi/man.cgi?query=exec&apropos=0&sektion=0&manpath=FreeBSD+4.3-RELEASE&format=html

(\|+ ((1 2 0) (3 1)) pf-1 pf-2)

runs pf-1 and pf-2. The first clause (1 2 0) causes pf-1’s stdout (1) and stderr (2) to
be connected via pipe to pf-2’s stdin (0). The second clause (3 1) causes pf-1’s file
descriptor 3 to be connected to pf-2’s file descriptor 1.

The begin process form does a stdio->stdports synchronisation in the child process
before executing the body of the form. This guarantees that the begin form, like all other
process forms, “sees” the effects of any associated I/O redirections.

Note that RnRS does not specify whether or not | and |+ are readable symbols. Scsh does.

2.3 Using Extended Process Forms in Scheme

Process forms and extended process forms are not Scheme. They are a different notation for
expressing computation that, like Scheme, is based upon s-expressions. Extended process
forms are used in Scheme programs by embedding them inside special Scheme forms. There
are three basic Scheme forms that use extended process forms: exec-epf, &, and run.

(exec-epf . epf) ; => no return value (syntax)
(& . epf) ; => proc (syntax)
(run . epf) ; => status (syntax)

The (exec-epf . epf) form nukes the current process: it establishes the I/O redirections
and then overlays the current process with the requested computation.

The (& . epf) form is similar, except that the process is forked off in background. The
form returns the subprocess’ process object.

The (run . epf) form runs the process in foreground: after forking off the computation,
it waits for the subprocess to exit, and returns its exit status.

These special forms are macros that expand into the equivalent series of system calls. The
definition of the exec-epf macro is non-trivial, as it produces the code to handle I/O redi-
rections and set up pipelines.

However, the definitions of the & and run macros are very simple:

(& . epf) (fork (lambda () (exec-epf . epf)))
(run . epf) (wait (& . epf))

8

2.3.1 Procedures and Special Forms

It is a general design principle in scsh that all functionality made available through special
syntax is also available in a straightforward procedural form. So there are procedural equiv-
alents for all of the process notation. In this way, the programmer is not restricted by the
particular details of the syntax.

Here are some of the syntax/procedure equivalents:

| fork/pipe
|+ fork/pipe+
exec-epf exec-path
redirection open, dup
& fork
run exec + fork

Having a solid procedural foundation also allows for general notational experimentation
using Scheme’s macros. For example, the programmer can build his own pipeline notation
on top of the fork and fork/pipe procedures.

gives the full story on all the procedures in the syscall library.

2.3.2 Interfacing Process Output to Scheme

There is a family of procedures and special forms that can be used to capture the output of
processes as Scheme data. These forms all fork off subprocesses, collecting the process’
output to stdout in some form or another. The subprocess runs with file descriptor 1 and
the current output port bound to a pipe. Furthermore, each of these forms is a simple ex-
pansion into calls to analogous procedures. For example, (run/port . epf) expands into
(run/port* (lambda () (exec-epf . epf))).

(run/port epf)
(run/port* thunk) Ñ port?

thunk : (-> any/c)

Returns a port open on process’s stdout. Returns immediately after forking child process.

(run/file epf)
(run/file* thunk) Ñ string?

thunk : (-> any/c)

Returns the name of a temp file containing the process’s output. Returns when the process
exits.

(run/string epf)

9

(run/string* thunk) Ñ string?
thunk : (-> any/c)

Returns a string containing the process’ output. Returns when an eof is read.

(run/strings epf)
(run/strings* thunk) Ñ (listof string?)

thunk : (-> any/c)

Splits process’ output into a list of newline-delimited strings. The delimiting newlines are
not part of the returned strings. Returns when an eof is read.

(run/sexp epf)
(run/sexp* thunk) Ñ any/c

thunk : (-> any/c)

Returns a single object from process’ stdout with read. Returns as soon as the read com-
pletes.

(run/sexps epf)
(run/sexps* thunk) Ñ (listof any/c)

thunk : (-> any/c)

Repeatedly reads objects from process’ stdout with read. Returns accumulated list upon
eof.

Parsing Input from Ports

The following procedures are also of utility for generally parsing input streams in scsh:

(port->string port) Ñ string?
port : port?

Reads the port until eof, then returns the accumulated string.

(port->sexp-list port) Ñ (listof any/c)
port : port?

Repeatedly reads data from the port until eof, then returns the accumulated list of items.

(port->string-list port) Ñ (listof string?)
port : port?

Repeatedly reads newline-terminated strings from the port until eof, then returns the accu-
mulated list of strings. The delimiting newlines are not part of the returned strings.

10

(port->list reader port) Ñ (listof any/c)
reader : (-> port? any/c)
port : port?

Generalises port->sexp-list and port->string-list. Uses reader to repeatedly read
objects from a port and accumulates these objects into a list, which is returned upon eof.
port->sexp-list and port->string-list are trivial to define, being merely port-
>list curried with the appropriate parsers:

(port->string-list port) => (port->list read-line port)
(port->sexp-list port) => (port->list read port)

The following compositions also hold:

run/string* => (compose port->string run/port*)
run/strings* => (compose port->string-list run/port*)
run/sexp* => (compose read run/port*)
run/sexps* => (compose port->sexp-list run/port*)

(port-fold port reader op seeds ...+) Ñ any/c ...+
port : port?
reader : (-> port? any/c)
op : (-> any/c any/c ...+ (values any/c ...+))
seeds : any/c

This procedure can be used to perform a variety of iterative operations over an input stream.
It repeatedly uses reader to read an object from port. If the first read returns eof, then the
entire port-fold operation returns the seeds as multiple values.

If the first read operation returns some other value v, then op is applied to v and the seeds:
(op v . seeds). This should return a new set of seed values, and the reduction then loops,
reading a new value from the port, and so forth. If multiple seed values are used, then op
must return multiple values.

For example,

(port->list reader port)

could be defined as

(reverse (port-fold port reader cons '()))

An imperative way to look at port-fold is to say that it abstracts the idea of a loop over a
stream of values read from some port, where the seed values express the loop state.

11

2.4 More Complex Process Operations

The procedures and special forms in §2.3 “Using Extended Process Forms in Scheme” pro-
vide for the common case, where the programmer is only interested in the output of the
process. These special forms and procedures provide more complicated facilities for manip-
ulating processes.

2.4.1 Pids and Ports Together

(run/port+proc epf)
(run/port+proc* thunk) Ñ [port port?] [proc process?]

thunk : (-> any/c)

This special form and its analogous procedure can be used if the programmer also wishes
access to the process’ pid, exit status, or other information. They both fork off a subprocess,
returning two values: a port open on the process’ stdout (and current output port), and the
subprocess’s process object. A process object encapsulates the subprocess’ process id and
exit code; it is the value passed to the wait system call.

For example, to uncompress a tech report, reading the uncompressed data into scsh, and also
be able to track the exit status of the decompression process, use the following:

(receive (port child) (run/port+proc (zcat tr91-145.tex.Z))
(let* ((paper (port->string port))

(status (wait child)))
... use paper, status, and child here ...))

Note that you must first do the port->string and then do the wait—the other way around
may lock up when the zcat fills up its output pipe buffer.

2.4.2 Multiple Stream Capture

Occasionally, the programmer may want to capture multiple distinct output streams from a
process. For instance, he may wish to read the stdout and stderr streams into two distinct
strings. This is accomplished with the run/collecting form and its analogous procedure,
run/collecting*.

(run/collecting fds ...+ epf)
(run/collecting* fds thunk)

Ñ [status integer?] [port port?] ...+
fds : (listof integer?)
thunk : (-> any/c)

12

These guys run processes that produce multiple output streams and return ports open on
these streams. To avoid issues of deadlock, run/collecting doesn’t use pipes. Instead, it
first runs the process with output to temp files, then returns ports open on the temp files. For
example,

(run/collecting (1 2) (ls))

runs ls with stdout (fd 1) and stderr (fd 2) redirected to temporary files. When the ls is
done, run/collecting returns three values: the ls process’ exit status, and two ports open
on the temporary files. The files are deleted before run/collecting returns, so when the
ports are closed, they vanish. The fds list of file descriptors is implicitly backquoted by the
special-form version.

For example, if Kaiming has his mailbox protected, then

(receive (status out err)
(run/collecting (1 2) (cat /usr/kmshea/mbox))

(list status (port->string out) (port->string err)))

might produce the list

(256 "" "cat: /usr/kmshea/mbox: Permission denied")

What is the deadlock hazard that causes run/collecting to use temp files? Processes
with multiple output streams can lock up if they use pipes to communicate with Scheme I/O
readers. For example, suppose some Unix program myprog does the following:

1. First, outputs a single “(” to stderr.

2. Then, outputs a megabyte of data to stdout.

3. Finally, outputs a single “)” to stderr, and exits.

Our scsh programmer decides to run myprog with stdout and stderr redirect via Unix pipes to
the ports port1 and code{port2}, respectively. He gets into trouble when he subsequently
says (read port2). The Scheme read routine reads the open paren, and then hangs in
a read()} system call trying to read a matching close paren. But before myprog sends the
close paren down the stderr pipe, it first tries to write a megabyte of data to the stdout pipe.
However, Scheme is not reading that pipe—it’s stuck waiting for input on stderr. So the
stdout pipe quickly fills up, and myprog hangs, waiting for the pipe to drain. The myprog
child is stuck in a stdout/port1 write; the Scheme parent is stuck in a stderr/port2 read.
Deadlock.

Here’s a concrete example that does exactly the above:

13

http://www.FreeBSD.org/cgi/man.cgi?query=read&apropos=0&sektion=0&manpath=FreeBSD+4.3-RELEASE&format=html

(receive (status port1 port2)
(run/collecting (1 2)

(begin
;; Write an open paren to stderr.
(run (echo "(") (= 1 2))
;; Copy a lot of stuff to stdout.
(run (cat /usr/dict/words))
;; Write a close paren to stderr.
(run (echo ")") (= 1 2))))

;; OK. Here, I have a port PORT1 built over a pipe
;; connected to the BEGIN subproc's stdout, and
;; PORT2 built over a pipe connected to the BEGIN
;; subproc's stderr.
(read port2) ; Should return the empty list.
(port->string port1)) ; Should return a big string.

In order to avoid this problem, run/collecting and run/collecting* first run the child
process to completion, buffering all the output streams in temp files (using the temp-file-
channel procedure). When the child process exits, ports open on the buffered output are
returned. This approach has two disadvantages over using pipes:

• The total output from the child output is temporarily written to the disk before return-
ing from run/collecting. If this output is some large intermediate result, the disk
could fill up.

• The child producer and Scheme consumer are serialised; there is no concurrency over-
lap in their execution.

However, it remains a simple solution that avoids deadlock. More sophisticated solutions can
easily be programmed up as needed—run/collecting* itself is only 12 lines of simple
code.

See temp-file-channel for more information on creating temp files as communication
channels.

2.5 Conditional Process Sequencing Forms

These forms allow conditional execution of a sequence of processes.

(|| pf ...+)

Run each proc until one completes successfully (i.e., exit status zero). Return true if some
proc completes successfully; otherwise #f.

14

(&& pf ...+)

Run each proc until one fails (i.e., exit status non-zero). Return true if all procs complete
successfully; otherwise #f.

2.6 Process Filters

These procedures are useful for forking off processes to filter text streams.

(make-char-port-filter filter) Ñ procedure?
filter : (-> character? character?)

Returns a procedure that when called, repeatedly reads a character from the current input
port, applies filter to the character, and writes the result to the current output port. The
procedure returns upon reaching eof on the input port.

For example, to downcase a stream of text in a spell-checking pipeline, instead of using the
Unix tr A-Z a-z command, we can say:

(run (\| (delatex)
(begin ((char-filter char-downcase))) ; tr A-Z a-z
(spell)
(sort)
(uniq))

(< scsh.tex)
(> spell-errors.txt))

(make-string-port-filter filter [buflen]) Ñ procedure?
filter : (-> string? string?)
buflen : integer? = 1024

Returns a procedure that when called, repeatedly reads a string from the current input port,
applies filter to the string, and writes the result to the current output port. The procedure
returns upon reaching eof on the input port.

The optional buflen argument controls the number of characters each internal read opera-
tion requests; this means that filter will never be applied to a string longer than buflen
chars.

15

3 System Calls

Scsh provides (almost) complete access to the basic Unix kernel services: processes, files,
signals and so forth. These procedures comprise a Scheme binding for Posix, with a few of
the more standard extensions thrown in (e.g., symbolic links, fchown, fstat, sockets).

3.1 Errors

Scsh syscalls never return error codes, and do not use a global errno variable to report errors.
Errors are consistently reported by raising exceptions. This frees up the procedures to return
useful values, and allows the programmer to assume that if a syscall returns, it succeeded.
This greatly simplifies the flow of the code from the programmer’s point of view.

Since Scheme does not yet have a standard exception system, the scsh definition remains
somewhat vague on the actual form of exceptions and exception handlers. When a standard
exception system is defined, scsh will move to it. For now, scsh uses the scm exception
system, with a simple sugaring on top to hide the details in the common case.

System call error exceptions contain the Unix errno code reported by the system call. Un-
like C, the errno value is a part of the exception packet, it is not accessed through a global
variable.

For reference purposes, the Unix errno numbers are bound to the variables errno/perm,
errno/noent, etc. System calls never return zerror/intr—they automatically retry.

(errno-error errno syscall data ...) Ñ any
errno : integer?
syscall : string?
data : any/c

Raises a Unix error exception for Unix error number errno . The syscall and data argu-
ments are packaged up in the exception packet passed to the exception handler.

(with-errno-handler handler-spec ... body)
(with-errno-handler* handler thunk) Ñ any/c ...

handler : (-> integer? (listof any/c) (values any/c ...))
thunk : (-> (values any/c ...))

Unix syscalls raise error exceptions by calling errno-error. Programs can use with-
errno-handler* to establish handlers for these exceptions.

If a Unix error arises while thunk is executing, handler is called on two arguments like
this:

16

(handler errno packet)

packet is a list of the form

(errno-msg syscall data ...)

where errno-msg is the standard Unix error message for the error, syscall is the proce-
dure that generated the error, and data is a list of information generated by the error, which
varies from syscall to syscall.

If handler returns, the handler search continues upwards. handler can acquire the excep-
tion by invoking a saved continuation. This procedure can be sugared over with the following
syntax:

(with-errno-handler
((errno packet) clause ...)

body ...+)

This form executes the body forms with a particular errno handler installed. When an errno
error is raised, the handler search machinery will bind variable errno to the error’s integer
code, and variable packet to the error’s auxiliary data packet. Then, the clauses will be
checked for a match. The first clause that matches is executed, and its value is the value of
the entire with-errno-handler form. If no clause matches, the handler search continues.

Error clauses have two forms

((errno ...) body ...)
(else body ...)

In the first type of clause, the errno forms are integer expressions. They are evaluated and
compared to the error’s errno value. An else clause matches any errno value. Note that the
errno and data variables are lexically visible to the error clauses.

Example:

(with-errno-handler
((errno packet) ; Only handle 3 particular errors.
((errno/wouldblock errno/again)

(loop))
((errno/acces)

(format #t "Not allowed access!")
#f))

(foo frobbotz)
(blatz garglemumph))

17

It is not defined what dynamic context the handler executes in, so fluid variables cannot
reliably be referenced.

Note that Scsh system calls always retry when interrupted, so that the errno/intr exception
is never raised. If the programmer wishes to abort a system call on an interrupt, he should
have the interrupt handler explicitly raise an exception or invoke a stored continuation to
throw out of the system call.

3.1.1 Interactive Mode and Error Handling

Scsh runs in two modes: interactive and script mode. It starts up in interactive mode if the
scsh interpreter is started up with no script argument. Otherwise, scsh starts up in script
mode. The mode determines whether scsh prints prompts in between reading and evaluating
forms, and it affects the default error handler. In interactive mode, the default error handler
will report the error, and generate an interactive breakpoint so that the user can interact with
the system to examine, fix, or dismiss from the error. In script mode, the default error handler
causes the scsh process to exit.

When scsh forks a child with (fork), the child resets to script mode. This can be overridden
if the programmer wishes.

3.2 I/O

3.2.1 Standard RnRS I/O Procedures

In scsh, most standard RnRS I/O operations (such as display or read-char) work on both
integer file descriptors and Scheme ports. When doing I/O with a file descriptor, the I/O
operation is done directly on the file, bypassing any buffered data that may have accumulated
in an associated port. Note that character-at-a-time operations such as read-char are likely
to be quite slow when performed directly upon file descriptors.

The standard RnRS procedures read-char, char-ready?, write, display, newline,
and write-char are all generic, accepting integer file descriptor arguments as well as ports.
Scsh also mandates the availability of format, and further requires format to accept file
descriptor arguments as well as ports.

The procedures peek-char and read do not accept file descriptor arguments, since these
functions require the ability to read ahead in the input stream, a feature not supported by
Unix I/O.

3.2.2 Port Manipulation and Standard Ports

18

(close-after port consumer) Ñ any
port : port?
consumer : (-> port? any)

Returns (consumer port), but closes the port on return. No dynamic-wind magic.

(error-output-port) Ñ port?

This procedure is analogous to current-output-port, but produces a port used for error
messages—the scsh equivalent of stderr.

(with-current-input-port* port thunk) Ñ any
port : port?
thunk : (-> any)

(with-current-output-port* port thunk) Ñ any
port : port?
thunk : (-> any)

(with-error-output-port* port thunk) Ñ any
port : port?
thunk : (-> any)

These procedures install port as the current input, current output, and error output port,
respectively, for the duration of a call to thunk and return thunk ’s value(s).

(with-current-input-port port body ...+)
(with-current-output-port port body ...+)
(with-error-output-port port body ...+)

These special forms are simply syntactic sugar for the with-current-input-port* pro-
cedure and friends.

(close fd/port) Ñ boolean?
fd/port : (or/c integer? port?)

Closes the port or file descriptor.

If fd/port is a file descriptor, and it has a port allocated to it, the port is shifted to a new
file descriptor created with (dup fd/port) before closing fd/port. The port then has its
revealed count set to zero. This reflects the design criteria that ports are not associated with
file descriptors, but with the streams they denote.

To close a file descriptor, and any associated port it might have, you must instead say one of
(as appropriate):

(close (fdes->inport fd))
(close (fdes->outport fd))

19

The procedure returns true if it closed an open port. If the port was already closed, it returns
false; this is not an error.

(stdports->stdio) Ñ undefined

Synchronises Unix’ standard I/O file descriptors and Scheme’s current I/O ports. Causes the
standard I/O file descriptors (0, 1, and 2) take their values from the current I/O ports. It is
exactly equivalent to the series of redirections:

(dup (current-input-port) 0)
(dup (current-output-port) 1)
(dup (error-output-port) 2)

Why not
move->fdes?
Because the current
output port and
error port might be
the same port.

(with-stdio-ports* thunk) Ñ any
thunk : (-> any)

(with-stdio-ports body ...+)

with-stdio-ports* binds the standard ports (current-input-port), (current-
output-port), and (error-output-port) to be ports on file descriptors 0, 1, 2, and
then calls thunk . It is equivalent to:

(with-current-input-port (fdes->inport 0)
(with-current-output-port (fdes->inport 1)

(with-error-output-port (fdes->outport 2)
(thunk))))

The with-stdio-ports special form is merely syntactic sugar.

3.2.3 String ports

Scheme48 has string ports, which you can use. Scsh has not committed to the particular
interface or names that scheme48 uses, so be warned that the interface described herein may
be liable to change.

(make-string-input-port string) Ñ port?
string : string?

Returns a port that reads characters from the supplied string.

(make-string-output-port) Ñ port?
(string-output-port-output port) Ñ string?

port : port?

20

A string output port is a port that collects the characters given to it into a string. The accu-
mulated string is retrieved by applying string-output-port-output to the port.

(call-with-string-output-port procedure) Ñ string?
procedure : (-> port? any)

The procedure value is called on a port. When it returns, call-with-string-output-
port returns a string containing the characters that were written to that port during the
execution of procedure .

3.2.4 Revealed Ports and File Descriptors

The material in this section and the following one is not critical for most applications. You
may safely skim or completely skip this section on a first reading.

Dealing with Unix file descriptors in a Scheme environment is difficult. In Unix, open
files are part of the process environment, and are referenced by small integers called file
descriptors. Open file descriptors are the fundamental way I/O redirections are passed to
subprocesses, since file descriptors are preserved across fork’s and exec’s.

Scheme, on the other hand, uses ports for specifying I/O sources. Ports are garbage-collected
Scheme objects, not integers. Ports can be garbage collected; when a port is collected, it is
also closed. Because file descriptors are just integers, it’s impossible to garbage collect
them—you wouldn’t be able to close file descriptor 3 unless there were no 3’s in the system,
and you could further prove that your program would never again compute a 3. This is
difficult at best.

If a Scheme program only used Scheme ports, and never actually used file descriptors, this
would not be a problem. But Scheme code must descend to the file descriptor level in at least
two circumstances:

• when interfacing to foreign code

• when interfacing to a subprocess

This causes a problem. Suppose we have a Scheme port constructed on top of file descriptor
2. We intend to fork off a program that will inherit this file descriptor. If we drop references
to the port, the garbage collector may prematurely close file 2 before we fork the subprocess.
The interface described below is intended to fix this and other problems arising from the
mismatch between ports and file descriptors.

The scsh kernel maintains a port table that maps a file descriptor to the scheme port allocated
for it (or, #f if there is no port allocated for this file descriptor). This is used to ensure that
there is at most one open port for each open file descriptor.

21

Conceptually, the port data structure for file ports has two fields besides the descriptor: re-
vealed and closed?. When a file port is closed with (close port), the port’s file de-
scriptor is closed, its entry in the port table is cleared, and the port’s closed? field is set to
true.

When a file descriptor is closed with (close fdes), any associated port is shifted to a new
file descriptor created with (dup fdes). The port has its revealed count reset to zero (and
hence becomes eligible for closing on GC). See discussion below. To really put a stake
through a descriptor’s heart without waiting for associated ports to be GC’d, you must say
one of

(close (fdes->inport fdes))
(close (fdes->output fdes))

The revealed field is an aid to garbage collection. It is an integer semaphore. If it is zero,
the port’s file descriptor can be closed when the port is collected. Essentially, the revealed
field reflects whether or not the port’s file descriptor has escaped to the scheme user. If the
scheme user doesn’t know what file descriptor is associated with a given port, then he can’t
possibly retain an “integer handle” on the port after dropping pointers to the port itself, so
the garbage collector is free to close the file.

Ports allocated with open-output-file and open-input-file are unrevealed ports—
i.e., revealed is initialised to 0. No one knows the port’s file descriptor, so the file descrip-
tor can be closed when the port is collected.

The functions fdes->output-port, fdes->input-port, port->fdes are used to shift
back and forth between file descriptors and ports. When port->fdes reveals a port’s
file descriptor, it increments the port’s revealed field. When the user is through with
the file descriptor, he can call (release-port-handle port), which decrements the
count. The function (call/fdes fd/port proc) automates this protocol. call/fdes
uses dynamic-wind to enforce the protocol. If proc throws out of the call/fdes appli-
cation, the unwind handler releases the descriptor handle; if the user subsequently tries to
throw back into proc ’s context, the wind handler raises an error. When the user maps a file
descriptor to a port with fdes->outport or fdes->inport, the port has its revealed field
incremented.

Not all file descriptors are created by requests to make ports. Some are inherited on pro-
cess invocation via exec(2)}, and are simply part of the global environment. Subprocesses
may depend upon them, so if a port is later allocated for these file descriptors, is should be
considered as a revealed port. For example, when the scheme shell’s process starts up, it
opens ports on file descriptors 0, 1, and 2 for the initial values of (current-input-port),
(current-output-port), and (error-output-port). These ports are initialised with
revealed set to 1, so that stdin, stdout, and stderr are not closed even if the user drops the
port.

Unrevealed file ports have the nice property that they can be closed when all pointers to
the port are dropped. This can happen during gc, or at an exec()—since all memory is

22

http://www.FreeBSD.org/cgi/man.cgi?query=exec&apropos=0&sektion=0&manpath=FreeBSD+4.3-RELEASE&format=html

dropped at an exec(). No one knows the file descriptor associated with the port, so the
exec’d process certainly can’t refer to it.

This facility preserves the transparent close-on-collect property for file ports that are used in
straightforward ways, yet allows access to the underlying Unix substrate without interference
from the garbage collector. This is critical, since shell programming absolutely requires
access to the Unix file descriptors, as their numerical values are a critical part of the process
interface.

A port’s underlying file descriptor can be shifted around with dup(2) when convenient.
That is, the actual file descriptor on top of which a port is constructed can be shifted around
underneath the port by the scsh kernel when necessary. This is important, because when the
user is setting up file descriptors prior to a exec(2), he may explicitly use a file descriptor
that has already been allocated to some port. In this case, the scsh kernel just shifts the port’s
file descriptor to some new location with dup, freeing up its old descriptor. This prevents
errors from happening in the following scenario. Suppose we have a file open on port f .
Now we want to run a program that reads input on file 0, writes output to file 1, errors to file
2, and logs execution information on file 3. We want to run this program with input from f.
So we write:

(run (/usr/shivers/bin/prog)
(> 1 output.txt)
(> 2 error.log)
(> 3 trace.log)
(= 0 ,f))

Now, suppose by ill chance that, unbeknownst to us, when the operating system opened f’s
file, it allocated descriptor 3 for it. If we blindly redirect trace.log into file descriptor 3,
we’ll clobber f! However, the port-shuffling machinery saves us: when the run form tries to
dup trace.log’s file descriptor to 3, dup will notice that file descriptor 3 is already asso-
ciated with an unrevealed port (i.e., f). So, it will first move f to some other file descriptor.
This keeps f alive and well so that it can subsequently be dup’d into descriptor 0 for prog’s
stdin.

The port-shifting machinery makes the following guarantee: a port is only moved when the
underlying file descriptor is closed, either by a close() or a dup2() operation. Otherwise
a port/file-descriptor association is stable.

Under normal circumstances, all this machinery just works behind the scenes to keep things
straightened out. The only time the user has to think about it is when he starts accessing file
descriptors from ports, which he should almost never have to do. If a user starts asking what
file descriptors have been allocated to what ports, he has to take responsibility for managing
this information.

23

3.2.5 Port-Mapping Machinery

The procedures provided in this section are almost never needed. You may safely skim or
completely skip this section on a first reading.

Here are the routines for manipulating ports in scsh. The important points to remember are:

• A file port is associated with an open file, not a particular file descriptor.

• The association between a file port and a particular file descriptor is never changed
except when the file descriptor is explicitly closed. “Closing” includes being used
as the target of a dup2, so the set of procedures below that close their targets are
close, two-argument dup, and move->fdes. If the target file descriptor of one of
these routines has an allocated port, the port will be shifted to another freshly-allocated
file descriptor, and marked as unrevealed, thus preserving the port but freeing its old
file descriptor.

These rules are what is necessary to “make things work out” with no surprises in the general
case.

(fdes->inport fd) Ñ port?
fd : integer?

(fdes->outport fd) Ñ port?
fd : integer?

These guys return an input or output port respecitvely, backed by fd . The returned port has
its revealed count set to 1.

(port->fdes port) Ñ integer?
port : fdport?

Returns the file descriptor backing port and increments its revealed count by 1.

(port-revealed port) Ñ (or/c integer? #f)
port : fdport?

Return the port’s revealed count if positive, otherwise #f.

(release-port-handle port) Ñ undefined
port : fdport?

Decrement port ’s revealed count.

(call/fdes fd/port consumer) Ñ any
fd/port : (or/c integer? fdport?)
consumer : (-> integer? any)

24

Calls consumer on a file descriptor; takes care of revealed bookkeeping. If fd/port is a
file descriptor, this is just (consumer fd/port). If fd/port is a port, calls consumer
on its underlying file descriptor. While consumer is running, the port’s revealed count is
incremented.

When call/fdes is called with port argument, you are not allowed to throw into consumer
with a stored continuation, as that would violate the revealed-count bookkeeping.

(move->fdes fd/port target-fd) Ñ (or/c integer? fdport?)
fd/port : (or/c integer? fdport?)
target-fd : integer?

Maps fd -ą fd and port -ąport.

If fd/port is a file-descriptor not equal to target-fd , dup it to target-fd and close it.
Returns target-fd .

If fd/port is a port, it is shifted to target-fd , by duping its underlying file-descriptor if
necessary. fd/port ’s original file descriptor is closed (if it was different from target-fd).
Returns the port. This operation resets fd/port ’s revealed count to 1.

In all cases when fd/port is actually shifted, if there is a port already using target-fd , it
is first relocated to some other file descriptor.

3.2.6 Unix I/O

(dup fd/port) Ñ fdport?
fd/port : (or/c integer? fdport?)

(dup fd/port newfd) Ñ fdport?
fd/port : (or/c integer? fdport?)
newfd : integer?

(dup->inport fd/port) Ñ fdport?
fd/port : (or/c integer? fdport?)

(dup->inport fd/port newfd) Ñ fdport?
fd/port : (or/c integer? fdport?)
newfd : integer?

(dup->outport fd/port) Ñ fdport?
fd/port : (or/c integer? fdport?)

(dup->outport fd/port newfd) Ñ fdport?
fd/port : (or/c integer? fdport?)
newfd : integer?

(dup->fdes fd/port) Ñ integer?
fd/port : (or/c integer? fdport?)

(dup->fdes fd/port newfd) Ñ integer?
fd/port : (or/c integer? fdport?)
newfd : integer?

25

These procedures provide the functionality of C’s dup() and dup2(). The different routines
return different types of values: dup->inport, dup->outport, and dup->fdes return in-
put ports, output ports, and integer file descriptors, respectively. dup’s return value depends
on on the type of fd/port—it maps fd -ą fd and port -ą port.

These procedures use the Unix dup() syscall to replicate the file descriptor or file port
fd/port . If a newfd file descriptor is given, it is used as the target of the dup operation, i.e.,
the operation is a dup2(). In this case, procedures that return a port (such as dup->inport)
will return one with the revealed count set to one. For example, (dup (current-input-
port) 5) produces a new port with underlying file descriptor 5, whose revealed count is
1. If newfd is not specified, then the operating system chooses the file descriptor, and any
returned port is marked as unrevealed.

If the newfd target is given, and some port is already using that file descriptor, the port is first
quietly shifted (with another dup) to some other file descriptor (zeroing its revealed count).

Since scheme doesn’t provide read/write ports, dup->inport and dup->outport can be
useful for getting an output version of an input port, or vice versa. For example, if p is an
input port open on a tty, and we would like to do output to that tty, we can simply use (dup-
>outport p) to produce an equivalent output port for the tty. Be sure to open the file with
the open/read+write flag for this.

(seek fd offset) Ñ integer?
fd : integer?
offset : integer?

(seek fd offset whence) Ñ integer?
fd : integer?
offset : integer?
whence : integer?

Reposition the I/O cursor for a file descriptor. whence is one of seek/set, seek/delta,
or seek/end, and defaults to seek/set. If seek/set, then offset is an absolute index
into the file; if seek/delta, then offset is a relative offset from the current I/O cursor;
if seek/end, then offset is a relative offset from the end of file. Note that not all file
descriptors are seekable; this is dependent on the OS implementation. The return value is
the resulting position of the I/O cursor in the I/O stream.

(tell fd) Ñ integer?
fd : integer?

Returns the position of the I/O cursor in the the I/O stream. Not all file descriptors support
cursor-reporting; this is dependent on the OS implementation.

(open-file fname options [mode]) Ñ fdport?
fname : string?
options : file-options?
mode : file-mode? = (filemode read write)

26

options is a file-option? (ref). You must use exactly one of the options read-only,
write-only, or read-write. The returned port is an input port if the options permit
it, otherwise an output port. scheme48/scsh do not have input/output ports, so it’s one or the
other. You can hack simultaneous I/O on a file by opening it r/w, taking the result input port,
and duping it to an output port with dup->outport.

(open-input-file fname [options]) Ñ port?
fname : string?
options : file-options? = (file-options)

(open-output-file fname [options mode]) Ñ port?
fname : string?
options : file-options? = (file-options create truncate)
mode : file-mode? = (file-mode read write)

These are equivalent to open-file, after first including read-only or write-only op-
tions, respectively, in the options argument. The default values for options make the
procedures backwards-compatible with their unary RnRS definitions.

(pipe) Ñ [rport fdport?] [wport fdport?]

Returns two ports rport and wport , the read and write endpoints respectively of a Unix
pipe.

3.2.7 Buffered I/O

(force-output fd/port) Ñ undefined
fd/port : (or/c integer? fdport?)

This procedure does nothing when applied to an integer file descriptor. It flushes buffered
output when applied to a port, and raises a write-error exception on error. Returns no value.

(flush-all-ports) Ñ undefined

This procedure flushes all open output ports with buffered data.

3.3 Filesystem

Besides the procedures in this section, which allow access to the computer’s file system,
scsh also provides a set of procedures which manipulate file names. These string-processing
procedures are documented in

27

3.3.1 Manipulating Filesystem Objects

(create-directory fname [mode override?]) Ñ undefined
fname : string?
mode : file-mode? = (file-mode all)
override? : (or/c #f 'query any/c) = #f

(create-fifo fname [mode override?]) Ñ undefined
fname : string?
mode : file-mode? = (file-mode all)
override? : (or/c #f 'query any/c) = #f

(create-hard-link oldname newname [override?]) Ñ undefined
oldname : string?
newname : string?
override? : (or/c #f 'query any/c) = #f

(create-symlink oldname newname [override?]) Ñ undefined
oldname : string?
newname : string?
override? : (or/c #f 'query any/c) = #f

These procedures create objects of various kinds in the file system. The override? argu-
ment controls the action if there is already an object in the file system with the new name:

#f signal an error (default)
'query prompt the user

other

delete the old object (with
delete-file or delete-
directory as appropriate)
before creating the new object

mode defaults to (file-mode all) (but is masked by the current umask).

(delete-directory fname) Ñ undefined
fname : string?

(delete-file fname) Ñ undefined
fname : string?

(delete-filesys-object fname) Ñ undefined
fname : string?

These procedures delete objects from the filesystem. The delete-filesys-object pro-
cedure will delete an object of any type from the file system: files, (empty) directories,
symlinks, fifos, etc.

If the object being deleted doesn’t exist, delete-directory and delete-file raise an
error, while delete-filesys-object simply returns.

(read-symlink fname) Ñ string?
fname : string?

28

Return the filename referenced by the symbolic link fname . There is an
unfortunate
atomicity problem
with the
rename-file
procedure: if you
specify no-override,
but create file
new-fname
sometime between
rename-file’s
existence check and
the actual rename
operation, your file
will be clobbered
with old-fname .
There is no way to
fix this problem,
given the semantics
of Unix rename();
at least it is highly
unlikely to occur in
practice.

(rename-file old-fname new-fname [override?]) Ñ undefined
old-fname : string?
new-fname : string?
override? : (or/c #f 'query any/c) = #f

If you override an existing object, then old-fname and new-fname must type-match—
either both directories, or both non-directories. This is required by the semantics of Unix
rename().
(set-file-mode fname/fd/port mode) Ñ undefined

fname/fd/port : (or/c string? integer? fdport?)
mode : file-mode?

(set-file-owner fname/fd/port uid) Ñ undefined
fname/fd/port : (or/c string? integer? fdport?)
uid : integer?

(set-file-group fname/fd/port gid) Ñ undefined
fname/fd/port : (or/c string? integer? fdport?)
gid : integer?

These procedures set the permission bits, owner id, and group id of a file, respectively. The
file can be specified by giving the file name, or either an integer file descriptor or a port open
on the file. Setting file user ownership usually requires root privileges.

(set-file-times fname [access-time mod-time]) Ñ undefined
fname : string?
access-time : integer? = (current-time)
mod-time : integer? = (current-time)

fname to the supplied values (see (link to sec:time) for the scsh representation of time).
If neither time argument is supplied, they are both taken to be the current time. You must
provide both times or neither. If the procedure completes successfully, the file’s time of last
status-change (ctime) is set to the current time. These procedures

are not Posix. Their
actual effect may
vary between
operating systems.
See your OS’s
documentation for
sync(2) and
fsync(2)
respectively for
specifics

(sync-file fd/port) Ñ undefined
fd/port : (or/c integer? fdport?)

(sync-file-system) Ñ undefined

Calling sync-file causes Unix to update the disk data structures for a given file. If
fd/port is a port, any buffered data it may have is first flushed. Calling sync-file-
system synchronises the kernel’s entire file system with the disk.

(truncate-file fname/fd/port len) Ñ undefined
fname/fd/port : (or/c string? integer? fdport?)
len : integer?

Truncate the specified file to len bytes in length.

29

3.3.2 Querying File Information

(file-info fname/fd/port [chase?]) Ñ file-info?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

Returns a record structure containing everything there is to know about a file. If the chase?
flag is true (the default), then the procedure chases symlinks and reports on the files to which
they refer. If chase? is false, then the procedure checks the actual file itself, even if it’s a
symlink. The chase? flag is ignored if the file argument is a file descriptor or port.

The value returned is a file-info record, whose accessors are defined in this chapter.

(file-info:type finfo)
Ñ (or/c 'block-special 'char-special 'directory 'fifo 'regular 'socket 'symlink)
finfo : file-info?

Returns a symbol denoting the type of the file described by finfo .

(file-info:device finfo) Ñ integer?
finfo : file-info?

Returns an integer denoting the device that the file described by finfo resides on.

(file-info:inode finfo) Ñ integer?
finfo : file-info?

Returns an integer denoting the file system inode that points to the file described by finfo .

(file-info:mode finfo) Ñ file-mode?
finfo : file-info?

Returns a file-mode object describing the permissions set on the file described by finfo .

(file-info:nlinks finfo) Ñ integer?
finfo : file-info?

Returns the number of hard links to the file described by finfo .

(file-info:uid finfo) Ñ integer?
finfo : file-info?

Returns user id of the owner of the file file described by finfo .

30

(file-info:gid finfo) Ñ integer?
finfo : file-info?

Returns the group id of the file described by finfo .

(file-info:size finfo) Ñ integer?
finfo : file-info?

Returns the size in bytes of the file described by finfo .

(file-info:size finfo) Ñ integer?
finfo : file-info?

Returns the time at which the file described by finfo was last accessed.

(file-info:atime finfo) Ñ integer?
finfo : file-info?

Returns the time at which the file described by finfo was last accessed.

(file-info:mtime finfo) Ñ integer?
finfo : file-info?

Returns the time at which the file described by finfo was last modified.

(file-info:ctime finfo) Ñ integer?
finfo : file-info?

Returns the time at which the file described by finfo last had its status changed.

(file:type fname/fd/port [chase?])
Ñ (or/c 'block-special 'char-special 'directory 'fifo 'regular 'socket 'symlink)
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file:device fname/fd/port [chase?]) Ñ integer?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file:inode fname/fd/port [chase?]) Ñ integer?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file:mode fname/fd/port [chase?]) Ñ file-mode?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

31

(file:nlinks fname/fd/port [chase?]) Ñ integer?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file:uid fname/fd/port [chase?]) Ñ integer?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file:gid fname/fd/port [chase?]) Ñ integer?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file:size fname/fd/port [chase?]) Ñ integer?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file:atime fname/fd/port [chase?]) Ñ integer?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file:mtime fname/fd/port [chase?]) Ñ integer?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file:ctime fname/fd/port [chase?]) Ñ integer?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

These procuders are a composition of file-info and its accessors. They allow more con-
venient access to file based information, without handling an intermediary file-info object.

(file-directory? fname/fd/port [chase?]) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file-fifo? fname/fd/port [chase?]) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file-regular? fname/fd/port [chase?]) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file-socket? fname/fd/port [chase?]) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file-special? fname/fd/port [chase?]) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)
chase? : any/c = #t

(file-symlink? fname/fd/port) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)

These procedures are file-type predicates that test the type of a given file. They are applied to
the same arguments to which file-info is applied; the sole exception is file-symlink?,
which does not take the optional chase? second argument.

32

(file-info-directory? file-info) Ñ boolean?
file-info : file-info?

(file-info-fifo? file-info) Ñ boolean?
file-info : file-info?

(file-info-regular? file-info) Ñ boolean?
file-info : file-info?

(file-info-socket? file-info) Ñ boolean?
file-info : file-info?

(file-info-special? file-info) Ñ boolean?
file-info : file-info?

(file-info-symlink? file-info) Ñ boolean?
file-info : file-info?

These are variants of the file-type predicates which work directly on file-info records.

(file-not-readable? fname/fd/port)
Ñ (or/c #f 'search-denied 'permission 'no-directory 'nonexistent)
fname/fd/port : (or/c string? integer? fdport?)

(file-not-writable? fname/fd/port)
Ñ (or/c #f 'search-denied 'permission 'no-directory 'nonexistent)
fname/fd/port : (or/c string? integer? fdport?)

(file-not-executable? fname/fd/port)
Ñ (or/c #f 'search-denied 'permission 'no-directory 'nonexistent)
fname/fd/port : (or/c string? integer? fdport?)

This set of procedures are a convenient means to work on the permission bits of a file. The
meaning of their return values are as follows:

#f Access permitted

'search-denied
Can’t stat — a protected direc-
tory is blocking access

'permission Permission denied.
'no-directory Some directory doesn’t exist.
'nonexistent File doesn’t exist.

A file is considered writeable if either (1) it exists and is writeable or (2) it doesn’t exist and
the directory is writeable. Since symlink permission bits are ignored by the filesystem, these
calls do not take a chase? flag.

Note that these procedures use the process’ effective user and group ids for permission check-
ing. Posix defines an access() function that uses the process’ real uid and gids. This is
handy for setuid programs that would like to find out if the actual user has specific rights;
scsh ought to provide this functionality (but doesn’t at the current time).

There are several problems with these procedures. First, there’s an atomicity issue. In
between checking permissions for a file and then trying an operation on the file, another

33

process could change the permissions, so a return value from these functions guarantees
nothing. Second, the code special-cases permission checking when the uid is root—if the
file exists, root is assumed to have the requested permission. However, not even root can
write a file that is on a read-only file system, such as a CD ROM. In this case, file-not-
writable? will lie, saying that root has write access, when in fact the opening the file for
write access will fail. Finally, write permission confounds write access and create access.
These should be disentangled.

Some of these problems could be avoided if Posix had a real-uid variant of the access()
call we could use, but the atomicity issue is still a problem. In the final analysis, the only
way to find out if you have the right to perform an operation on a file is to try and open
it for the desired operation. These permission-checking functions are mostly intended for
script-writing, where loose guarantees are tolerated.

(file-readable? fname/fd/port) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)

(file-writable? fname/fd/port) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)

(file-executable? fname/fd/port) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)

These procedures are the logical negation of the preceding file-not-* procedures. Refer
to those for a discussion of their problems and limitations. These procedures will only ever
return #t or #f, and not the symbols giving specific reasons.

(file-info-not-readable? file-info) Ñ boolean?
file-info : file-info?

(file-info-not-writable? file-info) Ñ boolean?
file-info : file-info?

(file-info-not-executable? file-info) Ñ boolean?
file-info : file-info?

(file-info-readable? file-info) Ñ boolean?
file-info : file-info?

(file-info-writable? file-info) Ñ boolean?
file-info : file-info?

(file-info-executable? file-info) Ñ boolean?
file-info : file-info?

There are variants of the file permission predicates which work directly on file-info
records.

(file-not-exists? fname/fd/port)
Ñ (or/c boolean? 'search-denied)
fname/fd/port : (or/c string? integer? fdport?)

(file-exists? fname/fd/port) Ñ boolean?
fname/fd/port : (or/c string? integer? fdport?)

34

The meaning of the return values of file-not-exists? are as follows:

#f Exists
#t Doesn’t exist.

'search-denied
Some protected directory is
blocking the search.

file-exists? is simply the logical negation of file-not-exists?.

3.3.3 Traversing Directories

(directory-files [dir dotfiles?]) Ñ (listof string?)
dir : string? = (cwd)
dotfiles? : boolean? = #f

Return the list of files in directory dir , which defaults to the current working directory.
The dotfiles? flag causes dot files to be included in the list. Regardless of the value of
dotfiles?, the two files "." and ".." are never returned.

The directory dir is not prepended to each file name in the result list. That is,

(directory-files "/etc")

returns

("chown" "exports" "fstab" ...)

not

("/etc/chown" "/etc/exports" "/etc/fstab" ...)

To use the files in returned list, the programmer can either manually prepend the directory:

(map (lambda (f) (string-append dir "/" f)) files)

or cd to the directory before using the file names:

(with-cwd dir
(for-each delete-file (directory-files)))

or use the glob procedure, defined in this chapter.

A directory list can be generated by (run/strings (ls)), but this is unreliable, as file-
names with whitespace in their names will be split into separate entries. directory-files
is reliable.

35

(open-directory-stream dir) Ñ directory-stream?
dir : string?

(directory-stream? maybe-directory-stream) Ñ boolean?
maybe-directory-stream : any/c

(read-directory-stream directory-stream) Ñ (or/c string? #f)
directory-stream : directory-stream?

(close-directory-stream directory-stream) Ñ undefined
directory-stream : directory-stream?

These functions implement a direct interface to the opendir() / readdir() / closedir()
family of functions for processing directory streams. (open-directory-stream dir)
creates a stream of files in the directory dir . directory-stream? is a predicate that
recognizes directory-streams. (read-directory-stream directory-stream) returns
the next file in the stream or #f if no such file exists. Finally, (close-directory-
stream directory-stream) closes the stream.

3.3.4 Globbing

(glob pattern ...) Ñ (listof string)
pattern : string?

Why bother to
mention such a silly
possibility?
Because that is
what sh does.

Glob each pattern against the filesystem and return the sorted list. Duplicates are not re-
moved. Patterns matching nothing are not included literally.

C shell {a,b,c} patterns are expanded. Backslash quotes characters, turning off the special
meaning of {, }, *, [,], and ?.

Note that the rules of backslash for Scheme strings and glob patterns work together to require
four backslashes in a row to specify a single literal backslash. Fortunately, it is very rare that
a backslash occurs in a Unix file name.

A glob subpattern will not match against dot files unless the first character of the subpattern
is a literal ".". Further, a dot subpattern will not match the files "." or ".." unless it is
a constant pattern, as in (glob "../*/*.c"). So a directory’s dot files can be reliably
generated with the simple glob pattern ".*".

Some examples.

All the C and #include files in my directory:

(glob "*.c" "*.h")

All the C files in this directory and its immediate subdirectories:

36

(glob "*.c" "*/*.c")

All the C files in the lexer and parser dirs:

(glob "lexer/*.c" "parser/*.c")
(glob "{lexer,parser}/*.c")

All the C files in the strange directory "{lexer,parser}":

(glob "\\{lexer,parser\\}/*.c")

All the files ending in "*", e.g. ("foo*" "bar*"):

(glob "**")

All files containing the string "lexer", e.g. ("mylexer.c" "lexer1.notes"):

(glob "*lexer*")

Either ("lexer") or ():

(glob "lexer")

If the first character of the pattern (after expanding braces) is a slash, the search begins at
root; otherwise, the search begins in the current working directory.

If the last character of the pattern (after expanding braces) is a slash, then the result matches
must be directories, e.g.

(glob "/usr/man/man?/") => ("/usr/man/man1/" "/usr/man/man2/" ...)

Globbing can sometimes be useful when we need a list of a directory’s files where each
element in the list includes the pathname for the file.

Compare:

(directory-files "../include") => ("cig.h" "decls.h" ...)

(glob "../include/*") => ("../include/cig.h" "../include/decls.h" ...)

(glob-quote pattern) Ñ string?
pattern : string?

Returns a constant glob pattern that exactly matches pattern . All wild-card characters in
pattern are quoted with a backslash.

(glob-quote "Any *.c files?") => "Any *.c files\\?"

37

3.3.5 Temporary Files

(create-temp-file [prefix]) Ñ string?
prefix : string? = (fluid *temp-file-template*)

create-temp-file creates a new temporary file and return its name. The optional argu-
ment specifies the filename prefix to use, and defaults to the value of "$TMPDIR/<pid>"
if $TMPDIR is set and to "/var/tmp/<pid>" otherwise, where pid is the current process’
id. The procedure generates a sequence of filenames that have prefix as a common pre-
fix, looking for a filename that doesn’t already exist in the file system. When it finds one,
it creates it, with permission (file-mode owner-read owner-write) and returns the
filename. (The file permission can be changed to a more permissive permission with set-
file-mode after being created).

This file is guaranteed to be brand new. No other process will have it open. This procedure
does not simply return a filename that is very likely to be unused. It returns a filename that
definitely did not exist at the moment create-temp-file created it.

It is not necessary for the process’ pid to be a part of the filename for the uniqueness guar-
antees to hold. The pid component of the default prefix simply serves to scatter the name
searches into sparse regions, so that collisions are less likely to occur. This speeds things up,
but does not affect correctness.

Security note: doing I/O to files created this way in "/var/tmp/" is not necessarily secure.
General users have write access to "/var/tmp/", so even if an attacker cannot access the
new temp file, he can delete it and replace it with one of his own. A subsequent open of this
filename will then give you his file, to which he has access rights. There are several ways to
defeat this attack,

• Use temp-file-iterate, to return the file descriptor allocated when the file is
opened. This will work if the file only needs to be opened once.

• If the file needs to be opened twice or more, create it in a protected directory, e.g.,
"$HOME"

• Ensure that "/var/tmp" has its sticky bit set. This requires system administrator
privileges

The actual default prefix used is controlled by the dynamic variable *temp-file-
template*, and can be overridden for increased security. See temp-file-iterate for
details..

(temp-file-iterate maker [template]) Ñ any/c ...
maker : (-> string? (values any/c ...))
template : string? = (fluid *temp-file-template*)

temp-file-template : string?

38

temp-file-iterate can be used to perform certain atomic transactions on the file system
involving filenames. Some examples:

• Linking a file to a fresh backup temp name.

• Creating and opening an unused, secure temp file.

• Creating an unused temporary directory.

This procedure uses template to generate a series of trial file names. template should
be a format control string and its default is taken from the value of the dynamic variable
temp-file-template which itself defaults to "$TMPDIR/<pid>.~a" if $TMPDIR is set
and "/usr/tmp/<pid>.~a" otherwise, where pid is the scsh process’ pid. File names are
generated by calling format to instantiate the template’s "~a" field with a varying string.
For increased security, a user may wish to change the template to use a directory not allowing
world write access (e.g., his home directory). Scsh uses scheme48’s fluids package to
implement dynamic binding; see the documentation for that for details.

maker is a procedure which is serially called on each file name generated. It must return
at least one value; it may return multiple values. If the first return value is #f or if maker
raises the errno/exist errno exception, temp-file-iterate will loop, generating a new
file name and calling maker again. If the first return value is true, the loop is terminated,
returning whatever value(s) maker returned.

After a number of unsuccessful trials, temp-file-iterate may give up and signal an error.

Thus, if we ignore its optional prefix argument, create-temp-file could be defined as:

(define (create-temp-file)
(let ((options (file-options create exclusive))

(mode (file-mode owner-read owner-write)))
(temp-file-iterate

(lambda (f)
(close (open-output-file f options mode)) f))))

To rename a file to a temporary name:

(temp-file-iterate
(lambda (backup)

(create-hard-link old-file backup) backup)
".#temp.~a") ; Keep link in cwd.

(delete-file old-file)

Recall that scsh reports syscall failure by raising an error exception, not by returning an error
code. This is critical to to this example—the programmer can assume that if the temp-file-
iterate call returns, it returns successully. So the following delete-file call can be
reliably invoked, safe in the knowledge that the backup link has definitely been established.

39

http://s48.org/1.9.2/manual/manual-Z-H-6.html#node_sec_5.14

To create a unique temporary directory:

(temp-file-iterate
(lambda (dir) (create-directory dir) dir)
"/var/tmp/tempdir.~a")

Similar operations can be used to generate unique symlinks and fifos, or to return values
other than the new filename (e.g., an open file descriptor or port).

(temp-file-channel) Ñ [input-port port?] [output-port port?]

This procedure can be used to provide an interprocess communications channel with
arbitrary-sized buffering. It returns two values, an input port and an output port, both open
on a new temp file. The temp file itself is deleted from the Unix file tree before temp-file-
channel returns, so the file is essentially unnamed, and its disk storage is reclaimed as soon
as the two ports are closed.

temp-file-channel is analogous to port-pipe with two exceptions:

• If the writer process gets ahead of the reader process, it will not hang waiting for some
small pipe buffer to drain. It will simply buffer the data on disk. This is good.

• If the reader process gets ahead of the writer process, it will also not hang waiting for
data from the writer process. It will simply see and report an end of file. This is bad.

In order to ensure that an end-of-file returned to the reader is legitimate, the reader and writer
must serialise their I/O. The simplest way to do this is for the reader to delay doing input
until the writer has completely finished doing output, or exited.

3.4 Processes

(exec program arg ...) Ñ any
program : string?
arg : string?

(exec-path program arg ...) Ñ any
program : string?
arg : string?

(exec/env program environment arg ...) Ñ any
program : string?
environment : (or/c (listof (cons/c string? string?)) #t)
arg : string?

(exec-path/env program environment arg ...) Ñ any
program : string?
environment : (or/c (listof (cons/c string? string?)) #t)
arg : string?

40

The .../env variants take an environment specified as a string to string alist. An environ-
ment of #t is taken to mean the current process’ environment (i.e., the value of the external
char **environ).

[Rationale: #f is a more convenient marker for the current environment than #t, but would
cause an ambiguity on Schemes that identify #f and ().]

The path-searching variants search the directories in the list exec-path-list for the pro-
gram. A path-search is not performed if the program name contains a slash character—it
is used directly. So a program with a name like "bin/prog" always executes the program
bin/prog in the current working directory. See $path and exec-path-list, below.

Note that there is no analog to the C function execv(). To get the effect just do

(apply exec prog arglist)

All of these procedures flush buffered output and close unrevealed ports before executing
the new binary. To avoid flushing buffered output, see %exec below.

Note that the C exec() procedure allows the zeroth element of the argument vector to be
different from the file being executed, e.g.

char *argv[] = {"-", "-f", 0};
exec("/bin/csh", argv, envp);

The scsh exec, exec-path, exec/env, and exec-path/env procedures do not give this
functionality—element 0 of the arg vector is always identical to the prog argument. In the
rare case the user wishes to differentiate these two items, he can use the low-level %exec and
exec-path-search procedures.

These procedures never return under any circumstances. As with any other system call, if
there is an error, they raise an exception.

(%exec program arglist env) Ñ any
program : string?
arglist : (listof string?)
env : (or/c #t (listof (pair/c string? string?)))

(exec-path-search fname pathlist) Ñ (or/c string? #f)
fname : string?
pathlist : (listof string?)

The %exec procedure is the low-level interface to the system call. The arglist parameter
is a list of arguments; env is either a string to string alist or #t. The new program’s argv[0]
will be taken from (car arglist), not from prog . An environment of #t means the cur-
rent process’ environment. %exec does not flush buffered output (see flush-all-ports).

41

All exec procedures, including %exec, coerce the prog and arg values to strings using the
usual conversion rules: numbers are converted to decimal numerals, and symbols converted
to their print-names.

exec-path-search searches the directories of pathlist looking for an occurrence of file
fname. If no executable file is found, it returns #f. If fname contains a slash character, the
path search isshort-circuited, but the procedure still checks to ensure that the file exists and is
executable—if not, it still returns #f. Users of this procedure should be aware that it invites a
potential race condition: between checking the file with exec-path-search and executing
it with %exec, the file’s status might change. The only atomic way to do the search is to loop
over the candidate file names, exec’ing each one and looping when the exec operation fails.

See $path and exec-path-list, below.

(exit [status]) Ñ any
status : integer? = 0

(%exit [status]) Ñ any
status : integer? = 0

These procedures terminate the current process with a given exit status. The default exit
status is 0. The low-level %exit procedure immediately terminates the process without
flushing buffered output.

(call-terminally thunk) Ñ any
thunk : (-> (values any ...))

call-terminally calls its thunk. When the thunk returns, the process exits. Although
call-terminally could be implemented as

(lambda (thunk) (thunk) (exit 0))

an implementation can take advantage of the fact that this procedure never returns. For
example, the runtime can start with a fresh stack and also start with a fresh dynamic envi-
ronment, where shadowed bindings are discarded. This can allow the old stack and dynamic
environment to be collected (assuming this data is not reachable through some live continu-
ation).

(suspend) Ñ undefined

Suspend the current process with a SIGSTOP signal.

(fork thunk [continue-threads?]) Ñ (or/c proc? #f)
thunk : (or/c #f (-> (values any ...)))
continue-threads? : boolean? = #f

(%fork thunk [continue-threads?]) Ñ (or/c proc? #f)
thunk : (or/c #f (-> (values any ...)))
continue-threads? : boolean? = #f

42

fork with no arguments or #f instead of a thunk is like C fork(). In the parent process,
it returns the child’s process object (see below for more information on process objects). In
the child process, it returns #f.

fork with an argument only returns in the parent process, returning the child’s process
object. The child process calls thunk and then exits.

fork flushes buffered output before forking, and sets the child process to non-interactive.
%fork does not perform this bookkeeping; it simply forks.

The optional boolean argument continue-threads? specifies whether the currently active
threads continue to run in the child or not. The default is #f.

(fork/pipe thunk [continue-threads?]) Ñ (or/c proc? #f)
thunk : (or/c #f (-> (values any ...)))
continue-threads? : boolean? = #f

(%fork/pipe thunk [continue-threads?]) Ñ (or/c proc? #f)
thunk : (or/c #f (-> (values any ...)))
continue-threads? : boolean? = #f

Like fork and %fork, but the parent and child communicate via a pipe connecting the
parent’s stdin to the child’s stdout. These procedures side-effect the parent by changing his
stdin.

In effect, fork/pipe splices a process into the data stream immediately upstream of the
current process. This is the basic function for creating pipelines. Long pipelines are built
by performing a sequence of fork/pipe calls. For example, to create a background two-
process pipe "a | b", we write:

(fork (lambda () (fork/pipe a) (b)))

which returns the process object for b’s process.

To create a background three-process pipe "a | b | c", we write:

(fork (lambda () (fork/pipe a)
(fork/pipe b)
(c)))

which returns the process object for c’s process.

Note that these procedures affect file descriptors, not ports. That is, the pipe is allocated con-
necting the child’s file descriptor 1 to the parent’s file descriptor 0. Any previous Scheme port
built over these affected file descriptors is shifted to a new, unused file descriptor with dup
before allocating the I/O pipe. This means, for example, that the ports bound to (current-
input-port) and (current-output-port) in either process are not affected—they still

43

refer to the same I/O sources and sinks as before. Remember the simple scsh rule: Scheme
ports are bound to I/O sources and sinks, not particular file descriptors.

If the child process wishes to rebind the current output port to the pipe on file descriptor 1, it
can do this using with-current-output-port or a related form. Similarly, if the parent
wishes to change the current input port to the pipe on file descriptor 0, it can do this using
set-current-input-port! or a related form. Here is an example showing how to set up
the I/O ports on both sides of the pipe:

(fork/pipe (lambda ()
(with-current-output-port (fdes->outport 1)
(display "Hello, world.\\n"))))

(set-current-input-port! (fdes->inport 0))
(read-line) ; Read the string output by the child.

None of this is necessary when the I/O is performed by an exec’d program in the child or
parent process, only when the pipe will be referenced by Scheme code through one of the
default current I/O ports.

(fork/pipe+ conns thunk [continue-threads?]) Ñ (or/c proc? #f)
conns : (listof integer?)
thunk : (or/c #f (-> (values any ...)))
continue-threads? : boolean? = #f

(%fork/pipe+ conns thunk [continue-threads?]) Ñ (or/c proc? #f)
conns : (listof integer?)
thunk : (or/c #f (-> (values any ...)))
continue-threads? : boolean? = #f

Like fork/pipe, but the pipe connections between the child and parent are specified by the
connection list conns . See the

("|+" conns pf1 ... pfn)

process form for a description of connection lists.

44

Index
Buffered I/O, 27
Conditional Process Sequencing Forms, 14
Copyright & License, 4
Errors, 16
Extended Process Forms and I/O Redirec-

tions, 5
Filesystem, 27
Globbing, 36
I/O, 18
Interactive Mode and Error Handling, 18
Interfacing Process Output to Scheme, 9
Introduction, 4
Manipulating Filesystem Objects, 28
More Complex Process Operations, 12
Multiple Stream Capture, 12
Obtaining Scsh, 4
Parsing Input from Ports, 10
Pids and Ports Together, 12
Port and File Descriptor Sync, 6
Port Manipulation and Standard Ports, 18
Port-Mapping Machinery, 24
Procedures and Special Forms, 9
Process Filters, 15
Process Forms, 7
Process Notation, 5
Processes, 40
Querying File Information, 30
Revealed Ports and File Descriptors, 21
Scsh: The Reference Manual, 1
Standard RnRS I/O Procedures, 18
String ports, 20
System Calls, 16
Temporary Files, 38
Traversing Directories, 35
Unix I/O, 25
Using Extended Process Forms in Scheme, 8

45

	1 Introduction
	1.1 Copyright & License
	1.2 Obtaining Scsh

	2 Process Notation
	2.1 Extended Process Forms and I/O Redirections
	2.1.1 Port and File Descriptor Sync

	2.2 Process Forms
	2.3 Using Extended Process Forms in Scheme
	2.3.1 Procedures and Special Forms
	2.3.2 Interfacing Process Output to Scheme

	2.4 More Complex Process Operations
	2.4.1 Pids and Ports Together
	2.4.2 Multiple Stream Capture

	2.5 Conditional Process Sequencing Forms
	2.6 Process Filters

	3 System Calls
	3.1 Errors
	3.1.1 Interactive Mode and Error Handling

	3.2 I/O
	3.2.1 Standard RnRS I/O Procedures
	3.2.2 Port Manipulation and Standard Ports
	3.2.3 String ports
	3.2.4 Revealed Ports and File Descriptors
	3.2.5 Port-Mapping Machinery
	3.2.6 Unix I/O
	3.2.7 Buffered I/O

	3.3 Filesystem
	3.3.1 Manipulating Filesystem Objects
	3.3.2 Querying File Information
	3.3.3 Traversing Directories
	3.3.4 Globbing
	3.3.5 Temporary Files

	3.4 Processes

	Index
	Index

