The Python Library Reference
Release 2.7.14

Guido van Rossum
and the Python development team

November 20, 2017

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
2 Built-in Functions 5
3 Non-essential Built-in Functions 27
4 Built-in Constants 29
4.1 Constants added by the site module L o 29
5 Built-in Types 31
5.1 Truth Value Testing e 31
5.2 Boolean Operations — and, or, N0t oL e e e e 32
5.3 CompariSonso e e e e e e e e e e e e 32
5.4 Numeric Types — int, float, long, complex 33
5.5 Iterator Types oL 37
5.6 Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 37
5.7 Set Types — set, frozenset L e e e e e 49
5.8 Mapping Types — dict e e e e e 52
5.9 File Objects o o e e e e e o7
5.10 memoryview type Lo e e 60
5.11 Context Manager Types i e e e 62
5.12 Other Built-in Types« . . o e 63
5.13 Special Attributes oL L e e e e e e e 65
6 Built-in Exceptions 67
6.1 Exception hierarchy L 72
7 String Services 75
7.1 string — Common string operations oo 75
7.2 re — Regular expression operations Lo 88
7.3 struct — Interpret strings as packed binary data o o000 104
7.4 difflib — Helpers for computing deltaso L 109
7.5 StringlO — Read and write strings as files oo L. 120
7.6 cStringlO — Faster version of StringlOo oo Lo 121
7.7 textwrap — Text wrapping and filling Lo Lo 121
7.8 codecs — Codec registry and base classes o oo 124
7.9 unicodedata — Unicode Database 139
7.10 stringprep — Internet String Preparationo oL 141
7.11 fpformat — Floating point conversionso oo 142
8 Data Types 145

10

11

8.1 datetime — Basic date and time types Lo e
8.2 calendar — General calendar-related functions oo oo oL
8.3 collections — High-performance container datatypes
8.4 heapq — Heap queue algorithm L
8.5 bisect — Array bisection algorithm oo oo
8.6 array — Efficient arrays of numeric values L oL Lo oo
8.7 sets — Unordered collections of unique elements
8.8 sched — Event scheduler L
8.9 mutex — Mutual exclusion support Lo
8.10 Queue — A synchronized queue class Lo
8.11 weakref — Weak references
8.12 UserDict — Class wrapper for dictionary objects
8.13 UserList — Class wrapper for list objects
8.14 UserString — Class wrapper for string objects
8.15 types — Names for built-in types L e
8.16 new — Creation of runtime internal objects L oo Lo L.
8.17 copy — Shallow and deep copy operationso e e e
8.18 pprint — Data pretty printero Lo
8.19 repr — Alternate repr() implementation Lo Lo Lo

Numeric and Mathematical Modules

9.1 numbers — Numeric abstract base classes Lo o
9.2 math — Mathematical functions L
9.3 cmath — Mathematical functions for complex numbers
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions — Rational numbers. Lo
9.6 random — Generate pseudo-random numbers Lo
9.7 itertools — Functions creating iterators for efficient looping
9.8 functools — Higher-order functions and operations on callable objects
9.9 operator — Standard operators as functions Lo Lo Lo

File and Directory Access

10.1 os.path — Common pathname manipulations,
10.2 fileinput — Iterate over lines from multiple input streams
10.3 stat — Interpreting stat() results L oL
10.4 statvfs — Constants used with os.statvfs() Lo oo oo
10.5 fileemp — File and Directory Comparisons Lo
10.6 tempfile — Generate temporary files and directories00 L.
10.7 glob — Unix style pathname pattern expansion
10.8 fnmatch — Unix filename pattern matching oo
10.9 linecache — Random access to text lines Lo L.
10.10 shutil — High-level file operations L o
10.11 dircache — Cached directory listings Lo
10.12 macpath — Mac OS 9 path manipulation functions

Data Persistence

11.1 pickle — Python object serialization 0 i e e e
11.2 cPickle — A faster pickle e e
11.3 copy_reg — Register pickle support functions Lo oo
11.4 shelve — Python object persistence L Lo
11.5 marshal — Internal Python object serialization
11.6 anydbm — Generic access to DBM-style databases
11.7 whichdb — Guess which DBM module created a database
11.8 dbm — Simple “database” interfaceo Lo

223
223
226
230
233
260
261
266
279
282

291
291
295
297
301
302
304
307
308
309
309
314
315

ii

11.9 gdbm — GNU’s reinterpretation of dbm o oo
11.10 dbhash — DBM-style interface to the BSD database library
11.11 bsddb — Interface to Berkeley DB library Lo oL
11.12 dumbdbm — Portable DBM implementation
11.13 sqlite3 — DB-API 2.0 interface for SQLite databases

12 Data Compression and Archiving
12.1 zlib — Compression compatible with gzip o o0
12.2 gzip — Support for gzip files L
12.3 bz2 — Compression compatible with bzip2 00 000
12.4 zipfile — Work with ZIP archives
12.5 tarfile — Read and write tar archive fileso 0oL

13 File Formats
13.1 csv — CSV File Reading and Writing o
13.2 ConfigParser — Configuration file parser
13.3 robotparser — Parser for robots.txt oL L
13.4 netrc — netre file processing L. o e e
13.5 xdrlib — Encode and decode XDR data
13.6 plistlib — Generate and parse Mac OS X .plist files

14 Cryptographic Services
14.1 hashlib — Secure hashes and message digests oo
14.2 hmac — Keyed-Hashing for Message Authentication
14.3 md5 — MD5 message digest algorithm oo oo o
14.4 sha — SHA-1 message digest algorithm,

15 Generic Operating System Services
15.1 os — Miscellaneous operating system interfaces oL
15.2 io — Core tools for working with streams
15.3 time — Time access and cONVErsions« v v v vttt e e e e e e
15.4 argparse — Parser for command-line options, arguments and sub-commands
15.5 optparse — Parser for command line options L ...
15.6 getopt — C-style parser for command line optionso L.
15.7 logging — Logging facility for Python
15.8 logging.config — Logging configuration
15.9 logging.handlers — Logging handlers oo oo
15.10 getpass — Portable password input oL Lo oL
15.11 curses — Terminal handling for character-cell displays
15.12 curses.textpad — Text input widget for curses programs
15.13 curses.ascii — Utilities for ASCII characters oo ..
15.14 curses.panel — A panel stack extension for curses 0oL
15.15 platform — Access to underlying platform’s identifying data
15.16 errno — Standard errno system symbols oo oo Lo
15.17 ctypes — A foreign function library for Python oL,

16 Optional Operating System Services
16.1 select — Waiting for I/O completion Lo
16.2 threading — Higher-level threading interface
16.3 thread — Multiple threads of control o
16.4 dummy threading — Drop-in replacement for the threading module
16.5 dummy thread — Drop-in replacement for the thread module
16.6 multiprocessing — Process-based “threading” interface
16.7 mmap — Memory-mapped file supporto Lo
16.8 readline — GNU readline interface L o

361
361
364
366
368
374

385
385
393
400
400
401
404

407
407
409
411
412

413
413
443
454
460
490
517
519
932
042
950
551
5968
569
972
573
576
582

617
617
622
633
634
635
635
688
691

iii

17

18

19

20

16.9 rlcompleter — Completion function for GNU readline

Interprocess Communication and Networking

17.1 subprocess — Subprocess management oL el e e e e
17.2 socket — Low-level networking interface oL
17.3 ssl — TLS/SSL wrapper for socket objects
17.4 signal — Set handlers for asynchronous events
17.5 popen2 — Subprocesses with accessible I/O streams L.
17.6 asyncore — Asynchronous socket handler L oo oL
17.7 asynchat — Asynchronous socket command/response handler

Internet Data Handling

18.1 email — An email and MIME handling package
18.2 json — JSON encoder and decoder
18.3 mailcap — Mailcap file handling Lo
18.4 mailbox — Manipulate mailboxes in various formats
18.5 mhlib — Access to MH mailboxes e
18.6 mimetools — Tools for parsing MIME messages
18.7 mimetypes — Map filenames to MIME types Lo o oo
18.8 MimeWriter — Generic MIME file writer o0
18.9 mimify — MIME processing of mail messages
18.10 multifile — Support for files containing distinct parts
18.11 rfc822 — Parse RFC 2822 mail headers o
18.12 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings
18.13 binhex — Encode and decode binhex4 files 0.
18.14 binascii — Convert between binary and ASCIT,
18.15 quopri — Encode and decode MIME quoted-printable data
18.16 uu — Encode and decode uuencode fileso

Structured Markup Processing Tools

19.1 HTMLParser — Simple HTML and XHTML parser
19.2 sgmllib — Simple SGML parser o 0 e e e
19.3 htmllib — A parser for HTML documents 0o oot
19.4 htmlentitydefs — Definitions of HTML general entities
19.5 XML Processing Modules L e
19.6 XML vulnerabilities e e
19.7 xml.etree.ElementTree — The ElementTree XML APT
19.8 xml.dom — The Document Object Model APT
19.9 xml.dom.minidom — Minimal DOM implementation
19.10 xml.dom.pulldom — Support for building partial DOM trees
19.11 xml.sax — Support for SAX2 parserso
19.12 xml.sax.handler — Base classes for SAX handlers.
19.13 xml.sax.saxutils — SAX Utilities o . o oL
19.14 xml.sax.xmlreader — Interface for XML parsers
19.15 xml.parsers.expat — Fast XML parsing using Expat

Internet Protocols and Support

20.1 webbrowser — Convenient Web-browser controller
20.2 cgi — Common Gateway Interface support
20.3 cgitbh — Traceback manager for CGIL scripts
20.4 wsgiref — WSGI Utilities and Reference Implementation
20.5 urllib — Open arbitrary resources by URL o oo o .
20.6 urllib2 — extensible library for opening URLs o
20.7 httplib — HTTP protocol client
20.8 ftplib — FTP protocol client

iv

21

22

23

24

25

20.9 poplib — POP3 protocol client e 954

20.10 imaplib — IMAP4 protocol client L 956
20.11 nntplib — NNTP protocol client 962
20.12 smtplib — SMTP protocol client o e e 966
20.13 smtpd — SMTP Server o e e e e e e 971
20.14 telnetlib — Telnet client o L e 972
20.15 uuid — UUID objects according to RFC 4122 974
20.16 urlparse — Parse URLs into components oL 977
20.17 SocketServer — A framework for network servers o oo 981
20.18 BaseHTTPServer — Basic HTTP server o i it e it e e 989
20.19 SimpleHTTPServer — Simple HTTP request handler 993
20.20 CGIHTTPServer — CGI-capable HTTP request handler 994
20.21 cookielib — Cookie handling for HI'TP clients 995
20.22 Cookie — HTTP state managementot v it ot 1004
20.23 xmlrpclib — XML-RPC client access v o v v v i ittt s e e e e 1008
20.24 SimpleXMLRPCServer — Basic XML-RPC server 1016
20.25 DocXMLRPCServer — Self-documenting XML-RPC server 1020
Multimedia Services 1023
21.1 audioop — Manipulate raw audiodata Lo oL 1023
21.2 imageop — Manipulate raw image data Lo oL 1026
21.3 aifc — Read and write ATFF and ATFC files. 1027
21.4 sunau — Read and write Sun AU files 1029
21.5 wave — Read and write WAV files L 1032
21.6 chunk — Read IFF chunked data 1034
21.7 colorsys — Conversions between color systems 0L 000 e 1035
21.8 imghdr — Determine the type of an image 1036
21.9 sndhdr — Determine type of sound file oo Lo . 1037
21.10 ossaudiodev — Access to OSS-compatible audio devices 1038
Internationalization 1043
22.1 gettext — Multilingual internationalization services 1043
22.2 locale — Internationalization services L o 1053
Program Frameworks 1061
23.1 cmd — Support for line-oriented command interpreters 1061
23.2 shlex — Simple lexical analysis L e e e e 1063
Graphical User Interfaces with Tk 1069
24.1 Tkinter — Python interface to Tcl/Tko oo oo o 1069
24.2 ttk — Tk themed widgets e 1080
24.3 Tix — Extension widgets for Tk 1098
24.4 ScrolledText — Scrolled Text Widget o i 1103
24.5 turtle — Turtle graphics for Tk L 1104
24.6 IDLE o e e 1134
24.7 Other Graphical User Interface Packages 1142
Development Tools 1145
25.1 pydoc — Documentation generator and online help system 1145
25.2 doctest — Test interactive Python examples 0. 1146
25.3 wunittest — Unit testing framework oo 1171
25.4 2to3 - Automated Python 2 to 3 code translation 1196
25.5 test — Regression tests package for Python 000000, 1201
25.6 test.support — Utility functions for tests oL oL, 1204

26

27

28

29

30

31

32

Debugging and Profiling

26.1 bdb — Debugger framework
26.2 pdb — The Python Debugger e
26.3 Debugger Commands i e e e e e e e
26.4 The Python Profilers 0 e e e
26.5 hotshot — High performance logging profiler
26.6 timeit — Measure execution time of small code snippets oL,
26.7 trace — Trace or track Python statement execution

Software Packaging and Distribution
27.1 distutils — Building and installing Python modules
27.2 ensurepip — Bootstrapping the pip installero o000,

Python Runtime Services

28.1 sys — System-specific parameters and functions o000
28.2 sysconfig — Provide access to Python’s configuration information
28.3 _ builtin — Built-inobjects L
28.4 future builtins — Python 3 builtins oo
28.5 main — Top-level script environment oL oL o
28.6 warnings — Warning control oL L
28.7 contextlib — Utilities for with-statement contexts
28.8 abc — Abstract Base Classes o e e e e e
28.9 atexit — Exit handlers. L
28.10 traceback — Print or retrieve a stack tracebacko o o000 oo
28.11 _ future — Future statement definitions oo oL
28.12 gc — Garbage Collector interface L
28.13 inspect — Inspect live objects L L.
28.14 site — Site-specific configuration hook o oo
28.15 user — User-specific configuration hook oL
28.16 fpect]l — Floating point exception control oo

Custom Python Interpreters
29.1 code — Interpreter base classes e
29.2 codeop — Compile Python code

Restricted Execution
30.1 rexec — Restricted execution framework L
30.2 Bastion — Restricting access to objects L oL oo

Importing Modules

31.1 imp — Access the import internals L
31.2 importlib — Convenience wrappers for __import ()
31.3 imputil — Import utilities L
31.4 zipimport — Import modules from Zip archives oo oL,
31.5 pkgutil — Package extension utility o oo
31.6 modulefinder — Find modules used by a script oo oo oL
31.7 runpy — Locating and executing Python modules

Python Language Services

32.1 parser — Access Python parse trees Lo
32.2 ast — Abstract Syntax Trees
32.3 symtable — Access to the compiler’s symbol tables oL L.
32.4 symbol — Constants used with Python parse trees
32.5 token — Constants used with Python parse trees
32.6 keyword — Testing for Python keywords oL oo o

vi

33

34

35

36

37

38

32.7 tokenize — Tokenizer for Python source o oo oo
32.8 tabnanny — Detection of ambiguous indentation o000 L.
32.9 pyclbr — Python class browser support Lo
32.10 py _compile — Compile Python source fileso o o L.
32.11 compileall — Byte-compile Python libraries 0oL,
32.12 dis — Disassembler for Python bytecode o o L
32.13 pickletools — Tools for pickle developers. e

Python compiler package

33.1 The basicinterface L e e e
33.2 Limitations L e e e e e e
33.3 Python Abstract Syntax L
33.4 Using Visitors to Walk ASTs o
33.5 Bytecode Generation e e e e e

Miscellaneous Services
34.1 formatter — Generic output formatting o L

MS Windows Specific Services

35.1 msilib — Read and write Microsoft Installer files
35.2 msvert — Useful routines from the MS VC++ runtime
35.3 _ winreg — Windows registry access Lo e e e
35.4 winsound — Sound-playing interface for Windowso,

Unix Specific Services

36.1 posix — The most common POSIX system calls
36.2 pwd — The password database e
36.3 spwd — The shadow password database
36.4 grp — The group database
36.5 crypt — Function to check Unix passwords
36.6 dl — Call C functions in shared objects o L
36.7 termios — POSIX style tty control L
36.8 tty — Terminal control functions L
36.9 pty — Pseudo-terminal utilitieso
36.10 fentl — The fentl and ioctl system calls o oo o
36.11 pipes — Interface to shell pipelines L o
36.12 posixfile — File-like objects with locking support oo oL
36.13 resource — Resource usage information oL Lo
36.14 nis — Interface to Sun’s NIS (Yellow Pages)o o oo
36.15 syslog — Unix syslog library routines e
36.16 commands — Utilities for running commands

Mac OS X specific services

37.1 ic — Access to the Mac OS X Internet Config
37.2 MacOS — Access to Mac OS interpreter features
37.3 macostools — Convenience routines for file manipulation
37.4 findertools — The finder’s Apple Events interface
37.5 EasyDialogs — Basic Macintosh dialogs Lo o
37.6 FrameWork — Interactive application framework
37.7 autoGIL — Global Interpreter Lock handling in event loops
37.8 Mac OS Toolbox Modules o e e
37.9 ColorPicker — Color selection dialog

MacPython OSA Modules
38.1 gensuitemodule — Generate OSA stub packages

vii

38.2
38.3
38.4
38.5

aetools — OSA client supporto e e
aepack — Conversion between Python variables and AppleEvent data containers
aetypes — AppleEvent objects L
MiniAEFrame — Open Scripting Architecture server support

39 SGI IRIX Specific Services

39.1
39.2
39.3
39.4
39.5
39.6
39.7
39.8
39.9

al — Audio functions on the SGI L
AL — Constants used with the almodule o 0L 0oL
cd — CD-ROM access on SGL systemso . 0o it i e
fl — FORMS library for graphical user interfaces
FL — Constants used with the flmodule
flp — Functions for loading stored FORMS designs,
fm — Font Manager interface L e e
gl — Graphics Library interface oL e
DEVICE — Constants used with the gl module

39.10 GL — Constants used with the gl module o .o .
39.11 imgfile — Support for SGI imglib fileso
39.12 jpeg — Read and write JPEG files oL

40 SunOS Specific Services

40.1
40.2

sunaudiodev — Access to Sun audio hardware
SUNAUDIODEV — Constants used with sunaudiodev

41 Undocumented Modules

41.1
41.2
41.3
41.4
41.5
41.6

Miscellaneous useful utilities e e e
Platform specific modules e e e e
Multimedia e e e e e e e e e e e
Undocumented Mac OS modules e e e e
Obsolete
SGl-specific Extension moduleso

A Glossary

Bibliography

B About these documents

B.1

Contributors to the Python Documentation

C History and License

C1
C.2
C.3

History of the software
Terms and conditions for accessing or otherwise using Python
Licenses and Acknowledgements for Incorporated Software

D Copyright

Python Module Index

Index

1455

1457
1457

1459
1459
1460
1463

1475

1477

1483

viii

The Python Library Reference, Release 2.7.14

While reference-index describes the exact syntax and semantics of the Python language, this library reference
manual describes the standard library that is distributed with Python. It also describes some of the optional
components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long
table of contents listed below. The library contains built-in modules (written in C) that provide access to
system functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well
as modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability of
Python programs by abstracting away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also
include many additional components. For Unix-like operating systems Python is normally provided as a
collection of packages, so it may be necessary to use the packaging tools provided with the operating system
to obtain some or all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from
individual programs and modules to packages and entire application development frameworks), available
from the Python Package Index.

CONTENTS 1

https://pypi.python.org/pypi

The Python Library Reference, Release 2.7.14

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers
and lists. For these types, the Python language core defines the form of literals and places some constraints
on their semantics, but does not fully define the semantics. (On the other hand, the language core does
define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code
without the need of an import statement. Some of these are defined by the core language, but many are not
essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this
collection. Some modules are written in C and built in to the Python interpreter; others are written in
Python and imported in source form. Some modules provide interfaces that are highly specific to Python,
like printing a stack trace; some provide interfaces that are specific to particular operating systems, such as
access to specific hardware; others provide interfaces that are specific to a particular application domain,
like the World Wide Web. Some modules are available in all versions and ports of Python; others are
only available when the underlying system supports or requires them; yet others are available only when a
particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of
the chapters as well as the ordering of the modules within each chapter is roughly from most relevant to
least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get
bored, you will get a reasonable overview of the available modules and application areas that are supported
by the Python library. Of course, you don’t have to read it like a novel — you can also browse the table of
contents (in front of the manual), or look for a specific function, module or term in the index (in the back).
And finally, if you enjoy learning about random subjects, you choose a random page number (see module
random) and read a section or two. Regardless of the order in which you read the sections of this manual, it
helps to start with chapter Built-in Functions, as the remainder of the manual assumes familiarity with this
material.

Let the show begin!

The Python Library Reference, Release 2.7.14

4 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

Built-in Functions
abs() divmod() input() open() staticmethod()
all() enumerate() | int() ord() str()
any() eval() isinstance() pow() sum()
basestring() execfile() issubclass() print() super()
bin() file() iter() property() tuple()
bool() filter() len() range() type()
bytearray() float() list() raw_input() | unichr()
callable() format() locals() reduce() unicode()
chr() frozenset() long() reload() vars()
classmethod() | getattr() map() repr() xrange()
cmp() globals() max() reversed() zip()
compile() hasattr() memoryview|() round() __import__ ()
complex() hash() min() set()
delattr() help() next() setattr()
dict() hex() object() slice()
dir() id() oct() sorted()

In addition, there are other four built-in functions that are no longer considered essential: apply(), buffer(),
coerce(), and intern(). They are documented in the Non-essential Built-in Functions section.

abs(x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

all(iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

The Python Library Reference, Release 2.7.14

def any(iterable):
for element in iterable:
if element:
return True
return False

New in version 2.5.

basestring()
This abstract type is the superclass for str and unicode. It cannot be called or instantiated, but it
can be used to test whether an object is an instance of str or unicode. isinstance(obj, basestring) is
equivalent to isinstance(obj, (str, unicode)).

New in version 2.3.

bin(x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a
Python int object, it has to define an __index () method that returns an integer.

New in version 2.6.

class bool([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing
procedure. If x is false or omitted, this returns False; otherwise it returns True. bool is also a class,
which is a subclass of int. Class bool cannot be subclassed further. Its only instances are False and
True.

New in version 2.2.1.

Changed in version 2.3: If no argument is given, this function returns False.

class bytearray([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x
< 256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types,
as well as most methods that the str type has, see String Methods.

The optional source parameter can be used to initialize the array in a few different ways:

e If it is unicode, you must also give the encoding (and optionally, errors) parameters; bytearray|()
then converts the unicode to bytes using unicode.encode().

o If it is an integer, the array will have that size and will be initialized with null bytes.

e If it is an object conforming to the buffer interface, a read-only buffer of the object will be used
to initialize the bytes array.

o If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used
as the initial contents of the array.

Without an argument, an array of size 0 is created.
New in version 2.6.

callable(object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling
a class returns a new instance); class instances are callable if they have a __call () method.

chr(i)
Return a string of one character whose ASCII code is the integer i. For example, chr(97) returns

the string 'a'. This is the inverse of ord(). The argument must be in the range [0..255], inclusive;
ValueError will be raised if i is outside that range. See also unichr().

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.14

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the
instance. To declare a class method, use this idiom:

class C(object):
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is
passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod()
in this section.

For more information on class methods, consult the documentation on the standard type hierarchy in
types.

New in version 2.2.

Changed in version 2.4: Function decorator syntax added.

cmp(x, y)
Compare the two objects x and y and return an integer according to the outcome. The return value is
negative if x <y, zero if x == y and strictly positive if x > y.

compile(source, filename, mode[, ﬂags[, dont_inherit”)
Compile the source into a code or AST object. Code objects can be executed by an exec statement or
evaluated by a call to eval(). source can either be a Unicode string, a Latin-1 encoded string or an AST
object. Refer to the ast module documentation for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value
if it wasn’t read from a file (' <string>' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists
of a sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a
single interactive statement (in the latter case, expression statements that evaluate to something other
than None will be printed).

The optional arguments flags and dont _inherit control which future statements (see PEP 236) affect
the compilation of source. If neither is present (or both are zero) the code is compiled with those
future statements that are in effect in the code that is calling compile(). If the flags argument is given
and dont_inherit is not (or is zero) then the future statements specified by the flags argument are used
in addition to those that would be used anyway. If dont inherit is a non-zero integer then the flags
argument is it — the future statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple state-
ments. The bitfield required to specify a given feature can be found as the compiler flag attribute on
the Feature instance in the _ future _ module.

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast.parse().

https://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.7.14

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be
terminated by at least one newline character. This is to facilitate detection of incomplete and complete
statements in the code module.

Changed in version 2.3: The flags and dont _inherit arguments were added.
Changed in version 2.6: Support for compiling AST objects.

Changed in version 2.7: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does
not have to end in a newline anymore.

class complex([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex
number. If the first parameter is a string, it will be interpreted as a complex number and the function
must be called without a second parameter. The second parameter can never be a string. Each
argument may be any numeric type (including complex). If imag is omitted, it defaults to zero and
the function serves as a numeric conversion function like int(), long() and float(). If both arguments
are omitted, returns 0j.

Note: When converting from a string, the string must not contain whitespace around the central +
or - operator. For example, complex('1+2j") is fine, but complex('1 + 2j') raises ValueError.

The complex type is described in Numeric Types — int, float, long, complex.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows
it. For example, delattr(x, 'foobar') is equivalent to del x.foobar.

class dict(**kwarg)

class dict(mapping, **kwarg)

class dict(iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict
for documentation about this class.

For other containers see the built-in list, set, and tuple classes, as well as the collections module.

dir([obj ect])
Without arguments, return the list of names in the current local scope. With an argument, attempt
to return a list of valid attributes for that object.

If the object has a method named _ dir (), this method will be called and must return the list
of attributes. This allows objects that implement a custom _ getattr () or __ getattribute ()
function to customize the way dir() reports their attributes.

object’s __dict__ attribute, if deﬁngd, and from its type object. The resulting list is not necessarily
complete, and may be inaccurate when the object has a custom __ getattr ().

If the object does not provide dir__ (), the function tries its best to gather information from the

The default dir() mechanism behaves differently with different types of objects, as it attempts to
produce the most relevant, rather than complete, information:

¢ If the object is a module object, the list contains the names of the module’s attributes.

 If the object is a type or class object, the list contains the names of its attributes, and recursively
of the attributes of its bases.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.14

¢ Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and
recursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

import struct

dir() # show the names in the module namespace
['__builtins ', ' doc_ ', ' name_ ', 'struct']
dir(struct) # show the names in the struct module
['Struct', ' builtins ', ' doc_ ', ' file ', ' mame ',
' package ', ' clearcache', 'calcsize', 'error', 'pack', 'pack into',

'unpack', 'unpack from'|
class Shape(object):
def dir__ (self):
return ['area', 'perimeter', 'location’]
s = Shape()
dir(s)
['area', 'perimeter', 'location’]

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries
to supply an interesting set of names more than it tries to supply a rigorously or consistently defined
set of names, and its detailed behavior may change across releases. For example, metaclass attributes
are not in the result list when the argument is a class.

divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient
and remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a // b, a % b). For floating
point numbers the result is (q, a % b), where q is usually math.floor(a / b) but may be 1 less than

that. In any case q * b + a % b is very close to a, if a % b is non-zero it has the same sign as b, and
0 <= abs(a % b) < abs(b).

Changed in version 2.3: Using divmod() with complex numbers is deprecated.

enumerate(sequence, start=0)
Return an enumerate object. sequence must be a sequence, an iterator, or some other object which sup-
ports iteration. The next() method of the iterator returned by enumerate() returns a tuple containing
a count (from start which defaults to 0) and the values obtained from iterating over sequence:

seasons = ['Spring', 'Summer', 'Fall', "Winter']
list (enumerate(seasons))

[(0, 'Spring"), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
list (enumerate(seasons, start—1))

[(1, *Spring'), (2, 'Summer"'), (3, 'Fall'), (4, 'Winter")]

Equivalent to:

def enumerate(sequence, start=0):
n — start
for elem in sequence:
yield n, elem
n+=1

New in version 2.3.

Changed in version 2.6: The start parameter was added.

The Python Library Reference, Release 2.7.14

eval(expression[, globals[, locals]])
The arguments are a Unicode or Latin-1 encoded string and optional globals and locals. If provided,
globals must be a dictionary. If provided, locals can be any mapping object.

Changed in version 2.4: formerly locals was required to be a dictionary.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a
condition list) using the globals and locals dictionaries as global and local namespace. If the globals
dictionary is present and lacks ‘ _ builtins __’, the current globals are copied into globals before
expression is parsed. This means that expression normally has full access to the standard ~ builtin
module and restricted environments are propagated. If the locals dictionary is omitted it defaults to
the globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval() is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

x=1
print eval('x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile()).
In this case pass a code object instead of a string. If the code object has been compiled with 'exec'
as the mode argument, eval()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements
from a file is supported by the execfile() function. The globals() and locals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use by eval()
or execfile().

See ast.literal eval() for a function that can safely evaluate strings with expressions containing only
literals.

execﬁle(ﬁlename[, globals [, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally
and does not create a new module.!

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local namespace. If provided, locals can be any mapping object. Remember that at module
level, globals and locals are the same dictionary. If two separate objects are passed as globals and
locals, the code will be executed as if it were embedded in a class definition.

Changed in version 2.4: formerly locals was required to be a dictionary.

If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are omitted,
the expression is executed in the environment where execfile() is called. The return value is None.

Note: The default locals act as described for function locals() below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects
of the code on locals after function execfile() returns. execfile() cannot be used reliably to modify a
function’s locals.

ﬁle(name[, mode[, buﬂering]])
Constructor function for the file type, described further in section File Objects. The constructor’s
arguments are the same as those of the open() built-in function described below.

L 1t is used relatively rarely so does not warrant being made into a statement.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.14

When opening a file, it’s preferable to use open() instead of invoking this constructor directly. file is
more suited to type testing (for example, writing isinstance(f, file)).

New in version 2.2.

filter(function, iterable)
Construct a list from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If iterable is a string or a tuple, the
result also has that type; otherwise it is always a list. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter(function, iterable) is equivalent to [item for item in iterable if function(item)] if function
is not None and [item for item in iterable if item| if function is None.

See itertools.ifilter() and itertools.ifilterfalse() for iterator versions of this function, including a variation
that filters for elements where the function returns false.

class ﬂoat([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it must contain a possibly signed decimal or floating point number, possibly
embedded in whitespace. The argument may also be [+|-Jnan or [+]|-]inf. Otherwise, the argument
may be a plain or long integer or a floating point number, and a floating point number with the same
value (within Python’s floating point precision) is returned. If no argument is given, returns 0.0.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative
infinity. The case and a leading + are ignored as well as a leading - is ignored for NaN. Float always
represents NaN and infinity as nan, inf or -inf.

The float type is described in Numeric Types — int, float, long, complex.

format(value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format spec. The interpretation of
format_spec will depend on the type of the value argument, however there is a standard formatting
syntax that is used by most built-in types: Format Specification Mini-Language.

Note: format(value, format spec) merely calls value. format _ (format spec).

New in version 2.6.

class frozenset([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, list, tuple, and dict classes, as well as the collections module.
New in version 2.4.

getattr(object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name
of one of the object’s attributes, the result is the value of that attribute. For example, getattr(x,
'foobar') is equivalent to x.foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of the

11

The Python Library Reference, Release 2.7.14

current module (inside a function or method, this is the module where it is defined, not the module
from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is True if the string is the name of one of
the object’s attributes, False if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an exception or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is
given, the interactive help system starts on the interpreter console. If the argument is a string, then
the string is looked up as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other kind of object, a help
page on the object is generated.

This function is added to the built-in namespace by the site module.
New in version 2.2.

hex(x)
Convert an integer number (of any size) to a lowercase hexadecimal string prefixed with “0x”, for
example:

hex(255)
'OxAE"

hex(-42)
'-0x2a’

hex(1L)
'0x1L"

If x is not a Python int or long object, it has to define a __hex () method that returns a string.

See also int() for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the float.hex() method.

Changed in version 2.4: Formerly only returned an unsigned literal.

id(object)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique
and constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have
the same id() value.

CPython implementation detail: This is the address of the object in memory.

input([prompt])
Equivalent to eval(raw _input(prompt)).

This function does not catch user errors. If the input is not syntactically valid, a SyntaxError will be
raised. Other exceptions may be raised if there is an error during evaluation.

If the readline module was loaded, then input() will use it to provide elaborate line editing and history
features.

Consider using the raw _input() function for general input from users.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.14

class int(x=0)
class int(x, base=10)

Return an integer object constructed from a number or string x, or return 0 if no arguments are given.
If x is a number, it can be a plain integer, a long integer, or a floating point number. If x is floating
point, the conversion truncates towards zero. If the argument is outside the integer range, the function
returns a long object instead.

If x is not a number or if base is given, then x must be a string or Unicode object representing an
integer literal in radix base. Optionally, the literal can be preceded by + or - (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z)
having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and
-16 literals can be optionally prefixed with 0b/0B, 00/00/0, or 0x/0X, as with integer literals in code.
Base 0 means to interpret the string exactly as an integer literal, so that the actual base is 2, 8, 10, or
16.

The integer type is described in Numeric Types — int, float, long, complex.

isinstance(object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect
or virtual) subclass thereof. Also return true if classinfo is a type object (new-style class) and object
is an object of that type or of a (direct, indirect or virtual) subclass thereof. If object is not a class
instance or an object of the given type, the function always returns false. If classinfo is a tuple of class
or type objects (or recursively, other such tuples), return true if object is an instance of any of the
classes or types. If classinfo is not a class, type, or tuple of classes, types, and such tuples, a TypeError
exception is raised.

Changed in version 2.2: Support for a tuple of type information was added.

issubclass(class, classinfo)

iter(o

Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a
subclass of itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will
be checked. In any other case, a TypeError exception is raised.

Changed in version 2.3: Support for a tuple of type information was added.

[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the pres-
ence of the second argument. Without a second argument, o must be a collection object which sup-
ports the iteration protocol (the iter () method), or it must support the sequence protocol (the
__getitem () method with integer arguments starting at 0). If it does not support either of those
protocols, TypeError is raised. If the second argument, sentinel, is given, then o must be a callable
object. The iterator created in this case will call o with no arguments for each call to its next()
method; if the value returned is equal to sentinel, Stoplteration will be raised, otherwise the value will
be returned.

One useful application of the second form of iter() is to read lines of a file until a certain line is reached.
The following example reads a file until the readline() method returns an empty string:

with open('mydata.txt") as fp:
for line in iter(fp.readline, ' '):
process_ line(line)

len(s)

New in version 2.2.

Return the length (the number of items) of an object. The argument may be a sequence (such as a
string, bytes, tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

13

The Python Library Reference, Release 2.7.14

class list([iterable])
Return a list whose items are the same and in the same order as iterable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a
list, a copy is made and returned, similar to iterable[:]. For instance, list('abc') returns ['a', 'b"',
'c'] and list((1, 2, 3)) returns [1, 2, 3]. If no argument is given, returns a new empty list, [].

list is a mutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, bytearray,
buffer, xrange. For other containers see the built in dict, set, and tuple classes, and the collections
module.

locals()
Update and return a dictionary representing the current local symbol table. Free variables are returned
by locals() when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of
local and free variables used by the interpreter.

class long(x=0)

class long(x, base=10)
Return a long integer object constructed from a string or number x. If the argument is a string,
it must contain a possibly signed number of arbitrary size, possibly embedded in whitespace. The
base argument is interpreted in the same way as for int(), and may only be given when x is a string.
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer
with the same value is returned. Conversion of floating point numbers to integers truncates (towards
zero). If no arguments are given, returns OL.

The long type is described in Numeric Types — int, float, long, complex.

map(function, iterable, ...)

Apply function to every item of iterable and return a list of the results. If additional iterable arguments
are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. If one iterable is shorter than another it is assumed to be extended with None items. If
function is None, the identity function is assumed; if there are multiple arguments, map() returns
a list consisting of tuples containing the corresponding items from all iterables (a kind of transpose
operation). The iterable arguments may be a sequence or any iterable object; the result is always a
list.

max(iterable[, key])
max(argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, iterable must be a non-empty iterable (such as a non-empty
string, tuple or list). The largest item in the iterable is returned. If two or more positional arguments
are provided, the largest of the positional arguments is returned.

The optional key argument specifies a one-argument ordering function like that used for list.sort().
The key argument, if supplied, must be in keyword form (for example, max(a,b,c,key=func)).

Changed in version 2.5: Added support for the optional key argument.

memoryview(obj)
Return a “memory view” object created from the given argument. See memoryview type for more
information.

min (iterable [, key])

min(argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.14

If one positional argument is provided, iterable must be a non-empty iterable (such as a non-empty
string, tuple or list). The smallest item in the iterable is returned. If two or more positional arguments
are provided, the smallest of the positional arguments is returned.

The optional key argument specifies a one-argument ordering function like that used for list.sort().
The key argument, if supplied, must be in keyword form (for example, min(a,b,c,key=func)).

Changed in version 2.5: Added support for the optional key argument.

next(iterator[, default])
Retrieve the next item from the iterator by calling its next() method. If default is given, it is returned
if the iterator is exhausted, otherwise Stoplteration is raised.

New in version 2.6.

class object
Return a new featureless object. object is a base for all new style classes. It has the methods that are
common to all instances of new style classes.

New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments
but ignored them.

oct(x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression.

Changed in version 2.4: Formerly only returned an unsigned literal.

open(name[, mode[, buffering]])
Open a file, returning an object of the file type described in section File Objects. If the file cannot be
opened, IOError is raised. When opening a file, it’s preferable to use open() instead of invoking the
file constructor directly.

The first two arguments are the same as for stdio’s fopen(): name is the file name to be opened, and
mode is a string indicating how the file is to be opened.

The most commonly-used values of mode are 'r' for reading, 'w' for writing (truncating the file if it
already exists), and 'a' for appending (which on some Unix systems means that all writes append to
the end of the file regardless of the current seek position). If mode is omitted, it defaults to 'r'. The
default is to use text mode, which may convert '\n' characters to a platform-specific representation
on writing and back on reading. Thus, when opening a binary file, you should append 'b' to the
mode value to open the file in binary mode, which will improve portability. (Appending 'b' is useful
even on systems that don’t treat binary and text files differently, where it serves as documentation.)
See below for more possible values of mode.

The optional buffering argument specifies the file’s desired buffer size: 0 means unbuffered, 1 means
line buffered, any other positive value means use a buffer of (approximately) that size (in bytes). A
negative buffering means to use the system default, which is usually line buffered for tty devices and
fully buffered for other files. If omitted, the system default is used.?

Modes 'r+', 'w+' and 'a+' open the file for updating (reading and writing); note that 'w+'
truncates the file. Append 'b' to the mode to open the file in binary mode, on systems that differentiate
between binary and text files; on systems that don’t have this distinction, adding the 'b ' has no effect.

In addition to the standard fopen() values mode may be 'U' or 'rU'. Python is usually built with
universal newlines support; supplying 'U' opens the file as a text file, but lines may be terminated
by any of the following: the Unix end-of-line convention '\n', the Macintosh convention '\r', or the

2 Specifying a buffer size currently has no effect on systems that don’t have setvbuf(). The interface to specify the buffer size
is not done using a method that calls setvbuf(), because that may dump core when called after any I/O has been performed,
and there’s no reliable way to determine whether this is the case.

15

The Python Library Reference, Release 2.7.14

Windows convention '\r\n'. All of these external representations are seen as '\n' by the Python
program. If Python is built without universal newlines support a mode with 'U" is the same as normal
text mode. Note that file objects so opened also have an attribute called newlines which has a value
of None (if no newlines have yet been seen), '\n', "\r', '\r\n"', or a tuple containing all the newline
types seen.

Python enforces that the mode, after stripping 'U"', begins with 'r', 'w' or 'a’'.
Python provides many file handling modules including fileinput, os, os.path, tempfile, and shutil.

Changed in version 2.5: Restriction on first letter of mode string introduced.

ord(c)

Given a string of length one, return an integer representing the Unicode code point of the character
when the argument is a unicode object, or the value of the byte when the argument is an 8-bit string.
For example, ord('a') returns the integer 97, ord(u'\u2020') returns 8224. This is the inverse of
chr() for 8-bit strings and of unichr() for unicode objects. If a unicode argument is given and Python
was built with UCS2 Unicode, then the character’s code point must be in the range [0..65535] inclusive;
otherwise the string length is two, and a TypeError will be raised.

pow(x, v, z)

Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow(x, y) % z). The two-argument form pow(x, y) is equivalent to using the power operator:
x**y,

The arguments must have numeric types. With mixed operand types, the coercion rules for binary
arithmetic operators apply. For int and long int operands, the result has the same type as the operands
(after coercion) unless the second argument is negative; in that case, all arguments are converted to
float and a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. (This last
feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types
and the second argument was negative, an exception was raised.) If the second argument is negative,
the third argument must be omitted. If z is present, x and y must be of integer types, and y must be
non-negative. (This restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argument
pow() returned platform-dependent results depending on floating-point rounding accidents.)

print(*objects, sep=""’, end="\n’, file=sys.stdout)

Print objects to the stream file, separated by sep and followed by end. sep, end and file, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means
to use the default values. If no objects are given, print() will just write end.

The file argument must be an object with a write(string) method; if it is not present or None, sys.stdout
will be used. Output buffering is determined by file. Use file.flush() to ensure, for instance, immediate
appearance on a screen.

Note: This function is not normally available as a built-in since the name print is recognized as the
print statement. To disable the statement and use the print() function, use this future statement at
the top of your module:

’from __future_ import print_function

New in version 2.6.

class property([fget[, fset[, fdel[, doc]]]])

Return a property attribute for new-style classes (classes that derive from object).

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.14

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is
a function for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C(object):
def _ init__ (self):
self. x = None

def getx(self):
return self. x

def setx(self, value):
self. x = value

def delx(self):
del self. x

x = property(getx, setx, delx, "I'm the 'x' property.")

If ¢ is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s
docstring (if it exists). This makes it possible to create read-only properties easily using property() as
a decorator:

class Parrot(object):
def _ init__ (self):
self. _voltage — 100000

@property

def voltage(self):
"""Get the current voltage.
return self. _voltage

nnn

The @property decorator turns the voltage() method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C(object):
def _ init__ (self):
self. _x — None

@property

def x(self):
"""Trm the 'x' property.
return self. x

nmnn

@Qx.setter
def x(self, value):
self. _x — value

@Qx.deleter
def x(self):
del self. x

17

The Python Library Reference, Release 2.7.14

This code is exactly equivalent to the first example. Be sure to give the additional functions the same
name as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

New in version 2.2.
Changed in version 2.5: Use fget’s docstring if no doc given.

Changed in version 2.6: The getter, setter, and deleter attributes were added.

range(stop)

range(start, stop[, step])

This is a versatile function to create lists containing arithmetic progressions. It is most often used in
for loops. The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If
the start argument is omitted, it defaults to 0. The full form returns a list of plain integers [start, start
+ step, start + 2 * step, ...]. If step is positive, the last element is the largest start + i * step less than
stop; if step is negative, the last element is the smallest start + i * step greater than stop. step must
not be zero (or else ValueError is raised). Example:

range(10)
[0,1,2, 3,4,5,6,7,8, 9|
range(1, 11)
[1,2,3,4,5,6,7, 8,9, 10]
range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
range(0, 10, 3)
[0, 3, 6, 9]
range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9
range(0)
l

[

range(1, 0)

raw__input([prompt])

If the prompt argument is present, it is written to standard output without a trailing newline. The

function then reads a line from input, converts it to a string (stripping a trailing newline), and returns
that. When EOF is read, EOFError is raised. Example:

s = raw_input('--> ')

--> Monty Python's Flying Circus
s

"Monty Python's Flying Circus"

If the readline module was loaded, then raw _input() will use it to provide elaborate line editing and
history features.

reduce(function, iterable[, initializer])

Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to
reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((142)43)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the
update value from the iterable. If the optional initializer is present, it is placed before the items of the
iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given
and iterable contains only one item, the first item is returned. Roughly equivalent to:

def reduce(function, iterable, initializer—None):
it — iter(iterable)

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.14

if initializer is None:
try:
initializer = next(it)
except Stoplteration:
raise TypeError('reduce() of empty sequence with no initial value')
accum_ value — initializer
for x in it:
accum_value — function(accum_ value, x)
return accum_value

reload (module)
Reload a previously imported module. The argument must be a module object, so it must have been
successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value
is the module object (the same as the module argument).

When reload(module) is executed:

¢ Python modules’ code is recompiled and the module-level code reexecuted, defining a new set
of objects which are bound to names in the module’s dictionary. The init function of extension
modules is not called a second time.

¢ As with all other objects in Python the old objects are only reclaimed after their reference counts
drop to zero.

¢ The names in the module namespace are updated to point to any new or changed objects.

* Other references to the old objects (such as names external to the module) are not rebound to
refer to the new objects and must be updated in each namespace where they occur if that is
desired.

There are a number of other caveats:

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Re-
definitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache of
objects — with a try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache — {}

It is generally not very useful to reload built-in or dynamically loaded modules. Reloading sys,
__main___, builtins and other key modules is not recommended. In many cases extension modules
are not designed to be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute
the from statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect
the method definitions of the instances — they continue to use the old class definition. The same is
true for derived classes.

repr(object)
Return a string containing a printable representation of an object. This is the same value yielded by
conversions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary
function. For many types, this function makes an attempt to return a string that would yield an object

19

The Python Library Reference, Release 2.7.14

with the same value when passed to eval(), otherwise the representation is a string enclosed in angle
brackets that contains the name of the type of the object together with additional information often
including the name and address of the object. A class can control what this function returns for its
instances by defining a __repr () method.

reversed(seq)

Return a reverse iterator. seq must be an object which hasa __ reversed () method or supports the
sequence protocol (the len () method and the getitem () method with integer arguments
starting at 0).

New in version 2.4.

Changed in version 2.6: Added the possibility to write a custom _ reversed () method.

round(number [, ndigits])

Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is
omitted, it defaults to zero. The result is a floating point number. Values are rounded to the closest
multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done away
from 0 (so, for example, round(0.5) is 1.0 and round(-0.5) is -1.0).

Note: The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives 2.67
instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions
can’t be represented exactly as a float. See tut-fp-issues for more information.

class set([iterable])

Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set
and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the collections
module.

New in version 2.4.

setattr(object, name, value)

This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary value.
The string may name an existing attribute or a new attribute. The function assigns the value to the
attribute, provided the object allows it. For example, setattr(x, 'foobar', 123) is equivalent to x.foobar
= 123.

class slice(stop)

class slice(start, stop|, step])

Return a slice object representing the set of indices specified by range(start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also
generated when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i].
See itertools.islice() for an alternate version that returns an iterator.

sorted(iterable[, cmp[, key[, reverse]]])

Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the list.sort()
method (described in section Mutable Sequence Types).

cmp specifies a custom comparison function of two arguments (iterable elements) which should return
a negative, zero or positive number depending on whether the first argument is considered smaller
than, equal to, or larger than the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The
default value is None.

20

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.14

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch
each element only once. Use functools.cmp to key() to convert an old-style cmp function to a key
function.

The built-in sorted() function is guaranteed to be stable. A sort is stable if it guarantees not to change
the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.
New in version 2.4.

staticmethod (function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C(object):
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod() for a
variant that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in
types.

New in version 2.2.
Changed in version 2.4: Function decorator syntax added.

class str(object=")
Return a string containing a nicely printable representation of an object. For strings, this returns the
string itself. The difference with repr(object) is that str(object) does not always attempt to return
a string that is acceptable to eval(); its goal is to return a printable string. If no argument is given,
returns the empty string, ''.

For more information on strings see Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange
which describes sequence functionality (strings are sequences), and also the string-specific methods
described in the String Methods section. To output formatted strings use template strings or the %
operator described in the String Formatting Operations section. In addition see the String Services
section. See also unicode().

sum(iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0.
The iterable’s items are normally numbers, and the start value is not allowed to be a string.

21

The Python Library Reference, Release 2.7.14

For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a
sequence of strings is by calling ' ' .join(sequence). To add floating point values with extended precision,
see math.fsum(). To concatenate a series of iterables, consider using itertools.chain().

New in version 2.3.

super(type[, object—or—type])

Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful
for accessing inherited methods that have been overridden in a class. The search order is same as that
used by getattr() except that the type itself is skipped.

and super(). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

The mro attribute of the type lists the method resolution search order used by both getattr()

If the second argument is omitted, the super object returned is unbound. If the second argument is an
object, isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2, type)
must be true (this is useful for classmethods).

Note: super() only works for new-style classes.

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used
to refer to parent classes without naming them explicitly, thus making the code more maintainable.
This use closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages
that only support single inheritance. This makes it possible to implement “diamond diagrams” where
multiple base classes implement the same method. Good design dictates that this method have the
same calling signature in every case (because the order of calls is determined at runtime, because that
order adapts to changes in the class hierarchy, and because that order can include sibling classes that
are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super(C, self). method(arg)

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups
such as super(). _ getitem __ (name). It does so by implementing its own __ getattribute () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super() is undefined for implicit lookups using statements or operators such as super()[name].

Also note that super() is not limited to use inside methods. The two argument form specifies the
arguments exactly and makes the appropriate references.

For practical suggestions on how to design cooperative classes using super(), see guide to using super().

New in version 2.2.

tuple([iterable])

Return a tuple whose items are the same and in the same order as iterable’s items. iterable may be a
sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is
returned unchanged. For instance, tuple('abc') returns ('a', 'b', 'c¢') and tuple([1, 2, 3]) returns
(1, 2, 3). If no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, unicode, list, tuple,
bytearray, buffer, xrange. For other containers see the built in dict, list, and set classes, and the
collections module.

22

Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 2.7.14

class type(object)

class type(name, bases, dict)
With one argument, return the type of an object. The return value is a type object. The isinstance()
built-in function is recommended for testing the type of an object.

With three arguments, return a new type object. This is essentially a dynamic form of the class
statement. The name string is the class name and becomes the = name attribute; the bases
tuple itemizes the base classes and becomes the bases attribute; and the dict dictionary is the
namespace containing definitions for class body and becomes the dict attribute. For example,
the following two statements create identical type objects:

class X(object):
a=1

X = type(' X", (object,), dict(a=1))

New in version 2.2.

unichr(i)
Return the Unicode string of one character whose Unicode code is the integer i. For example, unichr(97)
returns the string u'a'. This is the inverse of ord() for Unicode strings. The valid range for the argu-
ment depends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF].
ValueError is raised otherwise. For ASCII and 8-bit strings see chr().

New in version 2.0.

unicode(object=")

unicode(object[, encoding[, errors]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec for encoding. The encoding parameter is a string giving the name
of an encoding; if the encoding is not known, LookupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encoding. If errors is
'strict ' (the default), a ValueError is raised on errors, while a value of 'ignore' causes errors to be
silently ignored, and a value of 'replace' causes the official Unicode replacement character, U+FFFD,
to be used to replace input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode() will mimic the behaviour of str() except that it returns
Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a __unicode () method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested
and then converted to a Unicode string using the codec for the default encoding in 'strict' mode.

For more information on Unicode strings see Sequence Types — str, unicode, list, tuple, bytearray,
buffer, xrange which describes sequence functionality (Unicode strings are sequences), and also the
string-specific methods described in the String Methods section. To output formatted strings use
template strings or the % operator described in the String Formatting Operations section. In addition
see the String Services section. See also str().

New in version 2.0.

Changed in version 2.2: Support for __ unicode () added.

vars([object])
Return the dict _ attribute for a module, class, instance, or any other object with a _ dict
attribute.

23

The Python Library Reference, Release 2.7.14

Objects such as modules and instances have an updateable dict attribute; however, other ob-
jects may have write restrictions on their dict attributes (for example, new-style classes use a
dictproxy to prevent direct dictionary updates).

Without an argument, vars() acts like locals(). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

xrange(stop)

xrange(start, stop[, step])
This function is very similar to range(), but returns an xrange object instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing
them all simultaneously. The advantage of xrange() over range() is minimal (since xrange() still has to
create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break). For more information on xrange objects, see XRange Type and Sequence Types — str,
unicode, list, tuple, bytearray, buffer, xrange.

CPython implementation detail: xrange() is intended to be simple and fast. Implementations may
impose restrictions to achieve this. The C implementation of Python restricts all arguments to native
C longs (“short” Python integers), and also requires that the number of elements fit in a native C
long. If a larger range is needed, an alternate version can be crafted using the itertools module:
islice(count(start, step), (stop-start+step-14+2*(step<0))//step).

Zip([iterable,])
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of the
argument sequences or iterables. The returned list is truncated in length to the length of the shortest
argument sequence. When there are multiple arguments which are all of the same length, zip() is
similar to map() with an initial argument of None. With a single sequence argument, it returns a list
of 1-tuples. With no arguments, it returns an empty list.

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for
clustering a data series into n-length groups using zip(*[iter(s)]*n).

zip() in conjunction with the * operator can be used to unzip a list:

x = [1, 2, 3]
y = [47 5, 6]
zipped = zip(x, y)
> zipped
(1, 4), 2. 5), (3, 6)]
> x2, y2 = zip(*zipped)
x —— list(x2) and y —= list(y2)
True

New in version 2.0.

Changed in version 2.4: Formerly, zip() required at least one argument and zip() raised a TypeError
instead of returning an empty list.

__import__(name[, globals[, locals[, fromlist[, leveI]]]])

Note: This is an advanced function that is not needed in everyday Python programming, unlike
importlib.import _module().

This function is invoked by the import statement. It can be replaced (by importing the builtin
module and assigning to __builtin_ . import) in order to change semantics of the import

24 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.14

statement, but nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of
~ _import__ () is rare, except in cases where you want to import a module whose name is only known
at runtime.

The function imports the module name, potentially using the given globals and locals to determine
how to interpret the name in a package context. The fromlist gives the names of objects or submodules
that should be imported from the module given by name. The standard implementation does not use
its locals argument at all, and uses its globals only to determine the package context of the import
statement.

level specifies whether to use absolute or relative imports. The default is -1 which indicates both
absolute and relative imports will be attempted. 0 means only perform absolute imports. Positive
values for level indicate the number of parent directories to search relative to the directory of the
module calling import ().

When the name variable is of the form package.module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist
argument is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

’spam = __import __ ("spam', globals(), locals(), [], -1)

The statement import spam.ham results in this call:

’spam = __import___ ('spam.ham', globals(), locals(), [], -1)

Note how import () returns the toplevel module here because this is the object that is bound to
a name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

_temp = import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'], -1)
eggs — _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from import (). From this object, the names to import
are retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module().

Changed in version 2.5: The level parameter was added.

Changed in version 2.5: Keyword support for parameters was added.

25

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.7.14

26 Chapter 2. Built-in Functions

CHAPTER

THREE

NON-ESSENTIAL BUILT-IN FUNCTIONS

There are several built-in functions that are no longer essential to learn, know or use in modern Python
programming. They have been kept here to maintain backwards compatibility with programs written for
older versions of Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without
concerns about missing something important.

apply (function, args[, keywords])

The function argument must be a callable object (a user-defined or built-in function or method, or
a class object) and the args argument must be a sequence. The function is called with args as the
argument list; the number of arguments is the length of the tuple. If the optional keywords argument
is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to be added
to the end of the argument list. Calling apply() is different from just calling function(args), since in
that case there is always exactly one argument. The use of apply() is equivalent to function(*args,
**keywords).

Deprecated since version 2.3: Use function(*args, **keywords) instead of apply(function, args, key-
words) (see tut-unpacking-arguments).

buffer(object[7 offset[, size]])
The object argument must be an object that supports the buffer call interface (such as strings, arrays,
and buffers). A new buffer object will be created which references the object argument. The buffer
object will be a slice from the beginning of object (or from the specified offset). The slice will extend
to the end of object (or will have a length given by the size argument).

coerce(x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same
rules as used by arithmetic operations. If coercion is not possible, raise TypeError.

intern(string)
Enter string in the table of “interned” strings and return the interned string — which is string itself or
a copy. Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a
dictionary are interned, and the lookup key is interned, the key comparisons (after hashing) can be
done by a pointer compare instead of a string compare. Normally, the names used in Python programs
are automatically interned, and the dictionaries used to hold module, class or instance attributes have
interned keys.

Changed in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and
before); you must keep a reference to the return value of intern() around to benefit from it.

27

The Python Library Reference, Release 2.7.14

28 Chapter 3. Non-essential Built-in Functions

CHAPTER

FOUR

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type.

New in version 2.3.

True
The true value of the bool type.

New in version 2.3.

None
The sole value of types.NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function.

Changed in version 2.4: Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (_ _eq (), It (),
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug
This constant is true if Python was not started with an -O option. See also the assert statement.

Note: The names None and __ debug cannot be reassigned (assignments to them, even as an attribute
name, raise SyntaxError), so they can be considered “true” constants.

Changed in version 2.7: Assignments to _ debug_ as an attribute became illegal.

4.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the -S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell
and should not be used in programs.

quit([code:None])

exit([code:None])
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when
called, raise SystemExit with the specified exit code.

29

The Python Library Reference, Release 2.7.14

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when
called, display the corresponding text in a pager-like fashion (one screen at a time).

30 Chapter 4. Built-in Constants

CHAPTER

FIVE

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python’s built-in types have differed from user-defined types because
it was not possible to use the built-in types as the basis for object-oriented inheritance. This limitation no
longer exists.

The principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared,
tested for truth value, and converted to a string (with the repr() function or the slightly different str()
function). The latter function is implicitly used when an object is written by the print() function.

5.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

* None

* False

¢ zero of any numeric type, for example, 0, OL, 0.0, 0j.

* any empty sequence, for example, ' ', (), [].

* any empty mapping, for example, {}.

* instances of user-defined classes, if the class defines a __nonzero () or __len () method, when
that method returns the integer zero or bool value False.'

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True
for true, unless otherwise stated. (Important exception: the Boolean operations or and and always return
one of their operands.)

I Additional information on these special methods may be found in the Python Reference Manual (customization).

31

The Python Library Reference, Release 2.7.14

5.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
XOory if x is false, then y, else x (1)
x and y if x is false, then x, else y (2)
not x if x is false, then True, else False | (3)

Notes:
1. This is a short-circuit operator, so it only evaluates the second argument if the first one is false.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

3. not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b is a syntax error.

5.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than
that of the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is
equivalent to x < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated
at all when x < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal (1)
is object identity
is not negated object identity

Notes:

1. != can also be written <>, but this is an obsolete usage kept for backwards compatibility only. New

code should always use !—.

Objects of different types, except different numeric types and different string types, never compare equal;
such objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent
result). Furthermore, some types (for example, file objects) support only a degenerate notion of comparison
where any two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently.
The <, <=, > and >= operators will raise a TypeError exception when any operand is a complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the eq ()
method or the ~ cmp () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types
of object, unless the class defines either enough of the rich comparison methods (It (), le (),
gt (),and __ge () orthe cmp () method.

32 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

CPython implementation detail: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types
(below).

5.4 Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex
numbers. In addition, Booleans are a subtype of plain integers. Plain integers (also just called integers) are
implemented using long in C, which gives them at least 32 bits of precision (sys.maxint is always set to the
maximum plain integer value for the current platform, the minimum value is -sys.maxint - 1). Long integers
have unlimited precision. Floating point numbers are usually implemented using double in C; information
about the precision and internal representation of floating point numbers for the machine on which your
program is running is available in sys.float _info. Complex numbers have a real and imaginary part, which
are each a floating point number. To extract these parts from a complex number z, use z.real and z.imag.
(The standard library includes additional numeric types, fractions that hold rationals, and decimal that hold
floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including binary, hex, and octal numbers) yield plain integers unless the value they denote
is too large to be represented as a plain integer, in which case they yield a long integer. Integer literals with
an 'L' or 'l" suffix yield long integers ('L" is preferred because 11 looks too much like eleven!). Numeric
literals containing a decimal point or an exponent sign yield floating point numbers. Appending 'j' or 'J"'
to a numeric literal yields an imaginary number (a complex number with a zero real part) which you can
add to an integer or float to get a complex number with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower
than long integer is narrower than floating point is narrower than complex. Comparisons between numbers
of mixed type use the same rule.” The constructors int(), long(), float(), and complex() can be used to
produce numbers of a specific type.

All built-in numeric types support the following operations. See power and later sections for the operators’
priorities.

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

5.4. Numeric Types — int, float, long, complex 33

The Python Library Reference, Release 2.7.14

Operation Result Notes

X+y sum of x and y

X-y difference of x and y

x*y product of x and y

x/y quotient of x and y (1)

x//y (floored) quotient of x and y (4)(5)

x%y remainder of x / y (4)

-X x negated

+x x unchanged

abs(x) absolute value or magnitude of x (3)

int(x) x converted to integer (2)

long(x) x converted to long integer (2)

float(x) x converted to floating point (6)

complex(re,im) | a complex number with real part re, imaginary part im. im defaults to zero.

c.conjugate() conjugate of the complex number c. (Identity on real numbers)

divmod(x, y) the pair (x // v, x % y) (3)(4)

pow(x, y) X to the power y (3)(7)

x ¥y x to the power y (7)
Notes:

1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus

7.

infinity: 1/2 s 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if
either operand is a long integer, regardless of the numeric value.

Conversion from floats using int() or long() truncates toward zero like the related function, math.
trunc(). Use the function math.floor() to round downward and math.ceil() to round upward.

See Built-in Functions for a full description.

Deprecated since version 2.3: The floor division operator, the modulo operator, and the divmod()
function are no longer defined for complex numbers. Instead, convert to a floating point number using
the abs() function if appropriate.

Also referred to as integer division. The resultant value is a whole integer, though the result’s type is
not necessarily int.

float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN)
and positive or negative infinity.

New in version 2.6.

Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.

All numbers.Real types (int, long, and float) also include the following operations:

Operation Result

math.trunc(x)

x truncated to Integral

round(x/[, n])

x rounded to n digits, rounding ties away from zero. If n is omitted, it defaults to 0.

math.floor(x)

the greatest integer as a float <= x

math.ceil (x)

the least integer as a float >= x

34

Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

5.4.1 Bitwise Operations on Integer Types
Bitwise operations only make sense for integers. Negative numbers are treated as their 2’s complement value
(this assumes a sufficiently large number of bits that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority:

Operation | Result Notes
x|y bitwise or of x and y

x "y bitwise exclusive or of x and y

x&y bitwise and of x and y

x <<n x shifted left by n bits (1)(2)
X >>n x shifted right by n bits (1)(3)
x the bits of x inverted

Notes:
1. Negative shift counts are illegal and cause a ValueError to be raised.

2. A left shift by n bits is equivalent to multiplication by pow(2, n). A long integer is returned if the
result exceeds the range of plain integers.

3. A right shift by n bits is equivalent to division by pow(2, n).

5.4.2 Additional Methods on Integer Types

The integer types implement the numbers.Integral abstract base class. In addition, they provide one more
method:

int.bit _length()

long.bit_length()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading
Zeros:

n — -37

bin(n)
'-0b100101"

n.bit_length()
6

More precisely, if x is nonzero, then x.bit_length() is the unique positive integer k such that 2**(k-1)
<= abs(x) < 2**k. Equivalently, when abs(x) is small enough to have a correctly rounded logarithm,
then k = 1 + int(log(abs(x), 2)). If x is zero, then x.bit_length() returns 0.

Equivalent to:

def bit_length(self):
s = bin(self) # binary representation: bin(-37) --> '-0b100101 *
s = sIstrip('-0b ') # remove leading zeros and minus sign
return len(s) # len(100101 ") --> 6

New in version 2.7.

5.4. Numeric Types — int, float, long, complex 35

The Python Library Reference, Release 2.7.14

5.4.3 Additional Methods on Float
The float type implements the numbers.Real abstract base class. float also has the following additional
methods.

float.as_integer ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denomi-
nator. Raises OverflowError on infinities and a ValueError on NaNs.

New in version 2.6.

float.is_integer()
Return True if the float instance is finite with integral value, and False otherwise:

(-2.0).is_integer()
True

(3.2).is_integer()
False

New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally
as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In
contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This
can be useful when debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point
numbers, this representation will always include a leading Ox and a trailing p and exponent.

New in version 2.6.

float.fromhex(s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading
and trailing whitespace.

New in version 2.6.
Note that float.hex() is an instance method, while float.fromhex() is a class method.

A hexadecimal string takes the form:

[sign] ['0x '] integer ['.' fraction]| ['p' exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at
least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified
in section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the
output of float.hex() is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal
strings produced by C’s %a format character or Java’s Double.toHexString are accepted by float.fromhex().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by
which to multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point
number (3 + 10./16 + 7./16%*2) * 2.0**10, or 3740.0:

float.fromhex('0x3.a7p10")
3740.0

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

36 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

float.hex(3740.0)
'0x1.d380000000000p+11"

5.5 Iterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods;
these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container. _iter ()
Return an iterator object. The object is required to support the iterator protocol described below.
If a container supports different types of iteration, additional methods can be provided to specifically
request iterators for those iteration types. (An example of an object supporting multiple forms of
iteration would be a tree structure which supports both breadth-first and depth-first traversal.) This
method corresponds to the tp_iter slot of the type structure for Python objects in the Python/C APIL

The iterator objects themselves are required to support the following two methods, which together form the
iterator protocol:

iterator. _iter ()
Return the iterator object itself. This is required to allow both containers and iterators to be used
with the for and in statements. This method corresponds to the tp_iter slot of the type structure for
Python objects in the Python/C APL

iterator.next()
Return the next item from the container. If there are no further items, raise the Stoplteration exception.
This method corresponds to the tp iternext slot of the type structure for Python objects in the
Python/C API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictio-
naries, and other more specialized forms. The specific types are not important beyond their implementation
of the iterator protocol.

The intention of the protocol is that once an iterator’s next() method raises Stoplteration, it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This
constraint was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

5.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (techni-
cally, a generator object) supplying the iter () and next() methods. More information about generators
can be found in the documentation for the yield expression.

5.6 Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange

There are seven sequence types: strings, Unicode strings, lists, tuples, bytearrays, buffers, and xrange objects.

For other containers see the built in dict and set classes, and the collections module.

5.5. Iterator Types 37

The Python Library Reference, Release 2.7.14

String literals are written in single or double quotes: 'xyzzy', "frobozz". See strings for more about
string literals. Unicode strings are much like strings, but are specified in the syntax using a preceding 'u'
character: u'abc', u"def". In addition to the functionality described here, there are also string-specific
methods described in the String Methods section. Lists are constructed with square brackets, separating
items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within square brackets),
with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as a,
b, c or (). A single item tuple must have a trailing comma, such as (d,).

Bytearray objects are created with the built-in function bytearray().

Buffer objects are not directly supported by Python syntax, but can be created by calling the built-in function
buffer(). They don’t support concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are
created using the xrange() function. They don’t support slicing, concatenation or repetition, and using in,
not in, min() or max() on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities
as the comparison operations. The + and * operations have the same priority as the corresponding numeric
operations.® Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority. In the table, s and t are sequences of
the same type; n, i and j are integers:

Operation | Result Notes
xins True if an item of s is equal to x, else False | (1)
xnot ins | False if an item of s is equal to x, else True | (1)
s+t the concatenation of s and t (6)

s *n,n *s | equivalent to adding s to itself n times (2)
s[i] ith item of s, origin 0 (3)
s[izj] slice of s from i to j (3)(4)
s[i;j:k] slice of s from i to j with step k (3)(5)
len(s) length of s

min(s) smallest item of s

max(s) largest item of s

s.index(x) | index of the first occurrence of x in s

s.count(x) | total number of occurrences of x in s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by
comparing corresponding elements. This means that to compare equal, every element must compare equal
and the two sequences must be of the same type and have the same length. (For full details see comparisons
in the language reference.)

Notes:

1. When s is a string or Unicode string object the in and not in operations act like a substring test. In
Python versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a
string of any length.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note
that items in the sequence s are not copied; they are referenced multiple times. This often haunts new
Python programmers; consider:

lists = [[|]] * 3
lists

(1, 11 111

3 They must have since the parser can’t tell the type of the operands.

38 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

lists[0].append(3)
lists

[13], 13, [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[] * 3 are references to this single empty list. Modifying any of the elements of lists modifies this
single list. You can create a list of different lists this way:

lists = [[] for i in range(3)]
lists[0].append(3)
lists[1].append(5)
lists[2].append(7)

lists

(131, 151 1711

Further explanation is available in the FAQ entry fag-multidimensional-list.

3. If i or j is negative, the index is relative to the end of sequence s: len(s) + i or len(s) + j is substituted.
But note that -0 is still 0.

4. The slice of s from i to j is defined as the sequence of items with index k such that i <=k < j. If i or
j is greater than len(s), use len(s). If i is omitted or None, use 0. If j is omitted or None, use len(s).
If i is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such
that 0 <= n < (j-i)/k. In other words, the indices are i, i-+k, i+2*k, i+3*k and so on, stopping when j
is reached (but never including j). When k is positive, i and j are reduced to len(s) if they are greater.
When k is negative, i and j are reduced to len(s) - 1 if they are greater. If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None,
it is treated like 1.

6. CPython implementation detail: If s and t are both strings, some Python implementations such as
CPython can usually perform an in-place optimization for assignments of the form s =s + t or s +=
t. When applicable, this optimization makes quadratic run-time much less likely. This optimization
is both version and implementation dependent. For performance sensitive code, it is preferable to use
the str.join() method which assures consistent linear concatenation performance across versions and
implementations.

Changed in version 2.4: Formerly, string concatenation never occurred in-place.

5.6.1 String Methods

Below are listed the string methods which both 8-bit strings and Unicode objects support. Some of them
are also available on bytearray objects.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str,
unicode, list, tuple, bytearray, buffer, xrange section. To output formatted strings use template strings or
the % operator described in the String Formatting Operations section. Also, see the re module for string
functions based on regular expressions.

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

For 8-bit strings, this method is locale-dependent.

str.center(width[, ﬁllchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is a
space).

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 39

The Python Library Reference, Release 2.7.14

Changed in version 2.4: Support for the fillchar argument.

str.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

str.decode([encoding[, errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string
encoding. errors may be given to set a different error handling scheme. The default is 'strict',
meaning that encoding errors raise UnicodeError. Other possible values are 'ignore', 'replace' and
any other name registered via codecs.register error(), see section Codec Base Classes.

New in version 2.2.
Changed in version 2.3: Support for other error handling schemes added.

Changed in version 2.7: Support for keyword arguments added.

str.encode([encoding[, errors]])
Return an encoded version of the string. Default encoding is the current default string encoding.
errors may be given to set a different error handling scheme. The default for errors is 'strict',
meaning that encoding errors raise a UnicodeError. Other possible values are 'ignore', 'replace',
'xmlcharrefreplace', 'backslashreplace' and any other name registered via codecs.register error(),
see section Codec Base Classes. For a list of possible encodings, see section Standard Encodings.

New in version 2.0.

Changed in version 2.3: Support for 'xmlcharrefreplace’ and 'backslashreplace' and other error
handling schemes added.

Changed in version 2.7: Support for keyword arguments added.

str.endswith(sufﬁx[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a
tuple of suffixes to look for. With optional start, test beginning at that position. With optional end,
stop comparing at that position.

Changed in version 2.5: Accept tuples as suffix.

str.expandtabs([tabsize])

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on
the current column and the given tab size. Tab positions occur every tabsize characters (default is 8,
giving tab positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to
zero and the string is examined character by character. If the character is a tab (\t), one or more space
characters are inserted in the result until the current column is equal to the next tab position. (The
tab character itself is not copied.) If the character is a newline (\n) or return (\r), it is copied and the
current column is reset to zero. Any other character is copied unchanged and the current column is
incremented by one regardless of how the character is represented when printed.

T01\t012\t0123\t01234 ' .expandtabs()
'01 012 0123 01234°

"01\t012\t0123\t01234 ' .expandtabs(4)
'01 012 0123 01234

str.ﬁnd(sub[, start[, end]])
Return the lowest index in the string where substring sub is found within the slice s[start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

40 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

Note: The find() method should be used only if you need to know the position of sub. To check if
sub is a substring or not, use the in operator:

'Py" in 'Python'
True

str.format(*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal
text or replacement fields delimited by braces {}. Each replacement field contains either the numeric
index of a positional argument, or the name of a keyword argument. Returns a copy of the string
where each replacement field is replaced with the string value of the corresponding argument.

"The sum of 1 + 2 is " format(1+2)
"The sum of 1 + 2 is 3"

See Format String Syntax for a description of the various formatting options that can be specified in
format strings.

This method of string formatting is the new standard in Python 3, and should be preferred to the %
formatting described in String Formatting Operations in new code.

New in version 2.6.

str.index(sub[, start[, end]])
Like find(), but raise ValueError when the substring is not found.

str.isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

str.isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

str.isdigit()
Return true if all characters in the string are digits and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

str.islower ()
Return true if all cased characters® in the string are lowercase and there is at least one cased character,
false otherwise.

For 8-bit strings, this method is locale-dependent.

str.isspace()
Return true if there are only whitespace characters in the string and there is at least one character,
false otherwise.

For 8-bit strings, this method is locale-dependent.

str.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase),
or “Lt” (Letter, titlecase).

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 41

The Python Library Reference, Release 2.7.14

characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

For 8-bit strings, this method is locale-dependent.

str.isupper()
Return true if all cased characters® in the string are uppercase and there is at least one cased character,
false otherwise.

For 8-bit strings, this method is locale-dependent.

str.join(iterable)
Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if
there are any non-string values in iterable, including bytes objects. The separator between elements is
the string providing this method.

str.ljust(width], fillchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than or equal to len(s).

Changed in version 2.4: Support for the fillchar argument.

str.lower()
Return a copy of the string with all the cased characters? converted to lowercase.

For 8-bit strings, this method is locale-dependent.

str.lstrip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying
the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped:

' spacious ".Istrip()
'spacious '
'www.example.com'.Istrip(' cmowz. ")

'example.com'

Changed in version 2.2.2: Support for the chars argument.

str.partition(sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator itself, and the part after the separator. If the separator is not found, return a
3-tuple containing the string itself, followed by two empty strings.

New in version 2.5.

str.replace(old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

str.rﬁnd(sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

str.rindex(sub[, start[, end]])
Like rfind() but raises ValueError when the substring sub is not found.

str.cjust(width], fillchar |)
Return the string right justified in a string of length width. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than or equal to len(s).

Changed in version 2.4: Support for the fillchar argument.

42 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

str.rpartition(sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator itself, and the part after the separator. If the separator is not found, return a
3-tuple containing two empty strings, followed by the string itself.

New in version 2.5.

str.rsplit([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most
maxsplit splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a
separator. Except for splitting from the right, rsplit() behaves like split() which is described in detail
below.

New in version 2.4.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying
the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped:

' spacious '.rstrip()
' spacious'

" mississippi ' .rstrip('ipz")
' mississ '

Changed in version 2.2.2: Support for the chars argument.

str.split([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most
maxsplit splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not
specified or -1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty
strings (for example, '1,,2"'.split(",") returns ['1', "', '2']). The sep argument may consist of
multiple characters (for example, '1<>2<>3".split('<>") returns ['1', '2', '3']). Splitting an
empty string with a specified separator returns [' '].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the
string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting
of just whitespace with a None separator returns [|.

For example, ' 12 3 ".split() returns ['1", '2', '3'],and ' 12 3 '.split(None, 1) returns ['1', '2 3
v].

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. This method uses the universal
newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

Python recognizes "\r", "\n", and "\r\n" as line boundaries for 8-bit strings.

For example:

"ab ¢\n'\nde fg\rkl\r\n ' splitlines()
[faber, ', "defg', 'kl']

"ab ¢\n\nde fg\rkl\r\n'.splitlines(True)
['abc\n', "\n', "de fg\r', 'kI\r\n"]

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 43

The Python Library Reference, Release 2.7.14

Unlike split() when a delimiter string sep is given, this method returns an empty list for the empty
string, and a terminal line break does not result in an extra line:

nn

.splitlines()

|
"One line\n".splitlines()
['One line ']

For comparison, split('\n") gives:

" split(t\nt)
["]

"Two lines\n'.split('\n")
['Two lines', ']

unicode.splitlines([keepends])
Return a list of the lines in the string, like str.splitlines(). However, the Unicode method splits on the
following line boundaries, which are a superset of the universal newlines recognized for 8-bit strings.

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation

\f or \x0c Form Feed

\x1c File Separator

\x1d Group Separator

\x1le Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 2.7: \v and \f added to list of line boundaries.

str.startswith(preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of
prefixes to look for. With optional start, test string beginning at that position. With optional end,
stop comparing string at that position.

Changed in version 2.5: Accept tuples as prefix.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a
string specifying the set of characters to be removed. If omitted or None, the chars argument defaults
to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its
values are stripped:

' spacious '.strip()
'spacious’

"www.example.com ' .strip(' cmowz. ")
'example'

Changed in version 2.2.2: Support for the chars argument.

str.swapcase()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

44 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

For 8-bit strings, this method is locale-dependent.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the re-
maining characters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives
form word boundaries, which may not be the desired result:

"they 're bill 's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

import re
def titlecase(s):
return re.sub(r"[A-Za-z|-+ (' [A-Za-z]+)7",
lambda mo: mo.group(0)[0].upper() -
mo.group(0)[1:].lower(),
s
)

titlecase("they 're bill's friends.")
"They 're Bill's Friends."

For 8-bit strings, this method is locale-dependent.

str.translate(table[, deletechars])
Return a copy of the string where all characters occurring in the optional argument deletechars are
removed, and the remaining characters have been mapped through the given translation table, which
must be a string of length 256.

You can use the maketrans() helper function in the string module to create a translation table. For
string objects, set the table argument to None for translations that only delete characters:

'read this short text'.translate(None, 'aeiou')
'rd ths shrt txt'

New in version 2.6: Support for a None table argument.

For Unicode objects, the translate() method does not accept the optional deletechars argument. In-
stead, it returns a copy of the s where all characters have been mapped through the given translation
table which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode strings or None. Un-
mapped characters are left untouched. Characters mapped to None are deleted. Note, a more flexible
approach is to create a custom character mapping codec using the codecs module (see encodings.cp1251
for an example).

str.upper()
Return a copy of the string with all the cased characters* converted to uppercase. Note that str.

upper().isupper() might be False if s contains uncased characters or if the Unicode category of the
resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

For 8-bit strings, this method is locale-dependent.

str.zfill(width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled
correctly. The original string is returned if width is less than or equal to len(s).

New in version 2.2.2.

The following methods are present only on unicode objects:

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 45

The Python Library Reference, Release 2.7.14

unicode.isnumeric()
Return True if there are only numeric characters in S, False otherwise. Numeric characters include digit
characters, and all characters that have the Unicode numeric value property, e.g. U4+2155, VULGAR
FRACTION ONE FIFTH.

unicode.isdecimal()
Return True if there are only decimal characters in S, False otherwise. Decimal characters include
digit characters, and all characters that can be used to form decimal-radix numbers, e.g. U+0660,
ARABIC-INDIC DIGIT ZERO.

5.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also
known as the string formatting or interpolation operator. Given format % values (where format is a string
or Unicode object), % conversion specifications in format are replaced with zero or more elements of values.
The effect is similar to the using sprintf() in the C language. If format is a Unicode object, or if any of
the objects being converted using the %s conversion are Unicode objects, the result will also be a Unicode
object.

If format requires a single argument, values may be a single non-tuple object.” Otherwise, values must be
a tuple with exactly the number of items specified by the format string, or a single mapping object (for
example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur
in this order:

1. The '%"' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (some-
name)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

5. Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk),
the actual width is read from the next element of the tuple in values, and the value to convert comes
after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must
include a parenthesised mapping key into that dictionary inserted immediately after the '%"' character.
The mapping key selects the value to be formatted from the mapping. For example:

print ' has quote types.' % \
. {"language": "Python", "number": 2}
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

46 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

Flag | Meaning

'#' | The value conversion will use the “alternate form” (where defined below).

The conversion will be zero padded for numeric values.

The converted value is left adjusted (overrides the '0' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

"4+ | A sign character ("+' or '-') will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. %ld
is identical to %d.

The conversion types are:

Con- Meaning Notes
version

'd! Signed integer decimal.

i Signed integer decimal.

o' Signed octal value. (1)
"u' Obsolete type — it is identical to 'd". (7)
X! Signed hexadecimal (lowercase). (2)
‘X! Signed hexadecimal (uppercase). (2)
e! Floating point exponential format (lowercase). (3)
'Er Floating point exponential format (uppercase). (3)
f Floating point decimal format. (3)
'F Floating point decimal format. (3)
'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or | (4)

not less than precision, decimal format otherwise.
'G! Floating point format. Uses uppercase exponential format if exponent is less than -4 or | (4)
not less than precision, decimal format otherwise.

'c! Single character (accepts integer or single character string).

r' String (converts any Python object using repr()). (5)
gt String (converts any Python object using str()). (6)
"% No argument is converted, results in a '%"' character in the result.

Notes:
1. The alternate form causes a leading zero ('0') to be inserted between left-hand padding and the
formatting of the number if the leading character of the result is not already a zero.
2. The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was
used) to be inserted before the first digit.
3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not

removed as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults
to 6.

. The %r conversion was added in Python 2.0.

The precision determines the maximal number of characters used.

3.6.

Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 47

The Python Library Reference, Release 2.7.14

6. If the object or format provided is a unicode string, the resulting string will also be unicode.
The precision determines the maximal number of characters used.
7. See PEP 237.

Since Python strings have an explicit length, %s conversions do not assume that '\0' is the end of the
string.

Changed in version 2.7: %f conversions for numbers whose absolute value is over 1e50 are no longer replaced
by %g conversions.

Additional string operations are defined in standard modules string and re.

5.6.3 XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange
type is that an xrange object will always take the same amount of memory, no matter the size of the range
it represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and the len() function.

5.6.4 Mutable Sequence Types

List and bytearray objects support additional operations that allow in-place modification of the object.
Other mutable sequence types (when added to the language) should also support these operations. Strings
and tuples are immutable sequence types: such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where x is an arbitrary object):

Operation Result Notes
sfi] = x item i of s is replaced by x
s[izj] =t slice of s from i to j is replaced by the contents of the iterable
t

del s[i:j] same as s[i;j] =[]
s[izjk] =t the elements of s[i:j:k] are replaced by those of t (1)
del s[i:j:k] removes the elements of s[i:j:k| from the list
s.append(x) same as s[len(s):len(s)] = [x] (2)
s.extend(t) or s +=1 for the most part the same as s[len(s):len(s)] = t (3)
s *=n updates s with its contents repeated n times (11)
s.count(x) return number of i’s for which s[i] == x
sindex(x][, i[, jI]) return smallest k such that sk] == x and i <=k < j 4)
s.insert(i, x) same as s[i:i] = [x] (5)
s.pop([i]) same as x = sli|; del s[i]; return x (6)
s.remove(x) same as del s[s.index(x)] (4)
s.reverse() reverses the items of s in place (7)
s.sort([cmp[, key[, re- | sort the items of s in place (7)(8)(9)(10)
versel|])

Notes:

1. t must have the same length as the slice it is replacing.

2. The C implementation of Python has historically accepted multiple parameters and implicitly joined
them into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since
Python 1.4.

48 Chapter 5. Built-in Types

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.7.14

w

. t can be any iterable object.

4. Raises ValueError when x is not found in s. When a negative index is passed as the second or third
parameter to the index() method, the list length is added, as for slice indices. If it is still negative, it
is truncated to zero, as for slice indices.

Changed in version 2.3: Previously, index() didn’t have arguments for specifying start and stop posi-
tions.

5. When a negative index is passed as the first parameter to the insert() method, the list length is added,
as for slice indices. If it is still negative, it is truncated to zero, as for slice indices.

Changed in version 2.3: Previously, all negative indices were truncated to zero.

6. The pop() method’s optional argument i defaults to -1, so that by default the last item is removed and
returned.

7. The sort() and reverse() methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

8. The sort() method takes optional arguments for controlling the comparisons.

cmp specifies a custom comparison function of two arguments (list items) which should return a neg-
ative, zero or positive number depending on whether the first argument is considered smaller than,
equal to, or larger than the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The default
value is None.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch
each element only once. Use functools.cmp to key() to convert an old-style cmp function to a key
function.

Changed in version 2.3: Support for None as an equivalent to omitting cmp was added.
Changed in version 2.4: Support for key and reverse was added.

9. Starting with Python 2.3, the sort() method is guaranteed to be stable. A sort is stable if it guarantees
not to change the relative order of elements that compare equal — this is helpful for sorting in multiple
passes (for example, sort by department, then by salary grade).

10. CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python 2.3 and newer makes the list
appear empty for the duration, and raises ValueError if it can detect that the list has been mutated
during a sort.

11. The value n is an integer, or an object implementing _index (). Zero and negative values of n clear
the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained
for s * n under Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange.

5.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership
testing, removing duplicates from a sequence, and computing mathematical operations such as intersection,

5.7. Set Types — set, frozenset 49

The Python Library Reference, Release 2.7.14

union, difference, and symmetric difference. (For other containers see the built in dict, list, and tuple classes,
and the collections module.)

New in version 2.4.

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection, sets
do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can
be changed using methods like add() and remove(). Since it is mutable, it has no hash value and cannot
be used as either a dictionary key or as an element of another set. The frozenset type is immutable and
hashable — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or
as an element of another set.

As of Python 2.7, non-empty sets (not frozensets) can be created by placing a comma-separated list of
elements within braces, for example: {'jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set([iterable])

class frozenset([iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set
must be hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not
specified, a new empty set is returned.

Instances of set and frozenset provide the following operations:
len(s)

Return the number of elements in set s (cardinality of s).
xins

Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint(other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

New in version 2.6.

issubset(other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset(other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, that is, set >= other and set != other.

union(*others)
set | other | ...
Return a new set with elements from the set and all others.

Changed in version 2.6: Accepts multiple input iterables.

50 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

intersection(*others)
set & other & ...
Return a new set with elements common to the set and all others.

Changed in version 2.6: Accepts multiple input iterables.

difference(*others)
set - other - ...
Return a new set with elements in the set that are not in the others.

Changed in version 2.6: Accepts multiple input iterables.

symmetric_ difference(other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy()
Return a new set with a shallow copy of s.

Note, the non-operator versions of union(), intersection(), difference(), and symmetric difference(),
issubset(), and issuperset() methods will accept any iterable as an argument. In contrast, their operator
based counterparts require their arguments to be sets. This precludes error-prone constructions like
set('abc') & 'cbs' in favor of the more readable set('abc').intersection('cbs").

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and
only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater
than another set if and only if the first set is a proper superset of the second set (is a superset, but is
not equal).

Instances of set are compared to instances of frozenset based on their members. For example,
set('abc') == frozenset('abc') returns True and so does set('abc') in set([frozenset('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any
two non-empty disjoint sets are not equal and are not subsets of each other, so all of the following
return False: a<b, a==b, or a>b. Accordingly, sets do not implement the ~_cmp () method.

Since sets only define partial ordering (subset relationships), the output of the list.sort() method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For
example: frozenset('ab') | set('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update(*others)
set |= other | ...
Update the set, adding elements from all others.

Changed in version 2.6: Accepts multiple input iterables.

intersection _update(*others)
set &= other & ...
Update the set, keeping only elements found in it and all others.

Changed in version 2.6: Accepts multiple input iterables.

difference update(*others)

3.7.

Set Types — set, frozenset 51

The Python Library Reference, Release 2.7.14

set -= other | ...
Update the set, removing elements found in others.

Changed in version 2.6: Accepts multiple input iterables.

symmetric_ difference update(other)

set ~= other
Update the set, keeping only elements found in either set, but not in both.
add(elem)

Add element elem to the set.

remove(elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard(elem)
Remove element elem from the set if it is present.

pop()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection update(), difference update(), and sym-
metric_difference update() methods will accept any iterable as an argument.

Note, the elem argument to the __ contains (), remove(), and discard() methods may be a set. To
support searching for an equivalent frozenset, a temporary one is created from elem.

See also:

Comparison to the built-in set types Differences between the sets module and the built-in set types.

5.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is
currently only one standard mapping type, the dictionary. (For other containers see the built in list, set,
and tuple classes, and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be
used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers
compare equal (such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry.
(Note however, that since computers store floating-point numbers as approximations it is usually unwise to
use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{"jack': 4098, 'sjoerd': 4127} or {4098: 'jack', 4127: 'sjoerd'}, or by the dict constructor.

class dict(**kwarg)

class dict(mapping, **kwarg)

class dict(iterable, **kwarg)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of
keyword arguments.

If no positional argument is given, an empty dictionary is created. If a positional argument is given
and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object.
Otherwise, the positional argument must be an iterable object. Each item in the iterable must itself be
an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary,

52 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

and the second object the corresponding value. If a key occurs more than once, the last value for that
key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary
created from the positional argument. If a key being added is already present, the value from the
keyword argument replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2, "three": 3}:

a = dict(one=1, two=2, three=3)
b= {'one': 1, "'two': 2, "three': 3}
¢ = dict(zip(['one', "two', "three'], [1, 2, 3]))
d = dict([("two", 2), (Tone', 1), ('three', 3)])
e = dict({"three': 3, "one': 1, "two': 2})
a==b==c==d==e¢

True

Providing keyword arguments as in the first example only works for keys that are valid Python iden-
tifiers. Otherwise, any valid keys can be used.

New in version 2.2.
Changed in version 2.3: Support for building a dictionary from keyword arguments added.

These are the operations that dictionaries support (and therefore, custom mapping types should sup-
port too):

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method ~ missing () and key is not present, the d[key| operation
calls that method with the key key as argument. The d[key| operation then returns or raises
whatever is returned or raised by the = missing (key) call. No other operations or methods
invoke missing (). If _ missing_ () is not defined, KeyError is raised. __ missing ()
must be a method; it cannot be an instance variable:

class Counter(dict):

def missing (self, key):
return 0

¢ = Counter()

c['red ']

c['red'] +=1
c['red]

The example above shows part of the implementation of collections.Counter. A different __ miss-
ing ~ method is used by collections.defaultdict.

New in version 2.5: Recognition of ~ missing ~ methods of dict subclasses.

d[key] = value
Set d[key] to value.

del d[key]
Remove d[key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

5.8. Mapping Types — dict 53

The Python Library Reference, Release 2.7.14

New in version 2.2.

key not in d
Equivalent to not key in d.

New in version 2.2.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iterkeys().

clear()
Remove all items from the dictionary.

copy()
Return a shallow copy of the dictionary.

fromkeys(seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys() is a class method that returns a new dictionary. value defaults to None.

New in version 2.3.

get(key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults
to None, so that this method never raises a KeyError.

has_key(key)
Test for the presence of key in the dictionary. has key() is deprecated in favor of key in d.

items()
Return a copy of the dictionary’s list of (key, value) pairs.

CPython implementation detail: Keys and values are listed in an arbitrary order which is non-
random, varies across Python implementations, and depends on the dictionary’s history of inser-
tions and deletions.

If items(), keys(), values(), iteritems(), iterkeys(), and itervalues() are called with no intervening
modifications to the dictionary, the lists will directly correspond. This allows the creation of
(value, key) pairs using zip(): pairs = zip(d.values(), d.keys()). The same relationship holds for
the iterkeys() and itervalues() methods: pairs = zip(d.itervalues(), d.iterkeys()) provides the same
value for pairs. Another way to create the same list is pairs = [(v, k) for (k, v) in d.iteritems()].

iteritems()
Return an iterator over the dictionary’s (key, value) pairs. See the note for dict.items().

Using iteritems() while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries.

New in version 2.2.

iterkeys()
Return an iterator over the dictionary’s keys. See the note for dict.items().

Using iterkeys() while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries.

New in version 2.2.

itervalues()
Return an iterator over the dictionary’s values. See the note for dict.items().

Using itervalues() while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries.

54 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

New in version 2.2.

keys()
Return a copy of the dictionary’s list of keys. See the note for dict.items().

pop(key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not
given and key is not in the dictionary, a KeyError is raised.

New in version 2.3.

popitem)()
Remove and return an arbitrary (key, value) pair from the dictionary.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If
the dictionary is empty, calling popitem() raises a KeyError.

setdefault(key [, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return
default. default defaults to None.

update([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return
None.

update() accepts either another dictionary object or an iterable of key/value pairs (as tuples or
other iterables of length two). If keyword arguments are specified, the dictionary is then updated
with those key/value pairs: d.update(red=1, blue=2).

Changed in version 2.4: Allowed the argument to be an iterable of key/value pairs and allowed
keyword arguments.

values()
Return a copy of the dictionary’s list of values. See the note for dict.items().

viewitems()
Return a new view of the dictionary’s items ((key, value) pairs). See below for documentation of
view objects.

New in version 2.7.

viewkeys()
Return a new view of the dictionary’s keys. See below for documentation of view objects.

New in version 2.7.

viewvalues()
Return a new view of the dictionary’s values. See below for documentation of view objects.

New in version 2.7.

Dictionaries compare equal if and only if they have the same (key, value) pairs.

5.8.1 Dictionary view objects

The objects returned by dict.viewkeys(), dict.viewvalues() and dict.viewitems() are view objects. They
provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view
reflects these changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

5.8. Mapping Types — dict 59

The Python Library Reference, Release 2.7.14

len(dictview)
Return the number of entries in the dictionary.

iter(dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python
implementations, and depends on the dictionary’s history of insertions and deletions. If keys, values
and items views are iterated over with no intervening modifications to the dictionary, the order of
items will directly correspond. This allows the creation of (value, key) pairs using zip(): pairs =
zip(d.values(), d.keys()). Another way to create the same list is pairs = [(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to
iterate over all entries.

x in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be
a (key, value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key,
value) pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as
set-like since the entries are generally not unique.) Then these set operations are available (“other” refers
either to another view or a set):

dictview & other
Return the intersection of the dictview and the other object as a new set.

dictview | other
Return the union of the dictview and the other object as a new set.

dictview - other
Return the difference between the dictview and the other object (all elements in dictview that aren’t
in other) as a new set.

~

dictview ~ other
Return the symmetric difference (all elements either in dictview or other, but not in both) of the
dictview and the other object as a new set.

An example of dictionary view usage:

dishes — {"eggs': 2, 'sausage': 1, "bacon': 1, 'spam': 500}
keys = dishes.viewkeys()
values = dishes.viewvalues()

iteration
n=20
for val in values:
n += val
print(n)

504

keys and values are iterated over in the same order
list(keys)

['eggs', "bacon', 'sausage', 'spam']
list (values)

[2, 1, 1, 500]

view objects are dynamic and reflect dict changes
del dishes|'eggs']

del dishes|'sausage']

list (keys)

o6 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

['spam', 'bacon']

set operations
keys & {'eggs', 'bacon', 'salad'}
{"bacon"'}

5.9 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in open() function.
File objects are also returned by some other built-in functions and methods, such as os.popen() and os.
fdopen() and the makefile() method of socket objects. Temporary files can be created using the tempfile
module, and high-level file operations such as copying, moving, and deleting files and directories can be
achieved with the shutil module.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes situations
where the operation is not defined for some reason, like seek() on a tty device or writing a file opened for
reading.

Files have the following methods:

file.close()
Close the file. A closed file cannot be read or written any more. Any operation which requires that
the file be open will raise a ValueError after the file has been closed. Calling close() more than once is
allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you use the with statement.
For example, the following code will automatically close f when the with block is exited:

from __ future _ import with_statement # This isn 't required in Python 2.6

with open("hello.txt") as f:
for line in f:
print line,

In older versions of Python, you would have needed to do this to get the same effect:

f = open("hello.txt")
try:
for line in f:
print line,
finally:
f.close()

Note: Not all “file-like” types in Python support use as a context manager for the with statement. If
your code is intended to work with any file-like object, you can use the function contextlib.closing()
instead of using the object directly.

file.flush()
Flush the internal buffer, like stdio’s fllush(). This may be a no-op on some file-like objects.

Note: flush() does not necessarily write the file’s data to disk. Use flush() followed by os.fsync() to
ensure this behavior.

5.9. File Objects 57

The Python Library Reference, Release 2.7.14

file.fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O
operations from the operating system. This can be useful for other, lower level interfaces that use file
descriptors, such as the fcntl module or os.read() and friends.

Note: File-like objects which do not have a real file descriptor should not provide this method!

file.isatty()
Return True if the file is connected to a tty(-like) device, else False.

Note: If a file-like object is not associated with a real file, this method should not be implemented.

file.next()

A file object is its own iterator, for example iter(f) returns f (unless f is closed). When a file is used
as an iterator, typically in a for loop (for example, for line in f: print line.strip()), the next() method
is called repeatedly. This method returns the next input line, or raises Stoplteration when EOF is hit
when the file is open for reading (behavior is undefined when the file is open for writing). In order to
make a for loop the most efficient way of looping over the lines of a file (a very common operation),
the next() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer,
combining next() with other file methods (like readline()) does not work right. However, using seek()
to reposition the file to an absolute position will flush the read-ahead buffer.

New in version 2.3.

file.read([size])

Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the
size argument is negative or omitted, read all data until EOF is reached. The bytes are returned as a
string object. An empty string is returned when EOF is encountered immediately. (For certain files,
like ttys, it makes sense to continue reading after an EOF is hit.) Note that this method may call the
underlying C function fread() more than once in an effort to acquire as close to size bytes as possible.
Also note that when in non-blocking mode, less data than was requested may be returned, even if no
size parameter was given.

Note: This function is simply a wrapper for the underlying fread() C function, and will behave the
same in corner cases, such as whether the EOF value is cached.

file.readline([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent
when a file ends with an incomplete line).® If the size argument is present and non-negative, it is a
maximum byte count (including the trailing newline) and an incomplete line may be returned. When
size is not 0, an empty string is returned only when EOF is encountered immediately.

Note: Unlike stdio’s fgets(), the returned string contains null characters ('\0') if they occurred in
the input.

file.readlines([Sizehint])
Read until EOF using readline() and return a list containing the lines thus read. If the optional sizehint
argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes

6 The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. Tt is
also possible (in cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines)
to tell whether the last line of a file ended in a newline or not (yes this happens!).

o8 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

(possibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface
may choose to ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.

file.xreadlines()
This method returns the same thing as iter(f).

New in version 2.1.

Deprecated since version 2.3: Use for line in file instead.

ﬁle.seek(oﬁset[, whence])
Set the file’s current position, like stdio’s fseek(). The whence argument is optional and defaults to
0s.SEEK _SET or 0 (absolute file positioning); other values are 0s.SEEK_CUR or 1 (seek relative to
the current position) and os.SEEK _END or 2 (seek relative to the file’s end). There is no return value.

For example, f.seek(2, 0s.SEEK CUR) advances the position by two and f.seek(-3, 0os.SEEK END)
sets the position to the third to last.

Note that if the file is opened for appending (mode 'a' or 'a+ '), any seek() operations will be undone
at the next write. If the file is only opened for writing in append mode (mode 'a'), this method is
essentially a no-op, but it remains useful for files opened in append mode with reading enabled (mode
'a+"). If the file is opened in text mode (without 'b"'), only offsets returned by tell() are legal. Use
of other offsets causes undefined behavior.

Note that not all file objects are seekable.
Changed in version 2.6: Passing float values as offset has been deprecated.

file.tell()
Return the file’s current position, like stdio’s ftell().

Note: On Windows, tell() can return illegal values (after an fgets()) when reading files with Unix-style
line-endings. Use binary mode ('rb'") to circumvent this problem.

ﬁle.truncate([size])
Truncate the file’s size. If the optional size argument is present, the file is truncated to (at most) that
size. The size defaults to the current position. The current file position is not changed. Note that if a
specified size exceeds the file’s current size, the result is platform-dependent: possibilities include that
the file may remain unchanged, increase to the specified size as if zero-filled, or increase to the specified
size with undefined new content. Availability: Windows, many Unix variants.

file.write(str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show
up in the file until the flush() or close() method is called.

file.writelines(sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings,
typically a list of strings. There is no return value. (The name is intended to match readlines();
writelines() does not add line separators.)

Files support the iterator protocol. Each iteration returns the same result as readline(), and iteration ends
when the readline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects,
but should be implemented if they make sense for the particular object.

file.closed
bool indicating the current state of the file object. This is a read-only attribute; the close() method
changes the value. It may not be available on all file-like objects.

5.9. File Objects 59

The Python Library Reference, Release 2.7.14

file.encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to
byte strings using this encoding. In addition, when the file is connected to a terminal, the attribute
gives the encoding that the terminal is likely to use (that information might be incorrect if the user has
misconfigured the terminal). The attribute is read-only and may not be present on all file-like objects.
It may also be None, in which case the file uses the system default encoding for converting Unicode
strings.

New in version 2.3.

file.errors
The Unicode error handler used along with the encoding.

New in version 2.6.

file.mode
The I/O mode for the file. If the file was created using the open() built-in function, this will be the
value of the mode parameter. This is a read-only attribute and may not be present on all file-like
objects.

file.name
If the file object was created using open(), the name of the file. Otherwise, some string that indicates
the source of the file object, of the form <...>. This is a read-only attribute and may not be present
on all file-like objects.

file.newlines
If Python was built with universal newlines enabled (the default) this read-only attribute exists, and
for files opened in universal newline read mode it keeps track of the types of newlines encountered
while reading the file. The values it can take are '\r', '\n', '\r\n', None (unknown, no newlines
read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conventions
were encountered. For files not opened in universal newlines read mode the value of this attribute will
be None.

file.softspace
Boolean that indicates whether a space character needs to be printed before another value when us-
ing the print statement. Classes that are trying to simulate a file object should also have a writable
softspace attribute, which should be initialized to zero. This will be automatic for most classes imple-
mented in Python (care may be needed for objects that override attribute access); types implemented
in C will have to provide a writable softspace attribute.

Note: This attribute is not used to control the print statement, but to allow the implementation of
print to keep track of its internal state.

5.10 memoryview type

New in version 2.7.

memoryview objects allow Python code to access the internal data of an object that supports the buffer
protocol without copying. Memory is generally interpreted as simple bytes.

class memoryview(obj)
Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that
support the buffer protocol include str and bytearray (but not unicode).

60 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

A memoryview has the notion of an element, which is the atomic memory unit handled by the origi-
nating object obj. For many simple types such as str and bytearray, an element is a single byte, but
other third-party types may expose larger elements.

len(view) returns the total number of elements in the memoryview, view. The itemsize attribute will
give you the number of bytes in a single element.

A memoryview supports slicing to expose its data. Taking a single index will return a single element
as a str object. Full slicing will result in a subview:

v = memoryview("abcefg")

Vi1
lbl

v[-1]
Yg‘

v[1:4]

<memory at 0x77ab28>
v[1:4].tobytes()
"bee!

If the object the memoryview is over supports changing its data, the memoryview supports slice
assignment:

data = bytearray('abcefg')
v = memoryview(data)

v.readonly
False

v[0] = 'z’

data
bytearray(b'zbcefg")

v[1:4] = 123"

data

bytearray(b'z123fg")
v[2] = 'spam’
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot modify size of memoryview object

Notice how the size of the memoryview object cannot be changed.
memoryview has two methods:

tobytes()
Return the data in the buffer as a bytestring (an object of class str).

m = memoryview("abc")
m.tobytes()
"abe!

tolist()
Return the data in the buffer as a list of integers.

memoryview("abc").tolist()
[97, 98, 99]

There are also several readonly attributes available:

format
A string containing the format (in struct module style) for each element in the view. This defaults
to 'B', a simple bytestring.

5.10. memoryview type 61

The Python Library Reference, Release 2.7.14

itemsize
The size in bytes of each element of the memoryview.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each
dimension of the array.

readonly
A bool indicating whether the memory is read only.

5.11 Context Manager Types

New in version 2.5.

Python’s with statement supports the concept of a runtime context defined by a context manager. This is
implemented using two separate methods that allow user-defined classes to define a runtime context that is
entered before the statement body is executed and exited when the statement ends.

The context management protocol consists of a pair of methods that need to be provided for a context
manager object to define a runtime context:

contextmanager. _enter ()
Enter the runtime context and return either this object or another object related to the runtime context.
The value returned by this method is bound to the identifier in the as clause of with statements using
this context manager.

An example of a context manager that returns itself is a file object. File objects return themselves
from enter () to allow open() to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext(). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body
of the with statement without affecting code outside the with statement.

contextmanager. _exit _ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be
suppressed. If an exception occurred while executing the body of the with statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception
and continue execution with the statement immediately following the with statement. Otherwise the
exception continues propagating after this method has finished executing. Exceptions that occur during
execution of this method will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false
value to indicate that the method completed successfully and does not want to suppress the raised
exception. This allows context management code (such as contextlib.nested) to easily detect whether
ornot an __exit () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or
other objects, and simpler manipulation of the active decimal arithmetic context. The specific types are
not treated specially beyond their implementation of the context management protocol. See the contextlib
module for some examples.

62 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter () and __ exit () methods, rather than
the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the
Python/C API. Extension types wanting to define these methods must provide them as a normal Python
accessible method. Compared to the overhead of setting up the runtime context, the overhead of a single
class dictionary lookup is negligible.

5.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

5.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses
a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement
is not, strictly speaking, an operation on a module object; import foo does not require a module object
named foo to exist, rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is dict . This is the dictionary containing the module’s symbol

table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment to
the dict attribute is not possible (you can write m. dict ['a'] = 1, which defines m.a to be 1,
but you can’t write m. _dict = {}). Modifying dict _ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file,
they are written as <module 'os' from ' /usr/local/lib/pythonX.Y /os.pyc' >.

5.12.2 Classes and Class Instances

See objects and class for these.

5.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support
the same operation (to call the function), but the implementation is different, hence the different object

types.

See function for more information.

5.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods
(such as append() on lists) and class instance methods. Built-in methods are described with the types that
support them.

5.12. Other Built-in Types 63

The Python Library Reference, Release 2.7.14

The implementation adds two special read-only attributes to class instance methods: m.im_self is the object
on which the method operates, and m.im_func is the function implementing the method. Calling m(arg-1,
arg-2, ..., arg-n) is completely equivalent to calling m.im _func(m.im _self, arg-1, arg-2, ..., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed through
an instance or a class, respectively. When a method is unbound, its im_self attribute will be None and if
called, an explicit self object must be passed as the first argument. In this case, self must be an instance of
the unbound method’s class (or a subclass of that class), otherwise a TypeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method at-
tributes are actually stored on the underlying function object (meth.im func), setting method attributes
on either bound or unbound methods is disallowed. Attempting to set an attribute on a method results
in an AttributeError being raised. In order to set a method attribute, you need to explicitly set it on the
underlying function object:

class C:
def method(self):
pass

¢ Q)
c.method.whoami = 'my name is method' # can 't set on the method

Traceback (most recent call last):

File "<stdin>"| line 1, in <module>

AttributeError: 'instancemethod' object has no attribute 'whoami'’
c.method.im_func.whoami = 'my name is method"'
c.method.whoami

'my name is method'

See types for more information.

5.12.5 Code Objects

Code objects are used by the implementation to represent ‘“pseudo-compiled” executable Python code such
as a function body. They differ from function objects because they don’t contain a reference to their global
execution environment. Code objects are returned by the built-in compile() function and can be extracted
from function objects through their func code attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement
or the built-in eval() function.

See types for more information.

5.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type().
There are no special operations on types. The standard module types defines names for all standard built-in

types.
Types are written like this: <type 'int'>.

5.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.

64 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.14

5.12.8 The Ellipsis Object
This object is used by extended slice notation (see slicings). It supports no special operations. There is
exactly one ellipsis object, named Ellipsis (a built-in name).

It is written as Ellipsis. When in a subscript, it can also be written as ..., for example seq]...].

5.12.9 The NotImplemented Object
This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information.

It is written as NotImplemented.

5.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values
(although other values can also be considered false or true). In numeric contexts (for example when used as
the argument to an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in
function bool() can be used to convert any value to a Boolean, if the value can be interpreted as a truth
value (see section Truth Value Testing above).

They are written as False and True, respectively.

5.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

5.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant.
Some of these are not reported by the dir() built-in function.

object. _dict
A dictionary or other mapping object used to store an object’s (writable) attributes.

object. methods
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes. This
attribute is no longer available.

object. _members
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes. This
attribute is no longer available.

instance. _ class
The class to which a class instance belongs.

class. _bases
The tuple of base classes of a class object.

definition. name
The name of the class, type, function, method, descriptor, or generator instance.

The following attributes are only supported by new-style classes.

5.13. Special Attributes 65

The Python Library Reference, Release 2.7.14

class. _mro
This attribute is a tuple of classes that are considered when looking for base classes during method
resolution.

class.mro()
This method can be overridden by a metaclass to customize the method resolution order for its in-
stances. It is called at class instantiation, and its result is stored in = mro

class. _subclasses ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns
a list of all those references still alive. Example:

int. subclasses ()
[<type 'bool' >|

66 Chapter 5. Built-in Types

CHAPTER

SIX

BUILT-IN EXCEPTIONS

Exceptions should be class objects. The exceptions are defined in the module exceptions. This module
never needs to be imported explicitly: the exceptions are provided in the built-in namespace as well as the
exceptions module.

For class exceptions, in a try statement with an except clause that mentions a particular class, that clause
also handles any exception classes derived from that class (but not exception classes from which it is derived).
Two exception classes that are not related via subclassing are never equivalent, even if they have the same
name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where
mentioned, they have an “associated value” indicating the detailed cause of the error. This may be a string
or a tuple containing several items of information (e.g., an error code and a string explaining the code). The
associated value is the second argument to the raise statement. If the exception class is derived from the
standard root class BaseException, the associated value is present as the exception instance’s args attribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error
condition “just like” the situation in which the interpreter raises the same exception; but beware that there
is nothing to prevent user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to
derive new exceptions from the Exception class or one of its subclasses, and not from BaseException. More
information on defining exceptions is available in the Python Tutorial under tut-userexceptions.

The following exceptions are only used as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes
(for that, use Exception). If str() or unicode() is called on an instance of this class, the representation
of the argument(s) to the instance are returned, or the empty string when there were no arguments.

New in version 2.5.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like IOError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple,
while others are usually called only with a single string giving an error message.

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions
should also be derived from this class.

Changed in version 2.5: Changed to inherit from BaseException.

exception StandardError
The base class for all built-in exceptions except Stoplteration, GeneratorExit, KeyboardInterrupt and
SystemExit. StandardError itself is derived from Exception.

67

The Python Library Reference, Release 2.7.14

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError. This can be raised directly by codecs.lookup().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno
attribute (it is assumed to be an error number), and the second item is available on the strerror
attribute (it is usually the associated error message). The tuple itself is also available on the args
attribute.

New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on the filename attribute. However, for backwards compatibility,
the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The errno
and strerror attributes are also None when the instance was created with other than 2 or 3 arguments.
In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object
does not support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input() or raw _input()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: the file.read() and file.readline() methods return an empty string
when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised
when Python is configured with the --with-fpectl option, or the WANT SIGFPE_HANDLER symbol
is defined in the pyconfig.h file.

exception GeneratorExit
Raised when a generator’s close() method is called. It directly inherits from BaseException instead of
StandardError since it is technically not an error.

New in version 2.5.
Changed in version 2.6: Changed to inherit from BaseException.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in open() function or a method of
a file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on excep-
tion instance attributes.

68 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.7.14

Changed in version 2.6: Changed socket.error to use this as a base class.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails to
find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in function input() or raw _input() is
waiting for input also raise this exception. The exception inherits from BaseException so as to not be
accidentally caught by code that catches Exception and thus prevent the interpreter from exiting.

Changed in version 2.5: Changed to inherit from BaseException.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some
objects). The associated value is a string indicating what kind of (internal) operation ran out of mem-
ory. Note that because of the underlying memory management architecture (C’s malloc() function),
the interpreter may not always be able to completely recover from this situation; it nevertheless raises
an exception so that a stack traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method.

New in version 1.5.2.

exception OSError
This exception is derived from EnvironmentError. It is raised when a function returns a system-related
error (not for illegal argument types or other incidental errors). The errno attribute is a numeric error
code from errno, and the strerror attribute is the corresponding string, as would be printed by the
C function perror(). See the module errno, which contains names for the error codes defined by the
underlying operating system.

For exceptions that involve a file system path (such as chdir() or unlink()), the exception instance will
contain a third attribute, filename, which is the file name passed to the function.

New in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur
for long integers (which would rather raise MemoryError than give up) and for most operations with
plain integers, which return a long integer instead. Because of the lack of standardization of floating
point exception handling in C, most floating point operations also aren’t checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy() function, is used
to access an attribute of the referent after it has been garbage collected. For more information on weak
references, see the weakref module.

69

The Python Library Reference, Release 2.7.14

New in version 2.2: Previously known as the weakref.ReferenceError exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value
is a string indicating what precisely went wrong.

exception Stoplteration
Raised by an iterator’s next() method to signal that there are no further values. This is derived from
Exception rather than StandardError, since this is not considered an error in its normal application.

New in version 2.2.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an
exec statement, in a call to the built-in function eval() or input(), or when reading the initial script or
standard input (also interactively).

Instances of this class have attributes filename, lineno, offset and text for easier access to the details.
str() of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of Inden-
tationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it
to abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the
version of the Python interpreter (sys.version; it is also printed at the start of an interactive Python
session), the exact error message (the exception’s associated value) and if possible the source of the
program that triggered the error.

exception SystemExit
This exception is raised by the sys.exit() function. When it is not handled, the Python interpreter
exits; no stack traceback is printed. If the associated value is a plain integer, it specifies the system
exit status (passed to C’s exit() function); if it is None, the exit status is zero; if it has another type
(such as a string), the object’s value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting
to None). Also, this exception derives directly from BaseException and not StandardError, since it is
not technically an error.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk
of losing control. The os. exit() function can be used if it is absolutely positively necessary to exit
immediately (for example, in the child process after a call to os.fork()).

The exception inherits from BaseException instead of StandardError or Exception so that it is not
accidentally caught by code that catches Exception. This allows the exception to properly propagate
up and cause the interpreter to exit.

Changed in version 2.5: Changed to inherit from BaseException.

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated
value is a string giving details about the type mismatch.

70 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.7.14

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been
bound to that variable. This is a subclass of NameError.

New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example, err.object|err.
start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in object.

end
The index after the last invalid data in object.

New in version 2.0.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

New in version 2.3.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

New in version 2.3.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

New in version 2.3.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an
inappropriate value, and the situation is not described by a more precise exception such as IndexError.

exception VMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an
errno value. The winerror and strerror values are created from the return values of the GetLastError()
and FormatMessage() functions from the Windows Platform API. The errno value maps the winerror
value to corresponding errno.h values. This is a subclass of OSError.

New in version 2.0.
Changed in version 2.5: Previous versions put the GetLastError() codes into errno.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a
string indicating the type of the operands and the operation.

71

The Python Library Reference, Release 2.7.14

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax.

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

New in version 2.5.

exception UnicodeWarning
Base class for warnings related to Unicode.

New in version 2.5.

6.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-- SystemExit
+-- KeyboardInterrupt
t-- GeneratorExit
+-- Exception
+-- Stoplteration
t-- StandardError
| +-- BufferError
| +-- ArithmeticError
[{--- FloatingPointError
| | +-- OverflowError
| | +-- ZeroDivisionError
| +-- AssertionError
| +-- AttributeError
| +-- EnvironmentError
| | -+ IOError
| | +-- OSError
[+-- WindowsError (Windows)
|] t-- VMSError (VMS)
|
|
|
|

+-- EOFError
+-- ImportError
t--- LookupError

| +-- IndexError

72 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.7.14

| | +--KeyError
| +-- MemoryError
| +-- NameError
| | +-- UnboundLocalError
| +- ReferenceError
| +-- RuntimeError
| | +-- NotImplementedError
| +-- SyntaxError
| | +-- IndentationError
| +-- TabError
| +- SystemError
| +-- TypeError
| +-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
-+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
-+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning

6.1. Exception hierarchy 73

The Python Library Reference, Release 2.7.14

74 Chapter 6. Built-in Exceptions

CHAPTER

SEVEN

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods described in the Sequence
Types — str, unicode, list, tuple, bytearray, buffer, xrange section, and also the string-specific methods
described in the String Methods section. To output formatted strings use template strings or the % operator
described in the String Formatting Operations section. Also, see the re module for string functions based on
regular expressions.

7.1 string — Common string operations

Source code: Lib/string.py

The string module contains a number of useful constants and classes, as well as some deprecated legacy
functions that are also available as methods on strings. In addition, Python’s built-in string classes support
the sequence type methods described in the Sequence Types — str, unicode, list, tuple, bytearray, buffer,
xrange section, and also the string-specific methods described in the String Methods section. To output
formatted strings use template strings or the % operator described in the String Formatting Operations
section. Also, see the re module for string functions based on regular expressions.

7.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii lowercase and ascii_uppercase constants described below. This value
is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopqrstuvwxyz'. This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'. This value is not locale-dependent
and will not change.

string.digits
The string '0123456789"'.

string.hexdigits
The string '0123456789abcdefABCDEF .

75

https://github.com/python/cpython/tree/2.7/Lib/string.py

The Python Library Reference, Release 2.7.14

string.letters
The concatenation of the strings lowercase and uppercase described below. The specific value is locale-
dependent, and will be updated when locale.setlocale() is called.

string.lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is
the string 'abcdefghijklmnopqrstuvwxyz'. The specific value is locale-dependent, and will be updated
when locale.setlocale() is called.

string.octdigits
The string '01234567".

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

string.printable
String of characters which are considered printable. This is a combination of digits, letters, punctuation,
and whitespace.

string.uppercase
A string containing all the characters that are considered uppercase letters. On most systems this
is the string ' ABCDEFGHIJKLMNOPQRSTUVWXY?Z'. The specific value is locale-dependent, and
will be updated when locale.setlocale() is called.

string.whitespace
A string containing all characters that are considered whitespace. On most systems this includes the
characters space, tab, linefeed, return, formfeed, and vertical tab.

7.1.2 Custom String Formatting

New in version 2.6.

The built-in str and unicode classes provide the ability to do complex variable substitutions and value
formatting via the str.format() method described in PEP 3101. The Formatter class in the string module
allows you to create and customize your own string formatting behaviors using the same implementation as
the built-in format() method.

class string.Formatter
The Formatter class has the following public methods:

format (format _string, *args, **kwargs)
The primary API method. It takes a format string and an arbitrary set of positional and keyword
arguments. It is just a wrapper that calls vformat().

viormat (format _string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases
where you want to pass in a predefined dictionary of arguments, rather than unpacking and
repacking the dictionary as individual arguments using the *args and **kwargs syntax. vformat()
does the work of breaking up the format string into character data and replacement fields. It calls
the various methods described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse(format _string)
Loop over the format string and return an iterable of tuples (literal text, field name, for-
mat_spec, conversion). This is used by vformat() to break the string into either literal text, or
replacement fields.

76 Chapter 7. String Services

https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.7.14

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively),
then literal text will be a zero-length string. If there is no replacement field, then the values of
field name, format_spec and conversion will be None.

get field(field name, args, kwargs)
Given field name as returned by parse() (see above), convert it to an object to be formatted.
Returns a tuple (obj, used key). The default version takes strings of the form defined in PEP
3101, such as “O[name]” or “label.title”. args and kwargs are as passed in to vformat(). The return
value used key has the same meaning as the key parameter to get value().

get value(key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an
integer, it represents the index of the positional argument in args; if it is a string, then it represents
a named argument in kwargs.

The args parameter is set to the list of positional arguments to vformat(), and the kwargs param-
eter is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field
name; Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get value() to be called with a key
argument of 0. The name attribute will be looked up after get value() returns by calling the
built-in getattr() function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

check unused args(used args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of
all argument keys that were actually referred to in the format string (integers for positional argu-
ments, and strings for named arguments), and a reference to the args and kwargs that was passed
to vformat. The set of unused args can be calculated from these parameters. check unused args()
is assumed to raise an exception if the check fails.

format_field(value, format_spec)
format_field() simply calls the global format() built-in. The method is provided so that subclasses
can override it.

convert_field(value, conversion)
Converts the value (returned by get_field()) given a conversion type (as in the tuple returned by
the parse() method). The default version understands ‘s’ (str), ‘t’ (repr) and ‘a’ (ascii) conversion

types.

7.1.3 Format String Syntax
The str.format() method and the Formatter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained
in braces is considered literal text, which is copied unchanged to the output. If you need to include a brace
character in the literal text, it can be escaped by doubling: {{ and }}.

The grammar for a replacement field is as follows:

replacement_field = "{" [field_name] ["!" conversion] [":" format_spec] "}"

7.1. string — Common string operations 77

https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.7.14

field name im= arg_name ("." attribute name | "[" element index "]")*
arg_name = [identifier | integer]

attribute name = identifier

element _index = integer | index string

index string = <any source character except "|"> +

conversion = "r"| "

format spec z= <described in the next section>

In less formal terms, the replacement field can start with a field name that specifies the object whose value
is to be formatted and inserted into the output instead of the replacement field. The field name is optionally
followed by a conversion field, which is preceded by an exclamation point '!', and a format _spec, which is
preceded by a colon ':'. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field name itself begins with an arg name that is either a number or a keyword. If it’s a number, it
refers to a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical
arg_names in a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the
numbers 0, 1, 2, ... will be automatically inserted in that order. Because arg name is not quote-delimited,
it is not possible to specify arbitrary dictionary keys (e.g., the strings '10' or ':-]') within a format string.
The arg_name can be followed by any number of index or attribute expressions. An expression of the form
".name" selects the named attribute using getattr(), while an expression of the form '[index]' does an index
lookup using getitem ().

Changed in version 2.7: The positional argument specifiers can be omitted, so '{} {}' is equivalent to ' {0}
{1}

Some simple format string examples:

"First, thou shalt count to "

"Bring me a {}"

References first positional argument
Implicitly references the first positional argument

"From {} to {}" # Same as "From {0} to {1}"

"My quest is " # References keyword argument 'name’
"Weight in tons " # 'weight ' attribute of first positional arg
"Units destroyed: " # First element of keyword argument 'players '.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is
done by the ~ format () method of the value itself. However, in some cases it is desirable to force a type
to be formatted as a string, overriding its own definition of formatting. By converting the value to a string
before calling format (), the normal formatting logic is bypassed.

Two conversion flags are currently supported: '!s' which calls str() on the value, and '!r' which calls repr().

Some examples:

Calls str() on the argument first
Calls repr() on the argument first

"Harold's a clever "

"Bring out the holy "

The format_spec field contains a specification of how the value should be presented, including such details as
field width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting
mini-language” or interpretation of the format spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields
may contain a field name, conversion flag and format specification, but deeper nesting is not allowed. The
replacement fields within the format spec are substituted before the format spec string is interpreted. This
allows the formatting of a value to be dynamically specified.

See the Format examples section for some examples.

78 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how
individual values are presented (see Format String Syntax). They can also be passed directly to the built-in
format() function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting
options are only supported by the numeric types.

A general convention is that an empty format string ("") produces the same result as if you had called str()
on the value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec == [[fill]align][sign][#][0][width][,][.precision][type]

fill = <any character>

align e PN SN BN R

Sign = "Jr" | n_n | nn

width n= integer

precision = integer

type = Hb” | ”C" | Hd” | UeH | ”E” | ”f" | HFH | Hg" | ”GU | "n” | HOH | ”S" | HX" | ”X" | ”%"

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults
to a space if omitted. It is not possible to use a literal curly brace (“{” or “}”) as the fill character when using
the str.format() method. However, it is possible to insert a curly brace with a nested replacement field. This
limitation doesn’t affect the format() function.

The meaning of the various alignment options is as follows:

Op- | Meaning

tion

"< '| Forces the field to be left-aligned within the available space (this is the default for most
objects).

'>"| Forces the field to be right-aligned within the available space (this is the default for
numbers).

'="| Forces the padding to be placed after the sign (if any) but before the digits. This is
used for printing fields in the form ‘4+000000120’. This alignment option is only valid for
numeric types. It becomes the default when ‘0’ immediately precedes the field width.
'~ v | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data
to fill it, so that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning

tion

T+ indicates that a sign should be used for both positive as well as negative numbers.

v indicates that a sign should be used only for negative numbers (this is the default
behavior).

space | indicates that a leading space should be used on positive numbers, and a minus sign
on negative numbers.

7.1. string — Common string operations 79

The Python Library Reference, Release 2.7.14

The '#"' option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it
specifies that the output will be prefixed by 'Ob', '0o', or '0x', respectively.

The ',' option signals the use of a comma for a thousands separator. For a locale aware separator, use the
'n' integer presentation type instead.

Changed in version 2.7: Added the ',' option (see also PEP 378).

width is a decimal integer defining the minimum field width. If not specified, then the field width will be
determined by the content.

When no explicit alignment is given, preceding the width field by a zero ('0') character enables sign-aware
zero-padding for numeric types. This is equivalent to a fill character of '0' with an alignment type of '=".

The precision is a decimal number indicating how many digits should be displayed after the decimal point
for a floating point value formatted with 'f' and 'F', or before and after the decimal point for a floating
point value formatted with 'g' or 'G'. For non-number types the field indicates the maximum field size -
in other words, how many characters will be used from the field content. The precision is not allowed for
integer values.

Finally, the type determines how the data should be presented.

The available string presentation types are:

Type | Meaning
's! String format. This is the default type for strings and may be omitted.
None | The same as 's'.

The available integer presentation types are:

Type Meaning

'b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.
'd" | Decimal Integer. Outputs the number in base 10.

'o' | Octal format. Outputs the number in base 8.

'x"' | Hex format. Outputs the number in base 16, using lower- case letters for the digits
above 9.

'X'| Hex format. Outputs the number in base 16, using upper- case letters for the digits
above 9.

'n' | Number. This is the same as 'd', except that it uses the current locale setting to insert
the appropriate number separator characters.

Nong¢ The same as 'd"'.

In addition to the above presentation types, integers can be formatted with the floating point presentation
types listed below (except 'n' and None). When doing so, float() is used to convert the integer to a floating
point number before formatting.

The available presentation types for floating point and decimal values are:

80 Chapter 7. String Services

https://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 2.7.14

Type Meaning

'e' | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to
indicate the exponent. The default precision is 6.

'E' | Exponent notation. Same as 'e' except it uses an upper case ‘E’ as the separator
character.

'f' | Fixed point. Displays the number as a fixed-point number. The default precision is 6.
'F' | Fixed point. Same as 'f'.

'g' | General format. For a given precision p >= 1, this rounds the number to p significant
digits and then formats the result in either fixed-point format or in scientific notation,
depending on its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation
type 'e' and precision p-1 would have exponent exp. Then if -4 <= exp < p, the
number is formatted with presentation type 'f' and precision p-1-exp. Otherwise,
the number is formatted with presentation type 'e' and precision p-1. In both cases
insignificant trailing zeros are removed from the significand, and the decimal point is
also removed if there are no remaining digits following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as
inf, -inf, 0, -0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1. The default precision is 6.
'G'| General format. Same as 'g' except switches to 'E" if the number gets too large. The
representations of infinity and NaN are uppercased, too.

'n' | Number. This is the same as 'g', except that it uses the current locale setting to insert
the appropriate number separator characters.

'%"'| Percentage. Multiplies the number by 100 and displays in fixed ('f') format, followed
by a percent sign.

None The same as 'g"'.

Format examples

This section contains examples of the str.format() syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the {} and with :
used instead of %. For example, '%03.2f' can be translated to '{:03.2f} .

The new format syntax also supports new and different options, shown in the follow examples.

Accessing arguments by position:

{0}, , " format('a', 'b', 'c')

'a, b, ¢!
"} 1},) format(tat, 'b', 'c') # 2.7+ only
'a, b, ¢!
'{2}, , " format('a', 'b', 'c")
'c, b, a’
{2}, , ' format(*'abc') # unpacking argument sequence
'c, b, a'
' ' format('abra', 'cad') # arguments’ indices can be repeated
'abracadabra’'

Accessing arguments by name:

' Coordinates: , ' format(latitude="'37.24N ", longitude="-115.81W")
'Coordinates: 37.24N, -115.81W'
coord = {'latitude': '37.24N", 'longitude': '-115.81W "'}

7.1. string — Common string operations 81

The Python Library Reference, Release 2.7.14

> 'Coordinates: {latitude}, {longitude} ' .format(**coord)
'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

> ¢ = 3-5)
(' The complex number {0} is formed from the real part {0.real} '
'and the imaginary part {0.imag}.").format(c)
'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0."
class Point(object):
def _ init__ (self, x, y):
self.x, self.y = x, y
def _ str_ (self):
return ’Pomt({s(1fx), {self.y}) ' .format(self—self)

> str(Point(4, 2))
'Point(4, 2)'

Accessing arguments’ items:

>>> coord — (3, 5)
= "X {0[0]); Y {0[1]} ' format(coord)
'X: 3 Y: 5

Replacing %s and %r:

>>> "repr() shows quotes: {Ir}; str() doesn't: {!s}" format('testl', 'test2')
"repr() shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

> 1030} " format(' left aligned ")
'left aligned !
> 1230} ' format(' right aligned ")
! right aligned'
> {730} " format(' centered")
! centered '
>>> '{:*°30} " format('centered') # use '*' as a fill char
I***********centered***********l

Replacing %+f, %-f, and % f and specifying a sign:

>>> {4} {i+1} " format(3.14, -3.14) # show it always

'+3 140000; -3.140000"

>>> '{: f}; {: f} ' format(3.14, -3.14) # show a space for positive numbers

' 3.140000; -3.140000"

>>> '{: f}, {:-f} " format(3.14, -3.14) # show only the minus -- same as '{:f}; {:f} "
'3.140000; -3.140000"

Replacing %x and %o and converting the value to different bases:

>>> # format also supports binary numbers
- "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format(42)
'int: 42; hex: 2a; oct: 52; bin: 101010
>>> # with 0x, 0o, or Ob as prefix:
"int: {0:d}; hex: {0://x}; oct: {0:#0}; bin: {0:7/b}" .format(42)
'int: 42; hex: 0x2a; oct: 0052; bin: 0b101010"

82 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

Using the comma as a thousands separator:

"} format(1234567890)
'1,234,567,890"

Expressing a percentage:

> points — 19.5
> total — 22

' Correct answers: {:.2%} ' .format(points/total)
'Correct answers: 88.64% '

Using type-specific formatting;:

>>> import datetime

->> d = datetime.datetime(2010, 7, 4, 12, 15, 58)
s % Y-%m-%d %H:%M: %S} format(d)
'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

> for align, text in zip('<">", ['left', "center', "right']):
"{0:{fill}{align}16} ' format(text, fill=align, align—align)

Neft< < << <<

>SS S right !
>>>
- octets = [192, 168, 0, 1]
S V02X 02X 02X 02X} 1 format(Foctets)

"C0A80001"
~int(_, 16)
3232235521
>>>
- width = 5

> for num in range(5,12):
for base in 'dXob':
print '{0:{width}{base}} ' format(num, base=base, width=width),

print
5 5 5 101
6 6 6 110
o7 7 111
8§ 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

7.1.4 Template strings

New in version 2.4.

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based
substitutions, Templates support $-based substitutions, using the following rules:

+ $$ is an escape; it is replaced with a single $.

7.1. string — Common string operations 83

https://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 2.7.14

¢ $identifier names a substitution placeholder matching a mapping key of "identifier".

By default,

"identifier" must spell a Python identifier. The first non-identifier character after the $ character

terminates this placeholder specification.

+ ${identifier} is equivalent to $identifier. It is required when valid identifier characters follow the

placeholder but are not part of the placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.

The string module provides a Template class that implements these rules. The methods of Template are:

class string. Template(template)

The constructor takes a single argument which is the template string.

substitute(mapping[, **kws])

Performs the template substitution, returning a new string. mapping is any dictionary-like object
with keys that match the placeholders in the template. Alternatively, you can provide keyword
arguments, where the keywords are the placeholders. When both mapping and kws are given and
there are duplicates, the placeholders from kws take precedence.

safe_substitute(mapping[, **kws])

Like substitute(), except that if placeholders are missing from mapping and kws, instead of raising
a KeyError exception, the original placeholder will appear in the resulting string intact. Also,
unlike with substitute(), any other appearances of the $ will simply return $ instead of raising
ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always
tries to return a usable string instead of raising an exception. In another sense, safe substitute()
may be anything other than safe, since it will silently ignore malformed templates containing
dangling delimiters, unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s template argument. In general, you shouldn’t change

it, but read-only access is not enforced.

Here is an example of how to use a Template:

from string import Template

s = Template('$who likes $what ")

s.substitute(who—"tim', what—"kung pao")
"tim likes kung pao'

d = dict(who="tim")

Template(' Give $who $100").substitute(d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
Template(' $who likes $what ').substitute(d)
Traceback (most recent call last):

KeyError: 'what'
Template('$who likes $what ').safe substitute(d)
"tim likes $what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter
character, or the entire regular expression used to parse template strings. To do this, you can override these

class attributes:

¢ delimiter — This is the literal string describing a placeholder introducing delimiter. The default value
is $. Note that this should not be a regular expression, as the implementation will call re.escape() on

84

Chapter 7. String Services

The Python Library Reference, Release 2.7.14

this string as needed.

* idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces
will be added automatically as appropriate). The default value is the regular expression [_a-z][_a-z0-

9]*.
Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern.

If you do this, the value must be a regular expression object with four named capturing groups. The capturing
groups correspond to the rules given above, along with the invalid placeholder rule:

« escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

e named — This group matches the unbraced placeholder name; it should not include the delimiter in
capturing group.

¢ braced — This group matches the brace enclosed placeholder name; it should not include either the
delimiter or braces in the capturing group.

¢ invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should
appear last in the regular expression.

7.1.5 String functions

The following functions are available to operate on string and Unicode objects. They are not available as
string methods.

string.capwords(s[, sep])
Split the argument into words using str.split(), capitalize each word using str.capitalize(), and join
the capitalized words using str.join(). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed,
otherwise sep is used to split and join the words.

string.maketrans(from, to)
Return a translation table suitable for passing to translate(), that will map each character in from into
the character at the same position in to; from and to must have the same length.

Note: Don’t use strings derived from lowercase and uppercase as arguments; in some locales, these
don’t have the same length. For case conversions, always use str.lower() and str.upper().

7.1.6 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see section String
Methods for more information on those. You should consider these functions as deprecated, although they
will not be removed until Python 3. The functions defined in this module are:

string.atof (s)
Deprecated since version 2.0: Use the float() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating
point literal in Python, optionally preceded by a sign (4 or -). Note that this behaves identical to the
built-in function float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned

7.1. string — Common string operations 85

The Python Library Reference, Release 2.7.14

depends entirely on the C library and is known to vary.

string.atoi(s[, base])
Deprecated since version 2.0: Use the int() built-in function.

Convert string s to an integer in the given base. The string must consist of one or more digits, optionally
preceded by a sign (+ or -). The base defaults to 10. If it is 0, a default base is chosen depending
on the leading characters of the string (after stripping the sign): 0x or 0X means 16, 0 means 8,
anything else means 10. If base is 16, a leading Ox or 0X is always accepted, though not required. This
behaves identically to the built-in function int() when passed a string. (Also note: for a more flexible
interpretation of numeric literals, use the built-in function eval().)

string.atol(s[, base])
Deprecated since version 2.0: Use the long() built-in function.

Convert string s to a long integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (+ or -). The base argument has the same meaning as for atoi(). A
trailing 1 or L is not allowed, except if the base is 0. Note that when invoked without base or with
base set to 10, this behaves identical to the built-in function long() when passed a string.

string.capitalize(word)
Return a copy of word with only its first character capitalized.

string.expandtabs(s[, tabsize])
Expand tabs in a string replacing them by one or more spaces, depending on the current column and
the given tab size. The column number is reset to zero after each newline occurring in the string. This
doesn’t understand other non-printing characters or escape sequences. The tab size defaults to 8.

string.find (s, sub[, start[, end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained in
s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative values is
the same as for slices.

string.rfind(s, sub[, start[, end]])
Like find() but find the highest index.

string.index(s, sub[, start[, end]])
Like find() but raise ValueError when the substring is not found.

string.rindex(s, sub[, start[, end]])
Like rfind() but raise ValueError when the substring is not found.

string.count s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substring sub in string s[start:end]. Defaults
for start and end and interpretation of negative values are the same as for slices.

string.lower(s)
Return a copy of s, but with upper case letters converted to lower case.

string.split(s[, sep[, maxsplit]])

Return a list of the words of the string s. If the optional second argument sep is absent or None,
the words are separated by arbitrary strings of whitespace characters (space, tab, newline, return,
formfeed). If the second argument sep is present and not None, it specifies a string to be used as the
word separator. The returned list will then have one more item than the number of non-overlapping
occurrences of the separator in the string. If maxsplit is given, at most maxsplit number of splits occur,
and the remainder of the string is returned as the final element of the list (thus, the list will have at
most maxsplit+1 elements). If maxsplit is not specified or -1, then there is no limit on the number of
splits (all possible splits are made).

86 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

The behavior of split on an empty string depends on the value of sep. If sep is not specified, or
specified as None, the result will be an empty list. If sep is specified as any string, the result will be a
list containing one element which is an empty string.

string.rsplit(s[, sep[, rnaxsplit]])
Return a list of the words of the string s, scanning s from the end. To all intents and purposes, the
resulting list of words is the same as returned by split(), except when the optional third argument
maxsplit is explicitly specified and nonzero. If maxsplit is given, at most maxsplit number of splits —
the rightmost ones — occur, and the remainder of the string is returned as the first element of the list
(thus, the list will have at most maxsplit+1 elements).

New in version 2.4.

string.splitﬁelds(s[, sep[, maxsplit]])
This function behaves identically to split(). (In the past, split() was only used with one argument,
while splitfields() was only used with two arguments.)

string.join(words[, sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep is
a single space character. It is always true that string.join(string.split(s, sep), sep) equals s.

string.joinﬁelds(words[, sep])
This function behaves identically to join(). (In the past, join() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there is no joinfields() method on string
objects; use the join() method instead.

string.lstrip(s[, chars])
Return a copy of the string with leading characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will
be stripped from the beginning of the string this method is called on.

Changed in version 2.2.3: The chars parameter was added. The chars parameter cannot be passed in
earlier 2.2 versions.

string.rstrip(s[, chars])
Return a copy of the string with trailing characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will
be stripped from the end of the string this method is called on.

Changed in version 2.2.3: The chars parameter was added. The chars parameter cannot be passed in
earlier 2.2 versions.

string.strip(s[, chars])
Return a copy of the string with leading and trailing characters removed. If chars is omitted or None,
whitespace characters are removed. If given and not None, chars must be a string; the characters in
the string will be stripped from the both ends of the string this method is called on.

Changed in version 2.2.3: The chars parameter was added. The chars parameter cannot be passed in
earlier 2.2 versions.

string.swapcase(s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

string.translate(s, table[, deletechars])
Delete all characters from s that are in deletechars (if present), and then translate the characters using
table, which must be a 256-character string giving the translation for each character value, indexed by
its ordinal. If table is None, then only the character deletion step is performed.

string.upper(s)
Return a copy of s, but with lower case letters converted to upper case.

7.1. string — Common string operations 87

The Python Library Reference, Release 2.7.14

string.ljust(s, width[, ﬁllchar])

string.rjust(s, Width[, ﬁllchar])

string.center(s, width], fillchar])
These functions respectively left-justify, right-justify and center a string in a field of given width. They
return a string that is at least width characters wide, created by padding the string s with the character

fillchar (default is a space) until the given width on the right, left or both sides. The string is never
truncated.

string.zfill(s, width)
Pad a numeric string s on the left with zero digits until the given width is reached. Strings starting
with a sign are handled correctly.

string.replace(s, old, new[, maxreplace])
Return a copy of string s with all occurrences of substring old replaced by new. If the optional argument
maxreplace is given, the first maxreplace occurrences are replaced.

7.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Both patterns
and strings to be searched can be Unicode strings as well as 8-bit strings.

Regular expressions use the backslash character ('\ ') to indicate special forms or to allow special characters
to be used without invoking their special meaning. This collides with Python’s usage of the same character for
the same purpose in string literals; for example, to match a literal backslash, one might have to write "\\\\"
as the pattern string, because the regular expression must be \\, and each backslash must be expressed as
\\ inside a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not
handled in any special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing
"\' and 'n"', while "\n" is a one-character string containing a newline. Usually patterns will be expressed
in Python code using this raw string notation.

It is important to note that most regular expression operations are available as module-level functions and
RegexObject methods. The functions are shortcuts that don’t require you to compile a regex object first,
but miss some fine-tuning parameters.

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers
additional functionality and a more thorough Unicode support.

7.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches a
particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also a regular expression. In general, if a string p matches A and another string
q matches B, the string pq will match AB. This holds unless A or B contain low precedence operations;
boundary conditions between A and B; or have numbered group references. Thus, complex expressions can
easily be constructed from simpler primitive expressions like the ones described here. For details of the
theory and implementation of regular expressions, consult the Friedl book referenced above, or almost any
textbook about compiler construction.

88 Chapter 7. String Services

https://pypi.python.org/pypi/regex/

The Python Library Reference, Release 2.7.14

A brief explanation of the format of regular expressions follows. For further information and a gentler
presentation, consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like "A",
'a', or '0', are the simplest regular expressions; they simply match themselves. You can concatenate
ordinary characters, so last matches the string 'last'. (In the rest of this section, we’ll write RE’s in this
special style, usually without quotes, and strings to be matched 'in single quotes'.)

Some characters, like '|' or ' (', are special. Special characters either stand for classes of ordinary characters,
or affect how the regular expressions around them are interpreted. Regular expression pattern strings may
not contain null bytes, but can specify the null byte using the \number notation, e.g., '\x00"'.

Repetition qualifiers (*, +, 7, {m,n}, etc) cannot be directly nested. This avoids ambiguity with the non-
greedy modifier suffix 7, and with other modifiers in other implementations. To apply a second repetition to
an inner repetition, parentheses may be used. For example, the expression (7:a{6})* matches any multiple
of six 'a' characters.

The special characters are:

'." (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been
specified, this matches any character including a newline.

'~ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after
each newline.

'$' Matches the end of the string or just before the newline at the end of the string, and in MULTILINE
mode also matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression
foo$ matches only ‘foo’. More interestingly, searching for foo.$ in 'fool\nfoo2\n' matches ‘fo02’
normally, but ‘fool” in MULTILINE mode; searching for a single $ in 'foo\n' will find two (empty)
matches: one just before the newline, and one at the end of the string.

"*¥v Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as
are possible. ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

'+ ' Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’
followed by any non-zero number of ‘b’s; it will not match just ‘a’.

'?7' Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ‘a’ or
‘ab’.

¥?7 47,77 The '', '+ ', and '?"' qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <.*> is matched against <a> b <c>, it will match the entire
string, and not just <a>. Adding ? after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched. Using the RE <.*7> will match only
<a>.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire
RE not to match. For example, a{6} will match exactly six 'a' characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match
as many repetitions as possible. For example, a{3,5} will match from 3 to 5 'a' characters. Omitting
m specifies a lower bound of zero, and omitting n specifies an infinite upper bound. As an example,
a{4,}b will match aaaab or a thousand 'a' characters followed by a b, but not aaab. The comma may
not be omitted or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match
as few repetitions as possible. This is the non-greedy version of the previous qualifier. For example,
on the 6-character string 'aaaaaa', a{3,5} will match 5 'a' characters, while a{3,5}7 will only match
3 characters.

7.2. re — Regular expression operations 89

The Python Library Reference, Release 2.7.14

"\ ' Either escapes special characters (permitting you to match characters like '*', '?' and so forth), or
signals a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash
as an escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the
backslash and subsequent character are included in the resulting string. However, if Python would
recognize the resulting sequence, the backslash should be repeated twice. This is complicated and hard
to understand, so it’s highly recommended that you use raw strings for all but the simplest expressions.

[] Used to indicate a set of characters. In a set:
* Characters can be listed individually, e.g. [amk] will match 'a', 'm"', or 'k'.

¢ Ranges of characters can be indicated by giving two characters and separating them by a '-',
for example [a-z] will match any lowercase ASCII letter, [0-5][0-9] will match all the two-digits
numbers from 00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If - is escaped (e.g.
[a\-z]) or if it’s placed as the first or last character (e.g. [a-]), it will match a literal '-'.

* Special characters lose their special meaning inside sets. For example, [(+*)] will match any of
the literal characters ' (', "+"', '*' or ')"'.

* Character classes such as \w or \S (defined below) are also accepted inside a set, although the
characters they match depends on whether LOCALE or UNICODE mode is in force.

e Characters that are not within a range can be matched by complementing the set. If the first
character of the set is ' ~ ', all the characters that are not in the set will be matched. For example,
[~5] will match any character except '5', and [~ "] will match any character except '~'. ~ has
no special meaning if it’s not the first character in the set.

* To match a literal '|' inside a set, precede it with a backslash, or place it at the beginning of the
set. For example, both [()[\[{}] and []()[{}] will both match a parenthesis.

'"|' A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by the '|' in this way. This can be used inside groups
(see below) as well. As the target string is scanned, REs separated by '|' are tried from left to right.
When one pattern completely matches, that branch is accepted. This means that once A matches, B
will not be tested further, even if it would produce a longer overall match. In other words, the '|'
operator is never greedy. To match a literal '|', use \|, or enclose it inside a character class, as in [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a
group; the contents of a group can be retrieved after a match has been performed, and can be matched
later in the string with the \number special sequence, described below. To match the literals ' (' or
")', use \(or), or enclose them inside a character class: [(] [)]-

(?...) This is an extension notation (a '?' following a ' ("' is not meaningful otherwise). The first character
after the '?' determines what the meaning and further syntax of the construct is. Extensions usually
do not create a new group; (?P<name>...) is the only exception to this rule. Following are the currently
supported extensions.

(?iLmsux) (One or more letters from the set 'i', 'L', 'm', 's', 'u', 'x'.) The group matches the
empty string; the letters set the corresponding flags: re.I (ignore case), re.L (locale dependent), re.M
(multi-line), re.S (dot matches all), re.U (Unicode dependent), and re.X (verbose), for the entire regular
expression. (The flags are described in Module Contents.) This is useful if you wish to include the
flags as part of the regular expression, instead of passing a flag argument to the re.compile() function.

Note that the (7x) flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the
flag, the results are undefined.

(?:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the group cannot be retrieved after performing a match or

90 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

referenced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible via the

(7P=

(4.

(7=..

symbolic group name name. Group names must be valid Python identifiers, and each group name must
be defined only once within a regular expression. A symbolic group is also a numbered group, just as
if the group were not named.

Named groups can be referenced in three contexts. If the pattern is (?P<quote>['"]).*?(?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it
in the same pattern itself

* (?P=quote) (as shown)

0\1

when processing match object m
* m.group('quote")

* m.end('quote') (etc.)

in a string passed to the repl argument of re.
sub() * \g<quote>
o \g<1>

0\1

name) A backreference to a named group; it matches whatever text was matched by the earlier group
named name.

.) A comment; the contents of the parentheses are simply ignored.

.) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead

assertion. For example, Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov'.

) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!

Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?7<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current

(7<l..

position. This is called a positive lookbehind assertion. (?<=abc)def will find a match in abcdef, since
the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meaning that abc or a|b are allowed, but a* and
a{3,4} are not. Group references are not supported even if they match strings of some fixed length.
Note that patterns which start with positive lookbehind assertions will not match at the beginning
of the string being searched; you will most likely want to use the search() function rather than the
match() function:

import re
m — re.search(' (7<—abc)def', "abedef")
m.group(0)

"def"

This example looks for a word following a hyphen:

m = re.search(' (7<=-)\w+', 'spam-egg")
m.group(0)
leggl
.) Matches if the current position in the string is not preceded by a match for This is called a

negative lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must

7.2,

re — Regular expression operations 91

The Python Library Reference, Release 2.7.14

only match strings of some fixed length and shouldn’t contain group references. Patterns which start
with negative lookbehind assertions may match at the beginning of the string being searched.

(?(id/name)yes-pattern|no-pattern) Will try to match with yes-pattern if the group with given id or name
exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted. For example, (<)?
(\w+@\w—+(?7:\.\w+)+)(?(1)>) is a poor email matching pattern, which will match with ' <user@host.
com>" as well as "user@host.com', but not with ' <user@host.com'.

New in version 2.4.

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not on
the list, then the resulting RE will match the second character. For example, \$ matches the character '§".

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1 matches 'the the' or '55 55', but not 'thethe' (note the space after the group).
This special sequence can only be used to match one of the first 99 groups. If the first digit of number
is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal value number. Inside the '[' and '|' of a character class, all numeric escapes are treated
as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence
of alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-
alphanumeric, non-underscore character. Note that formally, \b is defined as the boundary between
a \w and a \W character (or vice versa), or between \w and the beginning/end of the string, so the
precise set of characters deemed to be alphanumeric depends on the values of the UNICODE and
LOCALE flags. For example, r'\bfoo\b' matches 'foo', 'foo.', '(foo)', 'bar foo baz' but not
"foobar' or 'foo3'. Inside a character range, \b represents the backspace character, for compatibility
with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that
r'py\B' matches 'python', 'py3', 'py2', but not 'py', 'py.', or 'py!'. \B is just the opposite of
\b, so is also subject to the settings of LOCALE and UNICODE.

\d When the UNICODE flag is not specified, matches any decimal digit; this is equivalent to the set [0-
9]. With UNICODE, it will match whatever is classified as a decimal digit in the Unicode character
properties database.

\D When the UNICODE flag is not specified, matches any non-digit character; this is equivalent to the set
[*0-9]. With UNICODE, it will match anything other than character marked as digits in the Unicode
character properties database.

\s When the UNICODE flag is not specified, it matches any whitespace character, this is equivalent to the
set [\t\n\r\f\v]. The LOCALE flag has no extra effect on matching of the space. If UNICODE is
set, this will match the characters [\t\n\r\f\v] plus whatever is classified as space in the Unicode
character properties database.

\S When the UNICODE flag is not specified, matches any non-whitespace character; this is equivalent to
the set [~ \t\n\r\f\v] The LOCALE flag has no extra effect on non-whitespace match. If UNICODE is
set, then any character not marked as space in the Unicode character properties database is matched.

\w When the LOCALE and UNICODE flags are not specified, matches any alphanumeric character and
the underscore; this is equivalent to the set [a-zA-Z0-9]. With LOCALE, it will match the set [0-9]
plus whatever characters are defined as alphanumeric for the current locale. If UNICODE is set, this
will match the characters [0-9_] plus whatever is classified as alphanumeric in the Unicode character
properties database.

\W When the LOCALE and UNICODE flags are not specified, matches any non-alphanumeric character;
this is equivalent to the set [~a-zA-Z0-9 |. With LOCALE, it will match any character not in the set

92 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

[0-9], and not defined as alphanumeric for the current locale. If UNICODE is set, this will match
anything other than [0-9_] plus characters classified as not alphanumeric in the Unicode character
properties database.

\Z Matches only at the end of the string.

If both LOCALE and UNICODE flags are included for a particular sequence, then LOCALE flag takes effect
first followed by the UNICODE.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression
parser:

\a\b A An
\r \t \v \x
\\

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

Octal escapes are included in a limited form: If the first digit is a 0, or if there are three octal digits, it is
considered an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always
at most three digits in length.

See also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The
second edition of the book no longer covers Python at all, but the first edition covered writing good
regular expression patterns in great detail.

7.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified
versions of the full featured methods for compiled regular expressions. Most non-trivial applications always
use the compiled form.

re.compile(pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching
using its match() and search() methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the
following variables, combined using bitwise OR (the | operator).

The sequence

prog — re.compile(pattern)
result — prog.match(string)

is equivalent to

result — re.match(pattern, string)

but using re.compile() and saving the resulting regular expression object for reuse is more efficient
when the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.match(), re.search() or re.
compile() are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

7.2. re — Regular expression operations 93

The Python Library Reference, Release 2.7.14

re. DEBUG
Display debug information about compiled expression.

re.l

re. IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not
affected by the current locale. To get this effect on non-ASCII Unicode characters such as i and U,
add the UNICODE flag.

re.LL

re. LOCALE
Make \w, \W, \b, \B, \s and \S dependent on the current locale.

re.M

re. MULTILINE
When specified, the pattern character '~ ' matches at the beginning of the string and at the beginning
of each line (immediately following each newline); and the pattern character '$' matches at the end of
the string and at the end of each line (immediately preceding each newline). By default, ' ' matches
only at the beginning of the string, and '$"' only at the end of the string and immediately before the
newline (if any) at the end of the string.

re.S

re. DOTALL
Make the '.' special character match any character at all, including a newline; without this flag, '."
will match anything except a newline.

re.U

re.UNICODE
Make the \w, \W, \b, \B, \d, \D, \s and \S sequences dependent on the Unicode character properties
database. Also enables non-ASCII matching for IGNORECASE.
New in version 2.0.

re.X

re. VERBOSE

This flag allows you to write regular expressions that look nicer and are more readable by allowing you
to visually separate logical sections of the pattern and add comments. Whitespace within the pattern
is ignored, except when in a character class, or when preceded by an unescaped backslash, or within
tokens like *?, (7: or (?P<...>. When a line contains a # that is not in a character class and is not
preceded by an unescaped backslash, all characters from the leftmost such # through the end of the
line are ignored.

This means that the two following regular expression objects that match a decimal number are func-
tionally equal:

a — re.compile(r"""\d + # the integral part
the decimal point
\d * # some fractional digits""", re.X)
b = re.compile(r'"\d+\.\d*")

re.search(pattern, string, flags=0)
Scan through string looking for the first location where the regular expression pattern produces a
match, and return a corresponding MatchObject instance. Return None if no position in the string
matches the pattern; note that this is different from finding a zero-length match at some point in the
string.

re.match(pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a

94 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

corresponding MatchObject instance. Return None if the string does not match the pattern; note that
this is different from a zero-length match.

Note that even in MULTILINE mode, re.match() will only match at the beginning of the string and
not at the beginning of each line.

If you want to locate a match anywhere in string, use search() instead (see also search() vs. match()).

re.split(pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text
of all groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at
most maxsplit splits occur, and the remainder of the string is returned as the final element of the list.
(Incompatibility note: in the original Python 1.5 release, maxsplit was ignored. This has been fixed in
later releases.)

re.split("\W-+", "Words, words, words.")
['Words', '"words', 'words', ']
re.split(' (\W+) ', 'Words, words, words.")

['Words', ', ', "words', ', ', 'words', '.", '']
re.split("\W-+", "Words, words, words.", 1)
['Words', 'words, words. ']
re.split(' [a-f]+ ', '0a3B9 ", flags=re IGNORECASE)
['0', |3v7 vgv]

If there are capturing groups in the separator and it matches at the start of the string, the result will
start with an empty string. The same holds for the end of the string:

re.split(" (\W-+) ", "...words, words...")
[*', "', "words', ', ', "words', "...", "]

That way, separator components are always found at the same relative indices within the result list
(e.g., if there’s one capturing group in the separator, the Oth, the 2nd and so forth).

Note that split will never split a string on an empty pattern match. For example:

re.split('x*', "foo")
['foo"']

re.split(""(?m)~$", "foo\n\nbar\n")
['foo\n\nbar\n"'|

Changed in version 2.7: Added the optional flags argument.

re.findall(pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned
left-to-right, and matches are returned in the order found. If one or more groups are present in the
pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group.
Empty matches are included in the result unless they touch the beginning of another match.

New in version 1.5.2.
Changed in version 2.4: Added the optional flags argument.

re.finditer(pattern, string, flags=0)
Return an iterator yielding MatchObject instances over all non-overlapping matches for the RE pattern
in string. The string is scanned left-to-right, and matches are returned in the order found. Empty
matches are included in the result unless they touch the beginning of another match.

New in version 2.2.

Changed in version 2.4: Added the optional flags argument.

7.2. re — Regular expression operations 95

The Python Library Reference, Release 2.7.14

re.sub(pattern, repl, string, count=0, flags=0)

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string
by the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string
or a function; if it is a string, any backslash escapes in it are processed. That is, \n is converted to a
single newline character, \r is converted to a carriage return, and so forth. Unknown escapes such as
\j are left alone. Backreferences, such as \6, are replaced with the substring matched by group 6 in
the pattern. For example:

re.sub(r'def\s+([a-zA-Z_|[a-zA-Z_0-9]*)\s*\(\s*\):",
r'static PyObject*\npy \1(void)\n{",
'def myfunc(): ")
'static PyObject®\npy myfunc(void)\n{"

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a
single match object argument, and returns the replacement string. For example:

def dashrepl(matchobj):

if matchobj.group(0) == '-': return ' '

else: return '-'

re.sub('-{1,2} ", dashrepl, 'pro----gram-files")
' pro--gram files'

re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam"', flags=re. IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or an RE object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count
must be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches
for the pattern are replaced only when not adjacent to a previous match, so sub('x*', '-' 'abc"')
returns '-a-b-c-'.

In string-type repl arguments, in addition to the character escapes and backreferences described above,
\g<name> will use the substring matched by the group named name, as defined by the (?P<name>...)
syntax. \g<number> uses the corresponding group number; \g<2> is therefore equivalent to \2, but
isn’t ambiguous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20,
not a reference to group 2 followed by the literal character '0'. The backreference \g<0> substitutes
in the entire substring matched by the RE.

Changed in version 2.7: Added the optional flags argument.

re.subn(pattern, repl, string, count=0, flags=0)

Perform the same operation as sub(), but return a tuple (new_ string, number of subs made).

Changed in version 2.7: Added the optional flags argument.

re.escape(pattern)

Escape all the characters in pattern except ASCII letters and numbers. This is useful if you want to
match an arbitrary literal string that may have regular expression metacharacters in it. For example:

print re.escape('python.exe')
python\.exe

legal chars = string.ascii_lowercase + string.digits + "!#$%& " *+-.~ 7"
print '[%s]+" % re.escape(legal chars)
[abcdefghijklmnopqrstuvwxyz0123456789\ N\ #\$\ %\ &\ "\ F\+\-\.\ "\ \ AN\]+

operators — [, Tt vEr 0 e

print '|'.join(map(re.escape, sorted(operators, reverse=True)))

VIRV

96

Chapter 7. String Services

The Python Library Reference, Release 2.7.14

re.purge()
Clear the regular expression cache.

exception re.error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation
or matching. It is never an error if a string contains no match for a pattern.

7.2.3 Regular Expression Objects

class re.RegexObject
The RegexObject class supports the following methods and attributes:

search(string[, pos[, endpos]])
Scan through string looking for a location where this regular expression produces a match, and
return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the
string.

The optional second parameter pos gives an index in the string where the search is to start; it
defaults to 0. This is not completely equivalent to slicing the string; the ' ~' pattern character
matches at the real beginning of the string and at positions just after a newline, but not necessarily
at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string
is endpos characters long, so only the characters from pos to endpos - 1 will be searched for a
match. If endpos is less than pos, no match will be found, otherwise, if rx is a compiled regular
expression object, rx.search(string, 0, 50) is equivalent to rx.search(string[:50], 0).

pattern = re.compile("d")
pattern.search("dog") # Match at index 0
<_sre.SRE_Match object at ...>
pattern.search("dog", 1) # No match; search doesn 't include the "d"

match(string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search() method.

pattern = re.compile("o")

pattern.match("dog") # No match as "o" is not at the start of "dog".

pattern.match("dog", 1) # Match as "o" is the 2nd character of "dog".
< _sre.SRE_Match object at ...>

If you want to locate a match anywhere in string, use search() instead (see also search() vs.
match()).

split(string, maxsplit—0)
Identical to the split() function, using the compiled pattern.
ﬁndall(string[, pos[, endpos]])

Similar to the findall() function, using the compiled pattern, but also accepts optional pos and
endpos parameters that limit the search region like for match().

7.2. re — Regular expression operations 97

The Python Library Reference, Release 2.7.14

ﬁnditer(string[, pos[, endpos]])
Similar to the finditer() function, using the compiled pattern, but also accepts optional pos and
endpos parameters that limit the search region like for match().

sub(repl, string, count=0)
Identical to the sub() function, using the compiled pattern.

subn(repl, string, count=0)
Identical to the subn() function, using the compiled pattern.

flags
The regex matching flags. This is a combination of the flags given to compile() and any (?...)
inline flags in the pattern.

groups
The number of capturing groups in the pattern.

groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The
dictionary is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

7.2.4 Match Objects

class re.MatchObject

Match objects always have a boolean value of True. Since match() and search() return None when
there is no match, you can test whether there was a match with a simple if statement:

match — re.search(pattern, string)
if match:
process(match)

Match objects support the following methods and attributes:

expand (template)
Return the string obtained by doing backslash substitution on the template string template, as
done by the sub() method. Escapes such as \n are converted to the appropriate characters, and
numeric backreferences (\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by
the contents of the corresponding group.

group([groupl,])
Returns one or more subgroups of the match. If there is a single argument, the result is a single
string; if there are multiple arguments, the result is a tuple with one item per argument. Without
arguments, groupl defaults to zero (the whole match is returned). If a groupN argument is zero,
the corresponding return value is the entire matching string; if it is in the inclusive range [1..99],
it is the string matching the corresponding parenthesized group. If a group number is negative or
larger than the number of groups defined in the pattern, an IndexError exception is raised. If a
group is contained in a part of the pattern that did not match, the corresponding result is None.
If a group is contained in a part of the pattern that matched multiple times, the last match is

returned.
m — re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
m.group(0) # The entire match
'Isaac Newton'
m.group(1l) # The first parenthesized subgroup.
'Isaac'

98

Chapter 7. String Services

The Python Library Reference, Release 2.7.14

m.group(2) # The second parenthesized subgroup.
'Newton'

m.group(l, 2) # Multiple arguments give us a tuple.
('Isaac', 'Newton')

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be
strings identifying groups by their group name. If a string argument is not used as a group name
in the pattern, an IndexError exception is raised.

A moderately complicated example:

m = re.match(r"(?P<first _name>\w+) (?P<last _name>\w+)", "Malcolm Reynolds")
m.group(' first _name")

'Malcolm
m.group('last _name")

'Reynolds’

Named groups can also be referred to by their index:

m.group(1l)
' Malcolm'

m.group(2)
'Reynolds’

If a group matches multiple times, only the last match is accessible:

m = re.match(r"(..)+", "alb2c¢3") +# Matches 3 times.
m.group(1) # Returns only the last match.
|l C3 '
groups([default])

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are
in the pattern. The default argument is used for groups that did not participate in the match; it
defaults to None. (Incompatibility note: in the original Python 1.5 release, if the tuple was one
element long, a string would be returned instead. In later versions (from 1.5.1 on), a singleton
tuple is returned in such cases.)

For example:

m = re.match(r"(\d+)\.(\d+)", "24.1632")
m.groups()
(1247, 11632")

If we make the decimal place and everything after it optional, not all groups might participate in
the match. These groups will default to None unless the default argument is given:

m = re.match(r"(\d-+)\.7(\d+)?", "24")
- m.groups() # Second group defaults to None.
(24", None)
m.groups('0') # Now, the second group defaults to '0'.
(24,707
groupdict([default])

Return a dictionary containing all the named subgroups of the match, keyed by the subgroup
name. The default argument is used for groups that did not participate in the match; it defaults
to None. For example:

7.2. re — Regular expression operations 99

The Python Library Reference, Release 2.7.14

m = re.match(r"(?P<first _name>\w+) (?P<last _name>\w+)", "Malcolm Reynolds")
m.groupdict()
{'first_name': 'Malcolm"', 'last name': 'Reynolds'}

start([group])

end([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero
(meaning the whole matched substring). Return -1 if group exists but did not contribute to the
match. For a match object m, and a group g that did contribute to the match, the substring
matched by group g (equivalent to m.group(g)) is

m.string[m.start(g):m.end(g)]

Note that m.start(group) will equal m.end(group) if group matched a null string. For example,
after m = re.search('b(c?)', 'cba'), m.start(0) is 1, m.end(0) is 2, m.start(1) and m.end(1) are
both 2, and m.start(2) raises an IndexError exception.

An example that will remove remove _this from email addresses:

email = "tonyQtiremove _thisger.net"

m = re.search("remove this", email)

email[:m.start()] + emailjm.end():]
'tony@tiger.net '

span([group])
For MatchObject m, return the 2-tuple (m.start(group), m.end(group)). Note that if group did
not contribute to the match, this is (-1, -1). group defaults to zero, the entire match.

pos
The value of pos which was passed to the search() or match() method of the RegexObject. This
is the index into the string at which the RE engine started looking for a match.

endpos
The value of endpos which was passed to the search() or match() method of the RegexObject.
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing group, or None if no group was matched at all.
For example, the expressions (a)b, ((a)(b)), and ((ab)) will have lastindex == 1 if applied to the
string 'ab', while the expression (a)(b) will have lastindex == 2, if applied to the same string.

lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no
group was matched at all.

re
The regular expression object whose match() or search() method produced this MatchObject
instance.

string

The string passed to match() or search().

7.2.5 Examples

Checking For a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

100 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

def displaymatch(match):
if match is None:
return None
return ' <Match: %r, groups=%r>"' % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with
each character representing a card, “a” for ace, “k” for king, “q” for queen, *j” for jack, “t” for 10, and “2”
through “9” representing the card with that value.

To see if a given string is a valid hand, one could do the following;:

valid = re.compile(r" " [a2-9tjqk|{5}$")
displaymatch(valid. match("akt5q")) #
"<Match: 'akt5q', groups=()>"
displaymatch(valid. match("akt5e")) # Invalid.
displaymatch(valid. match("akt")) # Invalid.
displaymatch(valid. match("727ak")) +# Valid.
"<Match: '727ak"', groups=()>"

Valid.

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular
expression, one could use backreferences as such:

pair = re.compile(r" . *(.).*\1")

displaymatch(pair.match("717ak")) # Pair of Ts.
"<Match: '717", groups=('7",)>"

displaymatch(pair.match("718ak")) # No pairs.

displaymatch(pair.match("354aa")) # Pair of aces.
"<Match: '354aa’', groups=('a',)>"

To find out what card the pair consists of, one could use the group() method of MatchObject in the following
manner:

pair.match("717ak").group(1)
17 '

Error because re.match() returns None, which doesn't have a group() method:
pair.match("718ak").group(1)
Traceback (most recent call last):
File "<pyshell#23>" line 1, in <module>
re.match(r".*(.).*\1", "718ak").group(1)
AttributeError: 'NoneType' object has no attribute 'group'

pair.match("354aa").group(1)
L} al

Simulating scanf()

Python does not currently have an equivalent to scanf(). Regular expressions are generally more powerful,
though also more verbose, than scanf() format strings. The table below offers some more-or-less equivalent
mappings between scanf() format tokens and regular expressions.

7.2. re — Regular expression operations 101

The Python Library Reference, Release 2.7.14

scanf() Token Regular Expression

%oc .

Yo5c¢ A5}

%d [-+]7\d+

%e, NE, %ft, %g | [-+]7(\d+(\.\d*)?|\\d+)([eE][-+]?\d+)?
Yol [-+]7(0]xX]|\dA-Fa-f]-+]0]0-7]*|\d+)

%0 [-+]?]0-7]+

%os \S+

Jou \d+

%ox, %X [-+]7(0[xX])?[\dA-Fa-f]+

To extract the filename and numbers from a string like

’ usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

’ (\S+) - (\d+) errors, (\d +) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re.match() checks for a match
only at the beginning of the string, while re.search() checks for a match anywhere in the string (this is what
Perl does by default).

For example:

re.match("c", "abedef") # No match
re.search('c", "abedef") # Match
< _sre.SRE_Match object at ...>

Regular expressions beginning with '~ ' can be used with search() to restrict the match at the beginning of
the string:

re.match("c", "abedef") # No match
re.search("“c¢", "abcdef") # No match
re.search("~a", "abedef") # Match

< _sre.SRE_Match object at ...>

Note however that in MULTILINE mode match() only matches at the beginning of the string, whereas using
search() with a regular expression beginning with ' ~' will match at the beginning of each line.

rematch(' X', "A\uB\nX"', re MULTILINE) # No match
re.search(' "X', "A\nB\nX", re MULTILINE) +# Match
< _sre.SRE_Match object at ...>

Making a Phonebook

split() splits a string into a list delimited by the passed pattern. The method is invaluable for converting

102 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

textual data into data structures that can be easily read and modified by Python as demonstrated in the
following example that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text — """Ross McFluff: 834.345.1254 155 Elm Street

... Ronald Heathmore: 892.345.3428 436 Finley Avenue
... Frank Burger: 925.541.7625 662 South Dogwood Way

... Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty
line having its own entry:

> entries — re.split("\n+", text)

entries
['Ross McFluff: 834.345.1254 155 Elm Street ',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way ',
"Heather Albrecht: 548.326.4584 919 Park Place'|

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the
maxsplit parameter of split() because the address has spaces, our splitting pattern, in it:

> > [re.split(":? ", entry, 3) for entry in entries]

[['Ross', 'McFluff', '834.345.1254", '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428"', '436 Finley Avenue'],
['Frank', 'Burger', '925.541.7625", '662 South Dogwood Way '],
['Heather', "Albrecht', '548.326.4584"', '919 Park Place'|]

The :? pattern matches the colon after the last name, so that it does not occur in the result list. With a
maxsplit of 4, we could separate the house number from the street name:

> [re.split(":7 ", entry, 4) for entry in entries|

[['Ross', 'McFluff', '834.345.1254", '155", 'Elm Street'],
['Ronald', 'Heathmore', '892.345.3428", 436", 'Finley Avenue'],
['Frank', 'Burger', '925.541.7625", '662"', 'South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584", '919", ' Park Place']|

Text Munging

sub() replaces every occurrence of a pattern with a string or the result of a function. This example demon-
strates using sub() with a function to “munge” text, or randomize the order of all the characters in each word
of a sentence except for the first and last characters:

> def repl(m):
inner _word — list(m.group(2))
random.shuffle(inner _word)
return m.group(1l) + "" join(inner word) + m.group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
re.sub(r"(\w)(\w-+)(\w)", repl, text)
' Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
> > re.sub(r"(\w)(\w—+)(\w)", repl, text)
' Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy. '

7.2. re — Regular expression operations 103

The Python Library Reference, Release 2.7.14

Finding all Adverbs

findall() matches all occurrences of a pattern, not just the first one as search() does. For example, if one was
a writer and wanted to find all of the adverbs in some text, he or she might use findall() in the following
manner:

text = "He was carefully disguised but captured quickly by police."
re.findall(r"\w-ly", text)
' , H
['carefully ', 'quickly"]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer() is useful as
it provides instances of MatchObject instead of strings. Continuing with the previous example, if one was a
writer who wanted to find all of the adverbs and their positions in some text, he or she would use finditer()
in the following manner:

text = "He was carefully disguised but captured quickly by police."
for m in re.finditer(r"\w-+ly", text):
print '%02d-7%02d: %s' % (m.start(), m.end(), m.group(0))

07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash ('\ ") in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of
code are functionally identical:

re.match(r"\W()\IT\W", " ff ")
< _sre.SRE_ Match object at ...>

re.match("\\W()\\I\\W", " £ ")
< _sre.SRE_Match object at ...>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string
notation, this means r'"\\". Without raw string notation, one must use "\\\\", making the following lines
of code functionally identical:

re.match(r"\\", r"\\")
< _sre.SRE_ Match object at ...>
re.match("\\\\", r"\\")

< _sre.SRE_Match object at ...>

7.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. This
can be used in handling binary data stored in files or from network connections, among other sources. It uses
Format Strings as compact descriptions of the layout of the C structs and the intended conversion to/from
Python values.

104 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper
alignment for the C types involved; similarly, alignment is taken into account when unpacking. This behavior
is chosen so that the bytes of a packed struct correspond exactly to the layout in memory of the corresponding
C struct. To handle platform-independent data formats or omit implicit pad bytes, use standard size and
alignment instead of native size and alignment: see Byte Order, Size, and Alignment for details.

7.3.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack(fmt, v1, v2, ...)
Return a string containing the values v1, v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

struct.pack into(fmt, buffer, offset, v1, v2, ...)
Pack the values v1, v2, ... according to the given format, write the packed bytes into the writable buffer
starting at offset. Note that the offset is a required argument.

New in version 2.5.

struct.unpack(fmt, string)
Unpack the string (presumably packed by pack(fmt, ...)) according to the given format. The result
is a tuple even if it contains exactly one item. The string must contain exactly the amount of data
required by the format (len(string) must equal calcsize(fmt)).

struct.unpack _from(fmt, buffer[, offset:O])
Unpack the buffer according to the given format. The result is a tuple even if it contains exactly one
item. The buffer must contain at least the amount of data required by the format (len(buffer|offset:])
must be at least calcsize(fmt)).

New in version 2.5.

struct.calcsize(fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

7.3.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data.
They are built up from Format Characters, which specify the type of data being packed /unpacked. In
addition, there are special characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment
of the packed data, according to the following table:

7.3. struct — Interpret strings as packed binary data 105

The Python Library Reference, Release 2.7.14

Character | Byte order Size Alignment
Q native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, '@Q"' is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and
AMD64 (x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium
feature switchable endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined
with native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '=": both use native byte order, but the size and alignment of the
latter is standardized.

The form '!' is available for those poor souls who claim they can’t remember whether network byte order
is big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<"
or '>".

Notes:

1. Padding is only automatically added between successive structure members. No padding is added at
the beginning or the end of the encoded struct.

2. No padding is added when using non-native size and alignment, e.g. with ‘<’ ‘>’ ‘=’ and ‘!".

3. To align the end of a structure to the alignment requirement of a particular type, end the format with
the code for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be
obvious given their types. The ‘Standard size’ column refers to the size of the packed value in bytes when
using standard size; that is, when the format string starts with one of '<', ">" '!" or '=". When using
native size, the size of the packed value is platform-dependent.

106 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

Format | C Type Python type Standard size | Notes
X pad byte no value

¢ char string of length 1 | 1

b signed char integer 1 (3)

B unsigned char integer 1 (3)

? _Bool bool 1 (1)

h short integer 2 (3)

H unsigned short integer 2 (3)

i int integer 4 (3)

I unsigned int integer 4 (3)

1 long integer 4 (3)

L unsigned long integer 4 (3)

q long long integer 8 (2), (3)
Q unsigned long long | integer 8 (2), (3)
f float float 4 (4)

d double float 8 (4)

s char|] string

p charf] string

P void * integer (5), (3)

Notes:

1. The '?' conversion code corresponds to the _Bool type defined by C99. If this type is not available,
it is simulated using a char. In standard mode, it is always represented by one byte.

New in version 2.6.

2. The 'q' and 'Q' conversion codes are available in native mode only if the platform C compiler
supports C long long, or, on Windows, __int64. They are always available in standard modes.

New in version 2.2.

3. When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer
has a __index () method then that method is called to convert the argument to an integer before

packing. If no __index () method exists, or the call to __index () raises TypeError, then the
__int_ () method is tried. However, the use of __int () is deprecated, and will raise Depreca-
tionWarning.

Changed in version 2.7: Use of the __index () method for non-integers is new in 2.7.

Changed in version 2.7: Prior to version 2.7, not all integer conversion codes would use the __int ()
method to convert, and DeprecationWarning was raised only for float arguments.

4. For the 'f' and 'd' conversion codes, the packed representation uses the IEEE 754 binary32 (for 'f')
or binary64 (for 'd") format, regardless of the floating-point format used by the platform.

5. The 'P' format character is only available for the native byte ordering (selected as the default or
with the '@" byte order character). The byte order character '=" chooses to use little- or big-endian
ordering based on the host system. The struct module does not interpret this as native ordering, so
the '"P' format is not available.

A format character may be preceded by an integral repeat count. For example, the format string '4h’
means exactly the same as "hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace
though.

7.3. struct — Interpret strings as packed binary data 107

The Python Library Reference, Release 2.7.14

For the 's' format character, the count is interpreted as the size of the string, not a repeat count like for the
other format characters; for example, '10s' means a single 10-byte string, while '10c' means 10 characters.
If a count is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as
appropriate to make it fit. For unpacking, the resulting string always has exactly the specified number of
bytes. As a special case, '0s' means a single, empty string (while 'Oc' means 0 characters).

The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed
number of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is
smaller. The bytes of the string follow. If the string passed in to pack() is too long (longer than the count
minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is
padded with null bytes so that exactly count bytes in all are used. Note that for unpack(), the 'p' format
character consumes count bytes, but that the string returned can never contain more than 255 characters.

For the 'P' format character, the return value is a Python integer or long integer, depending on the size
needed to hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned
as the Python integer 0. When packing pointer-sized values, Python integer or long integer objects may
be used. For example, the Alpha and Merced processors use 64-bit pointer values, meaning a Python long
integer will be used to hold the pointer; other platforms use 32-bit pointers and will use a Python integer.

For the '?' format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any
non-zero value will be True when unpacking.

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

from struct import *

pack('hhl', 1,2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03"

unpack('hhl', "\x00\x01\x00\x02\x00\x00\x00\x03")
(1,2,3)

calcsize('hhl")
8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

record = 'raymond \x32\x12\x08\x01\x08"
name, serialnum, school, gradelevel — unpack('<10sHHb', record)

from collections import namedtuple

Student — namedtuple(' Student', 'name serialnum school gradelevel ")
Student. make(unpack('<10sHHb', record))
Student(name="raymond ', serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment
requirements is different:

pack('ci', "' 0x12131415)
"*¥\x00\x00\x00\x12\x13\x14\x15"
pack('ic', 0x12131415, '*)
"\x12\x13\x14\x15*"
calcsize('ci")

108 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

calcsize('ic")

The following format 'llhOl' specifies two pad bytes at the end, assuming longs are aligned on 4-byte
boundaries:

pack('11h0l", 1, 2, 3)
"\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

This only works when native size and alignment are in effect; standard size and alignment does not enforce
any alignment.

See also:
Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

7.3.3 Classes

The struct module also defines the following type:

class struct.Struct(format)
Return a new Struct object which writes and reads binary data according to the format string format.
Creating a Struct object once and calling its methods is more efficient than calling the struct functions
with the same format since the format string only needs to be compiled once.

New in version 2.5.
Compiled Struct objects support the following methods and attributes:

pack(vl, v2, ...)
Identical to the pack() function, using the compiled format. (len(result) will equal self.size.)

pack _into(buffer, offset, v1, v2, ...)
Identical to the pack into() function, using the compiled format.

unpack(string)
Identical to the unpack() function, using the compiled format. (len(string) must equal self.size).

unpack _from(buffer, offset=0)
Identical to the unpack from() function, using the compiled format. (len(buffer[offset:]) must be
at least self.size).

format
The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the string) corresponding to format.

7.4 difflib — Helpers for computing deltas

New in version 2.1.

This module provides classes and functions for comparing sequences. It can be used for example, for com-
paring files, and can produce difference information in various formats, including HTML and context and
unified diffs. For comparing directories and files, see also, the fileemp module.

7.4. difflib — Helpers for computing deltas 109

The Python Library Reference, Release 2.7.14

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the
late 1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea
is to find the longest contiguous matching subsequence that contains no “junk” elements (the Ratcliff
and Obershelp algorithm doesn’t address junk). The same idea is then applied recursively to the pieces
of the sequences to the left and to the right of the matching subsequence. This does not yield minimal
edit sequences, but does tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time
in the expected case. SequenceMatcher is quadratic time for the worst case and has expected-case
behavior dependent in a complicated way on how many elements the sequences have in common; best
case time is linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain
sequence items as junk. The heuristic counts how many times each individual item appears in the
sequence. If an item’s duplicates (after the first one) account for more than 1% of the sequence and
the sequence is at least 200 items long, this item is marked as “popular” and is treated as junk for the
purpose of sequence matching. This heuristic can be turned off by setting the autojunk argument to
False when creating the SequenceMatcher.

New in version 2.7.1: The autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of a Differ delta begins with a two-letter code:

Code | Meaning
-t line unique to sequence 1

'+ ' | line unique to sequence 2
v line common to both sequences
7 line not present in either input sequence

Lines beginning with ‘?” attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff

This class can be used to create an HTML table (or a complete HTML file containing the table)
showing a side by side, line by line comparison of text with inter-line and intra-line change highlights.
The table can be generated in either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, char-
junk=IS CHARACTER_JUNK)
Initializes instance of HtmlDiff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff() (used by HtmlDiff to
generate the side by side HTML differences). See ndiff() documentation for argument default
values and descriptions.

110

Chapter 7. String Services

The Python Library Reference, Release 2.7.14

The following methods are public:

make _file(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings
(both default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual
differences are to be shown, else the default is False to show the full files. numlines defaults to 5.
When context is True numlines controls the number of context lines which surround the difference
highlights. When context is False numlines controls the number of lines which are shown before
a difference highlight when using the “next” hyperlinks (setting to zero would cause the “next”
hyperlinks to place the next difference highlight at the top of the browser without any leading
context).

make table(fromlines, tolines [, fromdesc][, todesc][, context][, numlines|)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML
table showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make file() method.
Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its use.
New in version 2.4.

difflib.context _diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context
diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context.
The changes are shown in a before/after style. The number of context lines is set by n which defaults
to three.

By default, the diff control lines (those with *** or ---) are created with a trailing newline. This is
helpful so that inputs created from file.readlines() result in diffs that are suitable for use with file.
writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to ""

be uniformly newline free.

so that the output will

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times
are normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

sl = ['bacon\n', 'eggs\n', 'ham\n"', 'guido\n"']
s2 = ['python\n', 'eggy\n', "hamster\n', 'guido\n"]
for line in context diff(s1, s2, fromfile="before.py"', tofile="after.py"'):
sys.stdout.write(line)
*** hefore.py

--- after.py
I

kkk 1,4 ok okok
! bacon
! eggs
! ham
guido
— 1,4
! python
Veggy

7.4. difflib — Helpers for computing deltas 111

The Python Library Reference, Release 2.7.14

! hamster
guido

See A command-line interface to difflib for a more detailed example.

New in version 2.3.

difflib.get_ close_matches(word, possibilities[, n][, cutoff])

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list
of strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater
than 0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1]. Possibilities that don’t score at
least that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity
score, most, similar first.

get close _matches('appel', ['ape', "apple', "peach', 'puppy'])
[*apple', 'ape']

import keyword

get close matches(' wheel ', keyword.kwlist)
['while "]

get _close matches('apple', keyword.kwlist)
|

get close_matches('accept ', keyword.kwlist)
['except']

difflib.ndiff (a, b[, linejunk][, charjunk])

Compare a and b (lists of strings); return a Differ-style delta (a generator generating the delta lines).
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or
false if not. The default is (None), starting with Python 2.3. Before then, the default was the module-
level function IS LINE JUNK(), which filters out lines without visible characters, except for at most
one pound character ('#"'). As of Python 2.3, the underlying SequenceMatcher class does a dynamic
analysis of which lines are so frequent as to constitute noise, and this usually works better than the
pre-2.3 default.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is
junk, or false if not. The default is module-level function IS CHARACTER _JUNK(), which filters
out whitespace characters (a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

diff = ndiff(' one\ntwo\nthree\n' .splitlines(1),
"ore\ntree\nemu'\n ' .splitlines(1))
print ' ' join(diff),
- one
9 -
+ ore
9 ~
- two
- three
? -

112

Chapter 7. String Services

The Python Library Reference, Release 2.7.14

-+ tree
-+ emu

difflib.restore(sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare() or ndiff(), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

diff = ndiff(' one\ntwo'\nthree\n' .splitlines(1),
"ore\ntree\nemu\n "' .splitlines(1))
diff = list(diff) # materialize the generated delta into a list
print ' '.join(restore(diff, 1)),
one
two
three
print ' '.join(restore(diff, 2)),
ore
tree
emu

difflib.unified _diff (a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n]|, lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context.
The changes are shown in an inline style (instead of separate before/after blocks). The number of
context lines is set by n which defaults to three.

By default, the diff control lines (those with —, +++, or @Q@) are created with a trailing newline.
This is helpful so that inputs created from file.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to ""

be uniformly newline free.

so that the output will

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times
are normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

sl = ['bacon\n"', 'eggs\n', 'ham\n', 'guido\n"']
s2 = ['python\n', 'eggy\n', "hamster\n', 'guido\n']
for line in unified diff(s1, s2, fromfile—"'before.py', tofile—"after.py'):
sys.stdout.write(line)

--- before.py

+++ after.py

Q@@ -1,4 +1,4 QQ

-bacon

-eggs

-ham

~+python

+eggy

+hamster

guido

See A command-line interface to difflib for a more detailed example.

New in version 2.3.

7.4. difflib — Helpers for computing deltas 113

The Python Library Reference, Release 2.7.14

difflib.IS LINE JUNK(line)
Return true for ignorable lines. The line line is ignorable if line is blank or contains a single "# "',
otherwise it is not ignorable. Used as a default for parameter linejunk in ndiff() before Python 2.3.

difflib.IS CHARACTER_ JUNK(ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it
is not ignorable. Used as a default for parameter charjunk in ndiff().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E.
Metzener. This was published in Dr. Dobb’s Journal in July, 1988.

7.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class difflib.SequenceMatcher(isjunk=None, a=", b=" autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Passing None for
isjunk is equivalent to passing lambda x: 0; in other words, no elements are ignored. For example,
pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard
tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The
elements of both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic.
New in version 2.7.1: The autojunk parameter.
SequenceMatcher objects have the following methods:

set _seqs(a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set seq2() to set the commonly used sequence
once and call set seql() repeatedly, once for each of the other sequences.

set_seql(a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set _seq2(b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find longest match(alo, ahi, blo, bhi)
Find longest matching block in afalo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find longest match() returns (i, j, k) such that afi:i+k] is equal
to b[j:j+k|, where alo <=1 <= i+k <= ahi and blo <= j <= j+k <= bhi. For all (i',j', k")
meeting those conditions, the additional conditions k >= k', i <=1i",and if i ==1i',j <=j'
are also met. In other words, of all maximal matching blocks, return one that starts earliest in
a, and of all those maximal matching blocks that start earliest in a, return the one that starts
earliest in b.

114 Chapter 7. String Services

http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
http://www.drdobbs.com/

The Python Library Reference, Release 2.7.14

s = SequenceMatcher(None, " abed", "abed abed")
s.find_longest match(0, 5, 0, 9)
Match(a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the
additional restriction that no junk element appears in the block. Then that block is extended
as far as possible by matching (only) junk elements on both sides. So the resulting block never
matches on junk except as identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd'
from matching the ' abced' at the tail end of the second sequence directly. Instead only the
'abced!' can match, and matches the leftmost 'abed' in the second sequence:

s = SequenceMatcher(lambda x: x=="","

s.find_longest match(0, 5, 0, 9)
Match(a=1, b=0, size=4)

abed", "abed abed")

If no blocks match, this returns (alo, blo, 0).
Changed in version 2.6: This method returns a named tuple Match(a, b, size).

get _matching blocks()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and
means that a[izi+n] == b[j:;j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). It is the only triple with n == 0.
If (i, j,n) and (i',j', n') are adjacent triples in the list, and the second is not the last triple in
the list, then i+n !=1i' or j4n !=j'; in other words, adjacent triples always describe non-adjacent
equal blocks.

Changed in version 2.5: The guarantee that adjacent triples always describe non-adjacent blocks
was implemented.

s = SequenceMatcher(None, "abxcd", "abed")
s.get__matching blocks()
[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get _opcodes()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2, j1,
j2). The first tuple has i1 == j1 == 0, and remaining tuples have il equal to the i2 from the
preceding tuple, and, likewise, j1 equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning

'replace' | a[il:i2] should be replaced by b[j1:j2].

"delete! afi1:i2] should be deleted. Note that j1 == j2 in this case.

'insert ' b[j1:j2] should be inserted at afil:il]. Note that il == i2 in this case.
"equal' afil:i2] == b[j1:j2] (the sub-sequences are equal).

For example:

a = "qabxcd"
b = "abycdf"
s = SequenceMatcher(None, a, b)
for tag, i1, 12, j1, j2 in s.get _opcodes():
print (" a|%d:%d] (%s) b[%d:%d] (%s)" %

7.4. difflib — Helpers for computing deltas 115

The Python Library Reference, Release 2.7.14

(tag, i1, 12, alil:i2], j1, j2, b[L:j2]))
delete af0:1] (q) b[0:0] ()
equal a[1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y
equal a[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (f)

T~~~

=

get_grouped_opcodes([n])
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get opcodes(), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get opcodes().
New in version 2.3.

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in
common.

This is expensive to compute if get matching blocks() or get opcodes() hasn’t already been
called, in which case you may want to try quick ratio() or real quick ratio() first to get an
upper bound.

quick _ratio()
Return an upper bound on ratio() relatively quickly.

real quick ratio()
Return an upper bound on ratio() very quickly.

The three methods that return the ratio of matching to total characters can give different results due to
differing levels of approximation, although quick ratio() and real quick ratio() are always at least as large
as ratio():

s = SequenceMatcher(None, "abced", "bede')
s.ratio()
0.75
s.quick _ratio()
0.75
s.real _quick ratio()
1.0

7.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

s = SequenceMatcher(lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio() value
over 0.6 means the sequences are close matches:

116 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

print round(s.ratio(), 3)
0.866

If you’re only interested in where the sequences match, get matching blocks() is handy:

for block in s.get matching blocks():

print "a[%d] and b[%d] match for elements" % block
a0] and b[0] match for 8 elements
a[8] and b[17] match for 21 elements
a[29] and b[38] match for 0 elements

Note that the last tuple returned by get matching blocks() is always a dummy, (len(a), len(b), 0), and this
is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get opcodes():

for opcode in s.get__opcodes():

print " a|%d:%d] b|%d:%d]" % opcode
equal a[0:8] b[0:8]
insert a[8:8] b[8:17]
equal a[8:29] b[17:38]

See also:

* The get close matches() function in this module which shows how simple code building on Sequence-
Matcher can be used to do useful work.

e Simple version control recipe for a small application built with SequenceMatcher.

7.4.3 Differ Objects

Note that Differ-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart.
Restricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of
producing a longer diff.

The Differ class has this constructor:

class difflib Differ([linejunk|, charjunk |])
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The
default is None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true
if the character is junk. The default is None, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare(a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences
can be obtained from the readlines() method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is via the writelines() method of a file-like
object.

7.4. difflib — Helpers for computing deltas 117

https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 2.7.14

7.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending
with newlines (such sequences can also be obtained from the readlines() method of file-like objects):

>>> textl = ''' 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
. """ splitlines(1)
> len(textl)
4
text1[0][-1]
v \Il v
>>> text2 = ''' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
. """ splitlines(1)

Next we instantiate a Differ object:

- d = Differ()

Note that when instantiating a Differ object we may pass functions to filter out line and character “junk.”
See the Differ() constructor for details.

Finally, we compare the two:

> > result = list(d.compare(textl, text2))

result is a list of strings, so let’s pretty-print it:

> > from pprint import pprint
pprint(result)
[' 1. Beautiful is better than ugly.\n",
'- 2. Explicit is better than implicit.\n",
'- 3. Simple is better than complex.\n",
'+ 3. Simple is better than complex.\n",

"7

'- 4. Complex is better than complicated.\n",
7 : - "\n,

'+ 4. Complicated is better than complex.\n",
'? ++++ 7 “\n',

"+ 5. Flat is better than nested.\n"|

As a single multi-line string it looks like this:

>>> import sys
>~ > sys.stdout.writelines(result)
1. Beautiful is better than ugly.
- 2. Explicit is better than implicit.
- 3. Simple is better than complex.
+ 3. Simple is better than complex.
7 4+
- 4. Complex is better than complicated.
0 ~ ~

+ 4. Complicated is better than complex.

118 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

? 4+ 7 -
+ 5. Flat is better than nested.

7.4.5 A command-line interface to difflib

This example shows how to use difflib to create a diff-like utility. It is also contained in the Python source

distribution, as Tools/scripts/diff.py.

""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.

* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

nnn

import sys, os, time, difflib, optparse

def main():
Configure the option parser
usage = "usage: %prog [options| fromfile tofile"

parser — optparse.OptionParser(usage)
parser.add_option("-c", action="store true", default—False,
help="Produce a context format diff (default)")
parser.add_option("-u", action—="store true", default—False,
help="Produce a unified format diff")
hlp = 'Produce HTML side by side diff (can use -c and -1 in conjunction)’
parser.add_option("-m", action="store true", default—False, help—hlp)
parser.add _option("-n", action="store true", default=False,
help="Produce a ndiff format diff")
parser.add_option("-1", "--lines", type="int", default—3,
help="Set number of context lines (default 3)")
(options, args) — parser.parse args()

if len(args) == 0:
parser.print__help()
sys.exit(1)
if len(args) != 2:
parser.error(''need to specify both a fromfile and tofile")

n = options.lines
fromfile, tofile — args # as specified in the usage string

we 're passing these as arguments to the diff function
fromdate — time.ctime(os.stat(fromfile).st _mtime)
todate = time.ctime(os.stat(tofile).st_mtime)

fromlines = open(fromfile, 'U").readlines()

tolines — open(tofile, 'U").readlines()

if options.u:
diff — difflib.unified _diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n—n)
elif options.n:
diff — difflib.ndiff(fromlines, tolines)
elif options.m:

7.4. difflib — Helpers for computing deltas

119

The Python Library Reference, Release 2.7.14

diff = difflib.HtmIDiff().make _file(fromlines, tolines, fromfile,
tofile, context—options.c,
numlines—n)
else:
diff — difflib.context _diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n—n)

/+ we 're using writelines because diff is a generator
sys.stdout.writelines(diff)

if name =="'_ main__'":
main()

7.5 StringlO — Read and write strings as files

This module implements a file-like class, StringlO, that reads and writes a string buffer (also known as
memory files). See the description of file objects for operations (section File Objects). (For standard strings,
see str and unicode.)

class StringIO.StringlO([buffer])
When a StringlO object is created, it can be initialized to an existing string by passing the string
to the constructor. If no string is given, the StringlO will start empty. In both cases, the initial file
position starts at zero.

The StringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some
care. If both are used, 8-bit strings that cannot be interpreted as 7-bit ASCII (that use the 8th bit)
will cause a UnicodeError to be raised when getvalue() is called.

The following methods of StringlO objects require special mention:

StringIO.getvalue()
Retrieve the entire contents of the “file” at any time before the StringlO object’s close() method is
called. See the note above for information about mixing Unicode and 8-bit strings; such mixing can
cause this method to raise UnicodeError.

StringIO.close()
Free the memory buffer. Attempting to do further operations with a closed StringlO object will raise
a ValueError.

Example usage:

import StringlO

output = StringIO.StringIO()
output.write(' First line.\n")
print > >output, 'Second line.'

Retrieve file contents -- this will be
'First line.\nSecond line.\n '
contents = output.getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output.close()

120 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

7.6 cStringlO — Faster version of StringlO

The module cStringlO provides an interface similar to that of the StringlO module. Heavy use of StringlO.
StringlO objects can be made more efficient by using the function StringlO() from this module instead.

cStringlO.StringlO([s])
Return a StringlO-like stream for reading or writing.

Since this is a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. It’s not possible to set attributes on it. Use the original StringlO module in
those cases.

Unlike the StringlO module, this module is not able to accept Unicode strings that cannot be encoded
as plain ASCII strings.

Another difference from the StringIO module is that calling StringIO() with a string parameter creates a
read-only object. Unlike an object created without a string parameter, it does not have write methods.
These objects are not generally visible. They turn up in tracebacks as Stringl and StringO.

The following data objects are provided as well:

¢StringlO.InputType
The type object of the objects created by calling StringlO() with a string parameter.

cStringlO.OutputType
The type object of the objects returned by calling StringlO() with no parameters.

There is a C API to the module as well; refer to the module source for more information.

Example usage:

import ¢StringIO

output = ¢StringlO.StringlO()
output.write(' First line.\n")
print > >output, 'Second line.'

Retrieve file contents -- this will be
'First line.\nSecond line.\n '
contents = output.getvalue()

Close object and discard memory buffer —-
.getvalue() will now raise an exception.
output.close()

7.7 textwrap — Text wrapping and filling

New in version 2.3.

Source code: Lib/textwrap.py

The textwrap module provides two convenience functions, wrap() and fill(), as well as TextWrapper, the
class that does all the work, and a utility function dedent(). If you're just wrapping or filling one or two
text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

7.6. ¢StringlO — Faster version of StringlO 121

https://github.com/python/cpython/tree/2.7/Lib/textwrap.py

The Python Library Reference, Release 2.7.14

textwrap.wrap(text[, Width[,]])
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns
a list of output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
width defaults to 70.

See the TextWrapper.wrap() method for additional details on how wrap() behaves.

textwrap.ﬁll(text[, width[,]])
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph.
fill() is shorthand for

’ "\n" join(wrap(text, ...))

In particular, fill() accepts exactly the same keyword arguments as wrap().

Both wrap() and fill() work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you
to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will
long words be broken if necessary, unless TextWrapper.break long words is set to false.

An additional utility function, dedent(), is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

textwrap.dedent(text)
Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the display, while still
presenting them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace. (This behaviour is new in Python
2.5; older versions of this module incorrectly expanded tabs before searching for common leading
whitespace.)

For example:

def test():
end first line with \ to avoid the empty line!
S — LU
hello
world
print repr(s) # prints ' hello\n world\n '

print repr(dedent(s)) # prints 'hello\n world\n’

class textwrap.TextWrapper(...)
The TextWrapper constructor accepts a number of optional keyword arguments. FEach argument
corresponds to one instance attribute, so for example

wrapper — TextWrapper(initial _indent—"* ")

is the same as

wrapper — TeXtWI‘a.pper()
Wrapper,initial_indent —nkon

122 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

You can re-use the same TextWrapper object many times, and you can change any of its options
through direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words
in the input text longer than width, TextWrapper guarantees that no output line will be longer
than width characters.

expand _tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the
expandtabs() method of text.

replace whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap() method will replace
each whitespace character with a single space. The whitespace characters replaced are as follows:
tab, newline, vertical tab, formfeed, and carriage return ('\t\n\v\f\r").

Note: If expand tabs is false and replace whitespace is true, each tab character will be replaced
by a single space, which is not the same as tab expansion.

Note: If replace whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines() or
similar) which are wrapped separately.

drop _whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but
before indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not
dropped if non-whitespace follows it. If whitespace being dropped takes up an entire line, the
whole line is dropped.

New in version 2.6: Whitespace was always dropped in earlier versions.

initial indent
(default: '') String that will be prepended to the first line of wrapped output. Counts towards
the length of the first line. The empty string is not indented.

subsequent _indent
(default: '') String that will be prepended to all lines of wrapped output except the first. Counts
towards the length of each line except the first.

fix_sentence endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that
sentences are always separated by exactly two spaces. This is generally desired for text in a
monospaced font. However, the sentence detection algorithm is imperfect: it assumes that a sen-
tence ending consists of a lowercase letter followed by one of '.", "' or '?', possibly followed
by oneof '"' or "'" followed by a space. One problem with this is algorithm is that it is unable
to detect the difference between “Dr.” in

’ [...] Dr. Frankenstein's monster |...|

and “Spot.” in

’ [.--] See Spot. See Spot run [...]

7.7. textwrap — Text wrapping and filling 123

The Python Library Reference, Release 2.7.14

fix _sentence endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line,
it is specific to English-language texts.

break long words
(default: True) If true, then words longer than width will be broken in order to ensure that no
lines are longer than width. If it is false, long words will not be broken, and some lines may be
longer than width. (Long words will be put on a line by themselves, in order to minimize the
amount by which width is exceeded.)

break on hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens
in compound words, as it is customary in English. If false, only whitespaces will be considered
as potentially good places for line breaks, but you need to set break long words to false if you
want truly insecable words. Default behaviour in previous versions was to always allow breaking
hyphenated words.

New in version 2.6.
TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap(text)
Wraps the single paragraph in text (a string) so every line is at most width characters long. All
wrapping options are taken from instance attributes of the TextWrapper instance. Returns a list
of output lines, without final newlines. If the wrapped output has no content, the returned list is
empty.

fill(text)
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph.

7.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access
to the internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

codecs.encode(ob)] [, encoding[, errors]])
Encodes obj using the codec registered for encoding. The default encoding is 'ascii'.

Errors may be given to set the desired error handling scheme. The default error handler is 'strict'
meaning that encoding errors raise ValueError (or a more codec specific subclass, such as UnicodeEn-
codeError). Refer to Codec Base Classes for more information on codec error handling.

New in version 2.4.

codecs.decode(obj [, encoding[, errors]])
Decodes obj using the codec registered for encoding. The default encoding is "ascii'.

Errors may be given to set the desired error handling scheme. The default error handler is 'strict'
meaning that decoding errors raise ValueError (or a more codec specific subclass, such as UnicodeDe-
codeError). Refer to Codec Base Classes for more information on codec error handling.

New in version 2.4.

codecs.register(search _function)
Register a codec search function. Search functions are expected to take one argument, the encoding
name in all lower case letters, and return a Codeclnfo object having the following attributes:

124 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

¢ name The name of the encoding;
¢ encode The stateless encoding function;
¢ decode The stateless decoding function;
¢ incrementalencoder An incremental encoder class or factory function;
¢ incrementaldecoder An incremental decoder class or factory function;
* streamwriter A stream writer class or factory function;
¢ streamreader A stream reader class or factory function.
The various functions or classes take the following arguments:

encode and decode: These must be functions or methods which have the same interface as the en-
code()/decode() methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

incrementalencoder and incrementaldecoder: These have to be factory functions providing the following
interface:

factory(errors="strict")

The factory functions must return objects providing the interfaces defined by the base classes Incre-
mentalEncoder and IncrementalDecoder, respectively. Incremental codecs can maintain state.

streamreader and streamwriter: These have to be factory functions providing the following interface:
factory(stream, errors="strict")

The factory functions must return objects providing the interfaces defined by the base classes Stream-
Reader and StreamWriter, respectively. Stream codecs can maintain state.

Possible values for errors are
e 'strict': raise an exception in case of an encoding error
* 'replace': replace malformed data with a suitable replacement marker, such as '?' or '\ufffd'
e 'ignore': ignore malformed data and continue without further notice
* 'xmlcharrefreplace': replace with the appropriate XML character reference (for encoding only)
 'backslashreplace': replace with backslashed escape sequences (for encoding only)

as well as any other error handling name defined via register _error().

In case a search function cannot find a given encoding, it should return None.

codecs.lookup(encoding)

Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions
is scanned. If no Codeclnfo object is found, a LookupError is raised. Otherwise, the CodecInfo object
is stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which use lookup()
for the codec lookup:

codecs.getencoder(encoding)

Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

7.8. codecs — Codec registry and base classes 125

The Python Library Reference, Release 2.7.14

codecs.getdecoder(encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder(encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

New in version 2.5.

codecs.getincrementaldecoder(encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

New in version 2.5.

codecs.getreader(encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter(encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.register _error(name, error__handler)
Register the error handling function error handler under the name name. error handler will be called
during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding error handler will be called with a UnicodeEncodeError instance, which contains infor-
mation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where en-
coding should continue. The encoder will encode the replacement and continue encoding the original
input at the specified position. Negative position values will be treated as being relative to the end of
the input string. If the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or UnicodeTranslateError will be
passed to the handler and that the replacement from the error handler will be put into the output
directly.

codecs.lookup _error(name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

codecs.strict _errors(exception)
Implements the strict error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace _errors(exception)
Implements the replace error handling: malformed data is replaced with a suitable replacement char-
acter such as '?"' in bytestrings and '\ufffd' in Unicode strings.

codecs.ignore _errors(exception)
Implements the ignore error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

126 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

codecs.xmlcharrefreplace _errors(exception)
Implements the xmlcharrefreplace error handling (for encoding only): the unencodable character is
replaced by an appropriate XML character reference.

codecs.backslashreplace errors(exception)
Implements the backslashreplace error handling (for encoding only): the unencodable character is
replaced by a backslashed escape sequence.

To simplify working with encoded files or stream, the module also defines these utility functions:

codecs.open(filename, mode[, encoding[, errors[, buffering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent en-
coding/decoding. The default file mode is 'r' meaning to open the file in read mode.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode
objects for most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to
avoid data loss due to encodings using 8-bit values. This means that no automatic conversion of "\n'
is done on reading and writing.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to 'strict' which causes a ValueError to
be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open() function. It defaults to line buffered.
codecs.EncodedFile(file, input[, output[, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the given input encoding and then
written to the original file as strings using the output encoding. The intermediate encoding will
usually be Unicode but depends on the specified codecs.

If output is not given, it defaults to input.

errors may be given to define the error handling. It defaults to 'strict', which causes ValueError to
be raised in case an encoding error occurs.

codecs.iterencode(iterable, encoding[, errors])
Uses an incremental encoder to iteratively encode the input provided by iterable. This function is
a generator. errors (as well as any other keyword argument) is passed through to the incremental
encoder.

New in version 2.5.

codecs.iterdecode(iterable, encoding[, errors])
Uses an incremental decoder to iteratively decode the input provided by iterable. This function is
a generator. errors (as well as any other keyword argument) is passed through to the incremental
decoder.

New in version 2.5.

The module also provides the following constants which are useful for reading and writing to platform
dependent files:

codecs.BOM

7.8. codecs — Codec registry and base classes 127

The Python Library Reference, Release 2.7.14

codecs.BOM_BE

codecs.BOM_LE

codecs.BOM_UTF8

codecs.BOM_UTF16

codecs.BOM_UTF16 BE

codecs.BOM_UTF16 LE

codecs.BOM_UTF32

codecs.BOM_UTF32 BE

codecs.BOM_UTF32 LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16
and UTF-32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a
Unicode signature. BOM_UTF16is either BOM UTF16 BEor BOM UTF16 LE depending on the
platform’s native byte order, BOM is an alias for BOM _UTF16, BOM LE for BOM UTF16 LE and
BOM BE for BOM UTF16 BE. The others represent the BOM in UTF-8 and UTF-32 encodings.

7.8.1 Codec Base Classes

The codecs module defines a set of base classes which define the interface and can also be used to easily
write your own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless
decoder, stream reader and stream writer. The stream reader and writers typically reuse the stateless
encoder/decoder to implement the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode() and decode() methods may implement different
error handling schemes by providing the errors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning

'strict ' Raise UnicodeError (or a subclass); this is the default.

'ignore' Ignore the character and continue with the next.

'replace’ Replace with a suitable replacement character; Python will use the official

U+FFFD REPLACEMENT CHARACTER for the built-in Unicode codecs on
decoding and ‘7’ on encoding.

'xmlcharrefreplace' | Replace with the appropriate XML character reference (only for encoding).

' backslashreplace Replace with backslashed escape sequences (only for encoding).

The set of allowed values can be extended via register error().

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

Codec.encode(input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). While codecs are not
restricted to use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain
string using a particular character set encoding (e.g., cp1252 or is0-8859-1).

errors defines the error handling to apply. It defaults to 'strict' handling.

The method may not store state in the Codec instance. Use StreamWriter for codecs which have to
keep state in order to make encoding efficient.

128 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

The encoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

Codec.decode(input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). In a Unicode context,
decoding converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides the bf getreadbuf buffer slot. Python strings, buffer objects
and memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaults to 'strict' handling.

The method may not store state in the Codec instance. Use StreamReader for codecs which have to
keep state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental encod-
ing and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode()/decode() method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode()/decode() method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

New in version 2.5.

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following
methods which every incremental encoder must define in order to be compatible with the Python codec
registry.

class codecs.IncrementalEncoder([errors])
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional
keyword arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors key-
word argument. These parameters are predefined:

e 'strict' Raise ValueError (or a subclass); this is the default.

e 'ignore' Ignore the character and continue with the next.

¢ 'replace' Replace with a suitable replacement character

¢ 'xmlcharrefreplace' Replace with the appropriate XML character reference
¢ 'backslashreplace' Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the Incre-
mentalEncoder object.

The set of allowed values for the errors argument can be extended with register error().

encode(object[, ﬁnal])
Encodes object (taking the current state of the encoder into account) and returns the resulting
encoded object. If this is the last call to encode() final must be true (the default is false).

7.8. codecs — Codec registry and base classes 129

The Python Library Reference, Release 2.7.14

reset ()
Reset the encoder to the initial state.

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following
methods which every incremental decoder must define in order to be compatible with the Python codec
registry.

class codecs.IncrementalDecoder([errors])
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional
keyword arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors key-
word argument. These parameters are predefined:

 'strict' Raise ValueError (or a subclass); this is the default.
* 'ignore' Ignore the character and continue with the next.
e 'replace' Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the Incre-
mentalDecoder object.

The set of allowed values for the errors argument can be extended with register error().

decode(object[, ﬁnal])
Decodes object (taking the current state of the decoder into account) and returns the resulting
decoded object. If this is the last call to decode() final must be true (the default is false). If
final is true the decoder must decode the input completely and must flush all buffers. If this isn’t
possible (e.g. because of incomplete byte sequences at the end of the input) it must initiate error
handling just like in the stateless case (which might raise an exception).

reset()
Reset the decoder to the initial state.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to imple-
ment new encoding submodules very easily. See encodings.utf 8 for an example of how this is done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class codecs.StreamWriter(stream[, errors])
Constructor for a StreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing binary data.

The StreamWriter may implement different error handling schemes by providing the errors keyword
argument. These parameters are predefined:

 'strict' Raise ValueError (or a subclass); this is the default.

130 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

e 'ignore' Ignore the character and continue with the next.

e 'replace' Replace with a suitable replacement character

¢ 'xmlcharrefreplace' Replace with the appropriate XML character reference
* 'backslashreplace' Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
StreamWriter object.

The set of allowed values for the errors argument can be extended with register error().

write(object)
Writes the object’s contents encoded to the stream.

writelines(list)
Writes the concatenated list of strings to the stream (possibly by reusing the write() method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the StreamWriter must also inherit all other methods and attributes from
the underlying stream.

StreamReader Objects

The StreamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader(stream[, errors])
Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providing the errors keyword
argument. These parameters are defined:

 'strict' Raise ValueError (or a subclass); this is the default.
e 'ignore' Ignore the character and continue with the next.
e 'replace' Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the Stream-
Reader object.

The set of allowed values for the errors argument can be extended with register error().

read([size[, chars[, ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the stream. read() will never return more
than chars characters, but it might return less, if there are not enough characters available.

7.8. codecs — Codec registry and base classes 131

The Python Library Reference, Release 2.7.14

size indicates the approximate maximum number of bytes to read from the stream for decoding
purposes. The decoder can modify this setting as appropriate. The default value -1 indicates to
read and decode as much as possible. size is intended to prevent having to decode huge files in
one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding
errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is
allowed within the definition of the encoding and the given size, e.g. if optional encoding endings
or state markers are available on the stream, these should be read too.

Changed in version 2.4: chars argument added.

Changed in version 2.4.2: firstline argument added.

readline([size [, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read() method.
If keepends is false line-endings will be stripped from the lines returned.

Changed in version 2.4: keepends argument added.

readlines([sizehint [, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries
if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be
able to recover from decoding errors.

In addition to the above methods, the StreamReader must also inherit all other methods and attributes from
the underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReader Writer Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by the lookup() function to construct the
instance.

class codecs.StreamReaderWriter(stream, Reader, Writer, errors)
Creates a StreamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the StreamReader and StreamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter classes.
They inherit all other methods and attributes from the underlying stream.

132 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned by the lookup() function to construct the
instance.

class codecs.StreamRecoder(stream, encode, decode, Reader, Writer, errors)
Creates a StreamRecoder instance which implements a two-way conversion: encode and decode work
on the frontend (the input to read() and output of write()) while Reader and Writer work on the
backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader, Writer must be factory functions or classes
providing objects of the StreamReader and StreamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend trans-
lation. The intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs
will use Unicode as the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of StreamReader and StreamWriter classes. They
inherit all other methods and attributes from the underlying stream.

7.8.2 Encodings and Unicode

Unicode strings are stored internally as sequences of code points (to be precise as Py UNICODE arrays).
Depending on the way Python is compiled (either via --enable-unicode=ucs2 or --enable-unicode=ucs4, with
the former being the default) Py UNICODE is either a 16-bit or 32-bit data type. Once a Unicode object
is used outside of CPU and memory, CPU endianness and how these arrays are stored as bytes become an
issue. Transforming a unicode object into a sequence of bytes is called encoding and recreating the unicode
object from the sequence of bytes is known as decoding. There are many different methods for how this
transformation can be done (these methods are also called encodings). The simplest method is to map the
code points 0-255 to the bytes 0x0—-0xff. This means that a unicode object that contains code points above
U-+00FF can’t be encoded with this method (which is called 'latin-1' or 'iso-8859-1"'). unicode.encode()
will raise a UnicodeEncodeError that looks like this: UnicodeEncodeError: 'latin-1' codec can't encode
character u'\ul234"' in position 3: ordinal not in range(256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all
unicode code points and how these code points are mapped to the bytes 0x0—0xff. To see how this is done
simply open e.g. encodings/cp1252.py (which is an encoding that is used primarily on Windows). There’s a
string constant with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in unicode. A simple and
straightforward way that can store each Unicode code point, is to store each code point as four consecutive
bytes. There are two possibilities: store the bytes in big endian or in little endian order. These two encodings
are called UTF-32-BE and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE
on a little endian machine you will always have to swap bytes on encoding and decoding. UTF-32 avoids this
problem: bytes will always be in natural endianness. When these bytes are read by a CPU with a different
endianness, then bytes have to be swapped though. To be able to detect the endianness of a UTF-16 or
UTF-32 byte sequence, there’s the so called BOM (“Byte Order Mark”). This is the Unicode character
U+FEFF. This character can be prepended to every UTF-16 or UTF-32 byte sequence. The byte swapped
version of this character (OxFFFE) is an illegal character that may not appear in a Unicode text. So when

7.8. codecs — Codec registry and base classes 133

The Python Library Reference, Release 2.7.14

the first character in an UTF-16 or UTF-32 byte sequence appears to be a U+FFFE the bytes have to be
swapped on decoding. Unfortunately the character U+FEFF had a second purpose as a ZERO WIDTH
NO-BREAK SPACE: a character that has no width and doesn’t allow a word to be split. It can e.g. be used
to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK
SPACE has been deprecated (with U4+2060 (WORD JOINER) assuming this role). Nevertheless Unicode
software still must be able to handle U+FEFF in both roles: as a BOM it’s a device to determine the storage
layout of the encoded bytes, and vanishes once the byte sequence has been decoded into a Unicode string;
as a ZERO WIDTH NO-BREAK SPACE it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is
an 8-bit encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte
sequence consists of two parts: marker bits (the most significant bits) and payload bits. The marker bits are
a sequence of zero to four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being
payload bits, which when concatenated give the Unicode character):

Range Encoding

U-00000000 ... U-0000007F OXXXXXXX

U-00000080 ... U-000007FF | 110xxxxx 10xxXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10xXXXXX
U-00010000 ... U-0010FFFF | 11110xxx 10xxxxxx 10xxxxXxX 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded Unicode
string (even if it’s the first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a
Unicode string. Each charmap encoding can decode any random byte sequence. However that’s not possible
with UTF-8, as UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To
increase the reliability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8
(that Python 2.5 calls "utf-8-sig") for its Notepad program: Before any of the Unicode characters is written
to the file, a UTF-8 encoded BOM (which looks like this as a byte sequence: Oxef, Oxbb, 0xbf) is written. As
it’s rather improbable that any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in 180-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte
sequence, but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write
Oxef, Oxbb, Oxbf as the first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they
appear as the first three bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally
be avoided.

7.8.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as
mapping tables. The following table lists the codecs by name, together with a few common aliases, and the
languages for which the encoding is likely used. Neither the list of aliases nor the list of languages is meant
to be exhaustive. Notice that spelling alternatives that only differ in case or use a hyphen instead of an
underscore are also valid aliases; therefore, e.g. 'utf-8"' is a valid alias for the 'utf 8' codec.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the
EURO SIGN is supported or not), and in the assignment of characters to code positions. For the European

134 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

languages in particular, the following variants typically exist:

e an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control
characters with additional graphic characters

¢ an IBM EBCDIC code page
e an IBM PC code page, which is ASCII compatible

Codec Aliases Languages

ascii 646, us-ascii English

bigh bigh-tw, csbigh Traditional Chinese

bigbhkscs bigh-hkscs, hkscs Traditional Chinese

cp037 IBM037, IBMO039 English

cpd24 EBCDIC-CP-HE, IBM424 Hebrew

cp437 437, IBM437 English

cp500 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe

CH, IBM500

cp720 Arabic

cp737 Greek

cp775 IBM775 Baltic languages

cp850 850, IBM850 Western Europe

cp852 852, IBM852 Central and Eastern Europe

cp855 855, IBM855 Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian

cp856 Hebrew

cp857 857, IBM857 Turkish

cp858 858, IBM858 Western Europe

cp860 860, IBM860 Portuguese

cp861 861, CP-IS, IBM&61 Icelandic

cp862 862, IBM862 Hebrew

cp863 863, IBM863 Canadian

cp864 IBM864 Arabic

cp865 865, IBM865 Danish, Norwegian

cp866 866, IBM866 Russian

cp869 869, CP-GR, IBM869 Greek

cp874 Thai

cp875 Greek

cp932 932, ms932, mskanji, ms-kanji Japanese

cp949 949, ms949, uhc Korean

cp950 950, ms950 Traditional Chinese

cpl006 Urdu

cpl026 ibm1026 Turkish

cpl140 ibm1140 Western Europe

cpl250 windows-1250 Central and Eastern Europe

cpl251 windows-1251 Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian

cpl252 windows-1252 Western Europe

cpl253 windows-1253 Greek

cpl254 windows-1254 Turkish

cpl255 windows-1255 Hebrew

Continued on next page

7.8. codecs — Codec registry and base classes

135

The Python Library Reference, Release 2.7.14

Table 7.3 — continued from previous page

Codec Aliases Languages
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_ 2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks c- | Korean
5601, ks c-5601-1987, ksx1001,
ks x-1001
gh2312 chinese, csis058gh231280, | Simplified Chinese
euc- cn, euccn, eucgb2312-cn,
gb2312-1980, gb2312-80, iso-
ir-58
gbk 936, cp936, ms936 Unified Chinese
gh18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
is02022 _jp ¢sis02022jp, 1502022jp, is0-2022- | Japanese
Jp
is02022 _jp 1 1502022jp-1, iso0-2022-jp-1 Japanese
is02022_jp_2 1502022jp-2, is0-2022-jp-2 Japanese, Korean, Simplified

Chinese, Western Europe, Greek

1502022 _jp_ 2004

1502022jp-2004, is0-2022-jp-2004

Japanese

is02022 _jp_3 1502022jp-3, is0-2022-jp-3 Japanese
is02022 _jp_ext 1502022jp-ext, is0-2022-jp-ext Japanese
is02022 _kr csis02022kr, is02022kr, iso-2022- | Korean
kr
latin 1 is0-8859-1, is08859-1, 8859, | West Europe
cp819, latin, latinl, L1
iso8859 2 150-8859-2, latin2, L2 Central and Eastern Europe
iso8859 3 is0-8859-3, latin3, L3 Esperanto, Maltese
iso8859 4 i50-8859-4, latind, L4 Baltic languages
is08859 5 is0-8859-5, cyrillic Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian
iso8859 6 is0-8859-6, arabic Arabic
iso8859 7 i50-8859-7, greek, greek8 Greek
iso8859 8 is0-8859-8, hebrew Hebrew
iso8859 9 is0-8859-9, latinb, L5 Turkish
iso8859 10 is0-8859-10, latin6, L6 Nordic languages
iso8859 11 i50-8859-11, thai Thai languages
iso8859 13 is0-8859-13, latin7, L7 Baltic languages
iso8859 14 i50-8859-14, lating, L8 Celtic languages
iso8859 15 is0-8859-15, latin9, L9 Western Europe
iso8859 16 150-8859-16, latin10, L10 South-Eastern Europe
johab c¢pl361, ms1361 Korean
koi8 r Russian
koi8 u Ukrainian
mac_ cyrillic maccyrillic Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian
mac_greek macgreek Greek
mac_iceland maciceland Icelandic

Continued on next page

136

Chapter 7. String Services

The Python Library Reference, Release 2.7.14

Table 7.3 — continued from previous page

Codec Aliases Languages
mac_latin2 maclatin2, maccentraleurope Central and Eastern Europe
mac_roman macroman Western Europe
mac__turkish macturkish Turkish
ptcpldd cspteplb4, pt154, cplb4, cyrillic- | Kazakh
asian
shift jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift jis 2004 shiftjis2004, sjis 2004, sjis2004 | Japanese
shift jisx0213 shiftjisx0213, sjisx0213, | Japanese
s jisx0213
utf 32 U32, utf32 all languages
utf 32 be UTF-32BE all languages
utf 32 le UTF-32LE all languages
utf 16 U16, utfl6 all languages
utf 16 be UTF-16BE all languages (BMP only)
utf 16 _le UTF-16LE all languages (BMP only)
utf 7 U7, unicode-1-1-utf-7 all languages
utf 8 U8, UTF, utf8 all languages
utf 8 sig all languages

7.8.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python.
These are listed in the tables below based on the expected input and output types (note that while text
encodings are the most common use case for codecs, the underlying codec infrastructure supports arbitrary
data transforms rather than just text encodings). For asymmetric codecs, the stated purpose describes the

encoding direction.

The following codecs provide unicode-to-str encoding' and str-to-unicode decoding?, similar to the Unicode

text encodings.

Codec Aliase®urpose

idna Implements RFC 3490, see also encodings.idna

mbcs dbcs| Windows only: Encode operand according to the ANSI codepage
(CP_ACP)

palmos Encoding of PalmOS 3.5

punycode Implements RFC 3492

raw__unicode escape

Produce a string that is suitable as raw Unicode literal in Python source
code

rot_13

rotl3

Returns the Caesar-cypher encryption of the operand

undefined

Raise an exception for all conversions. Can be used as the system
encoding if no automatic coercion between byte and Unicode strings is
desired.

unicode _escape

Produce a string that is suitable as Unicode literal in Python source code

unicode _internal

Return the internal representation of the operand

New in version 2.3: The idna and punycode encodings.

I str objects are also accepted as input in place of unicode objects. They are implicitly converted to unicode by decoding
them using the default encoding. If this conversion fails, it may lead to encoding operations raising UnicodeDecodeError.

2

unicode objects are also accepted as input in place of str objects. They are implicitly converted to str by encoding them

using the default encoding. If this conversion fails, it may lead to decoding operations raising UnicodeEncodeError.

7.8. codecs — Codec registry and base classes 137

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 2.7.14

The following codecs provide str-to-str encoding and decoding?.

Codec Aliases Purpose Encoder/decoder
base64 codec | base64, base-64 Convert operand to multiline MIME base64.encodestring(),
base64 (the result always includes a base64.decodestring()
trailing '\n")
bz2 codec bz2 Compress the operand using bz2 bz2.compress(),
bz2.decompress()
hex_ codec hex Convert operand to hexadecimal binascii.b2a_hex(),
representation, with two digits per binascii.a2b__hex()
byte
quopri_codec | quopri, Convert operand to MIME quoted quopri.encode() with
quoted-printable, printable quotetabs=True,
quotedprintable quopri.decode()
string_escape Produce a string that is suitable as
string literal in Python source code
uu_ codec uu Convert the operand using uuencode uu.encode(),
uu.decode()
zlib__codec zip, zlib Compress the operand using gzip zlib.compress(),
zlib.decompress()

7.8.5 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3.

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492
(Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the puny-
code encoding and stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name
containing non-ASCII characters (such as www.Alliancefrangaise.nu) is converted into an ASCII-compatible
encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain name is then used
in all places where arbitrary characters are not allowed by the protocol, such as DNS queries, HT'TP Host
fields, and so on. This conversion is carried out in the application; if possible invisible to the user: The
application should transparently convert Unicode domain labels to IDNA on the wire, and convert back
ACE labels to Unicode before presenting them to the user.

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and
ACE, separating an input string into labels based on the separator characters defined in section 3.1 (1) of
RFC 3490 and converting each label to ACE as required, and conversely separating an input byte string into
labels based on the . separator and converting any ACE labels found into unicode. Furthermore, the socket
module transparently converts Unicode host names to ACE, so that applications need not be concerned about
converting host names themselves when they pass them to the socket module. On top of that, modules that
have host names as function parameters, such as httplib and ftplib, accept Unicode host names (httplib then
also transparently sends an IDNA hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to
Unicode is performed: Applications wishing to present such host names to the user should decode them to
Unicode.

The module encodings.idna also implements the nameprep procedure, which performs certain normalizations
on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

138 Chapter 7. String Services

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html
https://tools.ietf.org/html/rfc3490#section-3.1
https://tools.ietf.org/html/rfc3490.html

The Python Library Reference, Release 2.7.14

encodings.idna.nameprep(label)
Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

encodings.idna. ToASCII(label)
Convert a label to ASCII, as specified in REC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode(label)
Convert a label to Unicode, as specified in RFC 3490.

7.8.6 encodings.utf 8 sig — UTF-8 codec with BOM signature

New in version 2.5.

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will be
prepended to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to
the byte stream). For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

7.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all
Unicode characters. The data in this database is based on the UnicodeData.txt file version 5.2.0 which is
publicly available from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 5.2.0 (see http:
/ /www.unicode.org/reports/trdd /trd44-4.html). It defines the following functions:

unicodedata.lookup(name)
Look up character by name. If a character with the given name is found, return the corresponding
Unicode character. If not found, KeyError is raised.

unicodedata.name(unichr[, default])
Returns the name assigned to the Unicode character unichr as a string. If no name is defined, default
is returned, or, if not given, ValueError is raised.

unicodedata.decimal(unichr [, default])
Returns the decimal value assigned to the Unicode character unichr as integer. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

unicodedata.digit(unichr[, default])
Returns the digit value assigned to the Unicode character unichr as integer. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

unicodedata.numeric(unichr [, default])
Returns the numeric value assigned to the Unicode character unichr as float. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

unicodedata.category (unichr)
Returns the general category assigned to the Unicode character unichr as string.

unicodedata.bidirectional (unichr)
Returns the bidirectional class assigned to the Unicode character unichr as string. If no such value is
defined, an empty string is returned.

unicodedata.combining(unichr)
Returns the canonical combining class assigned to the Unicode character unichr as integer. Returns 0
if no combining class is defined.

7.9. unicodedata — Unicode Database 139

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3490.html
ftp://ftp.unicode.org/
http://www.unicode.org/reports/tr44/tr44-4.html
http://www.unicode.org/reports/tr44/tr44-4.html

The Python Library Reference, Release 2.7.14

unicodedata.east _asian width(unichr)
Returns the east asian width assigned to the Unicode character unichr as string.

New in version 2.4.

unicodedata.mirrored (unichr)
Returns the mirrored property assigned to the Unicode character unichr as integer. Returns 1 if the
character has been identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition(unichr)
Returns the character decomposition mapping assigned to the Unicode character unichr as string. An
empty string is returned in case no such mapping is defined.

unicodedata.normalize(form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
can also be expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING
CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D
(NFD) is also known as canonical decomposition, and translates each character into its decomposed
form. Normal form C (NFC) first applies a canonical decomposition, then composes pre-combined
characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equiv-
alence. In Unicode, certain characters are supported which normally would be unified with other
characters. For example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049
(LATIN CAPITAL LETTER I). However, it is supported in Unicode for compatibility with existing
character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compati-
bility characters with their equivalents. The normal form KC (NFKC) first applies the compatibility
decomposition, followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining
characters and the other doesn’t, they may not compare equal.

New in version 2.3.
In addition, the module exposes the following constant:

unicodedata.unidata_ version
The version of the Unicode database used in this module.

New in version 2.3.

unicodedata.ucd 3 2 0
This is an object that has the same methods as the entire module, but uses the Unicode database

version 3.2 instead, for applications that require this specific version of the Unicode database (such as
IDNA).

New in version 2.5.

Examples:

import unicodedata
unicodedata.lookup(' LEFT CURLY BRACKET ")

u'{"

140 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

unicodedata.name(u'/")
'SOLIDUS"
unicodedata.decimal(u'9")
9
unicodedata.decimal(u'a")
Traceback (most recent call last):
File "<stdin>"| line 1, in <module>
ValueError: not a decimal
unicodedata.category(u'A') # 'L 'etter, 'u'ppercase
v Lll '
unicodedata.bidirectional(u'\u0660') # 'A 'rabic, 'N 'umber
v ANI

7.10 stringprep — Internet String Preparation

New in version 2.3.

When identifying things (such as host names) in the internet, it is often necessary to compare such identifi-
cations for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g.
whether it should be case-insensitive or not. It may be also necessary to restrict the possible identifications,
to allow only identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings
onto the wire, they are processed with the preparation procedure, after which they have a certain normalized
form. The RFC defines a set of tables, which can be combined into profiles. Each profile must define which
tables it uses, and what other optional parts of the stringprep procedure are part of the profile. One example
of a stringprep profile is nameprep, which is used for internationalized domain names.

The module stringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The
module source code itself was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in
the RFC: sets and mappings. For a set, stringprep provides the “characteristic function”, i.e. a function that
returns true if the parameter is part of the set. For mappings, it provides the mapping function: given the
key, it returns the associated value. Below is a list of all functions available in the module.

stringprep.in_table al(code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table b1(code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_ table_b2(code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_ table b3(code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no
normalization).

stringprep.in_table c11(code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table c12(code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table c11 c12(code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

7.10. stringprep — Internet String Preparation 141

https://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 2.7.14

stringprep.in_table c21(code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table c22(code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table c¢21 ¢22(code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table c3(code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table c4(code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table c5(code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table c6(code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table c7(code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table c8(code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in _table c9(code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table d1(code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in _table d2(code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

7.11 fpformat — Floating point conversions

Deprecated since version 2.6: The fpformat module has been removed in Python 3.

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.

Note: This module is unnecessary: everything here can be done using the % string interpolation operator
described in the String Formatting Operations section.

The fpformat module defines the following functions and an exception:

fpformat.fix(x, digs)
Format x as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.
Return value is a string.

fpformat.sci(x, digs)
Format x as [-]d.dddE[+-]ddd with digs digits after the point and exactly one digit before. If digs <=
0, one digit is kept and the point is suppressed.

142 Chapter 7. String Services

The Python Library Reference, Release 2.7.14

x can be either a real number, or a string that looks like one. digs is an integer.
Return value is a string.

exception fpformat.Not ANumber
Exception raised when a string passed to fix() or sci() as the x parameter does not look like a number.
This is a subclass of ValueError when the standard exceptions are strings. The exception value is the
improperly formatted string that caused the exception to be raised.

Example:

import fpformat
fpformat.fix(1.23, 1)
'1.2'

7.11. fpformat — Floating point conversions 143

The Python Library Reference, Release 2.7.14

144 Chapter 7. String Services

CHAPTER

EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times,
fixed-type arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, list, set (which along with frozenset,
replaces the deprecated sets module), and tuple. The str class can be used to handle binary data and 8-bit
text, and the unicode class to handle Unicode text.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

New in version 2.3.

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient attribute
extraction for output formatting and manipulation. For related functionality, see also the time and calendar
modules.

There are two kinds of date and time objects: “naive” and “aware”.

An aware object has sufficient knowledge of applicable algorithmic and political time adjustments, such as
time zone and daylight saving time information, to locate itself relative to other aware objects. An aware
object is used to represent a specific moment in time that is not open to interpretation’.

A naive object does not contain enough information to unambiguously locate itself relative to other date/time
objects. Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it’s up to the program whether a particular number
represents metres, miles, or mass. Naive objects are easy to understand and to work with, at the cost of
ignoring some aspects of reality.

For applications requiring aware objects, datetime and time objects have an optional time zone information
attribute, tzinfo, that can be set to an instance of a subclass of the abstract tzinfo class. These tzinfo objects
capture information about the offset from UTC time, the time zone name, and whether Daylight Saving
Time is in effect. Note that no concrete tzinfo classes are supplied by the datetime module. Supporting
timezones at whatever level of detail is required is up to the application. The rules for time adjustment
across the world are more political than rational, and there is no standard suitable for every application.

The datetime module exports the following constants:

datetime. MINYEAR
The smallest year number allowed in a date or datetime object. MINYEAR is 1.

L 1f, that is, we ignore the effects of Relativity

145

The Python Library Reference, Release 2.7.14

datetime. MAXYEAR
The largest year number allowed in a date or datetime object. MAXYEAR is 9999.

See also:
Module calendar General calendar related functions.

Module time Time access and conversions.

8.1.1 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in
effect. Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60
seconds (there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond,
and tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second, microsecond,
and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment (for example, to account for time zone
and/or daylight saving time).

Objects of these types are immutable.
Objects of the date type are always naive.

An object of type time or datetime may be naive or aware. A datetime object d is aware if d.tzinfo is
not None and d.tzinfo.utcoffset(d) does not return None. If d.tzinfo is None, or if d.tzinfo is not None
but d.tzinfo.utcoffset(d) returns None, d is naive. A time object t is aware if t.tzinfo is not None and
t.tzinfo.utcoffset(None) does not return None. Otherwise, t is naive.

The distinction between naive and aware doesn’t apply to timedelta objects.

Subclass relationships:

object
timedelta
tzinfo
time
date
datetime

8.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

146 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

class datetime.timedelta([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[, Weeks]]] ”

I

All arguments are optional and default to 0. Arguments may be ints, longs, or floats, and may be
positive or negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:
¢ A millisecond is converted to 1000 microseconds.
* A minute is converted to 60 seconds.
e An hour is converted to 3600 seconds.
e A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with
¢ 0 <= microseconds < 1000000
* 0 <= seconds < 3600*24 (the number of seconds in one day)
* -999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over
from all arguments are combined and their sum is rounded to the nearest microsecond. If no argument
is a float, the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example,

from datetime import timedelta

d = timedelta(microseconds—-1)

(d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:

timedelta.min
The most negative timedelta object, timedelta(-999999999).

timedelta.max
The most positive timedelta object, timedelta(days=999999999, hours=23, minutes=59, seconds=59,
microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects, timedelta(microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min. -timedelta.max is not representable
as a timedelta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive

microseconds | Between 0 and 999999 inclusive

Supported operations:

8.1. datetime — Basic date and time types 147

The Python Library Reference, Release 2.7.14

Operation Result
t1 = t2 + t3 Sum of t2 and t3. Afterwards t1-t2 == t3 and t1-t3 == t2 are true. (1)
t1 =1t2-t3 Difference of t2 and t3. Afterwards t1 == t2 - t3 and t2 == t1 + t3 are true. (1)

tl =t2*iortl =1
* 2

Delta multiplied by an integer or long. Afterwards t1 // i == t2 is true, provided
il=0.

In general, t1 *i == t1 * (i-1) + t1 is true. (1)

t1=1t2//1 The floor is computed and the remainder (if any) is thrown away. (3)

+t1 Returns a timedelta object with the same value. (2)

-t1 equivalent to timedelta(-tl.days, -tl.seconds, -tl.microseconds), and to t1* -1.
(1)(4)

abs(t) equivalent to +t when t.days >= 0, and to -t when t.days < 0. (2)

str(t) Returns a string in the form [D day[s], |[H|H:MM:SS[.UUUUUU], where D is neg-
ative for negative t. (5)

repr(t) Returns a string in the form datetime.timedelta(DJ, S|, U]]), where D is negative
for negative t. (5)

Notes:

1. This is exact, but may overflow.
This is exact, and cannot overflow.
Division by 0 raises ZeroDivisionError.

-timedelta.max is not representable as a timedelta object.

AN

String representations of timedelta objects are normalized similarly to their internal representation.
This leads to somewhat unusual results for negative timedeltas. For example:

timedelta(hours—-5)
datetime.timedelta(-1, 68400)

print(_)
-1 day, 19:00:00

In addition to the operations listed above timedelta objects support certain additions and subtractions with
date and datetime objects (see below).

Comparisons of timedelta objects are supported with the timedelta object representing the smaller duration
considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a timedelta object is compared to an object of a different type,
TypeError is raised unless the comparison is == or !=. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts,
a timedelta object is considered to be true if and only if it isn’t equal to timedelta(0).

Instance methods:

timedelta.total _seconds()
Return the total number of seconds contained in the duration. Equivalent to (td.microseconds +
(td.seconds + td.days * 24 * 3600) * 10**6) / 10**6 computed with true division enabled.

Note that for very large time intervals (greater than 270 years on most platforms) this method will
lose microsecond accuracy.

New in version 2.7.

Example usage:

148 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

from datetime import timedelta
year — timedelta(days=365)
another year = timedelta(weeks—=40, days==84, hours—23,

minutes—50, seconds—600) # adds up to 365 days
year.total _seconds()
31536000.0
year —— another year
True

ten _years = 10 * year

ten_years, ten_ years.days // 365
(datetime.timedelta(3650), 10)

nine years — ten_years - year

nine_ years, nine_years.days // 365
(datetime.timedelta(3285), 9)

three years — nine years // 3;

three years, three_years.days // 365
(datetime.timedelta(1095), 3)

abs(three years - ten years) == 2 * three_years -+ year
True

8.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian
calendar indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of
year 1is called day number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in
Dershowitz and Reingold’s book Calendrical Calculations, where it’s the base calendar for all computations.
See the book for algorithms for converting between proleptic Gregorian ordinals and many other calendar
systems.

class datetime.date(year, month, day)
All arguments are required. Arguments may be ints or longs, in the following ranges:

« MINYEAR <= year <= MAXYEAR
¢ 1 <= month <= 12
¢ 1 <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date. This is equivalent to date.fromtimestamp(time.time()).

classmethod date.fromtimestamp(timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by time.time().
This may raise ValueError, if the timestamp is out of the range of values supported by the platform
C localtime() function. It’s common for this to be restricted to years from 1970 through 2038. Note
that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are
ignored by fromtimestamp().

classmethod date.fromordinal(ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal(). For any date d, date.
fromordinal(d.toordinal()) ==

Class attributes:

8.1. datetime — Basic date and time types 149

The Python Library Reference, Release 2.7.14

date.min
The earliest representable date, date(MINYEAR, 1, 1).

date.max
The latest representable date, date(MAXYEAR, 12, 31).

date.resolution
The smallest possible difference between non-equal date objects, timedelta(days=1).

Instance attributes (read-only):

date.year
Between MINYEAR and MAXYEAR inclusive.

date.month
Between 1 and 12 inclusive.

date.day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + timedelta | date2 is timedelta.days days removed from datel. (1)

date2 = datel - timedelta | Computes date2 such that date2 + timedelta == datel. (2)

timedelta = datel - date2 | (3)

datel < date2 datel is considered less than date2 when datel precedes date2 in time. (4)

Notes:

1. date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days < 0. After-
ward date2 - datel == timedelta.days. timedelta.seconds and timedelta.microseconds are ignored.
OverflowError is raised if date2.year would be smaller than MINYEAR or larger than MAXYEAR.

2. This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases
where datel - timedelta does not. timedelta.seconds and timedelta.microseconds are ignored.

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 +
timedelta == datel after.

4. In other words, datel < date2 if and only if datel.toordinal() < date2.toordinal(). In order to stop
comparison from falling back to the default scheme of comparing object addresses, date comparison
normally raises TypeError if the other comparand isn’t also a date object. However, NotImplemented
is returned instead if the other comparand has a timetuple() attribute. This hook gives other kinds of
date objects a chance at implementing mixed-type comparison. If not, when a date object is compared
to an object of a different type, TypeError is raised unless the comparison is == or !=. The latter
cases return False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.
Instance methods:

date.replace(year, month, day)
Return a date with the same value, except for those parameters given new values by whichever key-
word arguments are specified. For example, if d == date(2002, 12, 31), then d.replace(day—=26) —=
date(2002, 12, 26).

date.timetuple()
Return a time.struct _time such as returned by time.localtime(). The hours, minutes and seconds are
0, and the DST flag is -1. d.timetuple() is equivalent to time.struct time((d.year, d.month, d.day, 0,

150 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

0, 0, d.weekday(), yday, -1)), where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day
number within the current year starting with 1 for January 1st.

date.toordinal()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any
date object d, date.fromordinal(d.toordinal()) ==

date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date(2002,
12, 4).weekday() == 2, a Wednesday. See also isoweekday().

date.isoweekday/()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date(2002,
12, 4).isoweekday() == 3, a Wednesday. See also weekday(), isocalendar().

date.isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See https://www.staff.science.
uu.nl/"gent0113/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a
Sunday. The first week of an ISO year is the first (Gregorian) calendar week of a year containing a
Thursday. This is called week number 1, and the ISO year of that Thursday is the same as its Gregorian
year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec
2003 and ends on Sunday, 4 Jan 2004, so that date(2003, 12, 29).isocalendar() == (2004, 1, 1) and
date(2004, 1, 4).isocalendar() == (2004, 1, 7).

date.isoformat()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For example, date(2002,
12, 4).isoformat() == '2002-12-04"'.

date. _str_ ()
For a date d, str(d) is equivalent to d.isoformat().

date.ctime()
Return a string representing the date, for example date(2002, 12, 4).ctime() == ' Wed Dec 4 00:00:00
2002"'. d.ctime() is equivalent to time.ctime(time.mktime(d.timetuple())) on platforms where the na-
tive C ctime() function (which time.ctime() invokes, but which date.ctime() does not invoke) conforms
to the C standard.

date.strftime(format)
Return a string representing the date, controlled by an explicit format string. Format codes referring
to hours, minutes or seconds will see 0 values. For a complete list of formatting directives, see section
strftime() and strptime() Behavior.

date. format _ (format)
Same as date.strftime(). This makes it possible to specify a format string for a date object when using
str.format(). See section strftime() and strptime() Behavior.

Example of counting days to an event:

import time
from datetime import date
today = date.today/()

today
datetime.date(2007, 12, 5)
today == date.fromtimestamp(time.time())

True

8.1. datetime — Basic date and time types 151

https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm
https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 2.7.14

my _birthday — date(today.year, 6, 24)
if my birthday < today:
my birthday = my birthday.replace(year=today.year + 1)
- my birthday
datetime.date(2008, 6, 24)
time_to_ birthday = abs(my _birthday - today)
time to_birthday.days
202

Example of working with date:

from datetime import date
d = date.fromordinal(730920) # 730920th day after 1. 1. 0001
> d
datetime.date(2002, 3, 11)
t = d.timetuple()

foriin t:
print i
2002 # year
3 # month
11 # day
0
0
0
0 # weekday (0 = Monday)
70 # T70th day in the year
-1
ic = d.isocalendar()
for i in ic:
print i
2002 # ISO year
11 # ISO week number
1 # ISO day number (1 = Monday)
d.isoformat()
'2002-03-11"
d.strftime("%d/%m/%y")
'11/03/02"

d.strftime("%A %d. %B %Y")
'Monday 11. March 2002"'

"The {1} is {0:%d}, the {2} is {0:%B}. ' format(d, "day", "month")
'The day is 11, the month is March.'

8.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a time object.
Like a date object, datetime assumes the current Gregorian calendar extended in both directions; like a time
object, datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datetime.datetime(year, month, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]])
The year, month and day arguments are required. tzinfo may be None, or an instance of a tzinfo
subclass. The remaining arguments may be ints or longs, in the following ranges:

* MINYEAR <= year <= MAXYEAR

e 1 <= month <= 12

152 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

¢ 1 <= day <= number of days in the given month and year
¢ 0 <= hour < 24
* 0 <= minute < 60
* 0 <= second < 60
¢) <= microsecond < 1000000
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod datetime.today ()
Return the current local datetime, with tzinfo None. This is equivalent to datetime.
fromtimestamp(time.time()). See also now(), fromtimestamp().

classmethod datetime.now([tz])
Return the current local date and time. If optional argument tz is None or not specified, this is like
today(), but, if possible, supplies more precision than can be gotten from going through a time.time()
timestamp (for example, this may be possible on platforms supplying the C gettimeofday() function).

If tz is not None, it must be an instance of a tzinfo subclass, and the current date and time are
converted to tz’s time zone. In this case the result is equivalent to tz.fromutc(datetime.utcnow().
replace(tzinfo=tz)). See also today(), utcnow().

classmethod datetime.utcnow()
Return the current UTC date and time, with tzinfo None. This is like now(), but returns the current
UTC date and time, as a naive datetime object. See also now().

classmethod datetime.fromtimestamp(timestamp [, tz])
Return the local date and time corresponding to the POSIX timestamp, such as is returned by time.
time(). If optional argument tz is None or not specified, the timestamp is converted to the platform’s
local date and time, and the returned datetime object is naive.

If tz is not None, it must be an instance of a tzinfo subclass, and the timestamp is converted to tz’s
time zone. In this case the result is equivalent to tz.fromutc(datetime.utcfromtimestamp(timestamp).
replace(tzinfo=tz)).

fromtimestamp() may raise ValueError, if the timestamp is out of the range of values supported by
the platform C localtime() or gmtime() functions. It’s common for this to be restricted to years in
1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a
timestamp, leap seconds are ignored by fromtimestamp(), and then it’s possible to have two timestamps
differing by a second that yield identical datetime objects. See also utcfromtimestamp().

classmethod datetime.utcfromtimestamp (timestamp)
Return the UTC datetime corresponding to the POSIX timestamp, with tzinfo None. This may
raise ValueError, if the timestamp is out of the range of values supported by the platform C gmtime()
function. It’s common for this to be restricted to years in 1970 through 2038. See also fromtimestamp().

classmethod datetime.fromordinal(ordinal)
Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError is raised unless 1 <— ordinal <— datetime.max.toordinal(). The hour, minute,
second and microsecond of the result are all 0, and tzinfo is None.

classmethod datetime.combine(date, time)
Return a new datetime object whose date components are equal to the given date object’s, and whose
time components and tzinfo attributes are equal to the given time object’s. For any datetime object
d, d == datetime.combine(d.date(), d.timetz()). If date is a datetime object, its time components and
tzinfo attributes are ignored.

8.1. datetime — Basic date and time types 153

The Python Library Reference, Release 2.7.14

classmethod datetime.strptime(date string, format)
Return a datetime corresponding to date string, parsed according to format. This is equivalent to
datetime(*(time.strptime(date _string, format)[0:6])). ValueError is raised if the date string and for-
mat can’t be parsed by time.strptime() or if it returns a value which isn’t a time tuple. For a complete
list of formatting directives, see section strftime() and strptime() Behavior.

New in version 2.5.
Class attributes:

datetime.min
The earliest representable datetime, datetime(MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects, timedelta(microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range(24).

datetime.minute
In range(60).

datetime.second
In range(60).

datetime.microsecond
In range(1000000).

datetime.tzinfo
The object passed as the tzinfo argument to the datetime constructor, or None if none was passed.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime2 Compares datetime to datetime. (4)

1. datetime2 is a duration of timedelta removed from datetimel, moving forward in time if timedelta.
days > 0, or backward if timedelta.days < 0. The result has the same tzinfo attribute as the input
datetime, and datetime2 - datetimel == timedelta after. OverflowError is raised if datetime2.year
would be smaller than MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are
done even if the input is an aware object.

2. Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result
has the same tzinfo attribute as the input datetime, and no time zone adjustments are done even if the

154 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

input is aware. This isn’t quite equivalent to datetimel + (-timedelta), because -timedelta in isolation
can overflow in cases where datetimel - timedelta does not.

3. Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same tzinfo attribute, the tzinfo attributes are
ignored, and the result is a timedelta object t such that datetime2 + t == datetimel. No time zone
adjustments are done in this case.

If both are aware and have different tzinfo attributes, a-b acts as if a and b were first converted to naive
UTC datetimes first. The result is (a.replace(tzinfo=None) - a.utcoffset()) - (b.replace(tzinfo=None) -
b.utcoffset()) except that the implementation never overflows.

4. datetimel is considered less than datetime2 when datetimel precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised. If both comparands are aware,
and have the same tzinfo attribute, the common tzinfo attribute is ignored and the base datetimes are
compared. If both comparands are aware and have different tzinfo attributes, the comparands are first
adjusted by subtracting their UTC offsets (obtained from self.utcoffset()).

Note: In order to stop comparison from falling back to the default scheme of comparing object ad-
dresses, datetime comparison normally raises TypeError if the other comparand isn’t also a datetime
object. However, NotImplemented is returned instead if the other comparand has a timetuple() at-
tribute. This hook gives other kinds of date objects a chance at implementing mixed-type comparison.
If not, when a datetime object is compared to an object of a different type, TypeError is raised unless
the comparison is —= or !=. The latter cases return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datetime objects are considered to
be true.

Instance methods:

datetime.date()
Return date object with same year, month and day.

datetime.time()
Return time object with same hour, minute, second and microsecond. tzinfo is None. See also method
timetz().

datetime.timetz()
Return time object with same hour, minute, second, microsecond, and tzinfo attributes. See also
method time().

datetime.replace([year[, month[, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]]]]])
Return a datetime with the same attributes, except for those attributes given new values by whichever
keyword arguments are specified. Note that tzinfo=None can be specified to create a naive datetime
from an aware datetime with no conversion of date and time data.

datetime.astimezone(tz)
Return a datetime object with new tzinfo attribute tz, adjusting the date and time data so the result
is the same UTC time as self, but in tz’s local time.

tz must be an instance of a tzinfo subclass, and its utcoffset() and dst() methods must not return None.
self must be aware (self.tzinfo must not be None, and self.utcoffset() must not return None).

If self.tzinfo is tz, self.astimezone(tz) is equal to self: no adjustment of date or time data is performed.
Else the result is local time in time zone tz, representing the same UTC time as self: after astz
= dt.astimezone(tz), astz - astz.utcoffset() will usually have the same date and time data as dt -

8.1. datetime — Basic date and time types 155

The Python Library Reference, Release 2.7.14

dt.utcoffset(). The discussion of class tzinfo explains the cases at Daylight Saving Time transition
boundaries where this cannot be achieved (an issue only if tz models both standard and daylight
time).

If you merely want to attach a time zone object tz to a datetime dt without adjustment of date and
time data, use dt.replace(tzinfo=tz). If you merely want to remove the time zone object from an aware
datetime dt without conversion of date and time data, use dt.replace(tzinfo=None).

Note that the default tzinfo.fromutc() method can be overridden in a tzinfo subclass to affect the result
returned by astimezone(). Ignoring error cases, astimezone() acts like:

def astimezone(self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo—tz)
Convert from UTC to tz 's local time.
return tz.fromutc(utc)

datetime.utcoffset()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(self), and raises an exception if the latter
doesn’t return None, or a timedelta object representing a whole number of minutes with magnitude
less than one day.

datetime.dst()
If tzinfo is None, returns None, else returns self.tzinfo.dst(self), and raises an exception if the latter
doesn’t return None, or a timedelta object representing a whole number of minutes with magnitude
less than one day.

datetime.tzname()
If tzinfo is None, returns None, else returns self.tzinfo.tzname(self), raises an exception if the latter
doesn’t return None or a string object,

datetime.timetuple()
Return a time.struct _time such as returned by time.localtime(). d.timetuple() is equivalent to time.
struct_time((d.year, d.month, d.day, d.hour, d.minute, d.second, d.weekday(), yday, dst)), where yday
= d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day number within the current year starting
with 1 for January 1st. The tm_isdst flag of the result is set according to the dst() method: tzinfo is
None or dst() returns None, tm_isdst is set to -1; else if dst() returns a non-zero value, tm_isdst is
set to 1; else tm_isdst is set to 0.

datetime.utctimetuple()
If datetime instance d is naive, this is the same as d.timetuple() except that tm isdst is forced to 0
regardless of what d.dst() returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset(), and a time.struct time for
the normalized time is returned. tm _isdst is forced to 0. Note that the result’s tm year member may
be MINYEAR-1 or MAXYEAR+1, if d.year was MINYEAR or MAXYEAR and UTC adjustment
spills over a year boundary.

datetime.toordinal()
Return the proleptic Gregorian ordinal of the date. The same as self.date().toordinal().

datetime.weekday/()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as self.date().
weekday(). See also isoweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date().
isoweekday(). See also weekday(), isocalendar().

156 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

datetime.isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as self.date().isocalendar().

datetime.isoformat([sep])
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, if microsecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not return None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm-+HH:MM or, if microsecond is 0 YYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default 'T') is a one-character separator, placed between the date and
time portions of the result. For example,

from datetime import tzinfo, timedelta, datetime
class TZ(tzinfo):
def utcoffset(self, dt): return timedelta(minutes—-399)

datetime(2002, 12, 25, tzinfo=TZ()).isoformat(' ")
'2002-12-25 00:00:00-06:39"

datetime. _str_ ()
For a datetime instance d, str(d) is equivalent to d.isoformat(').

datetime.ctime()
Return a string representing the date and time, for example datetime(2002, 12, 4, 20, 30, 40).ctime()
== "Wed Dec 4 20:30:40 2002"'. d.ctime() is equivalent to time.ctime(time.mktime(d.timetuple())) on
platforms where the native C ctime() function (which time.ctime() invokes, but which datetime.ctime()
does not invoke) conforms to the C standard.

datetime.strftime(format)
Return a string representing the date and time, controlled by an explicit format string. For a complete
list of formatting directives, see section strftime() and strptime() Behavior.

datetime. format _ (format)
Same as datetime.strftime(). This makes it possible to specify a format string for a datetime object
when using str.format(). See section strftime() and strptime() Behavior.

Examples of working with datetime objects:

from datetime import datetime, date, time
Using datetime.combine()
d = date(2005, 7, 14)
t = time(12, 30)
datetime.combine(d, t)
datetime.datetime(2005, 7, 14, 12, 30)
: # Using datetime.now() or datetime.utcnow()
datetime.now()
datetime.datetime(2007, 12, 6, 16, 29, 43, 79043) # GMT +1
datetime.utcnow()
datetime.datetime(2007, 12, 6, 15, 29, 43, 79060)
> # Using datetime.strptime()
dt — datetime.strptime("21/11/06 16:30", "%d/%m /%y %H:%M")
dt
datetime.datetime (2006, 11, 21, 16, 30)
Using datetime.timetuple() to get tuple of all attributes
tt = dt.timetuple()
for it in tt:
print it

8.1. datetime — Basic date and time types 157

The Python Library Reference, Release 2.7.14

2006 # year
11 # month
21 # day
16 # hour

30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1st January
-1 # dst - method tzinfo.dst() returned None
>>> # Date in ISO format
> > ic = dt.isocalendar()
for it in ic:
print it

2006 # ISO year
47 # ISO week
2 # ISO weekday
Formatting datetime
> dtstrftime(" A, Yd. %B %Y %L %M %p")
' Tuesday, 21. November 2006 04:30PM '
"The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%L:%M%p}." .format(dt, "day", "month", "time")
'The day is 21, the month is November, the time is 04:30PM."

Using datetime with tzinfo:

~>> from datetime import timedelta, datetime, tzinfo
> > class GMT1(tzinfo):
def utcoffset(self, dt):
return timedelta(hours—1) + self.dst(dt)
def dst(self, dt):
DST starts last Sunday in March
d = datetime(dt.year, 4, 1) # ends last Sunday in October
self.dston = d - timedelta(days—d.weekday() + 1)
d = datetime(dt.year, 11, 1)
self.dstoff — d - timedelta(days—d.weekday() + 1)

if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta(hours=1)
else:

return timedelta(0)
def tzname(self,dt):
return "GMT +1"

- class GMT2(tzinfo):

def utcoffset(self, dt):
return timedelta(hours=2) + self.dst(dt)

def dst(self, dt):
d = datetime(dt.year, 4, 1)
self.dston = d - timedelta(days—d.weekday() + 1)
d = datetime(dt.year, 11, 1)
self.dstoff = d - timedelta(days—d.weekday() + 1)

if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta(hours—1)
else:

return timedelta(0)
def tzname(self,dt):
return "GMT +2"

> gmtl = GMT1()

158 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

Daylight Saving Time
dt1 = datetime(2006, 11, 21, 16, 30, tzinfo—gmt1)
dt1.dst()
datetime.timedelta(0)
dt1.utcoffset()
datetime.timedelta(0, 3600)
dt2 — datetime(2006, 6, 14, 13, 0, tzinfo—gmt1)
dt2.dst()
datetime.timedelta(0, 3600)
dt2.utcoffset()
datetime.timedelta(0, 7200)
Convert datetime to another time zone
dt3 = dt2.astimezone(GMT2())
dt3
datetime.datetime (2006, 6, 14, 14, 0, tzinfo=<GMT?2 object at 0x...>>)
dt2
datetime.datetime (2006, 6, 14, 13, 0, tzinfo=<GMT1 object at 0x...>>)
dt2.utctimetuple() == dt3.utctimetuple()
True

8.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment
via a tzinfo object.

class datetime.time([hour[, minute[, second[, microsecond[, tzinfo]]]]])
All arguments are optional. tzinfo may be None, or an instance of a tzinfo subclass. The remaining
arguments may be ints or longs, in the following ranges:

¢ 0 <= hour < 24

* 0 <= minute < 60

* 0 <= second < 60

e 0 <= microsecond < 1000000.

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable time, time(0, 0, 0, 0).

time.max

The latest representable time, time(23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal time objects, timedelta(microseconds=1), although
note that arithmetic on time objects is not supported.

Instance attributes (read-only):

time.hour
In range(24).

time.minute
In range(60).

8.1. datetime — Basic date and time types 159

The Python Library Reference, Release 2.7.14

time.second
In range(60).

time.microsecond
In range(1000000).

time.tzinfo
The object passed as the tzinfo argument to the time constructor, or None if none was passed.

Supported operations:

e comparison of time to time, where a is considered less than b when a precedes b in time. If one
comparand is naive and the other is aware, TypeError is raised. If both comparands are aware, and
have the same tzinfo attribute, the common tzinfo attribute is ignored and the base times are compared.
If both comparands are aware and have different tzinfo attributes, the comparands are first adjusted by
subtracting their UTC offsets (obtained from self.utcoffset()). In order to stop mixed-type comparisons
from falling back to the default comparison by object address, when a time object is compared to an
object of a different type, TypeError is raised unless the comparison is == or !=. The latter cases
return False or True, respectively.

* hash, use as dict key
« efficient pickling

* in Boolean contexts, a time object is considered to be true if and only if, after converting it to minutes
and subtracting utcoffset() (or 0 if that’s None), the result is non-zero.

Instance methods:

time.replace([hour[, minute[, second[, microsecond[, tzinfo]]]]])
Return a time with the same value, except for those attributes given new values by whichever keyword
arguments are specified. Note that tzinfo=None can be specified to create a naive time from an aware
time, without conversion of the time data.

time.isoformat()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset() does not return None, a 6-character string is appended, giving the UTC
offset in (signed) hours and minutes: HH:MM:SS.mmmmmm-+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

time. _str_ ()
For a time t, str(t) is equivalent to t.isoformat().

time.strftime(format)
Return a string representing the time, controlled by an explicit format string. For a complete list of
formatting directives, see section strftime() and strptime() Behavior.

time. format _ (format)
Same as time.strftime(). This makes it possible to specify a format string for a time object when using
str.format(). See section strftime() and strptime() Behavior.

time.utcoffset()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(None), and raises an exception if the
latter doesn’t return None or a timedelta object representing a whole number of minutes with magnitude
less than one day.

time.dst()
If tzinfo is None, returns None, else returns self.tzinfo.dst(None), and raises an exception if the latter
doesn’t return None, or a timedelta object representing a whole number of minutes with magnitude
less than one day.

160 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

time.tzname()
If tzinfo is None, returns None, else returns self.tzinfo.tzname(None), or raises an exception if the latter
doesn’t return None or a string object.

Example:

from datetime import time, tzinfo, timedelta
class GMT1(tzinfo):
def utcoffset(self, dt):
return timedelta(hours—1)
def dst(self, dt):
return timedelta(0)
def tzname(self,dt):
return "Europe/Prague"

t — time(12, 10, 30, tzinfo—GMT1())

t
datetime.time(12, 10, 30, tzinfo=<GMT1 object at 0x...>)
gmt — GMT1()

t.isoformat()
'12:10:30+01:00"
t.dst()
datetime.timedelta(0)
t.tzname()
'Europe/Prague’
t.strftime(" %H: % M: %S %Z")
'12:10:30 Europe/Prague’
"The {} is {:%H:%M}. " format("time", t)
' The time is 12:10."

8.1.6 tzinfo Objects

class datetime.tzinfo
This is an abstract base class, meaning that this class should not be instantiated directly. You need to
derive a concrete subclass, and (at least) supply implementations of the standard tzinfo methods needed
by the datetime methods you use. The datetime module does not supply any concrete subclasses of
tzinfo.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their attributes as being in local time, and the tzinfo object supports
methods revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative
to a date or time object passed to them.

Special requirement for pickling: A tzinfo subclass must have an __init () method that can be
called with no arguments, else it can be pickled but possibly not unpickled again. This is a technical
requirement that may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods
are needed depends on the uses made of aware datetime objects. If in doubt, simply implement all of
them.

tzinfo.utcoffset (self, dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this
should be negative. Note that this is intended to be the total offset from UTC; for example, if a tzinfo
object represents both time zone and DST adjustments, utcoffset() should return their sum. If the
UTC offset isn’t known, return None. Else the value returned must be a timedelta object specifying
a whole number of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the

8.1. datetime — Basic date and time types 161

The Python Library Reference, Release 2.7.14

offset must be less than one day). Most implementations of utcoffset() will probably look like one of
these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset() does not return None, dst() should not return None either.

The default implementation of utcoffset() raises NotImplementedError.

tzinfo.dst (self, dt)

Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information
isn’t known. Return timedelta(0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (see utcoffset() for details). Note that DST offset, if applicable, has already been added
to the UTC offset returned by utcoffset(), so there’s no need to consult dst() unless you're interested
in obtaining DST info separately. For example, datetime.timetuple() calls its tzinfo attribute’s dst()
method to determine how the tm_isdst flag should be set, and tzinfo.fromutc() calls dst() to account
for DST changes when crossing time zones.

An instance tz of a tzinfo subclass that models both standard and daylight times must be consistent
in this sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for every datetime dt with dt.tzinfo == tz For sane tzinfo subclasses,
this expression yields the time zone’s “standard offset”, which should not depend on the date or the
time, but only on geographic location. The implementation of datetime.astimezone() relies on this,
but cannot detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass
cannot guarantee this, it may be able to override the default implementation of tzinfo.fromutc() to
work correctly with astimezone() regardless.

Most implementations of dst() will probably look like one of these two:

def dst(self, dt):
a fixed-offset class: doesn 't account for DST
return timedelta(0)

or

def dst(self, dt):
Code to set dston and dstoff to the time zone 's DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta(hours—1)

else:
return timedelta(0)

The default implementation of dst() raises NotImplementedError.

tzinfo.tzname(self, dt)

Return the time zone name corresponding to the datetime object dt, as a string. Nothing about
string names is defined by the datetime module, and there’s no requirement that it mean anything in
particular. For example, “GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York”
are all valid replies. Return None if a string name isn’t known. Note that this is a method rather than
a fixed string primarily because some tzinfo subclasses will wish to return different names depending
on the specific value of dt passed, especially if the tzinfo class is accounting for daylight time.

The default implementation of tzname() raises NotImplementedError.

162

Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

These methods are called by a datetime or time object, in response to their methods of the same names.
A datetime object passes itself as the argument, and a time object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a dt argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None
is appropriate if the class wishes to say that time objects don’t participate in the tzinfo protocols. It may
be more useful for utcoffset(None) to return the standard UTC offset, as there is no other convention for
discovering the standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as self.
tzinfo methods can rely on this, unless user code calls tzinfo methods directly. The intent is that the tzinfo
methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more tzinfo method that a subclass may wish to override:

tzinfo.fromutc(self, dt)
This is called from the default datetime.astimezone() implementation. When called from that, dt.
tzinfo is self, and dt’s date and time data are to be viewed as expressing a UTC time. The purpose of
fromutc() is to adjust the date and time data, returning an equivalent datetime in self’s local time.

Most tzinfo subclasses should be able to inherit the default fromutc() implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and
daylight time, and the latter even if the DST transition times differ in different years. An example of
a time zone the default fromutc() implementation may not handle correctly in all cases is one where
the standard offset (from UTC) depends on the specific date and time passed, which can happen for
political reasons. The default implementations of astimezone() and fromutc() may not produce the
result you want if the result is one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc() implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff — dt.utcoffset()
dtdst = dt.dst()
raise ValueError if dtoff is None or dtdst is None
delta — dtoff - dtdst +# this is self 's standard offset
if delta:
dt += delta # convert to standard local time
dtdst — dt.dst()
raise ValueError if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

Example tzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR = timedelta(hours=1)

A UTC class.

class UTC(tzinfo):
nn ”LTTCH nn

def utcoffset(self, dt):
return ZERO

8.1. datetime — Basic date and time types 163

The Python Library Reference, Release 2.7.14

def tzname(self, dt):
return "UTC"

def dst(self, dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset(tzinfo):
"""Pixed offset in minutes east from UTC."""

def _ init__ (self, offset, name):
self. offset = timedelta(minutes = offset)
self. name = name

def utcoffset(self, dt):
return self. offset

def tzname(self, dt):
return self. name

def dst(self, dt):
return ZERO

A class capturing the platform 's idea of local time.
import time as _time

STDOFFSET = timedelta(seconds = - _time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = -_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF — DSTOFFSET - STDOFFSET
class LocalTimezone(tzinfo):

def utcoffset(self, dt):
if self. isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst(self, dt):
if self. isdst(dt):
return DSTDIFF
else:
return ZERO

def tzname(self, dt):
return _time.tznamel[self. _isdst(dt)]

164

Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second,
dt.weekday(), 0, 0)
stamp — _ time.mktime(tt)
tt = _time.localtime(stamp)
return tt.tm_ isdst > 0

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first _sunday on_or_after(dt):
days_to_go = 6 - dt.weekday()
if days_to_ go:
dt +— timedelta(days_to_go)
return dt

US DST Rules

#

This is a simplified (i.e., wrong for a few cases) set of rules for US

DST start and end times. For a complete and up-to-date set of DST rules

and timezone definitions, visit the Olson Database (or try pytz):

http://www.twinsun.com/tz/tz-link.htm

http://sourceforge.net/projects/pytz/ (might not be up-to-date)

#

In the US, since 2007, DST starts at 2am (standard time) on the second

Sunday in March, which is the first Sunday on or after Mar 8.

DSTSTART 2007 = datetime(1, 3, 8, 2)

and ends at 2am (DST time; lam standard time) on the first Sunday of Nov.
DSTEND 2007 = datetime(1, 11, 1, 1)

From 1987 to 2006, DST used to start at 2am (standard time) on the first

Sunday in April and to end at 2am (DST time; lam standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART 1987 2006 — datetime(1, 4, 1, 2)

DSTEND 1987 2006 — datetime(1, 10, 25, 1)

From 1967 to 1986, DST used to start at 2am (standard time) on the last

Sunday in April (the one on or after April 24) and to end at 2am (DST time;
lam standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.

DSTSTART 1967 1986 — datetime(1, 4, 24, 2)

DSTEND 1967 1986 — DSTEND 1987 2006

class USTimeZone(tzinfo):

def __init__ (self, hours, reprname, stdname, dstname):
self.stdoffset — timedelta(hours—hours)
self.reprname — reprname
self.stdname = stdname
self.dstname — dstname

def repr__ (self):
return self.-reprname

def tzname(self, dt):
if self.dst(dt):

8.1. datetime — Basic date and time types

165

The Python Library Reference, Release 2.7.14

return self.dstname
else:
return self.stdname

def utcoffset(self, dt):
return self.stdoffset -+ self.dst(dt)

def dst(self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
1t depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:

dststart, dstend = DSTSTART 2007, DSTEND 2007
elif 1986 < dt.year < 2007:

dststart, dstend — DSTSTART _1987_ 2006, DSTEND _1987_ 2006
elif 1966 < dt.year < 1987:

dststart, dstend = DSTSTART _1967 1986, DSTEND _1967_ 1986
else:

return ZERO

start — first_sunday on_or_after(dststart.replace(year—dt.year))
end — first _sunday on_or_after(dstend.replace(year—dt.year))

Can 't compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:
return HOUR
else:
return ZERO

Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")
Central = USTimeZone(-6, "Central", "CST", "CDT")
Mountain — USTimeZone(-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in a tzinfo subclass accounting for both standard
and daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where
EDT begins the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59
(EDT) on the first Sunday in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM 0:MM 1:MM 2:MM 3:MM
EDT 23:MM 0:MM 1:MM 2:MM 3:MM 4:MM
start 22:MM 23:MM 0:MM 1:MM 3:MM 4:MM

end 23:MM 0:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form
2:MM doesn’t really make sense on that day, so astimezone(Eastern) won’t deliver a result with hour ==
2 on the day DST begins. In order for astimezone() to make this guarantee, the rzinfo.dst() method must

166 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

consider times in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled
unambiguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM
UTC on the day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00
(standard time) again. Local times of the form 1:MM are ambiguous. astimezone() mimics the local clock’s
behavior by mapping two adjacent UTC hours into the same local hour then. In the Eastern example, UTC
times of the form 5:MM and 6:MM both map to 1:MM when converted to Eastern. In order for astimezone()
to make this guarantee, the tzinfo.dst() method must consider times in the “repeated hour” to be in standard
time. This is easily arranged, as in the example, by expressing DST switch times in the time zone’s standard
local time.

Applications that can’t bear such ambiguities should avoid using hybrid tzinfo subclasses; there are no
ambiguities when using UTC, or any other fixed-offset tzinfo subclass (such as a class representing only EST
(fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

See also:

pytz The standard library has no tzinfo instances, but there exists a third-party library which brings the
TANA timezone database (also known as the Olson database) to Python: pytz.

pytz contains up-to-date information and its usage is recommended.

TANA timezone database The Time Zone Database (often called tz or zoneinfo) contains code and data that
represent the history of local time for many representative locations around the globe. It is updated
periodically to reflect changes made by political bodies to time zone boundaries, UTC offsets, and
daylight-saving rules.

8.1.7 strftime() and strptime() Behavior

date, datetime, and time objects all support a strftime(format) method, to create a string representing the
time under the control of an explicit format string. Broadly speaking, d.strftime(fmt) acts like the time
module’s time.stritime(fmt, d.timetuple()) although not all objects support a timetuple() method.

Conversely, the datetime.strptime() class method creates a datetime object from a string representing a
date and time and a corresponding format string. datetime.strptime(date string, format) is equivalent to
datetime(* (time.strptime(date _string, format)[0:6])).

For time objects, the format codes for year, month, and day should not be used, as time objects have no
such values. If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as
date objects have no such values. If they’re used anyway, 0 is substituted for them.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common. To see the full set of format codes supported on
your platform, consult the strftime(3) documentation.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work
on all platforms with a standard C implementation. Note that the 1999 version of the C standard added
additional format codes.

The exact range of years for which strftime() works also varies across platforms. Regardless of platform,
years before 1900 cannot be used.

8.1. datetime — Basic date and time types 167

https://pypi.python.org/pypi/pytz/
https://www.iana.org/time-zones

The Python Library Reference, Release 2.7.14

decimal number, zero-
padded on the left.

999999

Directive Meaning Example Notes
%oa Weekday as locale’s ab- (1)
breviated name. Sun, Mon, ... Sat
(en_US);
So, Mo, ..., Sa
(de_DE)
%A Weekday as locale’s full (1)
Hatne. Sunday, Monday, ...,
Saturday (en_US);
Sonntag, Montag, ...,
Samstag (de_DE)
%ow Weekday as a decimal | 0,1,...,6
number, where 0 is Sun-
day and 6 is Saturday.
%d Day of the month as | 01,02, ..., 31
a zero-padded decimal
number.
%b Month as locale’s abbre- (1)
viated name. Jan, Feb, ..., Dec
(en_US);
Jan, Feb, ..., Dez
(de_DE)
%B Month as locale’s full (1)
Hame. January, February, ...,
December (en_US);
Januar, Februar, ...,
Dezember (de_DE)
Y%om Month as a zero-padded | 01, 02, ..., 12
decimal number.
%y Year without century as | 00, 01, ..., 99
a zero-padded decimal
number.
%Y Year with century as a | 1970, 1988, 2001, 2013
decimal number.
%H Hour (24-hour clock) as | 00,01, ..., 23
a zero-padded decimal
number.
%l Hour (12-hour clock) as | 01,02, ..., 12
a zero-padded decimal
number.
%op Locale’s equivalent of ei- (1), (2)
ther AM or PM.
AM, PM (en_US);
am, pm (de_DE)
%M Minute as a zero-padded | 00, 01, ..., 59
decimal number.
%S Second as a zero-padded | 00, 01 59 (3)
168 decimal number. Chapter 8. Data Types
%t Microsecond ~ as a | 000000, 000001, (4)

The Python Library Reference, Release 2.7.14

Notes:

1. Because the format depends on the current locale, care should be taken when making assumptions about
the output value. Field orderings will vary (for example, “month/day /year” versus “day/month /year”),
and the output may contain Unicode characters encoded using the locale’s default encoding (for ex-
ample, if the current locale is ja_ JP, the default encoding could be any one of eucJP, SJIS, or utf-8;
use locale.getlocale() to determine the current locale’s encoding).

2. When used with the strptime() method, the %p directive only affects the output hour field if the %I
directive is used to parse the hour.

3. Unlike the time module, the datetime module does not support leap seconds.

4. %f is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available). When used with the strptime() method, the %f
directive accepts from one to six digits and zero pads on the right.

New in version 2.6.
5. For a naive object, the %z and %Z format codes are replaced by empty strings.
For an aware object:

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a
2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number
of UTC offset minutes. For example, if utcoffset() returns timedelta(hours=-3, minutes=-30), %z
is replaced with the string '-0330'.

%Z 1f tzname() returns None, %Z is replaced by an empty string. Otherwise %Z is replaced by the
returned value, which must be a string.

6. When used with the strptime() method, %U and %W are only used in calculations when the day of
the week and the year are specified.

8.2 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful
functions related to the calendar. By default, these calendars have Monday as the first day of the week,
and Sunday as the last (the European convention). Use setfirstweekday() to set the first day of the week
to Sunday (6) or to any other weekday. Parameters that specify dates are given as integers. For related
functionality, see also the datetime and time modules.

Most of these functions and classes rely on the datetime module which uses an idealized calendar, the
current Gregorian calendar indefinitely extended in both directions. This matches the definition of the
“proleptic Gregorian” calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the
base calendar for all computations.

class calendar.Calendar([ﬁrstweekday])
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. 0 is Monday
(the default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for
formatting. This class doesn’t do any formatting itself. This is the job of subclasses.

New in version 2.5.

Calendar instances have the following methods:

8.2. calendar — General calendar-related functions 169

https://github.com/python/cpython/tree/2.7/Lib/calendar.py

The Python Library Reference, Release 2.7.14

iterweekdays()
Return an iterator for the week day numbers that will be used for one week. The first value from
the iterator will be the same as the value of the firstweekday property.

itermonthdates(year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days
(as datetime.date objects) for the month and all days before the start of the month or after the
end of the month that are required to get a complete week.

itermonthdays2(year, month)
Return an iterator for the month month in the year year similar to itermonthdates(). Days
returned will be tuples consisting of a day number and a week day number.

itermonthdays(year, month)
Return an iterator for the month month in the year year similar to itermonthdates(). Days
returned will simply be day numbers.

monthdatescalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
tuples of day numbers and weekday numbers.

monthdayscalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
day numbers.

yeardatescalendar(year [, width])
Return the data for the specified year ready for formatting. The return value is a list of month
rows. Each month row contains up to width months (defaulting to 3). Each month contains
between 4 and 6 weeks and each week contains 1-7 days. Days are datetime.date objects.

yeardays2calendar(year [, width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar()). En-
tries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar(year [, width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar()). En-
tries in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar([ﬁrstweekday])

This class can be used to generate plain text calendars.
New in version 2.5.

TextCalendar instances have the following methods:

formatmonth(theyear, themonth[, w[, 1]])
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the
date columns, which are centered. If 1 is given, it specifies the number of lines that each week will
use. Depends on the first weekday as specified in the constructor or set by the setfirstweekday/()
method.

prmonth(theyear, themonth[, w[, 1]])
Print a month’s calendar as returned by formatmonth().

formatyear(theyear[, w[, 1[, c[, m]]]])
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, 1,

170

Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

and c are for date column width, lines per week, and number of spaces between month columns,
respectively. Depends on the first weekday as specified in the constructor or set by the setfirst-
weekday() method. The earliest year for which a calendar can be generated is platform-dependent.

pryear(theyear[, w[, 1[, c[, m]]]])
Print the calendar for an entire year as returned by formatyear().

class calendar. HTMLCalendar([ﬁrstweekday])

This class can be used to generate HTML calendars.
New in version 2.5.

HTMLCalendar instances have the following methods:

formatmonth(theyear, themonth[, Withyear])
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the
header, otherwise just the month name will be used.

formatyear(theyear[, width])
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of
months per row.

formatyearpage(theyear[, Width[, css[, encoding]]])
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number
of months per row. css is the name for the cascading style sheet to be used. None can be passed if
no style sheet should be used. encoding specifies the encoding to be used for the output (defaulting
to the system default encoding).

class calendar.LocaleTextCalendar([ﬁrstweekday [, locale]])

This subclass of TextCalendar can be passed a locale name in the constructor and will return month
and weekday names in the specified locale. If this locale includes an encoding all strings containing
month and weekday names will be returned as unicode.

New in version 2.5.

class calendar.LocaleHTMLCalendar([ﬁrstweekday [, locale]])

This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month
and weekday names in the specified locale. If this locale includes an encoding all strings containing
month and weekday names will be returned as unicode.

New in version 2.5.

Note:

The formatweekday() and formatmonthname() methods of these two classes temporarily change

the current locale to the given locale. Because the current locale is a process-wide setting, they are not
thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)

Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience.
For example, to set the first weekday to Sunday:

import calendar
calendar setfirstweekday (calendar. SUNDAY)

New in version 2.0.

8.2.

calendar — General calendar-related functions 171

The Python Library Reference, Release 2.7.14

calendar firstweekday ()
Returns the current setting for the weekday to start each week.

New in version 2.0.

calendar.isleap(year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays(y1, y2)
Returns the number of leap years in the range from y1 to y2 (exclusive), where y1 and y2 are years.

Changed in version 2.0: This function didn’t work for ranges spanning a century change in Python
1.5.2.

calendar.weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970—...), month (1-12), day (1-31).

calendar.weekheader(n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one
weekday.

calendar.monthrange(year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and
month.

calendar.monthcalendar(year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the
month a represented by zeros. Each week begins with Monday unless set by setfirstweekday().

calendar.prmonth(theyear, themonth[, w[, 1]])
Prints a month’s calendar as returned by month().

calendar.month(theyear, themonth[, w[, l]])
Returns a month’s calendar in a multi-line string using the formatmonth() of the TextCalendar class.

New in version 2.0.

calendar.prcal(year[, w[, l[c]]])
Prints the calendar for an entire year as returned by calendar().

calendar.calendar(year[, w[, 1[c]]])
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear() of the
TextCalendar class.

New in version 2.0.

calendar.timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime() function
in the time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970,
and the POSIX encoding. In fact, time.gmtime() and timegm() are each others’ inverse.

New in version 2.0.
The calendar module exports the following data attributes:

calendar.day name
An array that represents the days of the week in the current locale.

calendar.day abbr
An array that represents the abbreviated days of the week in the current locale.

172 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

calendar.month name
An array that represents the months of the year in the current locale. This follows normal convention
of January being month number 1, so it has a length of 13 and month name|[0] is the empty string.

calendar.month _abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month _abbr[0] is the empty
string.

See also:
Module datetime Object-oriented interface to dates and times with similar functionality to the time module.

Module time Low-level time related functions.

8.3 collections — High-performance container datatypes

New in version 2.4.

Source code: Lib/collections.py and Lib/ abcoll.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose
built-in containers, dict, list, set, and tuple.

namedtuple() | factory function for creating tuple subclasses with named fields New in version 2.6.
deque list-like container with fast appends and pops on either end New in version 2.4.
Counter dict subclass for counting hashable objects New in version 2.7.
OrderedDict | dict subclass that remembers the order entries were added New in version 2.7.
defaultdict dict subclass that calls a factory function to supply missing values | New in version 2.5.

In addition to the concrete container classes, the collections module provides abstract base classes that can
be used to test whether a class provides a particular interface, for example, whether it is hashable or a
mapping.

8.3.1 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

Tally occurrences of words in a list
cnt = Counter()
for word in ['red', "blue', 'red', 'green', 'blue', 'blue']:
cnt[word] += 1
> cnt
Counter({'blue': 3, 'red': 2, 'green': 1})

Find the ten most common words in Hamlet
import re
words = re.findall(r'\w- ', open('hamlet.txt').read().lower())
Counter(words).most__common(10)
[("the', 1143), ("and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my"', 514), ('hamlet', 471), ("in", 451)]

8.3. collections — High-performance container datatypes 173

https://github.com/python/cpython/tree/2.7/Lib/collections.py
https://github.com/python/cpython/tree/2.7/Lib/_abcoll.py

The Python Library Reference, Release 2.7.14

class collections.Counter([iterable—or—mapping])

A Counter is a dict subclass for counting hashable objects. It is an unordered collection where elements
are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be
any integer value including zero or negative counts. The Counter class is similar to bags or multisets
in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

¢ = Counter() # a new, empty counter

¢ = Counter(' gallahad") # a new counter from an iterable

¢ — Counter({'red': 4, "blue': 2}) # a new counter from a mapping

¢ = Counter(cats=4, dogs—8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items
instead of raising a KeyError:

¢ = Counter(['eggs', "ham'])
c['bacon "] # count of a missing element is zero

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

c['sausage'] = 0 # counter entry with a zero count
del ¢['sausage'] # del actually removes the entry

New in version 2.7.
Counter objects support three methods beyond those available for all dictionaries:

elements()
Return an iterator over elements repeating each as many times as its count. Elements are returned
in arbitrary order. If an element’s count is less than one, elements() will ignore it.

¢ = Counter(a=4, b=2, ¢=0, d=-2)
list(c.elements())
[lal7 lal, lal7 lal, |b|7 |b']

most__common([n])
Return a list of the n most common elements and their counts from the most common to the
least. If n is omitted or None, most common() returns all elements in the counter. Elements
with equal counts are ordered arbitrarily:

Counter('abracadabra').most _common(3)

[('a'7 5)7 ('r" 2)7 (‘b'7 2)]

subtract([iterable—or—mapping])
Elements are subtracted from an iterable or from another mapping (or counter). Like dict.update()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

c.subtract(d)
c
Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

The usual dictionary methods are available for Counter objects except for two which work differently
for counters.

174

Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

fromkeys(iterable)
This class method is not implemented for Counter objects.

update([iterable—or—mapping])
Elements are counted from an iterable or added-in from another mapping (or counter). Like
dict.update() but adds counts instead of replacing them. Also, the iterable is expected to be a
sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum(c.values()) # total of all counts

c.clear() # reset all counts

list(c) # list unique elements

set(c) # convert to a set

dict(c) # convert to a regular dictionary

c.items() # convert to a list of (elem, cnt) pairs
Counter(dict(list_of pairs)) # convert from a list of (elem, cnt) pairs
c.most _common()[:-n-1:-1] # n least common elements

¢ += Counter() # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters
that have counts greater than zero). Addition and subtraction combine counters by adding or subtracting
the counts of corresponding elements. Intersection and union return the minimum and maximum of corre-
sponding counts. Each operation can accept inputs with signed counts, but the output will exclude results
with counts of zero or less.

¢ = Counter(a=3, b=1)
d = Counter(a=1, b=2)

c+d # add two counters together: c[x| + d[x]
Counter({'a': 4, 'b': 3})

c-d # subtract (keeping only positive counts)
Counter({'a': 2})

c&d # intersection: min(c[x], d[x])
Counter({'a': 1, 'b': 1})

cld # union: max(c[x], d[x])

Counter({'a': 3, 'b': 2})

Note: Counters were primarily designed to work with positive integers to represent running counts; however,
care was taken to not unnecessarily preclude use cases needing other types or negative values. To help with
those use cases, this section documents the minimum range and type restrictions.

¢ The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values
are intended to be numbers representing counts, but you could store anything in the value field.

e The most _common() method requires only that the values be orderable.

* For in-place operations such as c[key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true
for update() and subtract() which allow negative and zero values for both inputs and outputs.

¢ The multiset methods are designed only for use cases with positive values. The inputs may be negative
or zero, but only outputs with positive values are created. There are no type restrictions, but the value
type needs to support addition, subtraction, and comparison.

* The elements() method requires integer counts. It ignores zero and negative counts.

See also:

8.3. collections — High-performance container datatypes 175

The Python Library Reference, Release 2.7.14

Counter class adapted for Python 2.5 and an early Bag recipe for Python 2.4.
Bag class in Smalltalk.

Wikipedia entry for Multisets.

C++ multisets tutorial with examples.

For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer
Programming Volume II, Section 4.6.3, Exercise 19.

To enumerate all distinct multisets of a given size over a given set of elements, see itertools.
combinations with replacement().

map(Counter, combinations_ with _replacement(‘ABC’, 2)) — AA AB AC BB BC CC

8.3.2 deque objects

class collections.deque([iterable [, maxlen]])

Returns a new deque object initialized left-to-right (using append()) with data from iterable. If iterable
is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for
“double-ended queue”). Deques support thread-safe, memory efficient appends and pops from either
side of the deque with approximately the same O(1) performance in either direction.

Though list objects support similar operations, they are optimized for fast fixed-length operations and
incur O(n) memory movement costs for pop(0) and insert(0, v) operations which change both the size
and position of the underlying data representation.

New in version 2.4.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is
bounded to the specified maximum length. Once a bounded length deque is full, when new items are
added, a corresponding number of items are discarded from the opposite end. Bounded length deques
provide functionality similar to the tail filter in Unix. They are also useful for tracking transactions
and other pools of data where only the most recent activity is of interest.

Changed in version 2.6: Added maxlen parameter.
Deque objects support the following methods:
append(x)

Add x to the right side of the deque.

appendleft(x)
Add x to the left side of the deque.

clear()
Remove all elements from the deque leaving it with length 0.

count(x)
Count the number of deque elements equal to x.

New in version 2.7.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left
appends results in reversing the order of elements in the iterable argument.

176

Chapter 8. Data Types

https://code.activestate.com/recipes/576611/
https://code.activestate.com/recipes/259174/
https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
https://en.wikipedia.org/wiki/Multiset
http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 2.7.14

pop()
Remove and return an element from the right side of the deque. If no elements are present, raises
an IndexError.

popleft()
Remove and return an element from the left side of the deque. If no elements are present, raises
an IndexError.

remove(value)
Removed the first occurrence of value. If not found, raises a ValueError.

New in version 2.5.

reverse()
Reverse the elements of the deque in-place and then return None.

New in version 2.7.

rotate(n)
Rotate the deque n steps to the right. If n is negative, rotate to the left. Rotating one step to
the right is equivalent to: d.appendleft(d.pop()).

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded.

New in version 2.7.

In addition to the above, deques support iteration, pickling, len(d), reversed(d), copy.copy(d), copy.
deepcopy(d), membership testing with the in operator, and subscript references such as d[-1]. Indexed
access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Example:

from collections import deque

d = deque('ghi") # make a new deque with three items
for elem in d: # iterate over the deque 's elements
... print elem.upper()
G
H
I
d.append('j") # add a new entry to the right side
> d.appendleft('f") # add a new entry to the left side
d # show the representation of the deque

deque(['f', 'g", 'h', "i, 'j'])

d.pop() # return and remove the rightmost item
lj v
> d.popleft() # return and remove the leftmost item
v fl
list(d) # list the contents of the deque
[vgv7 lhl, lil]
d[0] # peek at leftmost item
|l g '
> d[H] # peek at rightmost item
|l i |l
list(reversed(d)) # list the contents of a deque in reverse
[lil, lhl7 lgl]
'h'in d # search the deque

8.3. collections — High-performance container datatypes 177

The Python Library Reference, Release 2.7.14

True
> > d.extend(' jkl") # add multiple elements at once
d
deque(['g", 'h', "i', 'jr, 'k L))
> > d.rotate(1) # right rotation
d
deque(['l", 'g", *h', 'i', 'j', k"))
> > > d.rotate(-1) # left rotation
d
deque(['g", 'h', "i', 'jr, 'k L))
deque(reversed(d)) # make a new deque in reverse order
deque(['l', 'k", 'j', "i', 'h', 'g'])
> > > d.clear() # empty the deque
d.pop() # cannot pop from an empty deque

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop()
IndexError: pop from an empty deque

d.extendleft("abc') # extendleft() reverses the input order
e |
deque(['c", b, "a'])

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail(filename, n—10):
'Return the last n lines of a file'
return deque(open(filename), n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the
right and popping to the left:

def moving average(iterable, n=3):
moving_average([40, 30, 50, 46, 39, 44]) —> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving _average
it — iter(iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft(0)
s — sum(d)
for elem in it:
s += elem - d.popleft()
d.append(elem)
yield s / float(n)

The rotate() method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d|n] relies on the rotate() method to position elements to be popped:

def delete nth(d, n):
d.rotate(-n)
d.popleft()
d.rotate(n)

178 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

To implement deque slicing, use a similar approach applying rotate() to bring a target element to the left
side of the deque. Remove old entries with popleft(), add new entries with extend(), and then reverse the
rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations
such as dup, drop, swap, over, pick, rot, and roll.

8.3.3 defaultdict objects

class collections.defaultdict([default_factory[7]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for
the dict class and is not documented here.

The first argument provides the initial value for the default factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including
keyword arguments.

New in version 2.5.
defaultdict objects support the following method in addition to the standard dict operations:

__missing__ (key)
If the default factory attribute is None, this raises a KeyError exception with the key as argument.

If default_factory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default _factory raises an exception this exception is propagated unchanged.

This method is called by the getitem () method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by _ getitem ().

Note that missing () is not called for any operations besides _ getitem (). This
means that get() will, like normal dictionaries, return None as a default rather than using de-
fault factory.

defaultdict objects support the following instance variable:

default factory
This attribute is used by the =~ missing () method; it is initialized from the first argument to
the constructor, if present, or to None, if absent.

defaultdict Examples

Using list as the default factory, it is easy to group a sequence of key-value pairs into a dictionary of lists:

s = [("yellow', 1), ("blue"', 2), ("yellow', 3), ("blue', 4), ('red', 1)]
d = defaultdict(list)

for k, vin s:

d[k].append(v)

d.items()
[(*blue", [2, 4T), (*red", [1]), (*yellow", [1, 3])

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically
created using the default factory function which returns an empty list. The list.append() operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (re-
turning the list for that key) and the list.append() operation adds another value to the list. This technique
is simpler and faster than an equivalent technique using dict.setdefault():

8.3. collections — High-performance container datatypes 179

The Python Library Reference, Release 2.7.14

d-—{}
for k, v in s:
d.setdefault(k, []).append(v)

d.items()
[(*blue', [2, 4]), ("red", [1]), (*yellow', [1, 3])]

Setting the default factory to int makes the defaultdict useful for counting (like a bag or multiset in other
languages):

S = 'mississippi’

d — defaultdict(int)
for k in s:

dlk] +=1

d.items()
[("i*, 4), ("p', 2), ("s", 4), ("'m", 1)]

When a letter is first encountered, it is missing from the mapping, so the default factory function calls int()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int() which always returns zero is just a special case of constant functions. A faster and more
flexible way to create constant functions is to use itertools.repeat() which can supply any constant value (not
just zero):

def constant_factory(value):

return itertools.repeat(value).next

d = defaultdict(constant _factory(' < missing>"))

d.update(name="John', action—="ran")

' to "% d
'John ran to <missing>"

Setting the default factory to set makes the defaultdict useful for building a dictionary of sets:

s =[('red", 1), ("blue', 2), ('red', 3), ("blue', 4), ('red', 1), ('blue', 4)]
d = defaultdict(set)
for k, v in s:

d[k].add(v)

d.items()
[(*blue", set([2, 4])), (*red", set([1, 3]))]

8.3.4 namedtuple() Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code.
They can be used wherever regular tuples are used, and they add the ability to access fields by name instead
of position index.

collections.namedtuple(typename, ﬁeld_names[, verbose:False] [, rename:False])
Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects
that have fields accessible by attribute lookup as well as being indexable and iterable. Instances of the
subclass also have a helpful docstring (with typename and field names) and a helpful ~ repr ()
method which lists the tuple contents in a name=value format.

The field names are a sequence of strings such as ['x', 'y'|. Alternatively, field names can be a
single string with each fieldname separated by whitespace and/or commas, for example 'x y' or 'x,

180 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

y .

Any valid Python identifier may be used for a fieldname except for names starting with an underscore.
Valid identifiers consist of letters, digits, and underscores but do not start with a digit or underscore
and cannot be a keyword such as class, for, return, global, pass, print, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example,
[*abc', 'def', 'ghi', "abc'] is converted to ['abc', ' 1", 'ghi', ' 3'], eliminating the keyword
def and the duplicate fieldname abc.

If verbose is true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no
more memory than regular tuples.

New in version 2.6.
Changed in version 2.7: added support for rename.

Example:

Point — namedtuple(' Point', ['x"', "y'], verbose=True)
class Point(tuple):
'Point(x, y)'

__slots . =)

_fields = ('x", 'y")

def mnew_ (_cls, x,y):
' Create new instance of Point(x, y)'
return _tuple. _mnew (s, (x, y))

@classmethod
def _make(cls, iterable, new=tuple. new__, len=len):
'Make a new Point object from a sequence or iterable'
result = new(cls, iterable)
if len(result) 1= 2:
raise TypeError('Expected 2 arguments, got %d"' % len(result))
return result

def repr__ (self):
'Return a nicely formatted representation string'
return ' Point(x=%r, y=%r)"' % self

def _asdict(self):
'Return a new OrderedDict which maps field names to their values'
return OrderedDict(zip(self. fields, self))

def _replace(_self, **kwds):
'Return a new Point object replacing specified fields with new values'
result = _self. make(map(kwds.pop, ('x', 'y'), _self))
if kwds:
raise ValueError('Got unexpected field names: %r' % kwds.keys())
return result

def getnewargs _ (self):
'Return self as a plain tuple. Used by copy and pickle. '
return tuple(self)

__dict_ = _property(_asdict)

8.3. collections — High-performance container datatypes 181

The Python Library Reference, Release 2.7.14

def _ getstate (self):
' Exclude the OrderedDict from pickling'
pass

x = _property(_itemgetter(0), doc="Alias for field number 0")

y = _property(_itemgetter(1), doc="Alias for field number 1")

p = Point(11, y=22) # instantiate with positional or keyword arguments

>>> pl0] + p[1] # indexable like the plain tuple (11, 22)
33
X,y =D # unpack like a regular tuple
X,y
(11, 22)
pP-X + p.y # fields also accessible by name
33
> # readable __repr _ with a name=value style

Point(x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sqlite3
modules:

EmployeeRecord — namedtuple(' EmployeeRecord ', 'name, age, title, department, paygrade')

import csv
for emp in map(EmployeeRecord. make, csv.reader(open("employees.csv", "rb"))):
print emp.name, emp.title

import sqlite3
conn — sqlite3.connect(' /companydata")
cursor = conn.cursor()
cursor.execute(' SELECT name, age, title, department, paygrade FROM employees')
for emp in map(EmployeeRecord. make, cursor.fetchall()):
print emp.name, emp.title

In addition to the methods inherited from tuples, named tuples support three additional methods and one
attribute. To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple. make(iterable)
Class method that makes a new instance from an existing sequence or iterable.

St = (11, 22]
Point. _make(t)
Point(x=11, y=22)

somenamedtuple. _asdict()
Return a new OrderedDict which maps field names to their corresponding values:

~>>> p = Point(x=11, y=22)
p._asdict(
OrderedDict([('x", 11), ("'y"', 22)])

Changed in version 2.7: Returns an OrderedDict instead of a regular dict.

somenamedtuple. replace(**kwargs)

182 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

Return a new instance of the named tuple replacing specified fields with new values:

p = Point(x=11, y=22)
p._replace(x=33)
Point(x=33, y=22)

for partnum, record in inventory.items():
inventory[partnum| — record. replace(price—newprices[partnum|, timestamp—time.now())

somenamedtuple. fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple
types from existing named tuples.

p._fields # view the field names
(rx! , v y ')
Color = namedtuple(' Color', 'red green blue')

Pixel — namedtuple('Pixel ', Point. fields + Color. _fields)
Pixel(11, 22, 128, 253, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr() function:

getattr(p, 'x")
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-
arguments):

d={'x": 11, 'y': 22}
Point(**d)
Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here
is how to add a calculated field and a fixed-width print format:

class Point(namedtuple(' Point', 'x y')):
_slots. = ()
@property
def hypot(self):
return (self.x ** 2 + self.y ** 2) ** 0.5
def str_ (self):
return 'Point: x= y= hypot= " % (self.x, self.y, self hypot)

for p in Point(3, 4), Point(14, 5/7.):
print p
Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 y— 0.714 hypot—=14.018

The subclass shown above sets __ slots to an empty tuple. This helps keep memory requirements low
by preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from
the fields attribute:

Point3D = namedtuple('Point3D ', Point. fields + ('z',))

Default values can be implemented by using replace() to customize a prototype instance:

8.3. collections — High-performance container datatypes 183

The Python Library Reference, Release 2.7.14

Account = namedtuple(' Account', "owner balance transaction count')
default _account — Account(' <owner name>", 0.0, 0)
johns account = default account. replace(owner="'John")

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a
simple class declaration:

Status = namedtuple('Status', 'open pending closed'). make(range(3))
Status.open, Status.pending, Status.closed
0,1, 2)
class Status:
open, pending, closed = range(3)

See also:

Named tuple recipe adapted for Python 2.4.

8.3.5 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted.
When iterating over an ordered dictionary, the items are returned in the order their keys were first added.

class collections.OrderedDict([items])
Return an instance of a dict subclass, supporting the usual dict methods. An OrderedDict is a dict
that remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the
original insertion position is left unchanged. Deleting an entry and reinserting it will move it to the
end.

New in version 2.7.

OrderedDict.popitem(last=True)
The popitem() method for ordered dictionaries returns and removes a (key, value) pair. The pairs are
returned in LIFO order if last is true or FIFO order if false.

In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed().

Equality tests between OrderedDict objects are order-sensitive and are implemented as list(odl.
items())==list(od2.items()). Equality tests between OrderedDict objects and other Mapping objects are
order-insensitive like regular dictionaries. This allows OrderedDict objects to be substituted anywhere a
regular dictionary is used.

The OrderedDict constructor and update() method both accept keyword arguments, but their order is lost
because Python’s function call semantics pass-in keyword arguments using a regular unordered dictionary.

See also:

Equivalent OrderedDict recipe that runs on Python 2.4 or later.

OrderedDict Examples and Recipes

Since an ordered dictionary remembers its insertion order, it can be used in conjunction with sorting to make
a sorted dictionary:

regular unsorted dictionary
d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}

dictionary sorted by key

184 Chapter 8. Data Types

https://code.activestate.com/recipes/500261/
https://code.activestate.com/recipes/576693/

The Python Library Reference, Release 2.7.14

> QOrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([("apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

/ \/

>> ## dictionary sorted by value
> OrderedDict(sorted(d.items(), key—lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

>>> 4t dictionary sorted by length of the key string
OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana’', 3)])

The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are
added, the keys are appended to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant that remembers the order the keys were last
inserted. If a new entry overwrites an existing entry, the original insertion position is changed and moved to
the end:

class LastUpdatedOrderedDict(OrderedDict):
' Store items in the order the keys were last added '

def _ setitem _ (self, key, value):
if key in self:
del self[key]
OrderedDict. __setitem _ (self, key, value)

An ordered dictionary can be combined with the Counter class so that the counter remembers the order
elements are first encountered:

class OrderedCounter(Counter, OrderedDict):
'Counter that remembers the order elements are first encountered’

def repr (self):
return '%s(%r)" % (self. class . mname , OrderedDict(self))

def _ reduce _ (self):
return self. class | (OrderedDict(self),)

8.3.6 Collections Abstract Base Classes

The collections module offers the following ABCs:

8.3. collections — High-performance container datatypes 185

The Python Library Reference, Release 2.7.14

ABC Inherits Abstract Methods Mixin Methods
from
Con- ___contains
tainer
Hash- __hash
able
Iter- _iter
able
Itera- Iterable next __iter
tor
Sized _len_
Callable _call
Se- Sized, __getitem , len __contains__, _ iter _, reversed _, in-
quence | Iterable, dex, and count
Container
Muta- | Sequence __getitem | Inherited Sequence methods and append, reverse,
bleSe- __setitem extend, pop, remove, and __iadd
quence __delitem | _len |
insert
Set Sized, ___contains__, iter | le , 1t . eq_ _, _ _ne__,
Iterable, __len gt ge , _and__, _ _or__,
Container _sub__, xor__, and isdisjoint
Muta- | Set __contains , iter , | Inherited Set methods and clear, pop, re-
bleSet _len , add, discard move, _ jor , djand , ixor__, and
__isub_
Map- Sized, __getitem , iter , | contains _, keys, items, values, get, eq
ping Iterable, __len and _ _ne
Container
Muta- | Mapping __getitem | Inherited Mapping methods and pop, popitem,
bleMap- __setitem | clear, update, and setdefault
ping __delitem _, _iter |
__len
Map- Sized _len
pingViewy
ItemsViewMap- ___contains___, iter
pingView,
Set
KeysViewMap- ___contains___, iter
pingView,
Set
Val- Map- ___contains__, iter
uesView| pingView
class collections.Container
class collections.Hashable
class collections.Sized
class collections.Callable
ABC:s for classes that provide respectively the methods contains (), _hash (), len (),
and _cal ().
class collections.Iterable
ABC for classes that provide the __iter () method. See also the definition of iterable.
186 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

class

class
class

class
class

class
class

class
class
class
class

collections.Iterator

ABC for classes that provide the iter () and next() methods. See also the definition of iterator.

collections.Sequence
collections.MutableSequence

ABCs for read-only and mutable sequences.

collections.Set
collections.MutableSet

ABCs for read-only and mutable sets.

collections.Mapping
collections.MutableMapping

ABCs for read-only and mutable mappings.

collections.MappingView
collections.ItemsView
collections.KeysView
collections.ValuesView

ABCs for mapping, items, keys, and values views.

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size — None

if isinstance(myvar, collections.Sized):

size = len(myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container
APIs. For example, to write a class supporting the full Set API, it only necessary to supply the three

underlying abstract methods:

contains__ (), _ _iter_ (), and _ _len (). The ABC supplies the

remaining methods such as __and () and isdisjoint()

class ListBasedSet(collections.Set):
"1 Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. """’

def init (self, iterable):

self.elements = st = []
for value in iterable:
if value not in lst:

Ist.append(value)

def iter (self):

return iter(self.elements)

def _ contains __ (self, value):

return value in self.elements

def len (self):

return len(self.elements)

s1 = ListBasedSet('abcdef")
s2 = ListBasedSet(' defghi")

overlap = sl & s2

The __and_

() method is supported automatically

Notes on using Set and MutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new
instances from an iterable. The class constructor is assumed to have a signature in the form Class-
Name(iterable). That assumption is factored-out to an internal classmethod called from iterable()

8.3. collections — High-performance container datatypes 187

The Python Library Reference, Release 2.7.14

which calls cls(iterable) to produce a new set. If the Set mixin is being used in a class with a dif-
ferent constructor signature, you will need to override from iterable() with a classmethod that can
construct new instances from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefine _ le ()
and __ge (), then the other operations will automatically follow suit.

3. The Set mixin provides a _hash() method to compute a hash value for the set; however, ~_hash ()
is not defined because not all sets are hashable or immutable. To add set hashability using mixins,
inherit from both Set() and Hashable(), then define ~_hash = Set. hash.

See also:
¢ OrderedSet recipe for an example built on MutableSet.

e For more about ABCs, see the abc module and PEP 3119.

8.4 heapq — Heap queue algorithm

New in version 2.3.

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue
algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children.
This implementation uses arrays for which heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all k,
counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite.
The interesting property of a heap is that its smallest element is always the root, heap[0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This
makes the relationship between the index for a node and the indexes for its children slightly less obvious,
but is more suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item,
not the largest (called a “min heap” in textbooks; a “max heap” is more common in texts because of its
suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap[0] is the smallest
item, and heap.sort() maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify().
The following functions are provided:

heapq.heappush(heap, item)
Push the value item onto the heap, maintaining the heap invariant.

heapq.heappop(heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised. To access the smallest item without popping it, use heap[0].

heapq.heappushpop(heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action
runs more efficiently than heappush() followed by a separate call to heappop().

New in version 2.6.

188 Chapter 8. Data Types

https://code.activestate.com/recipes/576694/
https://www.python.org/dev/peps/pep-3119
https://github.com/python/cpython/tree/2.7/Lib/heapq.py

The Python Library Reference, Release 2.7.14

heapq.heapify (x)

Transform list x into a heap, in-place, in linear time.

heapq.heapreplace(heap, item)

Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t
change. If the heap is empty, IndexError is raised.

This one step operation is more efficient than a heappop() followed by heappush() and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from
the heap and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using heappush-
pop() instead. Its push/pop combination returns the smaller of the two values, leaving the larger value

on the heap.

The module also offers three general purpose functions based on heaps.

heapq.merge(*iterables)

Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from
multiple log files). Returns an iterator over the sorted values.

Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into memory
all at once, and assumes that each of the input streams is already sorted (smallest to largest).

New in version 2.6.

heapq.nlargest(n, iterable[, key])

Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted(iterable, key=key, reverse=True)[:n]

New in version 2.4.

Changed in version 2.5: Added the optional key argument.

heapq.nsmallest(n, iterable[, key])

Return a list with the n smallest elements from the dataset defined by iterable. key, if provided,
specifies a function of one argument that is used to extract a comparison key from each element in the
iterable: key=str.lower Equivalent to: sorted(iterable, key=key)[:n]

New in version 2.4.

Changed in version 2.5: Added the optional key argument.

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use
the sorted() function. Also, when n==1, it is more efficient to use the built-in min() and max() functions.
If repeated usage of these functions is required, consider turning the iterable into an actual heap.

8.4.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values

one at a time:

def heapsort(iterable):
h =]
for value in iterable:
heappush(h, value)
return [heappop(h) for i in range(len(h))]

heapsort([1,

3,5,7,9,2,4,6,8,0])
[0,1,2,3,4,5,6,7

;8,9

8.4. heapq — Heap queue algorithm

189

https://en.wikipedia.org/wiki/Heapsort

The Python Library Reference, Release 2.7.14

This is similar to sorted(iterable), but unlike sorted(), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside
the main record being tracked:

h]

heappush(h, (5, 'write code'))
heappush(h, (7, 'release product "))
heappush(h, (1, "write spec'))
heappush(h, (3, 'create tests'))
heappop(h)

(1, "write spec")

8.4.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

 Sort stability: how do you get two tasks with equal priorities to be returned in the order they were
originally added?

¢ In the future with Python 3, tuple comparison breaks for (priority, task) pairs if the priorities are equal
and the tasks do not have a default comparison order.

« If the priority of a task changes, how do you move it to a new position in the heap?
¢ Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry
count, and the task. The entry count serves as a tie-breaker so that two tasks with the same priority are
returned in the order they were added. And since no two entry counts are the same, the tuple comparison
will never attempt to directly compare two tasks.

The remaining challenges revolve around finding a pending task and making changes to its priority or
removing it entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure
invariants. So, a possible solution is to mark the existing entry as removed and add a new entry with the
revised priority:

pq =[] # list of entries arranged in a heap

entry finder = {} # mapping of tasks to entries

REMOVED = '<removed-task>" # placeholder for a removed task
counter = itertools.count() # unique sequence count

def add_task(task, priority—=0):
'Add a new task or update the priority of an existing task'
if task in entry_ finder:
remove _task(task)
count — next(counter)
entry — |priority, count, task]
entry finder[task] = entry
heappush(pq, entry)

def remove _task(task):
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry — entry finder.pop(task)
entry[-1] = REMOVED

190 Chapter 8. Data Types

https://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 2.7.14

def pop _task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pq:
priority, count, task = heappop(pq)
if task is not REMOVED:
del entry finder|[task]
return task
raise KeyError('pop from an empty priority queue')

8.4.3 Theory

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for all k, counting elements from 0. For
the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The
numbers below are k, not a[k|:

0

3 4 5 6

7 8 9 10 11 12 13 14

1516 1718 1920 2122 2324 2526 2728 2930

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In a usual binary tournament we see in sports,
each cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all
opponents s/he had. However, in many computer applications of such tournaments, we do not need to trace
the history of a winner. To be more memory efficient, when a winner is promoted, we try to replace it by
something else at a lower level, and the rule becomes that a cell and the two cells it tops contain three
different items, but the top cell “wins” over the two topped cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic
way to remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above)
into the 0 position, and then percolate this new 0 down the tree, exchanging values, until the invariant is
re-established. This is clearly logarithmic on the total number of items in the tree. By iterating over all
items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided
that the inserted items are not “better” than the last 0’th element you extracted. This is especially useful in
simulation contexts, where the tree holds all incoming events, and the “win” condition means the smallest
scheduled time. When an event schedules other events for execution, they are scheduled into the future, so
they can easily go into the heap. So, a heap is a good structure for implementing schedulers (this is what I
used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this,
as they are reasonably speedy, the speed is almost constant, and the worst case is not much different than
the average case. However, there are other representations which are more efficient overall, yet the worst
cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing
“runs” (which are pre-sorted sequences, whose size is usually related to the amount of CPU memory), followed

8.4. heapq — Heap queue algorithm 191

The Python Library Reference, Release 2.7.14

by a merging passes for these runs, which merging is often very cleverly organised'. It is very important
that the initial sort produces the longest runs possible. Tournaments are a good way to achieve that. If,
using all the memory available to hold a tournament, you replace and percolate items that happen to fit the
current run, you’ll produce runs which are twice the size of the memory for random input, and much better
for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament
(because the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap
decreases. The freed memory could be cleverly reused immediately for progressively building a second heap,
which grows at exactly the same rate the first heap is melting. When the first heap completely vanishes, you
switch heaps and start a new run. Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is
good to keep a ‘heap’ module around. :-)

8.5 bisect — Array bisection algorithm

New in version 2.1.

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the
more common approach. The module is called bisect because it uses a basic bisection algorithm to do its
work. The source code may be most useful as a working example of the algorithm (the boundary conditions
are already right!).

The following functions are provided:

bisect.bisect left(a, x, lo=0, hi=len(a))
Locate the insertion point for x in a to maintain sorted order. The parameters lo and hi may be used
to specify a subset of the list which should be considered; by default the entire list is used. If x is
already present in a, the insertion point will be before (to the left of) any existing entries. The return
value is suitable for use as the first parameter to list.insert() assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that all(val < x for val in a[lo:i])
for the left side and all(val >= x for val in ali:hi]) for the right side.

bisect.bisect _right(a, x, 1o0=0, hi=len(a))

bisect.bisect(a, x, lo=0, hi=len(a))
Similar to bisect left(), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point i partitions the array a into two halves so that all(val <= x for val in
aflo:i]) for the left side and all(val > x for val in afi:hi]) for the right side.

bisect.insort _left(a, x, lo=0, hi=len(a))
Insert x in a in sorted order. This is equivalent to a.insert(bisect.bisect left(a, x, lo, hi), x) assuming
that a is already sorted. Keep in mind that the O(log n) search is dominated by the slow O(n) insertion
step.

I The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of
the seeking capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one
had to be very clever to ensure (far in advance) that each tape movement will be the most effective possible (that is, will best
participate at “progressing” the merge). Some tapes were even able to read backwards, and this was also used to avoid the
rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all times, sorting has always been a
Great Art! :-)

192 Chapter 8. Data Types

https://github.com/python/cpython/tree/2.7/Lib/bisect.py

The Python Library Reference, Release 2.7.14

bisect.insort _right(a, x, 1o0=0, hi=len(a))
bisect.insort(a, x, lo=0, hi=len(a))
Similar to insort left(), but inserting x in a after any existing entries of x.

See also:

SortedCollection recipe that uses bisect to build a full-featured collection class with straight-forward search
methods and support for a key-function. The keys are precomputed to save unnecessary calls to the key
function during searches.

8.5.1 Searching Sorted Lists

The above bisect() functions are useful for finding insertion points but can be tricky or awkward to use for
common searching tasks. The following five functions show how to transform them into the standard lookups
for sorted lists:

def index(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left(a, x)
if i I=len(a) and a[i] == x:
return i
raise ValueError

def find_lt(a, x):
'Find rightmost value less than x'
i = bisect_ left(a, x)
if i:
return afi-1]
raise ValueError

def find_le(a, x):
'Find rightmost value less than or equal to x'
i — bisect_right(a, x)
if i:
return ali-1]
raise ValueError

def find_gt(a, x):
'Find leftmost value greater than x'
i = bisect_right(a, x)
if i 1= len(a):
return afi]
raise ValueError

def find_ge(a, x):
'Find leftmost item greater than or equal to x'
i = bisect_left(a, x)
if i I= len(a):
return afi]
raise ValueError

8.5.2 Other Examples

The bisect() function can be useful for numeric table lookups. This example uses bisect() to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89
is a ‘B’, and so on:

8.5. bisect — Array bisection algorithm 193

https://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 2.7.14

def grade(score, breakpoints—[60, 70, 80, 90], grades—"'FDCBA"):
i = bisect(breakpoints, score)
return gradesi]

[grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]
[va7 'A', ICv7 ICv7 IBI’ IAI’ IAI]

Unlike the sorted() function, it does not make sense for the bisect() functions to have key or reversed
arguments because that would lead to an inefficient design (successive calls to bisect functions would not
“remember” all of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

data = [('red', 5), ("blue', 1), ("yellow', 8), ("black"', 0)]
data.sort(key=lambda r: r[1])
keys = [r[1] for r in data] # precomputed list of keys
data[bisect left(keys, 0)]
('black', 0)
data|bisect _left(keys, 1)]
("blue', 1)
data[bisect_left(keys, 5)]
('red', 5)
data[bisect left(keys, 8)]
('yellow', 8)

8.6 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters,
integers, floating point numbers. Arrays are sequence types and behave very much like lists, except that the
type of objects stored in them is constrained. The type is specified at object creation time by using a type
code, which is a single character. The following type codes are defined:

Type code | C Type Python Type Minimum size in bytes
'c!' char character 1

'b' signed char int 1

'B’ unsigned char int 1

"u' Py UNICODE | Unicode character | 2 (see note)
'h' signed short int 2

'H' unsigned short | int 2

i signed int int 2

It unsigned int long 2

"l signed long int 4

'L unsigned long long 4

fr float float 4

'd! double float 8

Note: The 'u' typecode corresponds to Python’s unicode character. On narrow Unicode builds this is
2-bytes, on wide builds this is 4-bytes.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C
implementation). The actual size can be accessed through the itemsize attribute. The values stored for 'L

194 Chapter 8. Data Types

The Python Library Reference, Release 2.7.14

and 'I' items will be represented as Python long integers when retrieved, because Python’s plain integer
type cannot represent the full range of C’s unsigned (long) integers.

The module defines the following type:

class array.array(typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value,
which must be a list, string, or iterable over elements of the appropriate type.

Changed in version 2.4: Formerly, only lists or strings were accepted.

If given a list or string, the initializer is passed to the new array’s fromlist(), fromstring(), or fromuni-
code() method (see below) to add initial items to the array. Otherwise, the iterable initializer is passed
to the extend() method.

array.ArrayType
Obsolete alias for array.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplica-
tion. Wh