
Locks and Threads and
Monads—OOo My

Stephan Bergmann
StarOffice/OpenOffice.org
Sun Microsystems

1 - Tomorrow's hardware...
2 - ...and today's software
3 - Stateful vs. functional...
4 - ...in parallel
5 - UNO to the rescue?

Locks and Threads and
Monads—OOo My

CPUs: Broader, Not Faster

• Today, CPU speed no longer increases the way it
did all those decades.
• Instead, consumer machines are equipped with

increasing numbers of parallel execution units
(multiple CPUs, hyperthreading).
• Herb Sutter: “[...] applications will increasingly need

to be concurrent if they want to fully exploit CPU
throughput gains [...]”

OOo Today

• Mostly single-threaded application, based around a
GUI event loop.
• Few additional threads:
> filename autocompletion in file picker, ...,
> remote UNO connections.

• An example consequence: Opening a large writer
document takes a while, you cannot start searching
through it right away.

OOo Today

• Much of the OOo code written with a single-
threaded application in mind.
• Multi-threading support added afterwards (“global

solar mutex”).
• An example consequence: Multiple incoming

remote UNO connections (i.e., multiple active
threads) likely crash OOo.

Shared state threading

• Extremely hard to get right.
• Example: What is a recursive mutex good for?
> David Butenhof: “A correct and well understood

design does not require recursive mutexes.”
• Example: Issue 67191, osl_waitCondition not

working properly from day one, detected years later.
• Example: Are Old/NewValue in
PropertyChangeEvent of any use?

Dilemma

• Can we reasonably expect to make use of multiple
parallel execution units in OOo using the shared
state threading model we love and hate?
• No!
• What then?

A little rant intermezzo

• Many CS concepts seem to be little known across
the industry:
> “So, what your suggestion amounts to is to add

closures to OOo Basic, right?” — “Closures???”
> “But UNO does not support structural subtyping.”

— “C struct types???”
> Scott Meyers: “I have a Ph.D. in Computer

Science, and I’d never heard of F-bounded
polymorphism.”

Look around!

• Other approaches to programming (concurrent)
applications:
> Declarative models with logic variables (e.g., Oz).
> Non-strict functional models (e.g., Haskell).

• Philip Greenspun: “Any sufficiently complicated C or
Fortran program contains an ad-hoc, informally-
specified bug-ridden slow implementation of half of
Common Lisp.”
• Remember: There are many interesting

approaches, and there is no silver bullet.

Oz

• Logic (dataflow) variables and lightweight threads:
thread List = "a"|X1 end
thread X1 = "b"|X2 end
thread X2 = "c"|nil end
{Length List}

fun {Map F Xs}
 case Xs of nil then nil
 [] X|Xr then thread {F X} end|{Map F Xr}
 end end

• Concepts, Techniques, and Models of Computer
Programming by van Roy and Haridi.

Haskell

• Non-strict (“lazy”):
 f :: Float -> Float
 f _ = 5.0
 f (1.0 / 0.0) -- 5.0

 squares :: Int -> [Int]
 squares n =
 take n (map (\x -> x * x) [1 ..])

• Monadic IO:
 main :: IO a

 wordCount :: IO Int
 wordCount = do putStr "input: "
 l <- getLine
 return (length (words l))

infinite

Software Transactional Memory

• Don't pessimistically lock data, but optimistically use
the data and then commit a bunch of operations:
Either succeeds or fails and restarts.
> Easier to program.
>Works best in low-contention scenarios.
> Nicely integrates into Haskell:
 newTVar :: a -> STM (TVar a)
 readTVar :: TVar a -> STM a
 writeTVar :: TVar a -> a -> STM ()
 atomically :: STM a -> IO a

And its not only concurrency

• For example, resource management:
> C malloc/free: a nightmare to get them

properly paired.
> C++ RAII: better, but (a) often not used (witness

many OOo crash reports), and (b) bad when
destruction can fail (fclose).

> Java try/finally: cumbersome, esp. when
using multiple resources.

> Haskell: higher order functions!

And its not only concurrency
• withOpenFile :: Handle ->
 (Handle -> IO a) ->
 IO a
withOpenFile h f = finally (f h) (hClose h)

copyAndClose :: Handle -> Handle -> IO ()
copyAndClose h1 h2 =
 withOpenFile h1 (_ ->
 withOpenFile h2 (_ ->
 do x <- hGetContents h1
 hPutStr h2 x
 return ()))

do h1 <- openFile "input" ReadMode
 h2 <- openFile "output" WriteMode
 return copyAndClose h1 h2

UNO

• Conceptually, UNO consists of threads concurrently
invoking methods on (shared) objects.
• Each UNO object has to ensure that concurrent

invocations of its methods are safe.
> Hard to avoid deadlock.
> Single method calls are often the wrong locking

granularity.
> Unnecessary locking costs in single-threaded use.
> Java had the same problem (e.g.,
StringBuffer → StringBuilder).

UNO

• Does this fit a (massively) concurrent world?
• Not really:
> The emerging threading framework tends to

cluster objects in cages when they should be free
(individual paragraphs of a text document model).

> The two-level approach (language-independent
model on top of language bindings) hampers
innovation (e.g., language-supported lightweight
threads, language-supported STM).

• (UNO does help to integrate new languages.)

Conclusion

• An OOo running correctly on 1–2 processing units is
important, but an OOo running efficiently on 8–16
processing units will become just as important.
> Find places in OOo where things can be done in

parallel.
> Know how to write good code that achieves this.
> Have fun with a snappy application.

Mistrust all enterprises
that require new clothes.

—E. M. Forster

