Visual Servoing Platform version 3.6.0
Loading...
Searching...
No Matches
testQuaternion.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See https://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Tests quaternion operations.
33 *
34*****************************************************************************/
35
41#include <limits>
42#include <visp3/core/vpException.h>
43#include <visp3/core/vpMath.h>
44#include <visp3/core/vpQuaternionVector.h>
45
46int main()
47{
48 try {
49 // Test addition of two quaternions
50 vpQuaternionVector q1(2.1, -1, -3.7, 1.5);
51 vpQuaternionVector q2(0.5, 1.4, 0.7, 2.5);
52 vpQuaternionVector q3 = q1 + q2;
53 std::cout << "q3=" << q3 << std::endl;
54 if (!vpMath::equal(q3.x(), 2.6, std::numeric_limits<double>::epsilon()) ||
55 !vpMath::equal(q3.y(), 0.4, std::numeric_limits<double>::epsilon()) ||
56 !vpMath::equal(q3.z(), -3.0, std::numeric_limits<double>::epsilon()) ||
57 !vpMath::equal(q3.w(), 4.0, std::numeric_limits<double>::epsilon())) {
58 throw vpException(vpException::fatalError, "Problem with addition of two quaternions !");
59 }
60
61 // Test subtraction of two quaternions
62 vpQuaternionVector q4 = q3 - q1;
63 std::cout << "q4=" << q4 << std::endl;
64 if (!vpMath::equal(q4.x(), q2.x(), std::numeric_limits<double>::epsilon() * 1e4) ||
65 !vpMath::equal(q4.y(), q2.y(), std::numeric_limits<double>::epsilon() * 1e4) ||
66 !vpMath::equal(q4.z(), q2.z(), std::numeric_limits<double>::epsilon() * 1e4) ||
67 !vpMath::equal(q4.w(), q2.w(), std::numeric_limits<double>::epsilon() * 1e4)) {
68 throw vpException(vpException::fatalError, "Problem with subtraction of two quaternions !");
69 }
70
71 // Test multiplication of two quaternions
72 // https://www.wolframalpha.com/input/?i=quaternion+-Sin%5BPi%5D%2B3i%2B4j%2B3k+multiplied+by+-1j%2B3.9i%2B4-3k&lk=3
73 vpQuaternionVector q5(3.0, 4.0, 3.0, -sin(M_PI));
74 vpQuaternionVector q6(3.9, -1.0, -3.0, 4.0);
75 vpQuaternionVector q7 = q5 * q6;
76 std::cout << "q7=" << q7 << std::endl;
77 if (!vpMath::equal(q7.x(), 3.0, std::numeric_limits<double>::epsilon() * 1e4) ||
78 !vpMath::equal(q7.y(), 36.7, std::numeric_limits<double>::epsilon() * 1e4) ||
79 !vpMath::equal(q7.z(), -6.6, std::numeric_limits<double>::epsilon() * 1e4) ||
80 !vpMath::equal(q7.w(), 1.3, std::numeric_limits<double>::epsilon() * 1e4)) {
81 throw vpException(vpException::fatalError, "Problem with multiplication of two quaternions !");
82 }
83
84 // Test quaternion conjugate
85 vpQuaternionVector q7_conj = q7.conjugate();
86 std::cout << "q7_conj=" << q7_conj << std::endl;
87 if (!vpMath::equal(q7_conj.x(), -3.0, std::numeric_limits<double>::epsilon() * 1e4) ||
88 !vpMath::equal(q7_conj.y(), -36.7, std::numeric_limits<double>::epsilon() * 1e4) ||
89 !vpMath::equal(q7_conj.z(), 6.6, std::numeric_limits<double>::epsilon() * 1e4) ||
90 !vpMath::equal(q7_conj.w(), 1.3, std::numeric_limits<double>::epsilon() * 1e4)) {
91 throw vpException(vpException::fatalError, "Problem with quaternion conjugate !");
92 }
93
94 // Test quaternion inverse
95 vpQuaternionVector q7_inv = q7.inverse();
96 std::cout << "q7_inv=" << q7_inv << std::endl;
97 if (!vpMath::equal(q7_inv.x(), -0.00214111, 0.000001) || !vpMath::equal(q7_inv.y(), -0.026193, 0.000001) ||
98 !vpMath::equal(q7_inv.z(), 0.00471045, 0.000001) || !vpMath::equal(q7_inv.w(), 0.000927816, 0.000001)) {
99 throw vpException(vpException::fatalError, "Problem with quaternion inverse !");
100 }
101
102 // Test quaternion norm
103 double q7_norm = q7.magnitude();
104 std::cout << "q7_norm=" << q7_norm << std::endl;
105 if (!vpMath::equal(q7_norm, 37.4318, 0.0001)) {
106 throw vpException(vpException::fatalError, "Problem with quaternion magnitude !");
107 }
108
109 // Test quaternion normalization
110 q7.normalize();
111 std::cout << "q7_unit=" << q7 << std::endl;
112 if (!vpMath::equal(q7.x(), 0.0801457, 0.00001) || !vpMath::equal(q7.y(), 0.98045, 0.00001) ||
113 !vpMath::equal(q7.z(), -0.176321, 0.00001) || !vpMath::equal(q7.w(), 0.0347298, 0.00001)) {
114 throw vpException(vpException::fatalError, "Problem with quaternion normalization !");
115 }
116
117 // Test copy constructor
118 vpQuaternionVector q_copy1 = vpQuaternionVector(0, 0, 1, 1);
119 std::cout << "q_copy1=" << q_copy1 << std::endl;
120 vpQuaternionVector q_copy2 = q_copy1;
121 q_copy1.set(1, 0, 1, 10);
122 std::cout << "q_copy1 after set=" << q_copy1 << std::endl;
123 std::cout << "q_copy2=" << q_copy2 << std::endl;
124
125 // Test assignment operator
126 vpQuaternionVector q_copy3(10, 10, 10, 10);
127 q_copy3 = q_copy1;
128 std::cout << "q_copy3=" << q_copy3 << std::endl;
129
130 std::cout << "vpQuaternion operations are ok !" << std::endl;
131 return EXIT_SUCCESS;
132 }
133 catch (const vpException &e) {
134 std::cerr << "Catch an exception: " << e << std::endl;
135 return EXIT_FAILURE;
136 }
137}
error that can be emitted by ViSP classes.
Definition vpException.h:59
@ fatalError
Fatal error.
Definition vpException.h:84
static bool equal(double x, double y, double threshold=0.001)
Definition vpMath.h:369
Implementation of a rotation vector as quaternion angle minimal representation.
const double & z() const
Returns the z-component of the quaternion.
vpQuaternionVector conjugate() const
vpQuaternionVector inverse() const
void set(double x, double y, double z, double w)
const double & x() const
Returns the x-component of the quaternion.
const double & y() const
Returns the y-component of the quaternion.
const double & w() const
Returns the w-component of the quaternion.