hans hagen

about

luatex and context






Contents

Introduction

Math stackers
Speed

Math Styles
Calling Lua
Luigi’s nightmare
Flash forward
Font expansion
Juggling nodes
Still Expanding
Going nuts

Lua strings
Properties
Functions

LUA in METAPOST
LUATEX 0.79

O IO Ul = WIN -

[ T S | U Vo
O k= W NN -, O

33
47
55
67
73
79
81
91
95
105
121
125
131
145






Introduction

During the development of LuaTEX we wrapped up the state of affairs in articles and
reports. Upto version 0.50 we tagged them as ‘MxIV’ (the transition from MxII), while
for the next 0.25 versions we bundled them in ‘hybrid” (the rewrite of CoNTEXt). The
next series goes under the name about as one might wonder what all this LuATEX and
ConTgXrt is about. After all we’ve now reached a state where we can think about future
applications instead of improving older features as that process is ongoing.

As we'’re a bit beyond experimenting now, the focus will be on practical usage and of
course we target on applications that the Lua and TgX combination makes possible,
either new or in a renewed form. Some of the chapters will eventually become part of
manuals.

As with the two preceding collections of LuaTEX development stories, ‘mk” and ‘hy-
brid’, this one, called ‘about’, covers a stretch of development, mostly between versions
0.50 and 0.75. The forth stretch, upto 1.00 is covered in “still’".

Hans Hagen
Hasselt NL
2013-2015

http://www.luatex.org
http://www.pragma-ade.com

Introduction 3



4  Introduction



1 Math stackers

1.1 Introduction

In the next sections I will discuss the way we deal with stacked content in CoNTEXT
MkIV and in particular extensible characters. The mechanism describe here is actually
more generic and can also deal with regular text. The stacker code is an evolution
of the mechanisms that combine math arrows with text. From the users perspective
there is not that much difference with the old methods because in practice ‘defined’
commands are used and their name stayed. However, we use different definition and
setup commands and provide much more control. The new implementation is leaner
but not meaner and fits the way MxkIV is set up.

How does Lua fits in? We use a helper in order to determine some characteristics of
extensibles, but we could have done without. We also use some new LuaTgX math
primitives and of course we depend on OpenTypE font technoloygy.

1.2 Extensibles

The command \leftarrowfill was introduced in plain TEX and gives, as the name
indicates, a «————— that stretches itself so that it takes the available space. Take the
following example:

\hbox to 4cm{\leftarrowfill}

This will make an arrow of length 4cm:

This arrow is made out of small snippets:

€

Here is another one:
\hbox to 4cm{\rightoverleftarrowfill}

or:

This time we have three different snippets:

>

€

The TEX engine has a concept of extensible characters. In fact there are two mechanisms:
there is a list of larger glyphs and when that list is exhausted larger characters can be

Math stackers 5



constructed out of snippets. Examples are left and right fences in math like braces and
brackets, and, also in math, some top and bottom accents.

For reasons unknown to me, some of these extensibles are handled by the engine di-
rectly, using properties of a font, while others are composed using macros. Given that
TEX is quite popular for typesetting scientific articles it is beyond my understanding
why no one decided to provide some more fonts and/or extend the TEX engine. After
all, the whole idea of Donald Knuth with TgX was that it could be adapted to future
needs by its users. And so, more that 30 years after TEX and macro packages showed up
we're stuck with not only incomplete fonts, but also an engine that was never adapted
to demands.

1.3 The traditional way

In ConNTEXT we have support for extensibles built into the core but it uses the traditional
approach: take some snippets and paste them together, making sure to achieve some
overlap and get rid of side bearings. In terms of TEX code this can best be illustrated
with the plain TEX definition of such a command:

\def\leftarrowfill
{$%
\mathsurroundOpt¥
\mathord\leftarrow\mkern-7mu/,
\cleaders\hbox{$\mkern-2mu\smash-\mkern-2mu$}\hfill
\mkern-7mu\smash-Y

$}

Here we create a tight formula starting with a leftarrow, ending with a minus sign
and glued together with the number of minus signs that are needed to fill the available
space. This macro eventually expands to something like this (a bit spaced out):

\def\leftarrowfill { $
% \leftarrow = \mathchardef\leftarrow="3220 in plain but in
% unicode it's character 0x2190 so we use that one here
\mathsurround=0pt
\mathord{\mathchar"2190}
\mkern-7mu
\cleaders
\hbox { $
\mkern-2mu
\mathchoice
{\setbox0\hbox{$\displaystyle -$}\ht0=0pt\dp0=0pt\box0}
{\setbox0\hbox{$\textstyle -$}\ht0=0pt\dpO0=0pt\box0}
{\setbox0\hbox{$\scriptstyle -$}\ht0=0pt\dp0=0pt\box0}
{\setbox0\hbox{$\scriptscriptstyle-$}\ht0=0pt\dpO=0pt\box0}
\mkern-2mu
$ }
\hfill

6  Math stackers



\mkern-7mu

\mathchoice

{\setbox0\hbox{$\displaystyle -$}\ht0=0pt\dp0=0pt\box0}
{\setbox0\hbox{$\textstyle -$}\ht0=0pt\dpO=0pt\box0}
{\setbox0\hbox{$\scriptstyle -$}\ht0=0pt\dpO0=0pt\box0}

{\setbox0\hbox{$\scriptscriptstyle-$}\ht0=0pt\dpO=0pt\box0}
$ ¥

If you look at the code you see a few hacks. First of all we see that we need to add kerns
in order to make the symbols overlap. For the middle shapes this is understandable as
there we don’t want rounding errors to lead to gaps. Also, because the minus in Com-
puter Modern (and therefore Latin Modern) has rounded tips, we need to make sure
that we end up beyond the tips. Next we see two blobs of mathchoice. This primitive
chooses one of the four variants and switches to the right math style. It packages the
minus and smashes it. In our case smashing makes not much sense as the arrowhead
has height and depth anyway, but it’s a side effect of using general purpose macros that
there can be some unneeded overhead.

— — —— —

Above you see the two characters that traditionally are combined into a leftward point-
ing arrows. Watch the whitespace on the left and right of the actual glyph.

1.4 The new way

These zero height and depth don’t show up in our rendered examples. Why is this?
The reason is that I cheated a bit. I used this to get the arrow:!

\mathstylehbox{\Umathaccent\fam\zerocount"21C4{\hskip4cm}}

The ConNTEXT support macro \mathstylehbox is an efficient variant of \mathchoice.
More significant is that we don’t assemble the arrow, but just put it as an accent on
top of a skip. The \Umathaccent primitive will assemble the long arrow for us, using
information in the font. If we look into the definition of the (Latin Modern) font in
MkIV we see this:

[8592]=1
["boundingbox"]={ 57, -10, 942, 510 },
["class"]="base",
["index"]=1852,
["math"]={
["horiz_parts"]={
{
["advance"]=507,
["end"]=169,
["extender"]=0,

! In this example I misuse the accent placement mechanism. Upto LuaTgX 0.75 that was the way to go.

Math stackers 7



["glyph"]1=984274,
["start"]=0,

1,

{
["advance"]=337,
["end"]=337,
["extender"]=1,
["glyph"]1=984275,
["start"]=337,

b

~

["advance"]=507,
["end"]=0,
["extender"]=0,
["glyph"]1=984276,
["start"]=169,
1,
1,
["horiz_variants"]={ 10229 },
1,
["name"]="arrowleft",
["width"]=1000,
+

This arrow symbol comes in two sizes. The extra size is mentioned inhoriz_variants.
When no more variants are seen, it switches to the extensible definition, that uses
horiz_parts. The dimensions are in basepoints, the references to glyphs are deci-
mal. The end and start fields specify the overlap. When extender equals 1 it signals
a repeatable snippet.

In the TEX engine the slot allocated for the left arrow symbol has a next pointer to a
larger shape. Here there is only one such shape but when there are more they form a
linked list. The the last one in such a list gets the specification of the extenders.

We hard-coded the width to 4cm so how does it work when the arrow has to adapt
itself? There are two cases there. When we are putting text on top of or below an arrow,
we know what the width is because we can measure the text. But when we use the
arrow as a filler, we have to leave it to the engine to arrange it. In recent LuATEX the
definition can be as simple as:

\def\leftarrowfill{\leaders "2190 \hfill}
or:
\def\leftarrowfill{\mathstylehbox{\leaders"2190\hfill}}

In fact, we can use this new LuaTgX extension to \leaders to replace the accent hacks
as well.

8  Math stackers



1.5 Wrapping it in macros

If this was all, we would be done in a few lines of definitions but as usual there is more
involved: especially text. The prerequisites can be summarized as follows:

The width of the extensible need to adapt itself automatically.

We need to be able to control horizontal and vertical offsets.

We best have a math as well as a text variant (which is handy for chemistry).

For historic reasons we need to deal with optional arguments in a special (reverse)
way.

e We need alternatives for extensibles on top, in the middle and at the bottom.

Using a low level command we can do this:
$x \directmathextensible{"2192}{top}{bottom} x$

top

X—X
bottom

This is not that exiting too look at, but the next might be:

top
h———— ¢
bottom

Here we have turned on a tracker:
\enabletrackers[math.stackers.texts]

The toppart is transparent blue, the middlepart transparent red and the bottom part
becomes transparent green. When the areas overlap you see the mixed color.

Before we explore some options, we show some variants. Often extensibles are used in
math mode, if only because they originate in math and come from math fonts.

$x \textstacker{"2192}{top}{bottom} x$

top
X=X
bottom

These commands also work outside math mode:
x \textstacker{"2192}{top}t{bottom} x

top

XEe——X
bottom

and to some extend can adapt themselves:

x\high{x \textstacker{"2192}{top}{bottom} x} x

top

Math stackers 9



1.6 Influencing the spacing
We will use the text example to illustrate some options.

\ruledhbox \bgroup \quad
\setupmathstackers[location=top]l%
\textstacker{"21C4}{top}t{bottom}\quad
\setupmathstackers[location=high]¥
\textstacker{"21C4}{top}{bottom}\quad
\setupmathstackers[location=middle]’
\textstacker{"21C4}{top}t{bottom}\quad
\setupmathstackers[location=low]%
\textstacker{"21C4}{top}{bottom}\quad
\setupmathstackers[location=bottom]%
\textstacker{"21C4}{top}t{bottom}\quad

\egroup

You can set up extensibles to be shifted up and down.

top top top top top
,,,,, _ e —_=—— 5
bOttom bottom bottom b ottom bO ttom

The above rendering uses the default spacing. When we set all values to zero we get
this:

top top top top top
— == = L

bottom  pottom bottom  pottom bottom

The setup looks like this:

\setupmathstackers
[voffset=\zeropoint,
hoffset=\zeropoint,
minheight=\exheight,
mindepth=\zeropoint,
minwidth=\zeropoint]

and gives a pretty tight rendering. The default values are:

\setupmathstackers
[voffset=.25\exheight,
hoffset=.5\emwidth,
minheight=\exheight,
mindepth=\zeropoint,
minwidth=\emwidth]

When we set voffset to twice the ex-height and hoffset to the em-width we get:

10 Math stackers



top top top top top

e — .,

bottom bottom bottom bottom bottom

We can enforce a (consistent) height and depth of the extensible by setting the minimum
values:

top top top top top
- """ ! SR - ! """"
bottom bottom bottom bottom bottom

1.7 A neat feature

A more obscure feature relates to the visual appearance. When we put something on
top of for instance an arrow, it sometimes looks better when we only consider the middle
part. Watch the following:

\ruledhbox \bgroup \quad
\setupmathstackers[offset=normal]’
\textstacker{"21C4}{top}t{bottom}\quad
\setupmathstackers[offset=min]Y
\textstacker{"21C4}{top}{bottom}\quad
\setupmathstackers[offset=max]’
\textstacker{"21C4}{top}t{bottom}\quad

\egroup

The min and max values will add extra offsets that relate to the width of the edge snip-
pets.

top op op
,,,,, rrm— -
bottom otto otto

In this case both have the same result but the difference becomes clear when we set
the hoffset to the em-width. In the case of min we don’t add some extra space if the
hoffset is applied.

\ruledhbox \bgroup \quad
\setupmathstackers[offset=normal]’
\textstacker{"21C4}{top}{bottom}\quad
\setupmathstackers[offset=min]Y
\textstacker{"21C4}{top}t{bottom}\quad
\setupmathstackers[offset=max]Y
\textstacker{"21C4}{top}{bottom}\quad

\egroup

Of course in this example we have a symmetrical correction.

Math stackers 11



top top top|

bottom bottom bottom

A one sided arrow behaves different:

top | top topl | ‘

bottom bottom bottom. ‘

1.8 The user interface

It all starts out with categories. We have a couple of predefined categories in the core.
The mathematics category typesets the top and bottom texts in mathmode, while the
text category doesn’t. The reverse category swaps its arguments. There are upper
and under categories too.

As with most CoNTEXT mechanisms inheritance is part of the picture:
\definemathextensibles [mine] [big] [offset=min]

You can change settings with:

\setupmathstackers [mine] [big] [voffset=\exheight]

For downward compatibility we also provide these:

\definemathextensibles [normal] [hoffset=0.5\emwidth]
\definemathextensibles [none] [hoffset=\zeropoint]
\definemathextensibles [small] [hoffset=1\emwidth]
\definemathextensibles [medium] [hoffset=1.5\emwidth]
\definemathextensibles [big] [hoffset=2\emwidth]

They inherit from mathematics so choosing this also forces the top and bottomtexts to
be typeset in math mode.

These commands don’t define extensibles, they only provide a way to categorize them.
There are couple of definers and one reason for that is that we want to define downward
compatible commands.

\definemathextensible [reverse] [xleftarrow] ["2190]
\definemathextensible [reverse] [xrightarrow] ["2192]

The x in the name is sort of standard for an extensible symbol with optionally some text
on top or below. The reverse forced compatible behaviour.

\xrightarrow{stuff below} {stuff on top} \quad

\xrightarrow{stuff on top} \quad
\xrightarrow{} {stuff on top} \quad
\xrightarrow{stuff below} {} \quad
\xrightarrow{} { \quad
\xrightarrow \quad

12 Math stackers



stuffontop stuf fontop
stuff below stuffontop stuf fbelow

New in MkIV is the t variant that typesets the text as (indeed) text. In addition we have
a normal-order m variant:

\definemathextensible [text] [tleftarrow] ["2190]
\definemathextensible [text] [trightarrow] ["2192]

\definemathextensible [mathematics] [mleftarrow] ["2190]
\definemathextensible [mathematics] [mrightarrow] ["2192]

This time the order is always top first and bottom next:

\trightarrow{stuff on top} {stuff below} \quad

\trightarrow{stuff on top} {} \quad
\trightarrow{stuff on top} \quad
\trightarrow{} {stuff below} \quad
\trightarrow \quad
So we get:

stuff on top stuff on top stuff on top

stuff below ’ stuff below

As you can see, there is an optional first argument that specifies the category that ap-
plies. This permits you to define extra commands that have their own (spacing) prop-
erties.

Earlier on we saw that defined commands can be forced into a category:

\trightarrow[big] {stuff on top} {stuff below} \quad
\trightarrow[medium] {stuff on top} {stuff below} \quad
\trightarrow[small] {stuff on top} {stuff below}

Here we get:

stuf fontop stuffontop stuffontop
stuf fbelow stuf fbelow stuf fbelow

A variation on this kind of extensibles are over- and underarrows. This time the text is
the nucleus.

\definemathoverextensible [top] [overleftarrow] ["2190]
\definemathoverextensible [top] [overrightarrow] ["2192]

\definemathunderextensible [bottom] [underleftarrow] ["2190]
\definemathunderextensible [bottom] [underrightarrow] ["2192]

In action this looks like:

\ruledhbox \bgroup $ \quad

Math stackers 13



\overleftarrow {a} \quad \overleftarrow {ABC} $ \quad
x_{\overleftarrow {a}} \quad x_{\overleftarrow {ABC}} $ \quad
\underleftarrow{a} \quad \underleftarrow{ABC} $ \quad
x_{\underleftarrow{a}} \quad x_{\underleftarrow{ABC}} $ \quad

$ \egroup

Here we also have tracing enabled, and we also show the bounding box:

@ ABC xa x_ABC g ABC xa x_ABC

This leaves us one command: the one that defines the basic filler:

\definemathextensiblefiller [leftarrowfill] ["2190]
\definemathextensiblefiller [rightarrowfill] ["2192]

Commands defined like this will stretch themselves to fit the circumstances, and nor-
mally they will fill op the available space.

\hbox to 4cm {from here \leftarrowfill\ to there}
\hbox to 8cm {from there \rightarrowfill\ to here}

These commands (like the others) work in text mode as well as in math mode.

from here « to there
from there to here

1.9 Special cases

One of the reasons why the arrows mechanism has always been somewhat configure-
able is that we need arrows in the chemistry code.

\definemathextensibles
[chemistry]
[offset=max,
left=\enspace,
right=\enspace,
hoffset=.5\emwidth]

\definemathextensible [chemistry] [cleftarrow] ["2190]
\definemathextensible [chemistry] [crightarrow] ["2192]
\definemathextensible [chemistry] [crightoverleftarrow] ["21C4]

2H + 0 \crightarrow{explosive}\ H\low{2}0

Of course normally such code is wrapped into the chemistry enviroments and support
macros.

explosive]

2H+ O

H,0

If you want something else than an extensible you can use definitions like the following:

14 Math stackers



\definemathtriplet [tripleta]
\definemathtriplet [text] [tripletb]
\definemathtriplet [text] [tripletc] [\otimes]

\tripleta{\ominus}{top}{botom} and
\tripletb{\oplus} {top}{botom} and

\tripletc {top}{botom}
top top top
© and' & and' ®

botom botom botom

As optional first argument you can pass a category.

\tripleta[mathematics]{\ominus}{top}t{botom} and
\tripletb[mathematics]{\oplus}{topt{botom} and
\tripletc[mathematics]{top}{botom}

Which gives:
top top top
© and ' ® and ®
botom botom botom

Instead of mathematics you could have given its synonym math. Keep in mind that
categories are shared among stackers. There is also a direct command:

before \mathtriplet{\otimes}{top}{botom} after

1.10 An overview

We end with showing a list of extensibles that come with the font used here, the TEXGyre
Pagella. First we load a module:

\usemodule[s] [math-extensibles]

This module provides a couple of commands that typesets a table with the extensibles
as known in ConTgXt. Beware: not all fonts have all those characters.

A second command is:
\showmathextensibles[alternative=a]

This commands shows the base glyph, and the stretched variant with text on top and
below. When no symbol is found in the font a rule is rendered.

top top
U+002D — HYPHEN-MINUS
bottom bottom
top) top]
U+003D = EQUALS SIGN
bottom bottom
fap fop
U+203E ~ OVERLINE
bottom bottom

Math stackers 15



U+2190

U+2192

U+2194

U+219A

U+219B

U+219C

U+219D

U+219E

U+21A0

U+21A2

U+21A3

U+21A4

U+21A6

U+21A9

U+21AA

U+21AB

U+21AC

U+21AD

U+21AE

U+21B9

U+21BC

top

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom

top

Q.

bottom

Q.

top

bottom
top

“«WwS>
bottom

top

bottom

“«Ww>
bottom

top

top

bottom
top

bottom

top

bottom

top

bottom

top

bottom

16 Math stackers

bottom

LEFTWARDS ARROW

RIGHTWARDS ARROW

LEFT RIGHT ARROW

LEFTWARDS ARROW WITH STROKE

RIGHTWARDS ARROW WITH STROKE

LEFTWARDS WAVE ARROW

RIGHTWARDS WAVE ARROW

LEFTWARDS TWO HEADED ARROW

RIGHTWARDS TWO HEADED ARROW

LEFTWARDS ARROW WITH TAIL

RIGHTWARDS ARROW WITH TAIL

LEFTWARDS ARROW FROM BAR

RIGHTWARDS ARROW FROM BAR

LEFTWARDS ARROW WITH HOOK

RIGHTWARDS ARROW WITH HOOK

LEFTWARDS ARROW WITH LOOP

RIGHTWARDS ARROW WITH LOOP

LEFT RIGHT WAVE ARROW

LEFT RIGHT ARROW WITH STROKE

LEFTWARDS ARROW TO BAR OVER
RIGHTWARDS ARROW TO BAR
LEFTWARDS HARPOON WITH BARB

UPWARDS



U+21BD

U+21C0

U+21C1

U+21C4

U+21C6

U+21C7

U+21C9

U+21CB

U+21CC

U+21CD

U+21CE

U+21CF

U+21D0O

U+21D2

U+21D4

U+21DA

U+21DB

N

u

(i}

)

I

1l

top

top

bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom

LEFTWARDS HARPOON WITH BARB

DOWNWARDS
RIGHTWARDS HARPOON WITH BARB

UPWARDS

RIGHTWARDS HARPOON WITH BARB
DOWNWARDS

RIGHTWARDS ARROW OVER
LEFTWARDS ARROW

LEFTWARDS ARROW OVER
RIGHTWARDS ARROW

LEFTWARDS PAIRED ARROWS

RIGHTWARDS PAIRED ARROWS

LEFTWARDS HARPOON OVER
RIGHTWARDS HARPOON
RIGHTWARDS HARPOON OVER
LEFTWARDS HARPOON

LEFTWARDS DOUBLE ARROW WITH
STROKE

LEFT RIGHT DOUBLE ARROW WITH
STROKE

RIGHTWARDS DOUBLE ARROW WITH
STROKE

LEFTWARDS DOUBLE ARROW

RIGHTWARDS DOUBLE ARROW

LEFT RIGHT DOUBLE ARROW

LEFTWARDS TRIPLE ARROW

RIGHTWARDS TRIPLE ARROW

Math stackers

17



U+21DC

U+21E0

U+21E4

U+21Eb

U+21E6

U+21E8

U+21F4

U+21F6

U+21F7

U+21F8

U+21F9

U+21FA

U+21FB

U+21FC

U+21FD

U+21FE

U+21FF

U+2261

U+2262

W

top

<«
bottom

top

<«
bottom

top

top

bottom
top

bottom

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

18 Math stackers

LEFTWARDS SQUIGGLE ARROW

LEFTWARDS DASHED ARROW

LEFTWARDS ARROW TO BAR

RIGHTWARDS ARROW TO BAR

LEFTWARDS WHITE ARROW

RIGHTWARDS WHITE ARROW

RIGHT ARROW WITH SMALL CIRCLE

THREE RIGHTWARDS ARROWS

LEFTWARDS ARROW WITH VERTICAL
STROKE
RIGHTWARDS ARROW WITH

VERTICAL STROKE

LEFT RIGHT ARROW WITH
VERTICAL STROKE

LEFTWARDS ARROW WITH DOUBLE
VERTICAL STROKE

RIGHTWARDS ARROW WITH DOUBLE
VERTICAL STROKE

LEFT RIGHT ARROW WITH DOUBLE
VERTICAL STROKE

LEFTWARDS OPEN-HEADED ARROW

RIGHTWARDS OPEN-HEADED ARROW

LEFT RIGHT OPEN-HEADED ARROW

IDENTICAL TO

NOT IDENTICAL TO



U+2263

U+23B4

U+23B5

U+23DC

U+23DD

U+23DE

U+23DF

U+27F4

U+27F5

U+27F6

U+27F7

U+27F8

U+27F9

U+27FA

U+27FB

U+27FC

U+27FD

U+27FE

U+27FF

1

top

top

bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top.
bottom bottom
top top.
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom
top top
bottom bottom

STRICTLY EQUIVALENT TO

TOP SQUARE BRACKET

BOTTOM SQUARE BRACKET

TOP PARENTHESIS

BOTTOM PARENTHESIS

TOP CURLY BRACKET

BOTTOM CURLY BRACKET

RIGHT ARROW WITH CIRCLED PLUS

LONG

LONG

LONG

LONG

LONG

LONG

LONG

LONG
BAR

LONG
FROM
LONG
FROM
LONG

LEFTWARDS ARROW

RIGHTWARDS ARROW

LEFT RIGHT ARROW

LEFTWARDS DOUBLE ARROW

RIGHTWARDS DOUBLE ARROW

LEFT RIGHT DOUBLE ARROW

LEFTWARDS ARROW FROM BAR

RIGHTWARDS ARROW FROM

LEFTWARDS DOUBLE ARROW
BAR

RIGHTWARDS DOUBLE ARROW
BAR

RIGHTWARDS SQUIGGLE

ARROW

Math stackers 19



U+2900

U+2901

U+2902

U+2903

U+2904

U+2905

U+2906

U+2907

U+290C

U+290D

U+290E

U+290F

U+2910

U+2911

U+2914

U+2915

top

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

20 Math stackers

RIGHTWARDS TWO-HEADED ARROW

WITH VERTICAL STROKE
RIGHTWARDS TWO-HEADED ARROW
WITH DOUBLE VERTICAL STROKE
LEFTWARDS DOUBLE ARROW WITH
VERTICAL STROKE

RIGHTWARDS DOUBLE ARROW WITH

VERTICAL STROKE
LEFT RIGHT DOUBLE ARROW WITH
VERTICAL STROKE
RIGHTWARDS TWO-HEADED ARROW

FROM BAR

LEFTWARDS DOUBLE ARROW FROM
BAR

RIGHTWARDS DOUBLE ARROW FROM

BAR
LEFTWARDS DOUBLE DASH ARROW

RIGHTWARDS DOUBLE DASH ARROW

LEFTWARDS TRIPLE DASH ARROW

RIGHTWARDS TRIPLE DASH ARROW

RIGHTWARDS TWO-HEADED TRIPLE

DASH ARROW

RIGHTWARDS ARROW WITH DOTTED
STEM

RIGHTWARDS ARROW WITH TAIL
WITH VERTICAL STROKE
RIGHTWARDS ARROW WITH TAIL

WITH DOUBLE VERTICAL STROKE



U+2916

U+2917

U+2918

U+2919

U+291A

U+291B

U+291C

U+291D

U+291E

U+291F

U+2920

U+2933

U+2938

U+2939

U+293E

top

top

bottom

top

bottom

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

bottom

RIGHTWARDS TWO-HEADED ARROW
WITH TAIL
RIGHTWARDS TWO-HEADED ARROW

WITH TAIL WITH VERTICAL
STROKE

RIGHTWARDS TWO-HEADED ARROW

WITH TAIL WITH DOUBLE
VERTICAL STROKE

LEFTWARDS ARROW-TAIL

RIGHTWARDS ARROW-TAIL

LEFTWARDS DOUBLE ARROW-TAIL

RIGHTWARDS DOUBLE ARROW-TAIL

LEFTWARDS ARROW TO BLACK

DIAMOND

RIGHTWARDS ARROW TO BLACK
DIAMOND

LEFTWARDS ARROW FROM BAR TO
BLACK DIAMOND

RIGHTWARDS ARROW FROM BAR TO

BLACK DIAMOND

WAVE ARROW POINTING DIRECTLY
RIGHT

RIGHT-SIDE ARC CLOCKWISE

ARROW

LEFT-SIDE ARC ANTICLOCKWISE
ARROW

LOWER RIGHT SEMICIRCULAR

CLOCKWISE ARROW

Math stackers 21



U+293F

U+2945

U+2946

U+2970

U+2A17

U+2B30

U+2B31

U+2B32

U+2B33

U+2B34

U+2B35

U+2B36

U+2B37

U+2B38

U+2B39

U+2B3A

(k)

top

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

22  Math stackers

LOWER LEFT SEMICIRCULAR

ANTICLOCKWISE ARROW
RIGHTWARDS ARROW WITH PLUS
BELOW

LEFTWARDS ARROW WITH PLUS
BELOW

RIGHT DOUBLE ARROW WITH

ROUNDED HEAD
INTEGRAL WITH LEFTWARDS ARROW

WITH HOOK
LEFT ARROW WITH SMALL CIRCLE

THREE LEFTWARDS ARROWS

LEFT ARROW WITH CIRCLED PLUS

LONG LEFTWARDS SQUIGGLE ARROW

LEFTWARDS TWO-HEADED ARROW
WITH VERTICAL STROKE
LEFTWARDS TWO-HEADED ARROW
WITH DOUBLE VERTICAL STROKE
LEFTWARDS TWO-HEADED ARROW
FROM BAR

LEFTWARDS TWO-HEADED TRIPLE
DASH ARROW

LEFTWARDS ARROW WITH DOTTED
STEM

LEFTWARDS ARROW WITH TAIL
WITH VERTICAL STROKE
LEFTWARDS ARROW WITH TAIL

WITH DOUBLE VERTICAL STROKE



top top

U+2B3B ? LEFTWARDS TWO-HEADED ARROW
bottom bottom
WITH TAIL
top top
U+2B3C ? LEFTWARDS TWO-HEADED ARROW
bottom bottom
WITH TAIL WITH VERTICAL
STROKE
top top
U+2B3D ? LEFTWARDS TWO-HEADED ARROW
bottom bottom
WITH TAIL WITH DOUBLE
VERTICAL STROKE
to to
U+2B3F ? 2 i WAVE ARROW POINTING DIRECTLY
bottom bottom
LEFT
top top
U+FE3B4 - EXTENSIBLE OF 0x03B4
bottom bottom
top top
U+FE3B5 EXTENSIBLE OF 0x03B5
. bottom bottom
top top
U+FE3DC -~ EXTENSIBLE OF 0x03DC
bottom bottom
top top
U+FE3DD _ — EXTENSIBLE OF 0x03DD
bottom bottom
top top
U+FE3DE ~ EXTENSIBLE OF 0OxO3DE
bottom bottom
top top
U+FE3DF EXTENSIBLE OF OxO3DF
bottom bottom

\showmathextensibles[alternative=b]

This command typesets a list with UNicope entries and defined commands. There are
empty entries due to lack of glyphs in the used font. Not all characters have an associ-
ated command. Some have multiple commands with different math classes.

top top
U+002D — HYPHEN-MINUS
bottom bottom
top top
U+003D = EQUALS SIGN
bottom bottom
top top
U+203E ~ OVERLINE
bottom bottom
top top
U+2190 — LEFTWARDS ARROW
bottom bottom
top top
U+2192 - RIGHTWARDS ARROW
bottom bottom
top top
U+2194 - LEFT RIGHT ARROW
bottom bottom

Math stackers 23



top top

U+219A “* # LEFTWARDS ARROW WITH STROKE
bottom bottom
top top
U+219B -+ - : + RIGHTWARDS ARROW WITH STROKE
bottom bottom
top top
U+219C ? LEFTWARDS WAVE ARROW
bottom bottom
top top
U+219D ? RIGHTWARDS WAVE ARROW
bottom bottom
top top
U+219E « LEFTWARDS TWO HEADED ARROW
bottom bottom
top top
U+21A0 —» RIGHTWARDS TWO HEADED ARROW
bottom bottom
top top
U+21A2 < LEFTWARDS ARROW WITH TAIL
bottom bottom
top top
U+21A3 > RIGHTWARDS ARROW WITH TAIL
bottom bottom
top top
U+21A4 — : | | LEFTWARDS ARROW FROM BAR
bottom bottom
top top
U+21A6 — | = | RIGHTWARDS ARROW FROM BAR
bottom bottom
top top
U+21A9 e 2 > 2 LEFTWARDS ARROW WITH HOOK
bottom bottom
top top
U+21AA > ¢ c c RIGHTWARDS ARROW WITH HOOK
bottom bottom
top top
U+21AB P P P P LEFTWARDS ARROW WITH LOOP
bottom bottom
top top
U+21AC > 8 9 g RIGHTWARDS ARROW WITH LOOP
bottom bottom
top top
U+21AD «> s s s LEFT RIGHT WAVE ARROW
bottom bottom
top top
U+21AE > + - + LEFT RIGHT ARROW WITH STROKE
bottom bottom
top top
U+21B9 ? LEFTWARDS ARROW TO BAR OVER
bottom bottom
RIGHTWARDS ARROW TO BAR
t t
U+21BC  — L L LEFTWARDS HARPOON WITH BARB
bottom bottom
UPWARDS
top top
U+21BD — LEFTWARDS HARPOON WITH BARB
bottom bottom
DOWNWARDS
top top
U+21CO0 — RIGHTWARDS HARPOON WITH BARB
bottom bottom
UPWARDS

24 Math stackers



U+21C1

U+21C4

U+21C6

U+21C7

U+21C9

U+21CB

U+21CC

U+21CD

U+21CE

U+21CF

U+21D0

U+21D2

U+21D4

U+21DA

U+21DB

U+21DC

U+21E0

U+21E4

N

u

(i}

U

top

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom
top

<«
bottom

top

bottom

<«
bottom

top

top

bottom
top

bottom

top

bottom

bottom

RIGHTWARDS HARPOON WITH BARB

DOWNWARDS

RIGHTWARDS ARROW OVER
LEFTWARDS ARROW
LEFTWARDS ARROW OVER
RIGHTWARDS ARROW

LEFTWARDS PAIRED ARROWS

RIGHTWARDS PAIRED ARROWS

LEFTWARDS HARPOON OVER
RIGHTWARDS HARPOON
RIGHTWARDS HARPOON OVER

LEFTWARDS HARPOON

LEFTWARDS DOUBLE ARROW WITH

STROKE

LEFT RIGHT DOUBLE ARROW WITH

STROKE

RIGHTWARDS DOUBLE ARROW WITH

STROKE
LEFTWARDS DOUBLE ARROW

RIGHTWARDS DOUBLE ARROW

LEFT RIGHT DOUBLE ARROW

LEFTWARDS TRIPLE ARROW

RIGHTWARDS TRIPLE ARROW

LEFTWARDS SQUIGGLE ARROW

LEFTWARDS DASHED ARROW

LEFTWARDS ARROW TO BAR

Math stackers

25



U+21E5

U+21E6

U+21E8

U+21F4

U+21F6

U+21F7

U+21F8

U+21F9

U+21FA

U+21FB

U+21FC

U+21FD

U+21FE

U+21FF

U+2261

U+2262

U+2263

U+23B4

U+23B5

W

Il s [

1

top

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom

26 Math stackers

bottom

RIGHTWARDS ARROW TO BAR

LEFTWARDS WHITE ARROW

RIGHTWARDS WHITE ARROW

RIGHT ARROW WITH SMALL CIRCLE

THREE RIGHTWARDS ARROWS

LEFTWARDS ARROW WITH VERTICAL
STROKE
RIGHTWARDS ARROW WITH

VERTICAL STROKE

LEFT RIGHT ARROW WITH
VERTICAL STROKE

LEFTWARDS ARROW WITH DOUBLE

VERTICAL STROKE
RIGHTWARDS ARROW WITH DOUBLE
VERTICAL STROKE
LEFT RIGHT ARROW WITH DOUBLE
VERTICAL STROKE
LEFTWARDS OPEN-HEADED ARROW

RIGHTWARDS OPEN-HEADED ARROW

LEFT RIGHT OPEN-HEADED ARROW

IDENTICAL TO

NOT IDENTICAL TO

STRICTLY EQUIVALENT TO

TOP SQUARE BRACKET

BOTTOM SQUARE BRACKET



U+23DC

U+23DD

U+23DE

U+23DF

U+27F4

U+27F5

U+27F6

U+27F7

U+27F8

U+27F9

U+27FA

U+27FB

U+27FC

U+27FD

U+27FE

U+27FF

U+2900

U+2901

top

top.

bottom
top

bottom

top.

bottom
top

bottom

top.

bottom
top

bottom

top.

bottom
top

bottom

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top

top

bottom

bottom

TOP PARENTHESIS

BOTTOM PARENTHESIS

TOP CURLY BRACKET

BOTTOM CURLY BRACKET

RIGHT ARROW WITH CIRCLED PLUS

LONG

LONG

LONG

LONG

LONG

LONG

LONG

LONG
BAR

LONG
FROM
LONG
FROM
LONG

LEFTWARDS ARROW

RIGHTWARDS ARROW

LEFT RIGHT ARROW

LEFTWARDS DOUBLE ARROW

RIGHTWARDS DOUBLE ARROW

LEFT RIGHT DOUBLE ARROW

LEFTWARDS ARROW FROM BAR

RIGHTWARDS ARROW FROM

LEFTWARDS DOUBLE ARROW
BAR

RIGHTWARDS DOUBLE ARROW
BAR

RIGHTWARDS SQUIGGLE

ARROW

RIGHTWARDS TWO-HEADED ARROW

WITH

VERTICAL STROKE

RIGHTWARDS TWO-HEADED ARROW

WITH

DOUBLE VERTICAL STROKE

Math stackers 27



U+2902

U+2903

U+2904

U+2905

U+2906

U+2907

U+290C

U+290D

U+290E

U+290F

U+2910

U+2911

U+2914

U+2915

U+2916

U+2917

top

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

28 Math stackers

LEFTWARDS DOUBLE ARROW WITH

VERTICAL STROKE

RIGHTWARDS DOUBLE ARROW WITH
VERTICAL STROKE

LEFT RIGHT DOUBLE ARROW WITH
VERTICAL STROKE

RIGHTWARDS TWO-HEADED ARROW
FROM BAR

LEFTWARDS DOUBLE ARROW FROM
BAR

RIGHTWARDS DOUBLE ARROW FROM

BAR
LEFTWARDS DOUBLE DASH ARROW

RIGHTWARDS DOUBLE DASH ARROW

LEFTWARDS TRIPLE DASH ARROW

RIGHTWARDS TRIPLE DASH ARROW

RIGHTWARDS TWO-HEADED TRIPLE
DASH ARROW

RIGHTWARDS ARROW WITH DOTTED
STEM

RIGHTWARDS ARROW WITH TAIL
WITH VERTICAL STROKE
RIGHTWARDS ARROW WITH TAIL
WITH DOUBLE VERTICAL STROKE
RIGHTWARDS TWO-HEADED ARROW
WITH TAIL

RIGHTWARDS TWO-HEADED ARROW

WITH TAIL WITH VERTICAL
STROKE



U+2918

U+2919

U+291A

U+291B

U+291C

U+291D

U+291E

U+291F

U+2920

U+2933

U+2938

U+2939

U+293E

U+293F

U+2945

U+2946

top

top

bottom

top

bottom

top

bottom
top

bottom

top

bottom
top

bottom

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top

top

bottom

bottom

RIGHTWARDS TWO-HEADED ARROW

WITH TAIL WITH DOUBLE
VERTICAL STROKE

LEFTWARDS ARROW-TAIL

RIGHTWARDS ARROW-TAIL

LEFTWARDS DOUBLE ARROW-TAIL

RIGHTWARDS DOUBLE ARROW-TAIL

LEFTWARDS ARROW TO BLACK
DIAMOND

RIGHTWARDS ARROW TO BLACK
DIAMOND

LEFTWARDS ARROW FROM BAR TO
BLACK DIAMOND

RIGHTWARDS ARROW FROM BAR TO
BLACK DIAMOND

WAVE ARROW POINTING DIRECTLY
RIGHT

RIGHT-SIDE ARC CLOCKWISE
ARROW

LEFT-SIDE ARC ANTICLOCKWISE
ARROW

LOWER RIGHT SEMICIRCULAR
CLOCKWISE ARROW

LOWER LEFT SEMICIRCULAR
ANTICLOCKWISE ARROW
RIGHTWARDS ARROW WITH PLUS
BELOW

LEFTWARDS ARROW WITH PLUS

BELOW

Math stackers 29



U+2970

U+2A17

U+2B30

U+2B31

U+2B32

U+2B33

U+2B34

U+2B35

U+2B36

U+2B37

U+2B38

U+2B39

U+2B3A

U+2B3B

U+2B3C

()

top

top

bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

30 Math stackers

RIGHT DOUBLE ARROW WITH

ROUNDED HEAD
INTEGRAL WITH LEFTWARDS ARROW

WITH HOOK
LEFT ARROW WITH SMALL CIRCLE

THREE LEFTWARDS ARROWS

LEFT ARROW WITH CIRCLED PLUS

LONG LEFTWARDS SQUIGGLE ARROW

LEFTWARDS TWO-HEADED ARROW
WITH VERTICAL STROKE
LEFTWARDS TWO-HEADED ARROW
WITH DOUBLE VERTICAL STROKE
LEFTWARDS TWO-HEADED ARROW
FROM BAR

LEFTWARDS TWO-HEADED TRIPLE
DASH ARROW

LEFTWARDS ARROW WITH DOTTED
STEM

LEFTWARDS ARROW WITH TAIL
WITH VERTICAL STROKE
LEFTWARDS ARROW WITH TAIL
WITH DOUBLE VERTICAL STROKE
LEFTWARDS TWO-HEADED ARROW
WITH TAIL

LEFTWARDS TWO-HEADED ARROW

WITH TAIL WITH VERTICAL
STROKE



U+2B3D

U+2B3F

U+FE3B4

U+FE3B5

U+FE3DC

U+FE3DD

U+FE3DE

U+FE3DF

—-—

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

top top
bottom bottom

1.11 Remark

The number of extensions to the LUATEX core math engine is not that large and mostly

LEFTWARDS TWO-HEADED ARROW

WITH TAIL WITH DOUBLE
VERTICAL STROKE

WAVE ARROW POINTING DIRECTLY

LEFT
EXTENSIBLE

EXTENSIBLE

EXTENSIBLE

EXTENSIBLE

EXTENSIBLE

EXTENSIBLE

OF

OF

OF

OF

OF

OF

0x03B4

0x03B5

0x03DC

0x03DD

0x03DE

0x03DF

involves more control over spacing and support for Unicope math as OpenTyPE math

extensibles. However, a few years after writing this chapter the machinery was cleaned
up a bit and in the process some more control was added to constructors for radicals,
fractions and delimiters. The spacing and composition can be controlled in a bit more
detail using keywords (and dimensions). Because in CoNTEXT we already have mecha-
nisms in place not much of that new functionality is used (yet). Also, in the meantime

CoNTEXT evolved further. This chapter is just a snapshot and it might even render a bit
different in more recent versions of CoNTEXT and/or LuaTgX. After all, it was written
as part of the development story.

Math stackers

31



32 Math stackers



2 Speed

2.1 Introduction

In the ‘mk” and hybrid progress reports I have spend some words on speed. Why is
speed this important?

In the early days of CoNTEXT I often had to process documents with thousands of pages
and hundreds of thousands of hyperlinks. You can imagine that this took a while, espe-
cially when all kind of ornaments had to be added to the page: backgrounds, buttons
with their own backgrounds and offsets, hyperlink colors dependent on their state, etc.
Given that multiple runs were needed, this could mean that you'd leave the machine
running all night in order to get the final document.

It was the time when computers got twice the speed with each iteration of hardware, so
I suppose that it would run substantially faster on my current laptop, an old Dell M90
workhorse. Of course a recently added SSD drive adds a boost as well. But still, pro-
cessing such documents on a machine with a 8Mhz 286 processor and 640 megabytes
of memory was close to impossible. But, when I compare the speed of core duo M90
with for instance an M4600 with a i5 cpu running the same clock speed as the M90, I see
a factor 2 improvement at most. Of course going for a extremely clocked desktop will
be much faster, but we're no longer seeing a tenfold speedup every few years. On the
contrary: we see a shift multiple cores, often running at a lower clock speed, with the
assumption that threaded applications are used. This scales perfectly for web services
and graphic manipulations but not so much for TeX. If we want go faster, we need to
see where we can be more efficient within more or less frozen clock speeds.

Of course there are some developments that help us. First of all, for programs like TEX
clever caching of files by the operating system helps a lot. Memory still becomes faster
and cpu cached become larger too. For large documents with lots of resources an SSD
works out great. As Lua uses floating point, speedup in that area also help with LuaTgX.
We use virtual machines for TgX related services and for some reason that works out
quite well, as the underlying operating system does lots of housekeeping in parallel.
But, with all maxing out, we finally end up at the software itself, and in TgX this boils
down to a core of compiled code along with lots of macro expansions and interpret Lua
code.

In the end, the question remains what causes excessive runtimes. Is it the nature of
the TEX expansion engine? Is it bad macro writing? Is there too much overhead? If
you notice how fast processing the TeX book goes on modern hardware it is clear that
the core engine is not the problem. It’s no big deal to get 100 pages per second on
documents that use relative a simple page builder and have macros that lack a flexible
user interface.

Take the following example:

\starttext
\dorecurse{1000}{test\page}

Speed 33



\stoptext

We do nothing special here. We use the default Latin Modern fonts and process single
words. Noburden is put on the pagebuilder either. This way we get on a 2.33 Ghz T7600
cpu a performance of 185 pages per second.? The estimated Lua overhead in this 1000
page document is some 1.5 to 2 seconds. The following table shows the performance on
such a test document with different page numbers in pps (reported pages per second).

# pages pps
1 2

10 15

100 90
1000 185
10000 215

The startup time, measured on a zero page document, is 0.5 seconds. This includes
loading the format, loading the embedded Lua scripts and initializing them, initializing
and loading the file database, locating and loading some runtime files and loading the
absolute minumum number of fonts: a regular and math Latin Modern. A few years
before this writing that was more than a second, and the gain is due to a slightly faster
Lua interpreter as well as improvements in CoNTEXT.

So why does this matter at all, if on a larger document the startup time can be neglected?
It does because when I have to implement a style for a project or are developing some
functionality a fast edit-run—preview cycle is a must, if only because even a few second
wait feels uncomfortable. On the other hand, when I process a manual of say 150 pages,
which uses some tricks to explain matters, I don't care if the processing rate is between
5 and 15 pages per second, simply because you get (done) what you asked for. It mostly
has to do with feeling comfortable.

There is one thing to keep in mind: such measurements can vary over time, as they
depend on several factors. Even in the trivial case we need to:

load macros and Lua code

load additional files

initialize the system, think of fonts and languages

package the pages, which includes reverting to global document states
create the final output stream (pDF)

The simple one word per page test is not that slow, and normally for 1000 pages we
measure around 200 pps. However, due to some small speedups (that somehow add
up) in three months time I could gain a lot:

# pages Januari April May (2013)
1 2 2 2

In this case the mingw version was used. A version using the native Winpows compiler runs somewhat
faster, although this depends on the compiler options.* With LuajitTEX the 185 pages per second become
becomes 195 on a 1000 page document.

34 Speed



10 15 17 17

100 90 109 110
1000 185 234 259
10000 215 258 289

Among the improvements in April were a faster output to the console (first prototyped
in Lua, later done in the LuaTEX engine itself), and a couple of low level Lua optimiza-
tions. In May a dirty (maybe too tricky) global document state restore trick has beeing
introduced. Although these changes give nice speed bump, they will mostly go un-
noticed in more realistic documents. There we are happy if we end up in the 20 pps
range. So, in practice a more than 10 percent speedup between Januari and April is just
a dream.*

There are many cases where it does matter to squeeze out every second possible. We
run workflows where some six documents are generated from one source. If we forget
about the initial overhead of fetching the source from a remote server® gaining half a
second per document (if we start frech each needs two runs at least) means that the user
will see the first result one second faster and have them all in six less than before. In
that case it makes sense to identify bottlenecks in the more high level mechanisms.

And this is why during the development of CoNTEXT and the transition from MxII to
MkIV quite some time has been spent on avoiding bottlenecks. And, at this point we
can safely conclude that, in spite of more advanced functionality, the current version
of MkIV runs faster than the MxII versions in most cases, especially if you take the
additional functionality into account (like Unicope input and fonts).

2.2 The TEX engine

Writing inefficient macros is not that hard. If they are used only a few times, for instance
in setting up properties it plays no role. But if they’re expanded many times it may make
a difference. Because use and development of CoNTEXT went hand in hand we always
made sure that the overhead was kept at a minimum.

The parbuilder

There are a couple of places where document processing in a traditional TEX engine gets
a performance hit. Let’s start with the parbuilder. Although the paragraph builder is
quite fast it can responsible for a decent amount of runtime. It is also a fact that the
parbuilder of the engines derived from original TEX are more complex. For instance,
OMEGa adds bidirectionality to the picture which involves some extra checking as well
as more nodes in the list. The PDFIEX engine provides protrusion and expansions, and
as that feature was primarily a topic of research it was never optimized.

If you wonder why I still bother with such things: sometimes speedups are just a side effect of trying to
accomplish something else, like less verbose output in full tracing mode.

5 In the user interface we report the time it takes to fetch the source so that the typesetter can’t be blamed
for delays.

Speed 35



In LuaTgX the parbuilder is a mixture of the PDFIEX and OmMeca builders and adapted
to the fact that we have split the hyphenation, ligature building, kerning and breaking
a paragraph into lines. The protrusion and expansion code is still there but already for
a few years I have alternative code for LuaTEX that simplifies the implementation and
could in principle give a speed boost as well but till now we never found time to adapt
the engine. Take the following test code:

\testfeatureonce{100}{\setboxO\hbox{\tufte \par}} \tufte \par

In MxIV we use Lua for doing fonts so when we measure this bit we get the used time
for typesetting our \tufte quote without breaking it into lines. A normal LuaTgX run
needs 0.80 seconds and a LuajrTEX run takes 0.47 seconds.®

\testfeatureonce{100}{\setboxO\vbox{\tufte \par}} \tufte \par

In this case LuaTEX needs 0.80 seconds and LuantIgX needs 0.50 seconds and as we
break the list into lines, we can deduct that close to zero seconds are needed to break
100 samples. This (often used) sample text has the interesting property that it has many
hyphenation points and always gives multiple hyphenated lines. So, the parbuilder, if
no protrusion and expansion are used, is real fast!

\startparbuilder [basic]
\testfeatureonce{100}{\setbox0\vbox{\tufte \par}} \tufte \par
\stopparbuilder

Here we kick in our Lua version of the par builder. This takes 1.50 seconds for LuaTEX
and 0.90 seconds for LuantTEX. So, LuaTEX needs 0.70 seconds to break the quote into
lines while LuantTEX needs 0.43. If we stick to stock LuaTgX, this means that a medium
complex paragraph needs 0.007 seconds of Lua time and this is not that is not a time to
be worried about. Of course these numbers are not that accurate but the measurements
are consistent over multiple runs for a specific combination of LUATEX and MxIV. On a
more modern machine it’s probably also close to zero.

These measurements demonstrate that we should add some nuance to the assumption
that parbuilding takes time. For this we need to distinguish between traditional TEX
and LuaTgX. In traditional TEX you build an horizontal box or vertical box. In TEX speak
these are called horizontal and vertical lists. The main text flow is a special case and
called the main vertical list, but in this perspective you can consider it to be like a vertical
box.

Each vertical box is split into lines. These lines are packed into horizontal boxes. In
traditional TEX constructing a list starts with turning references to characters into glyphs
and ligatures. Kerns get inserted between characters if the font requests that. When
a vertical box is split into lines, discretionary nodes get inserted (hyphenation) and
when font expansion or protrusion is enabled extra fonts with expanded dimensions
get added.

All measurements are on a Dell M90 laptop running Windows 8. I keep using this machine because it
has a decent high res 4:3 screen. It’s the same machine Luigi Scarso and I used when experimenting with
LuanptTEX.

36 Speed



So, in the case of vertical box, building the paragraph is not really distinguished from
ligaturing, kerning and hyphenation which means that the timing of this process is
somewhat fuzzy. Also, because after the lines are identified some final packing of lines
happens and the result gets added to a vertical list.

In LuaTgX all these stages are split into hyphenation, ligature building, kerning, line
breaking and finalizing. When the callbacks are not enabled the normal machinery
kicks in but still the stages are clearly separated. In the case of CoNTEXT the font lig-
aturing and kerning get preceded by so called node mode font handling. This means
that we have extra steps and there can be even more steps before and afterwards. And,
hyphenation always happens on the whole list, contrary to traditional TEX that inter-
weaves this. Keep in mind that because we can box and unbox and in that process add
extra text the whole process can get repeated several times for the same list. Of course
already treated glyphs and kerns are normally kept as they are.

So, because in LuaTgX the process of splitting into lines is separated we can safely con-
clude that it is real fast. Definitely compared to al the font related steps. So, let’s go
back to the tests and let’s do the following:

\testfeatureonce{1000}{\setbox0O\hbox{\tuftel}}
\testfeatureonce{1000}{\setbox0\vbox{\tuftel}}

\startparbuilder [basic]
\testfeatureonce{1000}{\setbox0\vbox{\tuftel}}
\stopparbuilder

We’ve put the text into a macro so that we don’t have interference from reading files.
The test wrapper does the timing. The following measurements are somewhat rough
but repetition gives similar results.”

engine method normal hz

luatex tex hbox 9.64 9.64
tex vbox 9.84 10.16
lua vbox 17.28 18.43

1
2
3
4 luajittex texhbox  6.33 6.33
5
6

tex vbox 6.53 6.81
luavbox 11.06 11.81

In line 1 we see the basline: hyphenation, processing fonts and hpacking takes 9.74
seconds. In the second line we see that breaking the 1000 paragraphs costs some 0.20
seconds and when expansion is enabled an extra 12 seconds is needed. This means
that expansion takes 150% more runtime. If we delegate the task to Lua we need 7.64
seconds for breaking into lines which can not be neglected but is still ok given the fact
that we break 1000 paragraphs. But, interesting is to see that our alternative expansion
routine only adds 1.33 seconds which is less than 20%. It must be said that the built-in

7 Before and between runs we do a garbage collection.

Speed 37



method is not that efficient by design if only because it started out differently as part of
research.

When measured three months later, the numbers for regular LuaTEX (at that time ver-
sion 0.77) with the latest CoNTEXT were: 8.52, 8.72 and 15.40 seconds for the normal
run, which demonstrates that we should not draw too many conclusions from such
measurements. It’s the overal picture that matters.

As with earlier timings, if we use LuantTEX we see that the runtime of Lua is much
lower (due to the virtual machine). Of course we're still 20 times slower than the built-
in method but only 10 times slower when we use expansion. To put these numbers in
perspective: 5 seconds for 1000 paragraphs.

\setupbodyfont [dejavu]

\starttext
\dontcomplain \dorecurse{1000}{\tufte\par}
\stoptext

This results in 295 pages in the default layout and takes 17.8 seconds or 16.6 pages per
second. Expansion is not enabled.

That one takes 24.7 seconds and runs at 11.9 pages per second. This is indeed slower
but on a bit more modern machine I expect better results. We should also realize that
with Dejavu being a relative large font a difficult paragraph like the tufte example gives
overfull boxes which in turn is an indication that quite some alternative breaks are tried.

When typeset with Latin Modern we don’t get overfull boxes and interesting is that the
native method needs less time (15.9 seconds or 14.1 pages per second) while the Lua
variant also runs a bit faster: 23.4 or 9.5 pages per second. The number of pages is 223
because this font is smaller by design.

When we disable hyphenation the the Dejavu variant takes 16.5 (instead of 17.8) seconds
and 23.1 (instead of 24.7) seconds for Lua, so this process is not that demanding.

For typesetting so many paragraphs without anything special it makes no sense to
bother with using a Lua based parbuilder. I must admit that I never had to typeset
novels so all my 300 page runs are much longer anyway. Anyway, when at some point
we introduce alternative parbuilding to CoNTEXT, the speed penalty is probably accept-
able.

Just to indicate that predictions are fuzzy: when we put a \blank between the para-
graphs we end up with 313 pages and the traditional method takes 18.3 while Lua needs
23.6 seconds. One reason for this is that the whitespace is also handled by Lua and in the
pagebuilder we do some finalizing, so we suddenly get interference of other processes
(as well as the garbage collector). Again an indication that we should not bother too
much about speed. I try to make sure that the Lua (as well as TgX) code is reasonably
efficient, so in practice it’s the document style that is a more important factor than the
parbuilder, it being the traditional one or the Lua variant.

38 Speed



Copying boxes

As soon as in CoNTEXT you start enhancing the page with headers and footers and
backgrounds you will see that the pps rate drops. This is partly due to the fact that
suddenly quite some macro expansion takes place in order to check what needs to hap-
pen (like font and color switches, offsets, overlays etc). But what has more impact is
that we might end up with copying boxes and that takes time. Also, by wrapping and
repackaging boxes, we add additional levels of recursion in postprocessing code.

Macro expansion

Taco and I once calculated that MkII spends some 4% of the time in accessing the hash
table. This is a clear indication that quite some macro expansions goes on. Due to the
fact that when I rewrote MxII into MkIV I no longer had to take memory and other
limitations into account, the codebase looks quite different. There we do have more
expansion in the mechanism that deals with settings but the body of macros is much
smaller and less parameters are passed. So, the overall performance is better.

Fonts

Using a font has several aspects. First you have to define an instance. Then, when you
use it for the first time, the font gets loaded from storage, initialized and is passed to
TEX. All these steps are quite optimized. If we process the following file:

\setupbodyfont [dejavu]

\starttext
regular, {\it italic}, {\bf bold ({\bi italic})} and $m~a_th$
\stoptext

we get reported:

loaded fonts xits-math.otf xits-mathbold.otf
dejavuserif-bold.ttf dejavuserif-bolditalic.ttf
dejavuserif-italic.ttf dejavuserif.ttf

fonts load time 0.374 seconds

runtime 1.014 seconds, 0.986 pages/second

So, six fonts are loaded and because XITS is used we also preload the math bold variant.
Loading of text fonts is delayed but in order initialize math we need to preload the math
fonts.

If we don’t define a bodyfont, a default set gets loaded: Latin Modern. In that case we
get:

loaded fonts latinmodern-math.otf
Imroman10-bolditalic.otf 1mromanl2-bold.otf
lmromanl2-italic.otf lmromanl2-regular.otf

Speed 39



fonts load time 0.265 seconds
runtime 0.874 seconds, 1.144 pages/second

Before we had native OpenTyPE Latin Modern math fonts, it took slightly longer because
we had to load many small Typel fonts and assemble a virtual math font.

As soon as you start mixing more fonts and/or load additional weights and styles you
will see these times increase. But if you use an already loaded font with a different
featureset or scaled differently, the burden is rather low. It is safe to say that at this
moment loading fonts is not a bottleneck.

Applying fonts can be more demanding. For instance if you typeset Arabic or Devana-
gari the amount of node and font juggling definitely influences the total runtime. As
the code is rather optimized there is not much we can do about it. It’s the price that
comes with flexibility. As far as I can tell getting the same results with ppFTEX (if possi-
ble at all) or XgIEX is not taking less time. If you've split up your document in separate
tiles you will seldom run more than a dozen pages which is then still bearable.

If you are for instance typesetting a dictionary like document, it does not make sense
to do all font switches by switching body fonts. Just defining a couple of font instances
makes more sense and comes at no cost. Being already quite efficient given the com-
plexity you should not expect impressive speedups in this area.

Manipulations

The main manipulation that I have to do is to process xmL into something readable.
Using the built—in parser and mapper already has some advantages and if applied in
the right way it’s also rather efficient. The more you restrict your queries, the better.

Text manipulations using Lua are often quite fast and seldom the reason for seeing slow
processing. You can do lots of things at the Lua end and still have all the ConTEXT magic
by using the context namespace and function.

Multipass

You can try to save 1 second on a 20 second run but that is not that impressive if you
need to process the document three times in order to get your cross references right.
Okay you’d save 3 seconds but still to get result you needs some 60 seconds (unless
you already have run the document before). If you have a predictable workflow you
might know in advance that you only need two runs in case you can enforce that with
--runs=2. Furthermore you can try to optimize the style by getting rid of redundant
settings and inefficient font switches. But no matter what we optimize, unless we have a
document with no cross references, sectioning and positioning, you often end up with
the extra run, although CoNTEXT tries to minimize the number of needed runs needed.

40 Speed



Trial runs

Some mechanisms, like extreme tables, need multiple passes and all but the last one
are tagged as trial runs. Because in many cases only dimensions matter, we can dis-
able some time consuming code in such case. For instance, at some point Alan Braslau
and I found out that the new chemical manual ran real slow, mainly due to the tens of
thousands of MeraPost graphics. Adding support for trial runs to the chemical struc-
ture macros gave a fourfold improvement. The manual is still a slow-runner, but that
is simply because it has so many runtime generated graphics.

2.3 The METAPOST library

When the MEeraPosr library got included we saw a drastic speedup in processing doc-
ument with lots of graphics. However, when MeraPost got a different number system
(native, double and decimal) the changed memory model immediately lead to a slow
down. On one 150 page manual which a graphic on each page I saw the MeraPost run-
time go up from about half a second upto more than 5 seconds. In this case I was able to
rewrite some core METAFUN macro to better suit the new model, but you might not be
so lucky. So more careful coding is needed. Of course if you only have a few graphics,
you can just ignore the change.

2.4 The LUA interpreter

Where the TgX part of LuaTgX is compiled, the Lua code gets interpreted, converted into
bytecode, and ran by the virtual machine. Lua is by design quite portable, which means
that the virtual machine is not optimized for a specific target. The LuaJIT interpreter on
the other hand is written in assembler and available for only some platforms, but the
virtual machine is about twice as fast. The just-in-time part of LuaJIT is not if much
help and even can slow down processing.

When we moved from Lua 5.1 to 5.2 we found out that there was some speedup but
it’s hard to say why. There has been changes in the way strings are dealt with (Lua
hashes strings) and we use lots of strings, really lots. There has been changes in the
garbage collection and during a run lots of garbage needs to be collected. There are
some fundamental changes in so called environments and who knows what impact
that has.

If you ever tried to measure the performance of Lua, you probably have noticed that it
is quite fast. This means that it makes no sense to optimize code that gets visited only
occasionally. But some of the CoNTEXT code gets exercised a lot, for instance all code
that deals with fonts. We use attributes a lot and checking them is for good reason not
the fastest code. But given the often advanced functionality that it makes possible we're
willing to pay the price. It’s also functionality that you seldom need all at the same time
and for straightforward text only documents all that code is never executed.

When writing TEX or Lua code I spent a lot of time making it as efficient as possible in
terms of performance and memory usage. The sole reason for that is that we happen to

Speed 41



process documents where a lot of functionality is combined, so if many small speed-
ups accumulate to a noticeable performance gain it’s worth the effort.

So, where does Lua influence runtime? First of all we use Lua do deal with all in- and
output as well as locating files in the TEX directory structure. Because that code is partly
shared with the script manager (mtxrun) it is optimized but some more is possible if
needed. It is already not the most easy to read code, so I don’t want to introduce even
more obscurity.

Quite some code deals with loading, preparing and caching fonts. That code is mostly
optimized for memory usage although speed is also okay. This code is only called when
a font is loaded for the first time (after an update). After that loading is at matter of
milliseconds. When a text gets typeset and when fonts are processed in so called node
mode, depending on the script and/or enabled features, a substantial amount of time is
spent in Lua. There is still a bit complex dealing with inserting kerns but future LuaTEX
will carry kerning in the glyph node so there we can gain some runtime.

If a page has 4000 characters and if font features as well as other manipulations de-
mand 10 runs over the text, we have 40.000 checks of nodes and potential actions. Each
involves an id check, maybe a subtype check, maybe some attribute checking and pos-
sibly some action. So, if we have 200.000 (or more) function calls to the per page TgX
end it might add up to a lot. Around the time that we went to Lua 5.2 and played
with LuantTEX, the node accessors have been sped up. This gave indeed a measurable
speedup but not on an average document, only on the more extreme documents or fea-
tures. Because the MkIV Lua code goes from experimental to production to final, some
improvements are made in the process but there is not much to gain there. We just
have to wait till computers get faster, cpu cache get bigger, branch prediction improves,
floating point calculations take less time, memory is speedy, and flash storage is the
standard.

The Lua code is plugged into the TEX machinery via callbacks. For instance each time
a box is build several callbacks are triggered, even if it’s an empty box or just an extra
wrapper. Take for instance this:

\hbox \bgroup
\hskip \zeropoint
\hbox \bgroup
test
\egroup
\hskip \zeropoint
\egroup

Of course you won't come up with this code as it doesn’t do much good but macros that
you use can definitely produce this. For instance, the zero skip can be a left and right
margin that happen to be. For 10.000 iterations I measured 0.78 seconds while the text
one takes 0.62 seconds:

\hbox \bgroup
\hbox \bgroup

42 Speed



test
\egroup
\egroup

Why is this? One reason is that a zero skip results in a node and the more nodes we
have the more memory (de)allocation takes place and the more nodes in the list need
to be checked. Of course the relative difference is less when we have more text. So how
can we improve this? The following variant, at the cost of some testing takes just as
much time.

\hbox \bgroup
\hbox \bgroup
\scratchdimen\zeropoint
\ifdim\scratchdimen=\zeropoint\else\hskip\scratchdimen\fi
test
\ifdim\scratchdimen=\zeropoint\else\hskip\scratchdimen\fi
\egroup
\egroup

As does this one, but the longer the text, the slower it gets as one of the two copies needs
to be skipped.

\hbox \bgroup
\hbox \bgroup

\scratchdimen\zeropoint

\ifdim\scratchdimen=\zeropoint
test’

\else
\hskip\scratchdimen
test
\hskip\scratchdimen

\fi

\egroup
\egroup

Of course most speedup is gained when we don’t package at all, so if we test before we
package but such an optimization is seldom realistic because much more goes on and
we cannot check for everything. Also, 10.000 is a lot while 0.10 seconds is something
we can live with. By the way, compare the following

\hbox \bgroup
\hskip\zeropoint
testl
\hskip\zeropoint

\egroup

\hbox \bgroup

\kern\zeropoint
test’

Speed 43



\kern\zeropoint
\egroup

The first variant is less efficient that the second one, because a skip effectively is a glue
node pointing to a specification node while a kern is just a simple node with the width
stored in it.® I must admit that I seldom keep in mind to use kerns instead of skips
when possible if only because one needs to be sure to be in the right mode, horizontal
or vertical, so additional commands might be needed.

2.5 Macros

Are macros a bottleneck? In practice not really. Of course we have optimized the core
CoNTEXT macros pretty well, but one reason for that is that we have a rather extensive
set of configuration and definition mechanisms that rely heavily on inheritance. Where
possible all that code is written in a way that macro expansion won’t hurt too much.
because of this users themselves can be more liberal in coding. There is a lot going on
deep down and if you turn on tracing macros you can get horrified. But, not all shown
code paths are entered. During the move (and rewrite) from MxII to MkIV quite some
bottlenecks that result from limitations of machines and memory have been removed
and as a result the macro expansion part is somewhat faster, which nicely compensates
the fact that we have a more advanced but slower inheritance subsystem. Readability
of code and speed are probably nicely balanced by now.

Once a macro is read in, its internal representation is pretty efficient. For instance ref-
erences to macro names are just pointers into a hash table. Of course, when a macro
is seen in your source, that name has to be looked up, but that’s a fast action. Using
short names in the running text for instance really doesn’t speed up processing much.
Switching font sets on the other hand does, as then quite some checking happens and
the related macros are pretty extensive. However, once a font is loaded references to
it a pretty fast. Just keep in mind that if you define something inside a group, in most
cases it got forgotten. So, if you need something more often, just define it at the outer
level.

2.6 Optimizing code

Optimizing only makes sense if used very often and called frequently or when the prob-
lem to solve is demanding. An example of code that gets done often is page building,
where we pack together many layout elements. Font switches can also be time con-
suming, if defined wrong. These can happen for instance for formulas, marked words,
cross references, margin notes, footnotes (often a complete bodyfont switch), table cells,
etc. Yet another is clever vertical spacing that happens between structural elements. All
these mechanisms are reasonably optimized.

I can safely say that deep down CoNTEXT is no that inefficient, given what it has to do.
But when a style for instance does redundant or unnecessary massive font switches you
are wasting runtime. I dare to say that instead of trying to speed up code (for instance

8 On the LuaTgX agenda is moving the glue spec into the glue node.

44 Speed



by redefining macros) you can better spend the time in making styles efficient. For
instance having 10 \blank’s in a row will work out rather well but takes time. If you
know that a section head has no raised or lowered text and no math, you can consider
using \definefont to define the right size (especially if it is a special size) instead of
defining an extra bodyfont size and switch to that as it includes setting up related sizes
and math.

It might sound like using Lua for some tasks makes CoNTEXT slower, but this is not true.
Of course it’s hard to prove because by now we also have more advanced font support,
cleaner math mechanisms, additional features especially in especially structure related
mechanisms, etc. There are also mechanisms that are faster, for instance extreme tables
(a follow up on natural tables) and mixed column modes. Of course on the previously
mentioned 300 page simple paragraphs with simple Latin text the pDFIEX engine is
much faster than LuaTgX, also because simple fonts are used. But for many of todays
document this engine is no longer an options. For instance in our xmL processing in
multiple languages, LuaATEX beats ppDFIEX. There is not that much to optimize left, so
most speed up has to come from faster machines. And this is not much different from
the past: processing 300 page document on a 4.7Mhz 8086 architecture was not much
fun and we're not even talking of advanced macros here. Faster machines made more
clever and user friendly systems possible but at the cost of runtime, to even if machines
have become many times faster, processing still takes time. On the other hand, Con-
TEXT will not become more complex than it is now, so from now on we can benefit from
faster cpu’s, memory and storage.

Speed 45



46 Speed



3 Math Styles

3.1 Introduction

Because CoNTEXT is often considered somewhat less math savvy than for instance IXTEX
we have more freedom to experiment with new insights and move forward. Of course
CoNTgXT always could deal with math, and even provides rather advanced support
when it comes to combining fonts, which at some point was needed for a magazine that
used two completely different sets of fonts in one issue. Also, many of the mechanisms
had ways to influence the rendering, but often by means of constants and flags.

Already in an early stage of LuaTEX we went Unicopk and after that the low level code
has been cleaned up stepwise. In fact, we probably have less code now than before
because we need less hacks. Well, this might not be that true, if we consider that we
also introduced code at the Lua end which wasn’t there before, but which makes makes
support easier.

Because we don't need to support all kind of third party math extensions that them-
selves might depend on overloading low level implementations, we can rigourously
replace mechanisms. In the process we also make things easier to configure, easier to
define and we promote some previously low level tuning options at the user level.

Or course, by introducing new features and more options, there is a price to pay in terms
of speed, but in practice users will seldom use the more complex constructs thousands
of times in one document. Elsewhere arrows and alike were discussed, here I will spend
some words on math styles and will use fences and fractions as an example as these
mechanisms were used to experiment.

3.2 Math styles

In TgX a formula can used three different sizes of a font: text, script and scriptscript. In
addition a formula can be typeset using rules for display math or rules for inline math.
This means that we have the following so called math styles:

keyword meaning command
display used for display math ~ \displaystyle
text used for inline math \textstyle
script smaller than text style  \scriptstyle

scriptscript smaller than scriptstyle \scriptscriptstyle

Each of these commands will force a style but in practice you seldom need to do that
because TEX does it automatically. In addition there is are cramped styles with corre-
sponding commands.

2422 £ ox 4 il +2x \displaystyle
22 4 a2 4 2x + Va2 1 2x \crampeddisplaystyle

Math Styles 47



2422 fox 4 a2+ 2x \textstyle

22 4+ a2 + 2x + Va2 + 2x \crampedtextstyle

2424 2x X212 \scriptstyle
\crampedscriptstyle
\scriptscriptstyle
\crampedscriptscriptstyle

Here we applied the styles as follows:
$\textstyle x72 + \sqrt{x"2+2x} + \sqrt{\textstyle x"2+2x}$

The differences are subtle: the superscripts in the square root are positioned a bit lower
than normal: the radical forces them to be cramped.

2+ Va2 + 2x + Va2 + 2x

Although the average user will not bother about styles, a math power user might get
excited about the possibility to control the size of fonts being used, of course wit the
danger of creating a visually inconsistent document. And, as in CoNTEXT we try to

avoid such low level commands’ it will be no surprise that we have ways to set them
beforehand.

\definemathstyle[mystyle] [scriptscript]

$ 2x + \startmathstyle [mystyle] 4y~2 \stopmathstyle = 10 $
So, if you want it this ugly, you can get it:
2x + 42 = 10

A style can be a combination of keywords. Of course we have display, text, script
and scriptscript. Then there are uncramped and cramped along with their syn-
onyms normal and packed. In some cases you can also use small and big which will
promote the size up or down, relative to what we have currently.

A style definition can be combination of such keywords:

\definemathstyle [mystyle] [scriptscript,cramped]

Gradually we will introduce themathstyle keyword in math related setups commands.
In most cases a user will limit the scope of some setting by using braces, like this:

This gives xxx: a smaller symbol between two with text size. Equally valid is this:

$x\startmathstyle[script]x\stopmathstyle x$

9 Although . .. it’s pretty hard to convince users to stay away from \vskip and friends.

48 Math Styles



Again we get xxx, but at the cost of more verbose coding.

The use of {} (either or not hidden in commands) has a few side effects. In text mode,
when we use this at the start of a paragraph, the paragraph will start inside the group
and when we end the group, specific settings that were done at that time get lost.
So, in practice you will force a paragraph outside the group using \dontleavehmode,
\strut, or one of the indentation commands.

In math mode a new math group is created which limits local style settings to this
group. But as such groups also can trigger special kinds of spacing you sometimes
don’t want that. One pitfall is then to do this:

$x\begingroup\setupmathstyle[script]x\endgroup x$

Alas, now we get xxx. A \begingroup limits the scope of many things but it will not
create a math group! This kind of subtle issues is the reason why we have pre-built
solutions that take care of style switching, grouping, spacing and positioning.

3.3 Fences

Fences are symbols at the left and right of an expression: braces, brackets, curly braces,
and bars are the most well known. Often they are supposed to adapt their size to the
content that they wrap. Here you see some in action:

$I1x|$ |x] okay
$11xI1$ lx|l  okay
$a\left | \frac{1}{bNright | c$ alf/c okay
$al\left ||\frac{1}{b}\right |[c$ a||%||c wrong
$a\left || \frac{1}{bN\right Il c$ a|z|c okay

Often authors like to code their math with minimal structure and if you use UNicopE
characters thatis actually quite doable. Justlook at the double bar in the example above:
if we input | | we don’t get what we want, but with || the result is okay. This is because
the \1left and \right commands expect one character. But, even then, coding a bit
more verbose sometimes makes sense.

In stock ConTEXT we have a couple of predefined fences:

\definemathfence [parenthesis] [1left=0x0028,right=0x0029]

\definemathfence [bracket] [1eft=0x005B,right=0x005D]
\definemathfence [braces] [1eft=0x007B,right=0x007D]
\definemathfence [bar] [1eft=0x007C,right=0x007C]
\definemathfence [doublebar] [left=0x2016,right=0x2016]
\definemathfence [angle] [1eft=0x003C,right=0x003E]

You use these by name:

test $a \fenced[bar] {\frac{1}{b}} c$ test
test $a \fenced[doublebar]{\frac{1}{b}} c$ test

Math Styles 49



test $a \fenced[bracket] {\frac{1}{b}} c$ test

and get

testa|%|ctest

testa ”%” c test

testa [%] c test

You can stick to only one fence:
\definemathfence [nooffence] [left=0x005B]

Here CoNTEXT will take care of the dummy fence that TEX expects instead.
on a x005B7 ¢ off

You can define new fences and clone existing ones. You can also assign some properties:

\definemathfence
[fancybracket]
[bracket]
[command=yes,

color=blue]

test $a\fancybracket{\frac{1}{b}}c$ test
test \color[red]{$a\fancybracket{\frac{1}{b}}c$} test

The color is only applied to the fence. This makes sense as the formula can follow the
main color but influencing the fences is technically somewhat more complex.

testa [%] c test test a [%] c test

Here are some more examples:

\definemathfence
[normalbracket]
[bracket]
[command=yes,

color=blue]

\definemathfence
[scriptbracket]
[normalbracket]
[mathstyle=script]

\definemathfence
[smallbracket]
[normalbracket]
[mathstyle=small]

50 Math Styles



$a \frac{1}{b} c$

a%c
$a \normalbracket{\frac{1}{b} c$} a[%]c
$a \scriptbracket{\frac{1}{b} c$} a[;]c
$a \smallbracket{\frac{1}{b} c$} a[;]c
As with most commands, the fences inherit from the parents so we can say:
\setupmathfences [color=red]

and get all our fences colored red. The command option results in a command being
defined, which saves you some keying.

3.4 Fractions

In TEX the mechanism to put something on top of something else, separated by a hori-
zontal rule, is driven by the \over primitive. That one has a (compared to other com-
mands) somewhat different specification, in the sense that one of its arguments sits in
front:

$ {{2xF\over{x~1}} $

Although to some extend this is considered to be more readable, macro packages often
provide a \frac commands that goes like this:

$ \frac{2x}{x"1} $

There we have less braces and the arguments come after the command. As with the
fences in the previous section, you can define your own fractions:

\definemathfraction
[innerfrac]
[frac]
[alternative=inner,
mathstyle=script,
color=red]

\definemathfraction
[outerfrac]
[frac]
[alternative=outer,
mathstyle=script,
color=blue]

The mathstyle and color are already discussed but the alternative is specific for these
fractions. It determines if the style is applied to the whole fraction or to its components.

\startformula

Math Styles 51



\outerfrac{2a}{3b} = \innerfrac{2a}{3b} = \frac{2a}{3b}
\stopformula

As with fences, the color is only applied to the horizontal bar as there is no other easy
way to color that otherwise.

o 2a 2a

% "3 3b

As TgX has a couple of low level stackers, we provide an interface to that as well, but we
hide the dirty details. For instance you can define left and right fences and influence
the rule

\definemathfraction[fraca] [rule=no,left=0x005B,right=0x007C]
\definemathfraction[fracb] [rule=yes,left=0x007B,right=0x007D]
\definemathfraction[fracc] [rule=auto,left=0x007C]
\definemathfraction[fracd] [rule=yes,rulethickness=2pt,left=0x007C]

When rule is set to auto, we use TEX’s values (derived from font metrics) for the thick-
ness of rules, while yes triggers usage of the specified rulethickness.

\startformula
\fraca{a}{b} + \fracb{a}{b} + \fracc{a}{b} + \fracd{a}{b}
\stopformula

Gives:

\definemathfraction

[frace]

[rule=yes,
color=blue,
rulethickness=1pt,
left=0x005B,
right=0x007C]

This fraction looks as follows (scaled up):

a

b

So, the color is applied to the (optional) fences as well as to the (optional) rule. And
when you color the whole formula as part of the context, you get

a

b

52 Math Styles



There is a (maybe not so) subtle difference between fences that come with fractions and
regular fences, Take these definitions:

\definemathfence [parenta] [left=0x28,right=0x29,command=yes]
\definemathfraction [parentb] [left=0x28,right=0x29,rule=auto]

Of course the b variant takes less code:

\startformula
\parenta{\frac{a}{b}} + \parentb{at{b}
\stopformula

But watch how the parentheses are also larger. At some point CoNTEXT will provide a
bit more control over this,

282 x29 + (2
X Ex + E

You can also influence the width of the rule, but that is not related to the style.

\definemathfraction
[wfrac]
[margin=.25em]

\definemathfraction
[wwfrac]
[margin=.50em]

\startformula
\frac { a}{ \frac{ b} { c} }+
\wfrac { a} { \frac{ b} { c} } =
\wwfrac { 2a } { \frac { 2b } { 2¢c } }
\stopformula

Both the nominator and denominator are widened by the margin:

2a
2b

2c

+

als|
SIS

Math Styles 53



54 Math Styles



4 Calling Lua

4.1 Introduction

One evening, on Skype, Luigi and I were pondering about the somewhat disappointing
impact of jit in LuanpTTEX and one of the reasons we could come up with is that when
you invoke Lua from inside TEX each \directlua gets an extensive treatment. Take
the following:

\def\SomeValue#1Y,
{\directlua{tex.print(math.sin(#1)/math.cos(2*#1))}}

Each time \SomeValue is expanded, the TgX parser will do the following:

It sees \directlua and will jump to the related scanner.

There it will see a { and enter a special mode in which it starts collecting tokens.
In the process, it will expand control sequences that are expandable.

The scanning ends when a matching } is seen.

The collected tokens are converted into a regular (C) string.

This string is passed to the 1ua_load function that compiles it into bytecode.

The bytecode is executed and characters that are printed to TEX are injected into the
input buffer.

In the process, some state information is set and reset and errors are dealt with. Although
it looks like a lot of actions, this all happens very fast, so fast actually that for regular
usage you don’t need to bother about it.

There are however applications where you might want to see a performance boost, for
instance when you're crunching numbers that end up in tables or graphics while pro-
cessing the document. Again, this is not that typical for jobs, but with the availability
of Lua more of that kind of usage will show up. And, as we now also have LuantTEX
its jitting capabilities could be an advantage.

Back to the example: there are two calls to functions there and apart from the fact that
they need to be resolved in the math table, they also are executed C functions. As
LuaJIT optimizes known functions like this, there can be a potential speed gain but
as \directlua is parsed and loaded each time, the jit machinery will not do that, un-
less the same code gets exercised lots of time. In fact, the jit related overhead would be
a waste in this one time usage.

In the next sections we will show two variants that follow a different approach and as a
consequence can speed up a bit. But, be warned: the impact is not as large as you might
expect, and as the code might look less intuitive, the good old \directlua command
is still the advised method.

Before we move on it’s important to realize that a \directlua call is in fact a function
call. Say that we have this:

\def\SomeValue{1.23}

Calling Lua 55



This becomes:
\directlua{tex.print(math.sin(1.23)/math.cos(2%1.23))}
Which in Lua is wrapped up as:

function()
tex.print(math.sin(1.23)/math.cos(2%1.23))
end

that gets executed. So, the code is always wrapped in a function. Being a function it is
also a closure and therefore local variables are local to this function and are invisible at
the outer level.

4.2 Indirect LUA

The first variant is tagged as indirect Lua. With indirect we mean that instead of directly
parsing, compiling and executing the code, it is done in steps. This method is not as
generic a the one discussed in the next section, but for cases where relatively constant
calls are used it is fine. Consider the next call:

\def\NextValue
{\indirectlua{myfunctions.nextvalue()}}

This macro does not pass values and always looks the same. Of course there can be
much more code, for instance the following is equally valid:

\def\MoreValues {\indirectlua{
for i=1,100 do
myfunctions.nextvalue (i)
end

T}

Again, there is no variable information passed from TgX. Even the next variant is relative
constant:

\def\SomeValues#l{\indirectlua{
for i=1,#1 do
myfunctions.nextvalue (i)
end

1}

especially when this macro is called many times with the same value. So how does
\indirectluawork? Well, it's behaviourisin fact undefined! It does, like \directlua,
parse the argument and makes the string, but instead of calling Lua directly, it will pass
the string to a Lua function 1ua_call.

lua.call = function(s) load(s)() end

The previous definition is quite okay and in fact makes \indirectlua behave like
\directlua. This definition makes

56 Calling Lua



\directlua {tex.print(math.sin(1.23))}
\indirectlua{tex.print(math.sin(1.23))}

equivalent calls but the second one is slightly slower, which is to be expected due to the
wrapping and indirect loading. But look at this:

local indirectcalls = { }

function lua.call(code)
local fun = indirectcalls[code]
if not fun then
fun = load(code)
if type(fun) ~= "function" then
fun = function() end
end
indirectcalls[code] = fun
end
fun()
end

This time the code needs about one third of the runtime. How much we gain depends
on the size of the code and its complexity, but on the average its’s much faster. Of course,
during a TEX job only a small part of the time is spent on this, so the overall impact is
much smaller, but it makes runtime number crunching more feasible.

If we bring jit into the picture, the situation becomes somewhat more diffuse. When
we use LuantTEX the whole job processed faster, also this part, but because loading
and interpreting is more optimized the impact might be less. If you enable jit, in most
cases a run is slower than normal. But as soon as you have millions of calls to e.g. type
math.sin it might make a difference.

This variant of calling Lua is quite intuitive and also permits us to implement specific
solutions because the 1ua.call function can be defined as you with. Of course macro
package writers can decide to use this feature too, so you need to beware of unpleasant
side effects if you redefine this function.

4.3 Calling LUA

In the process we did some tests with indirect calls in CoNTEXT core code and indeed
some gain in speed could be noticed. However, many calls get variable input and there-
fore don’t qualify. Also, as a mixture of \directlua and \indirectlua calls in the
source can be confusing it only makes sense to use this feature in real time-critical cases,
because even in moderately complex documents there are not that many calls anyway.

The next method uses a slightly different approach. Here we stay at the TEX end, parse
some basic type arguments, push them on the Lua stack, and call a predefined function.
The amount of parsing TEX code is not less, but especially when we pass numbers stored
in registers, no tokenization (serialization of a number value into the input stream) and
stringification (converting the tokens back to a Lua number) takes place.

Calling Lua 57



\indirectluacall 123
{some string}
\scratchcounter
{another string}
true
\dimexpr 10pt\relax

\relax

Actually, an extension like this had been on the agenda for a while, but never really got
much priority. The first number is a reference to a function to be called.

lua.calls = lua.calls or { }
lua.calls[123] = function(sl,nl1,s2,b,n2)
-- do something with

-- string si

—-- number nl

-- string s2

—-- boolean b

—-- number n2
end

The first number to indirectluacall is mandate. It can best also be a number that
has a function associated in the 1ua.calls table. Following that number and before
the also mandate \relax, there can be any number of arguments: strings, numbers and
booleans.

Anything surrounded by {} becomes a string. The keywords true and false become
boolean values. Spaces are skipped and everything else is assumed to be a number.
This means that if you omit the final \relax, you get a error message mentioning a
‘missing number’. The normal number parser applies, so when a dimension register is
passed, it is turned into a number. The example shows that wrapping a more verbose
dimension into a \dimexpr also works.

Performance wise, each string goes from list of tokens to temporary C string to Lua
string, so that adds some overhead. A number is more efficient, especially when you
pass it using a register. The booleans are simple sequences of character tokens so they
are relatively efficient too. Because Lua functions accept an arbitrary number of argu-
ments, you can provide as many as you like, or even less than the function expects: it
is all driven by the final \relax.

An important characteristic of this kind of call is that there is no 1oad involved, which
means that the functions in 1ua. calls can be subjected to jitting.

4.4 Name spaces

Aswith \indirectlua thereis a potential clash when users mess with the 1ua.calls
table without taking the macro package usage into account. It not that complex to define
a variant that provides namespaces:

58 Calling Lua



\newcount\indirectmain \indirectmain=1
\newcount\indirectuser \indirectuser=2

\indirectluacall \indirectmain
{function 1}
{some string}

\relax

\indirectluacall \indirectuser
{function 1}
{some string}

\relax

A matching implementation is this:

lua.calls = lua.calls or { }
local main = { }

lua.calls[1] = function(name,...)
main[name] (...)

end

main["function 1"] = function(a,b,c)
-- do something with a,b,c

end

local user = { }

lua.calls[2] = function(name,...)
user [name] (...)
end

user ["function 1"] = function(a,b,c)
-- do something with a,b,c
end

Of course this is also ok:

\indirectluacall \indirectmain 1
{some string}
\relax

\indirectluacall \indirectuser 1
{some string}
\relax

with:

Calling Lua 59



10

main[1] = function(a,b,c)
-- do something with a,b,c

end
user[1] = function(a,b,c)

-- do something with a,b,c
end

Normally a macro package, if it wants to expose this mechanism, will provide a more
abstract interface that hides the implementation details. In that case the user is not
supposed to touch lua.calls but this is not much different from the limitations in
redefining primitives, so users can learn to live with this.

4.5 Practice

There are some limitations. For instance in CoNTEXT we often pass tables and this is
not implemented. Providing a special interface for that is possible but does not really
help. Often the data passed that way is far from constant, so it can as well be parsed
by Lua itself, which is quite efficient. We did some experiments with the more simple
calls and the outcome is somewhat disputable. If we replace some of the “critital” calls
we can gain some 3% on a run of for instance the fonts-mkiv.pdf manual and a bit
more on the command reference cont-en.pdf. The first manual uses lots of position
tracking (an unfortunate side effect of using a specific feature that triggers continuous
tracking) and low level font switches and many of these can benefit from the indirect
call variant. The command reference manual uses xmML processing and that involves
many calls to the xmL mapper and also does quite some string manipulations so again
there is something to gain there.

The following numbers are just an indication, as only a subset of \directlua calls has
been replaced. The 166 page font manual processes in about 9 seconds which is not bad
given its complexity. The timings are on a Dell Precision M6700 with Core i7 3840QM,
16 GB memory, a fast SSD and 64 bit Windows 8. The binaries were cross compiled
mingw 32 bit by Luigi.!

LuaTgX LuajitTgX LuajitTegX + jit

direct 8.90 6.95 7.50
indirect 8.65 6.80 7.30

So, we can gain some 3% on such a document and given that we spend probably half
the time in Lua, this means that these new features can make Lua run more than 5%
faster which is not that bad for a couple of lines of extra code. For regular documents
we can forget about jit which confirms earlier experiments. The commands reference
has these timings:

While testing with several function definitions we noticed that math.random in our binaries made jit
twice as slow as normal, while for instance math.sin was 100 times faster. As the font manual uses
the random function for rendering random punk examples it might have some negative impact. Our
experience is that binaries compiled with the ms compiler are somewhat faster but as long as the engines
that we test are compiled similarly the numbers can be compared.

60 Calling Lua



LuaTgX LuajitTgX

direct 2.55 1.90
indirect 2.40 1.80

Here the differences are larger which is due to the fact that we can indirect most of
the calls used in this processing. The document is rather simple but as mentioned is
encoded in xmL and the TEX—xwmrL interface qualifies for this kind of speedups.

As Luigi is still trying to figure out why jitting doesn’t work out so well, we also did
some tests with (in itself useless) calculations. After all we need proof. The first test
was a loop with 100.000 step doing a regular \directlua:

\directlua {
local t = { }
for i=1,10000
do t[i] = math.sin(i/10000)
end

}

The second test is a bit optimized. When we use jit this kind of optimizations happens
automatically for known (!) functions so there is not much won.

\directlua {
local sin = math.sin
local t = { }
for i=1,10000
do t[i] = sin(i/10000)
end

¥

We also tested this with \indirectlua and therefore defined some functions to test
the call variant:

lua.calls[1] = function()
-- overhead
end

lua.calls[2] = function()
local t = { }
for i=1,10000 do
t[i] = math.sin(i/10000) -- naive
end
end

lua.calls[3] = function()
local sin = math.sin
local t = { }
for i=1,10000 do

Calling Lua 61



t[i] = sin(i/10000) -- normal
end
end

These are called with:

\indirectluacallO\relax
\indirectluacalll\relax
\indirectluacall2\relax

The overhead variant demonstrated that there was hardly any: less than 0.1 second.

LuaTgX LuajitTgX LuajitTgX + jit

directlua normal 167 64 46
local 122 57 46
indirectlua normal 166 63 45
local 121 56 45
indirectluacall normal 165 66 48
local 120 60 47

The results are somewhat disappoint but not that unexpected. We do see a speedup
with LuantTEX and in this case even jitting makes sense. However in a regular typeset-
ting run jitting will never catch up with the costs it carries for the overall process. The
indirect call is somewhat faster than the direct call. Possible reasons are that hashing at
the Lua end also costs time and the 100.000 calls from TgX to Lua is not that big a bur-
den. The indirect call is therefore also not much faster because it has some additional
parsing overhead at the TEX end. That one only speeds up when we pass arguments
and even then not always the same amount. It is therefore mostly a convenience feature.

We left one aspect out and that is garbage collection. It might be that in large runs less
loading has a positive impact on collecting garbage. We also need to keep in mind that
careful application can have some real impact. Take the following example of CoNTEXT
code:

\dorecurse {1000} {
\startsection[title=section #1]

\startitemize[n,columns]
\startitenm test \stopitem
\startitem test \stopitem
\startitem test \stopitem
\startitem test \stopitem

\stopitenize

\starttabulate[|1|pl]
\NC test \NC test \NC \NR
\NC test \NC test \NC \NR
\NC test \NC test \NC \NR
\stoptabulate

62 Calling Lua



test {\setfontfeature{smallcaps} abc} test
test {\setfontfeature{smallcaps} abc} test
test {\setfontfeature{smallcaps} abc} test
test {\setfontfeature{smallcaps} abc} test
test {\setfontfeature{smallcaps} abc} test
test {\setfontfeature{smallcaps} abc} test

\framed[align={lohi,middle}] {test}

\startembeddedxtable
\startxrow \startxcell x \stopxcell \startxcell x \stopxcell \stopxrow
\startxrow \startxcell x \stopxcell \startxcell x \stopxcell \stopxrow
\startxrow \startxcell x \stopxcell \startxcell x \stopxcell \stopxrow
\startxrow \startxcell x \stopxcell \startxcell x \stopxcell \stopxrow
\startxrow \startxcell x \stopxcell \startxcell x \stopxcell \stopxrow
\stopenbeddedxtable

\stopsection
\page
¥

These macros happen to use mechanism that are candidates for indirectness. However,
it doesn’t happen often you you process thousands of pages with mostly tables and
smallcaps (although tabular digits are a rather valid font feature in tables). For instance,
in web services squeezing out a few tens of seconds might make sense if there is a large
queue of documents.

LuaTeX LuajitTgX LuajitTgX + jit

direct 19.1 15.9 15.8
indirect 18.0 15.2 15.0

Surprisingly, even jitting helps a bit here. Maybe it relates the the number of pages and
the amount of calls but we didn’t investigate this. By default jitting is off anyway. The
impact of indirectness is more than in previous examples.

For this test a file was loaded that redefines some core CoNTEXT code. This also has some
overhead which means that numbers for the indirect case will be somewhat better if we
decide to use these mechanisms in the core code. It is tempting to do that but it involves
some work and it’s always the question if a week of experimenting and coding will ever
be compensated by less. After all, in this last test, a speed of 50 pages per second is not
that bad a performance.

When looking at these numbers, keep in mind that it is still not clear if we end up using
this functionality, and when CoNTEXT will use it, it might be in a way that gives better
or worse timings than mentioned above. For instance, storing Lua code in the format
is possible, but these implementations force us to serialize the 1ua.calls mechanism

Calling Lua 63



and initialize them after format loading. For that reason alone, a more native solution
is better.

4.6 Exploration

In the early days of LuaTEX Taco and I discussed an approach similar do registers which
means that there is some \ . . .def command available. The biggest challenge there is
to come up with a decent way to define the arguments. On the one hand, using a hash
syntax is natural to TgX, but using names is more natural to Lua. So, when we picked
up that thread, solutions like this came up in a Skype session with Taco:

\luadef\myfunction#1#2{ tex.print(argl[l]+arg[2]) }
The Lua snippet becomes a function with this body:

local arg = { #1, #2 } -- can be preallocated and reused
-— the body as defined at the tex end
tex.print(arg[1l]+arg[2])

Where arg is set each time. As we wrapped it in a function we can also put the argu-
ments on the stack and use:

\luadef\myfunction#1#2{ tex.print((select(l,...))+(select(2,...)) }

Given that we can make select work this way (either or not by additional wrapping).
Anyway, both these solutions are ugly and so we need to look further. Also, the arg
variant mandates building a table. So, a natural next iteration is:

\luadef\myfunction a b { tex.print(atb) }
Here it becomes already more natural:

local a = #1

local b = #2

-— the body as defined at the tex end
tex.print (a+b)

But, as we don’t want to reload the body we need to push #1 into the closure. This is a
more static definition equivalent:

local a = select(1,...)
local b = select(2,...)
tex.print (a+b)

Keep in mind that we are not talking of some template that gets filled in and loaded,
but about precompiled functions! So, a #1 is not really put there but somehow pushed
into the closure (we know the stack offsets).

Yet another issue is more direct alias. Say that we define a function at the Lua end and
want to access it using this kind of interface.

64 Calling Lua



function foo(a,b)
tex.print(a+b)
end

Given that we have something;:

\luadef \myfunctiona a b { tex.print(a+b) }
We can consider:

\luaref \myfunctionb 2 {foo}

The explicit number is debatable as it can be interesting to permit an arbitrary number
of arguments here.

\myfunctiona{1}{2}
\myfunctionb{1}{2}

So, if we go for:
\luaref \myfunctionb {foo}
we can use \relax as terminator:

\myfunctiona{1}{2}
\myfunctionb{1}{2}\relax

In fact, the call method discussed in a previous section can be used here as well as it
permits less arguments as well as mixed types. Think of this:

\luadef \myfunctiona a b ¢ { tex.print(a or O + b or O + c or 0) }
\luaref \myfunctionb {foo}

with

function foo(a,b,c)
tex.print(a or 0 + b or 0 + ¢ or 0)
end

This could be all be valid:

\myfunctiona{1}{2}{3]\relax
\myfunctiona{1}\relax
\myfunctionb{1}{2}\relax

or (as in practice we want numbers):

\myfunctiona 1 \scratchcounter 3\relax
\myfunctiona 1 \relax
\myfunctionb 1 2 \relax

We basicaly get optional arguments for free, as long as we deal with it properly at the
Lua end. The only condition with the \1uadef case is that there can be no more than

Calling Lua 65



the given number of arguments, because that’s how the function body gets initialized
set up. In practice this is quite okay.

4.7 The follow up

We don’t know what eventually will happen with LuaTgX. We might even (at least in
ConTEgXT) stick to the current approach because there not much to gain in terms of
speed, convenience and (most of all) beauty.

Note: In LuaTEX 0.79 onward \indirectlua has been implemented as \1uafunction
and the lua.calls table is available as 1ua.get_functions_table(). A decent to-
ken parser has been discussed at the ConTEXT 2013 conference and will show up in due
time. In addition, so called 1atelua nodes support function assignments and user
nodes support a field for Lua values. Additional information can be associated with
any nodes using the properties subsystem.

66 Calling Lua



5 Luigi’s nightmare

5.1 Introduction

If you have a bit of a background in programming and watch kids playing video games,
either or not on a dedicates desktop machine, a console or even a mobile device, there
is a good change that you realize how much processing power is involved. All those
pixels get calculated many times per second, based on a dynamic model that not only
involves characters, environment, physics and a story line but also immediately reacts
on user input.

If on the other hand in your text editor hit the magic key combination that renders a
document source into for instance a por file, you might wonder why that takes so many
seconds. Of course it does matter that some resources are loaded, that maybe images
are included, and lots of fuzzy logic makes things happen, but the most important factor
is without doubt that TEX macros are not compiled into machine code but into an inter-
mediate representation. Those macros then get expanded, often over and over again,
and that a relative slow process. As (local) macros can be redefined any time, the en-
gine needs to take that into account and there is not much caching going on, unless you
explicitly define macros that do so. Take this:

\def\bar{test}
\def\foo{test \bar\space test}

Even if the definition of \test stays the same, that if \bar can change:
\foo \def\bar{foo} \foo

There is no mechanism to freeze the meaning of \bar in \foo, something that is pos-
sible in the other language used in CoNTEXT:

local function bar() context("test") end
function foo() context("test ") bar() context(" test") end

Here we can use local functions to limit their scope.
foo() local function bar() context("foo") end foo()

In a way you can say that TEX is a bit more dynamic that Lua, and optimizing (as well as
hardening) it is much more difficult. In CoNTEXT we already stretched that to the limits,
although occasionally I find ways to speed up a bit. Given that we spend a considerable
amount of runtime in Lua it makes sense to see what we can gain there. We have less
possible interference and often a more predictable outcome as bars won't suddenly
become foos.

Nevertheless, the dynamic nature of both TEX and Lua has some impact on perfor-
mance, especially when they do most of the work. While in games there are dedicated
chips to do tasks, for TeX there aren’t. So, we're sort of stuck when it comes to speeding
up the process to the level that is similar to advanced games. In the next sections I will

Luigi’s nightmare 67



11

discuss a few aspects of possible speedups and the reason why it doesn’t work out as
expected.

5.2 Jitting

Let’s go back once more to Luigi’s nightmare of disappointing jit'! We already know
that the virtual machine of LuaJIT is about twice as fast as the standard machine. We
also experienced that enabling jit can degrade performance. Although we did observe
some real drastic drop in performance when testing functions like math . random using
the mingw compiler, we also saw a performance boost with simple pure Lua functions.
In that respect LuaJIT is an impressive effort. So, it makes sense to use LuantTgX even
if in theory it could be faster.

Next some tests will be shown. The timings are snapshots so different versions of Lua-
nTTEX can have different outcomes. The tests are mostly used for discussions between
Luigi and me and further experiments and believe me: we’ve really done all kind of
tests to see if we can get some speed out of jitting. After all it’s hard to believe that we
can’t gain something from it, so we might as do something wrong.

Each test is run 5000 times. These are of course non-typical examples but they illustrate
the principle. Each time we show two measurements: one with jit turned on, and one
with jit off, but in both cases the faster virtual machine is enabled. The times shown
are of course dependent on the architecture and operating system, but as we are only
interested in relative times it’s enough to know that we run 32 bit mingw binaries under
64 bit Windows 8 on a modern quad core Ivy bridge cpu. We did most tests with LuaJIT
2.0.1 but as far as we can see 2.0.2 has a similar performance.

1 simple loops, no function calls

return function()
local a =0
for i=1,10000 do
a=a+i

end
end
off O
on 0

2 simple loops, with simple function

local function whatever (i)
return i
end

return function()

Luigi Scarso is the author of LuantTEX and we have reported on experiments with this variant of LuaTEX
on several occasions.

68 Luigi’s nightmare



local a = 0
for i=1,10000 do
a = a + whatever (i)

end
end
off O
on 0

3 simple loops, with built-in basic functions

return function()
local a =0
for i=1,10000 do
a = a + math.sin(1/1i)

end
end
off O
on 0

4 simple loops, with built-in simple functions

return function()
local a =0
for i=1,1000 do
local a = a + tonumber(tostring(i))

end
end
off O
on 0

5 simple loops, with built-in simple functions

local tostring, tonumber = tostring, tonumber
return function()
local a = 0
for i=1,1000 do
local a = a + tonumber(tostring(i))

end
end
off O
on 0

6 simple loops, with built-in complex functions

return function()
local a = 0

Luigi’s nightmare 69



local p = (1-1peg.P("5"))~0 * lpeg.P("5") + lpeg.Cc(0)
for i=1,100 do
local a = a + lpeg.match(p,tostring(i))

end
end
off O
on 0

7 simple loops, with foreign function

return function()
local a =0
for i=1,10000 do
a = a + font.current()

end
end
off O
on 0

8 simple loops, with wrapped foreign functions

local fc = font.current

function font.xcurrent()
return fc()
end

return function()
local a =0
for i=1,10000 do
a = a + font.xcurrent()

end
end
off O
on 0

What we do observe here is that turning on jit doesn’t always help. By design the cur-
rent just-in-time compiler aborts optimization when it sees a function that is not known.
This means that in LuanTTEX most code will not get jit, because we use built-in library
calls a lot. Also, in version 2.0 we notice that a bit of extra wrapping will make perfor-
mance worse too. This might be why for us jitting doesn’t work out the way it is adver-
tised. Often performance tests are done with simple functions that use built in functions
that do get jit. And the more of those are supported, the better it gets. Although, when
you profile a CoNTEXT run, you will notice that we don't call that many standard library
functions, at least not so often that jitting would get noticed.

70 Luigi’s nightmare



A safe conclusion is that you can benefit a lot from the fast virtual machine but should
check carefully if jit is not having a negative impact. As it is turned on by default in
Lua]IT (but off in LuantTgX) it might as well get unnoticed, especially because there
is always a performance gain due to the faster virtual machine and that might show
more overall gain than the drawback of jitting unjittable code. It might just be a bit less
drastic then possible because of artifacts mentioned here, but who knows what future
versions of LuaJIT will bring.

Maybe sometime we can benefit from ffi but it makes no sense to mess up the Con-
TEXT code with related calls: it looks ugly and also makes the code unusable in stock
Lua, so it is a a sort of no-go. There are some suggestions in LuaJIT related posts about
adapting the code to suit the jitter, but again, that makes no sense. If we need to keep
a specific interpreter in mind, we could as well start writing everything in C. So, our
hopes are on future versions of stock Lua and Lua]JIT. Luigi uncovered the following
comment in the source code:

/* C functions can have arbitrary side-effects and are not
recorded (yet). */

Although the (yet) indicates that at some point this restriction can be lifted, we don’t
expect this to happen soon. And patching the jit machinery ourselves to suite LuATEX
is no option.

There is an important difference between a LuaTEX run and other programs: they are
runs and these live short. A lot of code gets executed only once of a few times (like load-
ing fonts), or gets executed in such different ways that (branch) prediction is hard. If
you run a web server using Lua it runs for weeks in a row so optimizing a function pays
off, given that it gets optimized. When you have a Lua enhanced interactive program,
again, the session is long enough to benefit from jitting (if applied). And, when you
crunch numbers, it might pay off too. In practice, a TEX run has no such characteristics.

5.3 Implementation

In Lua 5.2 there are some changes in the implementation compared to 5.1 and before.
It is hard to measure the impact of that but it’s probably a win some here and loose
some there situation. A good example is the way Lua deals with strings. Before 5.2 all
strings were hashed, but now only short strings are (at most 32 bytes are looked at).
Now, consider this:

e In ConTgXT we do all font handling in Lua and that involves lots of tables with lots
of (nicely hashed) short keys. So, comparing them is pretty fast.

e We also read a lot from files, and each line passes filters and such before it gets
passed to TEX. There hashing is not really needed, although when it gets processed
by filters it might as well save some time.

Luigi’s nightmare 71



e When we go from TgX to Lua and reverse, lots of strings are involved and many of
them are unique and used once. There hashing might bring a penalty.

e When we loop over a string with gmatch or some 1peg subprogram lots of (small)
strings can get created and each gets hashed, even if they have a short livespan.

The above items indicate that we can benefit from hashing but that sometimes it might
have a performance hit. My impression is that on the average we’re better off by hashing
and it’s one of the reasons why Lua is so fast (and useable).

In TEX all numbers are integers and in Lua all numbers are floats. On modern computers
dealing with floating point is fast and we’re not crunching numbers anyway. We def-
initely would have an issue when numbers were just integers and an upcoming mixed
integer/float model might not be in our advantage. We'll see.

I had expected to benefit from bitwise operations but so far never could find a real
application in ConTEXT, at least not one that had a positive impact. But maybe it’s just
a way of thinking that hasn’t evolved yet. Also, the fact that functions are used instead
of a real language extension makes it less possible that there is a speedup involved.

5.4 Garbage collection

In the beginning I played with tuning the Lua garbage collector in order to improve per-
formance. For some documents changing the step and multiplier worked out well, but
for others it didn't, so I decided that one can best leave the values as they are. Turning
the garbage collector off as expected gives a relative small speedup, and for the average
run the extra memory used can be neglected. Just keep in mind that a TEX run are never
persistent so memory can'’t keep filling. I did some tests with the in theory faster (ex-
perimental) generational mode of the garbage collector but it made runs significantly
slower. For instance processing the fonts-mkiv.pdf went from 9 to 9.5 seconds.

5.5 Conclusion

So what is, given unpredictable performance hits of advertised optimizations, the best
approach. It all starts by the Lua (and TgX) code: sloppy coding can have a price. Some
of that can be disguised by clever interpreters but some can't. If the code is already
fast, there is not much to gain. When going from MxII to MxIV more and more Lua got
introduced and lots of approaches were benchmarked, so, I'm already rather confident
that there is not that much to gain. It will never have the impressive performance of
interactive games and that’s something we have to live with. As long as Lua stays lean
and mean, things can only get better over time.

72  Luigi’s nightmare



6 Flash forward

6.1 Introduction

At the 2013 CoNTEXT meeting in Breslov, Harald Konig has taken some of his gadgets
with him and this time the target was to get CoNTEXT running on small devices, most
noticeably a mobile phone. You may wonder what purpose this serves, but with such
devices becoming more powerful each year, and desktops and laptops getting less pop-
ular, we might see the small devices taking their place. Especially when we can dock
them in a cradle and connect them to a proper monitor and keyboard we might end
up with universal devices. Combine that with projection on our retinas and less tactile
input and it will be clear that we should at least look into this from the perspective of
TEX usage.

6.2 The tests

We used five tests for measuring basic performance. Of course we made sure that bi-
naries and resources were cached.

Test 1 measures some basics, like typesetting a paragraph, flushing pages and loading
a file. Because we do lots of pages we can also see if garbage collection is a problem.

\starttext
\dorecurse{1000}{\input ward \par}
\stoptext

A normal CoNTEXT run is triggered with:
context speed-1

but with

context --timing speed-1

memory consumption is measured and one can generate a visual representation of this
afterwards.

context --extra=timing speed-1

We don’t show them here, simply because we saw nothing exciting in the ones for these
tests.

The second test is rather stupid but it gives an indication of how efficient the base page-
builder is:

\starttext
\dorecurse{1000}{test \page}
\stoptext

Flash forward 73



The numbers are normally 10 to 20 times more impressive than those for regular runs.

Test three is a variation on test one but this time we avoid the file being read in many
times, so we inline ward.tex. We also add no page breaks so we get less pages but
with more content.

\starttext
\dorecurse{1000}{
The Earth, as a habitat for animal life, is in old age and
has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is
like the effect of an old|-|age patient who smokes many packs
of cigarettes per day |=| and we humans are the cigarettes.
\par
X
\stoptext

The fourth test draws a few MeraPost graphics, which themselves use a bit of typeset
text.

\starttext

\dorecurse{10} {
\startMPcode
draw fullcircle scaled 1lcm withpen pencircle scaled 1mm ;
draw textext("X") ;
\stopMPcode
}

\stoptext

The last test, number five, is more demanding. Here we use some colors (which stresses
the backend) and a dynamic switch to smallcaps, which puts a bit of a burden on the
OrenTyre handler.

\setupbodyfont [pagella]
\starttext

\dorecurse {100} {
\input ward \par
\dorecurse{100} {
\dontleavehmode
{\green this is green}
{\red \smallcaps this is red}
{\blue \bf this is blue}
}
\par
}

74 Flash forward



\stoptext

6.3 Regular laptops

We started measuring on Haralds laptop, a Lenovo X201i, and got the following tim-
ings (that matched our expectations). The second column shows the runtime, the last
column the pages per second.

speed-1 58 17.1
speed-2 3.6 275.6
speed-3 5.1 1938
speed-4 0.6 1.8
speed-5 119 10.6

Just for comparison, as I'm wrapping this up in 2016, on my current Dell 7600 I get these
timings (the last two columns are with LuajrTEX):

speed-1 4.6 219 3.0 335
speed-2 3.6 2782 28 357.7
speed-3 4.2 236 2,7 370
speed-4 0.8 1.3 0.6 1.7
speed-5 6.2 203 4.0 319

These tests were run with a LuaATEX 0.98 and the most recent CoNTEXT OPENTYPE font
processor. As we do more in Lua that a few years back, one can’t expect a much faster
run, even when the Dell has a faster processor than the Lenovo. However, what gets
noticed is that the fifth speed test runs about twice as fast which is mostly due to im-
provements in the handling of OpenTypE features.

6.4 The Nexus IV

This mobile phone has a quad-core arm processor running at 1.5 GHz. With 2 Gb mem-
ory this should be sufficient for running TgX. The operating system is Android, which
means that some effort is needed to put TeX with its resources on the internal flash disk.
Access was remote from a laptop.

speed-1 419 24
speed-2 275 364
speed-3 38.7 2.6
speed-4 34 3.0
speed-5 879 14

So it looks like the phone runs these tests about five times slower than the laptop. The
fifth test is most stressful on the hardware but as noted, a more recent CoNTEXT will
give better times there due to improvements in feature processing.

Flash forward 75



6.5 The Raspbery Pi

The Pi (we're talking of the first model here) has an extension bus and can be used
to control whatever device, it has more the properties (and build) of a media player
and indeed there are dedicated installations for that. But as this popular small device
can host any LiNux distribution this is what was done. The distribution of choice was
OpenSuse. The setup was really experimental with an unboxed Pi, an unframed rcp
panel, a keyboard and mouse, a power supply and some wires to connect this all. With
an ethernet cable running directly to the router a distribution could be fetched and
installed.

This device has a single core arm processor running at 700 Mhz with half a gigabyte of
memory. Persistent memory is a flash card, not that fast but acceptable. The maximum
read speed was some 20 MB per second. It was no real surprise that the set of tests ran
much slower than on the phone.

It took a bit of experimenting but a 200 Mhz overclock of the cpru combined with over-
clocked memory made performance jump up. In fact, we got a speed that we could
somehow relate to the phone that has a more modern cru and runs at 1.5 times that
speed.

Being a regular Linux setup, installation was more straightforward than on the phone
but of course it took a while before all was in place. The default clock timings are:

speed-1  95.841 1.043
speed-2  76.817 13.018
speed-3 84.890 1.178
speed-4 13.241 0.076
speed-5 192.288  0.660

Again, the main conclusion here is that documents that need lots of OpenTYPE feature
juggling, this is not the best platform.

6.6 Summary

We see small devices gaining more performance each iteration than larger machines.
Their screens and input method also evolve at a higher speed. The question is if arm
will keep dominating this segment, but at least it is clear that they are useable for TEX
processing. Keep in mind that we used LuaTgX, which means that we also have Lua
with its garbage collector. Add CoNTEXT to that, which is not that small and preloads
quite some resources, and it will be clear that these devices actually perform quite well,
given slower memory, slower disks, small caches etc. With down-scaled intel chips
showing up it can only get better. Keep in mind that we only need one core, so the speed
of one core matters more than having multiple cores available, although the other cores
can be wasted on keeping up with your social demands on such a device in parallel with
the TeX run.

A runtime five to ten times slower than a decent laptop is not something that we look
forward to in a production environment, but when you're on the road it is quite okay,

76 Flash forward



especially if it can replace a somewhat heavy portable workstation like we do. Okay,
how much TgX processing do you need when mobile, but still. As vendors of server
hardware are looking into high density servers with lots of small fast processors, we
might at some point actually use TEX on such hardware. By then performance might
be en par with virtual machines running on average loaded machines.

We are pretty sure that on following CoNTEXT meetings more such experiments will be
done so we'll keep you posted.

Flash forward 77



78 Flash forward



7 Font expansion

7.1 Introduction

A lot in LuaTgX is not new. It started as a mix of PDFIEX (which itself is built on top of
original TEX and e-TgX) and the directional bits of ALern (which is a variant of OmEca).
Of course large portions have been changed in the meantime, most noticeably the input
encoding (Unicopg), fonts with a more generic fontloader and Lua based processing,
Unicope math and related font rendering, and many subsystems can be overloaded or
extended. But at the time I write this (end of January 2013) the parbuilder still has the
PDFIEX font expansion code.

This code is the result of a research project by Han Thé Thanh. By selectively widening
shapes a better greyness of the paragraph can be achieved. This trick is inspired by
the work of Hermann Zapf and therefore, instead of expansion, we often talk of hz
optimization.

It started with (runtime) generated METAFONT bitmap fonts and as a consequence we
ended up with many more font instances. However, when eventually bitmap support
was dropped and outlines became the norm, the implementation didn’t change much.
Also some of the real work was delegated to the backend and as it goes then: never
change a working system if there’s no reason.

When I played with the Lua based par builder I quickly realized that this implemen-
tation was far from efficient. It was already known that enabling it slowed down par
building and I saw that this was largely due to many redundant calculations, generat-
ing auxiliary fonts, and the interaction between front- and backend. And, as I seldom
hesitate to reimplement something that can be done better (one reason why CoNTEXT is
never finished) I came to an alternative implementation. That was 2010. What helped
was that by that time Hartmut Henkel already had made the backend part cleaner, in
the sense that instead of including multiple instances of the same font (but with differ-
ent glyph widths) the base font was transformed in-line. This made me realize that we
could use just one font in the frontend and pass the scale with the glyph node to the
backend. And so, an extra field was added to glyphs nodes in order to make experi-
ments possible.

More than two years later (January 2013) I finally took up this pet project and figured
out how to adapt the backend. Interestingly a few lines of extra code we all that was
needed. At the same time the frontend part became much simpler, that is, in the Lua
parbuilder. But eventually it will be retrofitted into the core engine, if only because
that’s much faster.

7.2 The changes

The most important changes are the following. Instead of multiple font instances, only
one is used. This way less memory is used, no extra font instances need to be created
(and those OrenTyrE fonts can be large).

Font expansion 79



Because less calculations are needed the code looks less complex and more elegant.
Okay, the parbuilder code will never really look easy, if only because much more is
involved.

The glyph related factors are related to the emwidth. This makes not much sense so in
CoNTEXT we define them in fractions of the character width, map them onto emwidths,
and in the parbuilder need to go to glyph related widths again. If we can get rid of
these emwidths, we have less complex code.

Probably for reasons of efficiency an expanded font carries a definition that tells how
much stretch and shrink is permitted and how large the steps are. So, for instance a
font can be widened 5% and narrowed 3% in steps of 1% which gives at most 8 extra
instances. There is no real reason why this should be a font property and the parbuilder
cannot deal with fonts with different steps anyway, so it makes more sense to make it a
property of the paragraph and treat all fonts alike. In the Lua based variant we can even
have more granularity but we leave that for now. In any case this will lift the limitation
of mixed font usage that is present in the original mechanism.

The front- and backend code with repect to expansion gets clearly separated. In fact,
the backend doesn’t need to do any calculations other than applying the factor that
is carried with the glyph. This and previously mentioned simplifications make the
mechanism more efficient.

It is debatable if expansion needs to be applied to font kerns, as is the case in the old
mechanism. So, at least it should be an option. Removing this feature would again
made the code nicer. If we keep it, we should keep in mind that expansion doesn’t work
well with complex fonts (say Arabic) but I will look into this later. It might be feasible
when using the Lua based variant because then we can use some of the information
that is carried around with the related mechanisms. Of course this then related to the
Lua based font builder.

80 Font expansion



8 Juggling nodes

8.1 Introduction

When you use TgX, join the community, follow mailing lists, read manuals, and/or
attend meetings, there will come a moment when you run into the word ‘node’. But,
as a regular user, even if you write macros, you can happily ignore them because in
practice you will never really see them. They are hidden deep down in TgX.

Some expert TgXies love to talk about TEX’s mouth, stomach, gut and other presumed
bodily elements. Maybe it is seen as proof of the deeper understanding of this pro-
gram as Don Knuth uses these analogies in his books about TEX when he discusses how
TEX reads the input, translates it and digests it into a something that can be printed or
viewed. No matter how your input gets digested, at some point we get nodes. How-
ever, as users have no real access to the internals, nodes never show themselves to the
user. They have no bodily analogy either.

A character that is read from the input can become a character node. Multiple charac-
ters can become a linked list of nodes. Such a list can contain other kind of nodes as
well, for instance spaced become glue. There can also be penalties that steer the ma-
chinery. And kerns too: fixed displacements. Such a list can be wrapped in a box. In
the process hyphenation is applied, characters become glyphs and intermediate math
nodes becomes a combination of regular glyphs, kerns and glue, wrapped into boxes.
So, an hbox that contains the three glyphs tex can be represented as follows:

| ! | 4
hbox t e X
T J 1 J

Eventually a long sequence of nodes can become a paragraph of lines and each line is a
box. The lines together make a page which is also a box. There are many kind of nodes
but some are rather special and don’t translate directly to some visible result. When
dealing with TgX as user we can forget about nodes: we never really see them.

In this example we see an hlist (hbox) node. Such a node has properties like width,
height, depth, shift etc. The characters become glyph nodes that have (among other
properties) a reference to a font, character, language.

Because TgX is also about math, and because math is somewhat special, we have noads,
some intermediate kind of node that makes up a math list, that eventually gets trans-
formed into a list of nodes. And, as proof of extensibility, Knuth came up with a special
node that is more or less ignored by the machinery but travels with the list and can be
dealt with in special backend code. Their name indicates what it’s about: they are called
whatsits (which sounds better that whatevers). In LuaATEX some whatsits are used in
the frontend, for instance directional information is stored in whatsits.

The LuaTEX engine not only opens up the Unicope and OrenTyPE universes, but also
the traditional TEX engine. It gives us access to nodes. And this permits us to go beyond

Juggling nodes 81



what was possible before and therefore on mailing lists like the ConTEXT list, the word
node will pop up more frequently. If you look into the Lua files that ship with ConTEXT
you cannot avoid seeing them. And, when you use the cLD interface you might even
want to manipulate them. A nice side effect is that you can sound like an expert without
having to refer to bodily aspects of TEX: you just see them as some kind of Lua userdata
variable. And you access them like tables: they are abstracts units with properties.

8.2 Basics

Nodes are kind of special in the sense that you need to keep an eye on creation and
destruction. In TEX itself this is mostly hidden:

\setboxO\hbox{some text}

If we look into this box we get a list of glyphs (see figure 8.1).

glyph 256
font 1: U+00073: S
glyph 256
font 1: U+0006F: O

glyph 256
font 1: U+0006D: 1M

glyph 256
font 1: U+00065: €

spaceskip
3.0000 - 1.5000 + 1.0000

]

glyph 256
font 1: U+00074: t

]

glyph 256
font 1: U+00065: €

]

glyph 256
font 1: U+00078: X

glyph 256
font 1: U+00074: t

Figure 8.1

) U U

In TgX you can flush such a box using \box0 or copy it using \copy0. You can also flush
the contents i.e. omit the wrapper using \unhbox0 and \unhcopy0. The possibilities

82 Juggling nodes



for disassembling the content of a box (or any list for that matter) are limited. In practice
you can consider disassembling to be absent.

This is different at the Lua end: there we can really start at the beginning of a list, loop
over it and see what'’s in there as well as change, add and remove nodes. The magic
starts with:

local box = tex.box[0]

Now we have a variable that has a so called h1ist node. This node has not only prop-
erties like width, height, depth and shift, but also a pointer to the content: 1ist.

local list = box.list

Now, when we start messing with this list, we need to keep into account that the nodes
are in fact userdata objects, that is: they are efficient TEX data structures that have a
Lua interface. At the TEX end the repertoire of commands that we can use to flush
boxes is rather limited and as we cannot mess with the content we have no memory
management issues. However, at the Lua end this is different. Nodes can have pointers
to other nodes and they can even have special properties that relate to other resources
in the program.

Take this example:

\setboxO\hbox{some text}
\directlua{node.write(tex.box[0])}

At the TEX end we wrap something in a box. Then we can at the Lua end access that
box and print it back into the input. However, as TgX is no longer in control it cannot
know that we already flushed the list. Keep in mind that this is a simple example, but
imagine more complex content, that contains hyperlinks or so. Now take this:

\setboxO\hbox{some text 1}
\setboxO\hbox{some text 2}

Here TEX knows that the box has content and it will free the memory beforehand and
forget the first text. Or this:

\setboxO\hbox{some text}
\box0 \box0

The box will be used and after that it's empty so the second flush is basically a harmless
null operation: nothing gets inserted. But this:

\setboxO\hbox{some text}
\directlua{node.write(tex.box[0])}
\directlua{node.write(tex.box[0])}

will definitely fail. The first call flushes the box and the second one sees no box content
and will bark. The best solution is to use a copy:

\setboxO\hbox{some text}

Juggling nodes 83



\directlua{node.write(node.copy_list(tex.box[0]))}

That way TgX doesn’t see a change in the box and will free it when needed: when it gets
flushed, reassigned, at the end of a group, wherever.

In CoNTEXT a somewhat shorter way of printing back to TgX is the following and we
will use that:

\setboxO\hbox{some text}
\ctxlua{context(node.copy_list(tex.box[0])}

or shortcut into CoNTEXT:

\setbox0\hbox{some text}
\cldcontext{node.copy_list(tex.box[0])}

As we've now arrived at the Lua end, we have more possibilities with nodes. In the
next sections we will explore some of these.

8.3 Management

The most important thing to keep in mind is that each node is unique in the sense that
it can be used only once. If you don’t need it and don’t flush it, you should free it. If
you need it more than once, you need to make a copy. But let’s first start with creating
a node.

local g = node.new("glyph")

This node has some properties that need to be set. The most important are the font and
the character. You can find more in the LUATEX manual.

g.font = font.current()
g.char = utf.byte("a"

After this we can write it to the TEX input:
context (g)

This node is automatically freed afterwards. As we're talking Lua you can use all kind
of commands that are defined in ConTEXt. Take fonts:

\startluacode
local gl = node.new("glyph")
local g2 = node.new("glyph")

gl.font = fonts.definers.internal {
name = "dejavuserif",
size = "60pt",

}

g2.font = fonts.definers.internal {

84 Juggling nodes



name
size

"dejavusansmono",
n 60pt n s

by

gl.char = utf.byte("a")
g2.char = utf.byte("a")

context(gl)
context (g2)
\stopluacode

We get: aa, but there is one pitfall: the nodes have to be flushed in horizontal mode, so
either put \dontleavehmode in front or add context.dontleavehmode (). If you get
error messages like this can't happen you probably forgot to enter horizontal mode.

In ConTEXT you have some helpers, for instance:

\startluacode
local id = fonts.definers.internal { name = "dejavuserif" }

context (nodes.pool.glyph(id,utf.byte("a")))
context (nodes.pool.glyph(id,utf.byte("b")))
context (nodes.pool.glyph(id,utf.byte("c")))
\stopluacode

or, when we need these functions a lot and want to save some typing;:

\startluacode

local getfont fonts.definers.internal
local newglyph = nodes.pool.glyph

local utfbyte utf.byte

local id = getfont { name = "dejavuserif" }

context (newglyph(id,utfbyte("a")))
context (newglyph(id,utfbyte("b")))
context (newglyph(id,utfbyte("c")))
\stopluacode

This renders as: abc. We can make copies of nodes too:

\startluacode
local id = fonts.definers.internal { name = "dejavuserif" }
local a = nodes.pool.glyph(id,utf.byte("a"))

for i=1,10 do
context (node.copy(a))
end

node.free(a)

Juggling nodes 85



\stopluacode

This gives: aaaaaaaaaa. Watch how afterwards we free the node. If we have not one
node but a list (for instance because we use box content) you need to use the alternatives
node.copy_list and node.free_list instead.

In CoNTEXT there is a convenient helper to create a list of text nodes:

\startluacode
context (nodes.typesetters.tonodes("this works okay"))
\stopluacode

And indeed, this works okay, even when we use spaces. Of course it makes more sense
(and it is also more efficient) to do this:

In this case the list is constructed at the TEX end. We have now learned enough to start
using some convenient operations, so these are introduced next. Instead of the longer
tonodes call we will use the shorter one:

local head, tail = string.tonodes("this also works"))

As you see, this constructor returns the head as well as the tail of the constructed list.

8.4 Operations
If you are familiar with Lua you will recognize this kind of code:
local str = "time: " .. os.time()

Here a string str is created that is built out if two concatinated snippets. And, Lua is
clever enough to see that it has to convert the number to a string.

In ConTEXT we can do the same with nodes:

\startluacode
local foo = string.tonodes("foo")
local bar = string.tonodes("bar")

local amp = string.tonodes(" & ")
context(foo .. amp .. bar)
\stopluacode

This will append the two node lists: foo & bar.

\startluacode
local 1 = string.tonodes("1")
local m = string.tonodes(" ")

local r = string.tonodes("r"
context(6 * 1 .. m .. r * b5)
\stopluacode

86 Juggling nodes



You can have the multiplier on either side of the node: 1llll rrrrr. Addition and subtrac-
tion is also supported but it comes in flavors:

\startluacode

local 11 = string.tonodes("aaaaaa")
local rl1 = string.tonodes("bbbbbb")
local 12 = string.tonodes("cccccc"
local r2 = string.tonodes("dddddd")
local m = string.tonodes(" + ")

context((11 - r1) .. m .. (12 + r2))
\stopluacode

In this case, as we have two node (lists) involved in the addition and subtraction, we get
one of them injected into the other: after the first, or before the last node. This might
sound weird but it happens.

aaaaabbbbbba + cddddddcccec
We can use these operators to take a slice of the given node list.

\startluacode

local 1 = string.tonodes("123456")
local r = string.tonodes("123456")
local m = string.tonodes("+ & +")

context((1 - 3) .. (1 +m-1).. (3 + 1))
\stopluacode

So we get snippets that get appended: 123 & 456. The unary operator reverses the list:

\startluacode
local 1 = string.tonodes("123456")
local r = string.tonodes("123456")

local m = string.tonodes(" & ")
context(l .. m .. - 1)
\stopluacode

This is probably not that useful, but it works as expected: 123456 & 654321.
We saw that * makes copies but sometimes that is not enough. Consider the following;:

\startluacode
local n = string.tonodes("123456")

context((n - 2) .. (2 + n))
\stopluacode

Juggling nodes 87



Because the slicer frees the unused nodes, the value of n in the second case is undefined.
It still points to a node but that one already has been freed. So you get an error message.
But of course (as already demonstrated) this is valid:

\startluacode
local n = string.tonodes("123456")

context(2 + n - 2)
\stopluacode

We get the two middle characters: 34. So, how can we use a node (list) several times in
an expression? Here is an example

\startluacode

local 1 = string.tonodes("123")
local m = string.tonodes(" & ")
local r = string.tonodes("456")

context((1”1 .. r"'1)"2 .. m™1 .. r .. m .. 1)
\stopluacode

Using ~ we create copies, so we can still use the original later on. You can best make
sure that one reference to a node is not copied because otherwise we get a memory leak.
When you write the above without copying LuaTgX most likely end up in a loop. The
result of the above is:

123456123456 & 456 & 123

Let’s repeat it once more time: keep in mind that we need to do the memory man-
agement ourselves. In practice we will seldom need more than the concatination, but
if you make complex expressions be prepared to loose some memory when you copy
and don't free them. As TEX runs are normally limited in time this is hardly an issue.

So what about the division. We needed some kind of escape and as with 1peg we use
the / to apply additional operations.

\startluacode

local 1 = string.tonodes("123")
local m = string.tonodes(" & ")
local r = string.tonodes("456")

local function action(n)
for g in node.traverse_id(node.id("glyph"),n) do
g.char = string.byte("!")
end
return n
end

context(l .. m / action .. r)
\stopluacode

88 Juggling nodes



And indeed we the middle glyph gets replaced: 123 ! 456.

\startluacode
local 1 = string.tonodes("123")
local r = string.tonodes("456")

context(l .. nil .. r)
\stopluacode

When you construct lists programmatically it can happen that one of the components
is nil and to some extend this is supported: so the above gives: 123456.

Here is a summary of the operators that are currently supported. Keep in mind that
these are not built in LuATEX but extensions in MkIV. After all, there are many ways to
map operators on actions and this is just one.

nl .. n2 append nodes (lists) n1 and n2, no copies
n * 5 append 4 copies of node (list) n ton

5+ n discard the first 5 nodes from list n
n-5 discard the last 5 nodes from list n

nl + n2 inject (list) n2 after first of list n1
nl - n2 inject (list) n2 before last of list n1

n"2 make two copies of node (list) n and keep the orginal
- n reverse node (list) n
n/ f apply function f to node (list) n

As mentioned, you can only use a node or list once, so when you need it more times,
you need to make copies. For example:

\startluacode
local 1 = string.tonodes( -- maybe: nodes.maketext
123"
)
local r = nodes.tracers.rule( -- not really a user helper (spec might
change)
string.todimen("1%"), -- or maybe: nodes.makerule("1%",...)

string.todimen("2ex"),
string.todimen(".5ex"),
"maincolor"

)

context(30 * (r"1 .. 1) .. r)
\stopluacode

This gives a mix of glyphs, glue and rules: B1231231230123123)123)12
3f12301230123012301230123012301230123012301230123)123]
123012301230 123012301230123012301230123J Of course you can
wonder how often this kind of juggling happens in use cases but at least in some core
code the concatination (. .) gives a bit more readable code and the overhead is quite
acceptable.

Juggling nodes 89



90 Juggling nodes



9 Still Expanding

In the beginning of October 2013 Luigi figured out that LuantTTEX could actually deal
with utr identifiers. After we played a bit with this, a patch was made for stock LuaTEX
to provide the same. In the process I found out that I needed to adapt the SciTE lexer
a bit and that some more characters had to get catcode 11 (letter). In the following text
screendumps from the editor will be used instead of verbatim code. This also demon-
strates how SciTE deals with syntax highlighting.

First we define a proper font for to deal with cjk characters and a helper macro that
wraps an example using that font.

21 \definefont

22 [GoodForJapanesel]

23 [heiseiminstd-w3]

24 [script=kana,

25 language=jan]

26

27 \definestartstop

28 [example]

29 [style=GoodForJapanese]

According to the Google translator, ## means example and %X means number. It
doesn’t matter much as we only use these characters as demo. Of course one can won-
der if it makes sense to define functions, variables and keys in a script other than basic
Latin, but at least it looks kind of modern.

We only show the first three lines. Because using the formatter gives nicer source code
we operate in that subnamespace.

37 $\start1uacode

38 local function fIRE(str)

39 context.formatted.example("{HI%E 1.%s: # %s",str,str)
40 context.par()

41 end

42

43 for i=1,10 do

44 PIRE (1)

45 end

46 |\stopluacode

BIRE 1.1: ¥ 1
BilRE 1.2: $22
BiIRE 1.3: 3

As CoNTgXr is already utr aware for a while you can define macros with such charac-
ters. It was a sort of coincidence that this specific range of characters had not yet gotten
the proper catcodes, but that is something users don’t need to worry about. If your
script doesn’t work, we just need to initialize a few more characters.

Still Expanding 91



54 |\def\fFE#1{\example{HIZE 2: #H #1}\par}
55
56 |\fiRE{2.1}

B8 2: £ 2.1

Of course this command is now also present at the Lua end:

s

64 c\startluacode

65 context.startexample()
66 context. I (2.2)
67 context.stopexample()

68 \stopluacode
BiRE 2: $% 2.2

The MKVT parser has also been adapted to this phenomena as have the alternative ways
of defining macros. We could already do this:

76 |\starttexdefinition test #1
77 \startexample

78 BIE 3: & #1 \par
79 \stopexample

80 |\stoptexdefinition

81

82 |\test{3}

IRE 3: 3
But now we can also do this:

90 \starttexdefinition ffE #1

91 \startexample
92 f5IRE 4: % #1 \par
93 \stopexample

94 | \stoptexdefinition
il 2: £ 4
Named parameters support a wider range of characters too:

104 \def\fIE##{\example{HIfE 5: & #&}\par}
105
106 \#BIFE{5}

BiliE 5: %1 5

So, in the end we can have definitions like this:

114 |\starttexdefinition fIfE ##
115 \startexample

116 FI%E 6: #H #%L \par
117 \stopexample

118 |\stoptexdefinition

119

120 | \pIE{6}

BilE 5: %2 6

92 Still Expanding



Of course the optional (first) arguments still are supported but these stay Latin.

128
129
130
131
132
133
134

il

\starttexdefinition unexpanded I8 ##
\startexample
fIRE 7: #H #B \par
\stopexample
\stoptexdefinition

\FIE{7}

5 KT

Finally Luigi wondered of we could use math symbols too and of course there is no
reason why not:

L L

142
143
144
145
146
147
148
149
150
151
152
153

184

\startluacode
function commands.y(...)
local t ={ ... }
local s = 0

for i=1,#t do
s = s + t[i]
end
context("%s + t = %s",t,s)
end
\stopluacode

\ctxcommand{}(1,3,5,7,9)}

1+3+5+7+9=25

The ConTgXT source code will of course stay ascr, although some of the multi lingual
user interfaces already use characters other than that, for instance accented characters
or completely different scripts (like Persian). We just went a step further and supported
it at the Lua end which in turn introduced those characters into MxVL

Still Expanding 93



94 Still Expanding



10 Going nuts

10.1 Introduction

This is not the first story about speed and it will probably not be the last one either. This
time we discuss a substantial speedup: upto 50% with LuantTEX. So, if you don’t want
to read further at least know that this speedup came at the cost of lots of testing and
adapting code. Of course you could be one of those users who doesn’t care about that
and it may also be that your documents don’t qualify at all.

Often when I see a kid playing a modern computer game, I wonder how it gets done:
all that high speed rendering, complex environments, shading, lightning, inter—player
communication, many frames per second, adapted story lines, . ... Apart from clever
programming, quite some of the work gets done by multiple cores working together,
but above all the graphics and physics processors take much of the workload. The mar-
ket has driven the development of this hardware and with success. In this perspective
it’'snot that much of a surprise that complex TEX jobs still take some time to get finished:
all the hard work has to be done by interpreted languages using rather traditional hard-
ware. Of course all kind of clever tricks make processors perform better than years ago,
but still: we don’t get much help from specialized hardware.!> We're sort of stuck: when
I replaced my 6 year old laptop (when I buy one, I always buy the fastest one possible)
for a new one (so again a fast one) the gain in speed of processing a document was less
than twice. The many times faster graphic capabilities are not of much help there, not
is twice the amount of cores.

So, if we ever want to go much faster, we need to improve the software. The reason for
trying to speed up MkIV has been mentioned before, but let’s summarize it here:

e There was a time when users complained about the speed of CoNTEXT, especially
compared to other macro packages. I'm not so sure if this is still a valid complaint,
but I do my best to avoid bottlenecks and much time goes into testing efficiency.

e Computers don’t get that much faster, at least we don’t see an impressive boost each
year any more. We might even see a slowdown when battery live dominates: more
cores at a lower speed seems to be a trend and that doesn’t suit current TEX engines
well. Of course we assume that TEX will be around for some time.

e Especially in automated workflows where multiple products each demanding a cou-
ple of runs are produced speed pays back in terms of resources and response time.
Of course the time invested in the speedup is never regained by ourselves, but we
hope that users appreciate it.

e The more we doin Lua, read: the more demanding users get and the more function-
ality is enabled, the more we need to squeeze out of the processor. And we want to
do more in Lua in order to get better typeset results.

12° Apart from proper rendering on screen and printing on paper.

Going nuts 95



13
14

15

16

e Although Lua is pretty fast, future versions might be slower. So, the more efficient
we are, the less we probably suffer from changes.

e Using more complex scripts and fonts is so demanding that the number of pages
per second drops dramatically. Personally I consider a rate of 15 pps with LuaTgX
or 20 pps with LuantTEX reasonable minima on my laptop.'?

e Among the reasons why Lua]IT jitting does not help us much is that (at least in
CoNTgXT) we don’t use that many core functions that qualify for jitting. Also, as
runs are limited in time and much code kicks in only a few times the analysis and
compilation doesn’t pay back in runtime. So we cannot simply sit down and wait
till matters improve.

Luigi Scarso and I have been exploring several options, with LuaTEX as well as Lua-
nTIEX. We observed that the virtual machine in LuaiitTEX is much faster so that engine
already gives a boots. The advertised jit feature can best be disabled as it slows down a
run noticeably. We played with £fi as well, but there is additional overhead involved
(cdata) as well as limited support for userdata, so we can forget about that too.!* Nev-
ertheless, the twice as fast virtual machine of LuaJIT is a real blessing, especially if you
take into account that CoNTEXT spends quite some time in Lua. We're also looking for-
ward to the announced improved garbage collector of LuaJIT.

In the end we started looking at LuATEX itself. What can be gained there, within the
constraints of not having to completely redesign existing (ConTEXT) Lua code?’®

10.2 Two access models

Because the CoNTEXT code is reasonably well optimized already, the only option is to
look into LuaTgX itself. We had played with the TgX-Lua interface already and came
to the conclusion that some runtime could be gained there. On the long run it adds
up but it’s not too impressive; these extensions are awaiting integration. Tracing and
bechmarking as well as some quick and dirty patches demonstrated that there were
two bottlenecks in accessing fields in nodes: checking (comparing the metatables) and
constructing results (userdata with metatable).

In case you're infamiliar with the concept this is how nodes work. There is an abstract
object called node that is in Lua qualified as user data. This object contains a pointer to
TeX’s node memory.'® As it is real user data (not so called light) it also carries a metat-
able. In the metatble methods are defined and one of them is the indexer. So when you
say this:

A Dell 6700 laptop with Core i7 3840QM, 16 GB memory and SSD, running 64 bit Windows 8.

As we’ve now introduced getters we can construct a metatable at the Lua end as that is what ££1 likes
most. But even then, we don’t expect much from it: the four times slow down that experiments showed
will not magically become a large gain.

In the end a substantial change was needed but only in accessing node properties. The nice thing about
C is that there macros often provide a level of abstraction which means that a similar adaption of TEX
source code would be more convenient.

The traditional TEX node memory manager is used, but at some point we might change to regular C
(de)allocation. This might be slower but has some advantages too.

96 Going nuts



local nn = n.next

given that n is a node (userdata) the next key is resolved up using the __index metat-
able value, in our case a function. So, in fact, there is no next field: it’s kind of virtual.
The index function that gets the relevant data from node memory is a fast operation:
after determining the kind of node, the requested field is located. The return value can
be a number, for instance when we ask for width, which is also fast to return. But it
can also be a node, as is the case with next, an then we need to allocate a new userdata
object (memory management overhead) and a metatable has to be associated. And that
comes at a cost.

In a previous update we had already optimized the main __index function but felt
that some more was possible. For instance we can avoid the lookup of the metatable
for the returned node(s). And, if we don’t use indexed access but a instead a function
for frequently accessed fields we can sometimes gain a bit too.

A logical next step was to avoid some checking, which is okay given that one pays a bit
attention to coding. So, we provided a special table with some accessors of frequently
used fields. We actually implemented this as a so called “fast” access model, and adapted
part of the CoNTEXT code to this, as we wanted to see if it made sense. We were able to
gain 5 to 10% which is nice but still not impressive. In fact, we concluded that for the
average run using fast was indeed faster but not enough to justify rewriting code to the
(often) less nice looking faster access. A nice side effect of the recoding was that I can
add more advanced profiling.

But, in the process we ran into another possibility: use accessors exclusively and avoid-
ing userdata by passing around references to TeX node memory directly. As internally
nodes can be represented by numbers, we ended up with numbers, but future versions
might use light userdata instead to carry pointers around. Light userdata is cheap basic
object with no garbage collection involved. We tagged this method ‘direct’ and one can
best treat the values that gets passed around as abstract entities (in MxIV we call this
special view on nodes ‘nuts’).

So let’s summarize this in code. Say that we want to know the next node of n:
local nn = n.next

Here index will be resolved and the associated function be called. We can avoid that
lookup by applying the __index method directly (after all, that one assumes a userdata
node):

local getfield = getmetatable(n).__index

local nn = getfield(n,"next") -- userdata

But this is not a recomended interface for regular users. A normal helper that does
checking is as about fast as the indexed method:

local getfield = node.getfield

Going nuts 97



17

local nn = getfield(n,"next") -- userdata

So, we can use indexes as well as getters mixed and both perform more of less equal. A
dedicated getter is somewhat more efficient:

local getnext = node.getnext

local nn = getnext(n) -- userdata

If we forget about checking, we can go fast, in fact the nicely interfaced __index is the
fast one.

local getfield = node.fast.getfield

local nn = getfield(n,"next") -- userdata
Even more efficient is the following as that one knows already what to fetch:

local getnext = node.fast.getnext

local nn = getnext(n) -- userdata
The next step, away from userdata was:

local getfield = node.direct.getfield

local nn = getfield(n,"next") -- abstraction
and:

local getnext = node.direct.getnext

local nn = getnext(n) -- abstraction

Because we considered three variants a bit too much and because fast was only 5 to
10% faster in extreme cases, we decided to drop that experimental code and stick to
providing accessors in the node namespace as well as direct variants for critical cases.

Before you start thinking: ‘should I rewrite all my code?’ think twice! First of all,
n.next is quite fast and switching between the normal and direct model also has some
cost. So, unless you also adapt all your personal helper code or provide two variants
of each, it only makes sense to use direct mode in critical situations. Userdata mode
is much more convenient when developing code and only when you have millions of
access you can gain by direct mode. And even then, if the time spent in Lua is small
compared to the time spent in TEX it might not even be noticeable. The main reason we
made direct variants is that it does pay of in OpENTYPE font processing where complex
scripts can result in many millions of calls indeed. And that code will be set up in such
a way that it will use userdata by default and only in well controlled case (like MxIV)
we will use direct mode.!”

When we are confident that direct node code is stable we can consider going direct in generic code as
well, although we need to make sure that third party code keeps working.

98 Going nuts



Another thing to keep in mind is that when you provide hooks for users you should
assume that they use the regular mode so you need to cast the plugins onto direct mode
then. Because the idea is that one should be able to swap normal functions by direct
ones (which of course is only possible when no indexes are used) all relevant function
in the node namespace are available in direct as well. This means that the following
code is rather neutral:

local x = node —— or: x = node.direct

for n in x.traverse(head) do
if x.getid(n) == node.id("glyph") and x.getchar(n) == 0x123 then
x.setfield(n,"char",b0x456)
end
end

Of course one needs to make sure that head fits the model. For this you can use the cast
functions:

node.direct.todirect (node or direct)
node.direct.tonode(direct or node)

These helpers are flexible enough to deal with either model. Aliasing the functions to
locals is of course more efficient when a large number of calls happens (when you use
LuantTgX it will do some of that for you automatically). Of course, normally we use a
more natural variant, using an id traverser:

for n in node.traverse_id(head,node.id("glyph")) do
if n.char == 0x123 then
n.char = 0x456
end
end

This is not that much slower, especially when it’s only ran once. Just count the number
of characters on a page (or in your document) and you will see that it’s hard to come up
with that many calls. Of course, processing many pages of Arabic using a mature font
with many features enabled and contextual lookups, you do run into quantities. Tens
of features times tens of contextual lookup passes can add up considerably. In Latin
scripts you never reach such numbers, unless you use fonts like Zapfino.

10.3 The transition

After weeks of testing, rewriting, skyping, compiling and making decisions, we reached
a more or less stable situation. At that point we were faced with a speedup that gave
us a good feeling, but transition to the faster variant has a few consequences.

Going nuts 99



18

e We need to use an adapted code base: indexes are to be replaced by function calls.
This is a tedious job that can endanger stability so it has to be done with care.!®

e When using an old engine with the new MxkIV code, this approach will result in a
somewhat slower run. Most users will probably accept a temporary slowdown of
10%, so we might take this intermediate step.

e When the regular getters and setters become available we get back to normal. Keep
in mind that these accessors do some checking on arguments so that slows down
to the level of using indexes. On the other hand, the dedicated ones (like getnext)
are more efficient so there we gain.

e Assoon as direct becomes available we suddenly see a boost in speed. In documents
of average complexity this is 10-20% and when we use more complex scripts and
fonts it can go up to 40%. Here we assume that the macro package spends at least
50% of its time in Lua.

If we take the extremes: traditional indexed on the one hand versus optimized direct in
LuantIEgX, a 50% gain compared to the old methods is feasible. Because we also retro-
titted some fast code into the regular accessor, indexed mode should also be somewhat
faster compared to the older engine.

In addition to the already provide helpers in the node namespace, we added the fol-
lowing:

getnext this one is used a lot when analyzing and processing node lists
getprev this one is used less often but fits in well (companion to getnext)
getfield this is the general accessor, in userdata mode as fast as indexed
getid one of the most frequent called getters when parsing node lists
getsubtype especially in fonts handling this getter gets used

getfont especially in complex font handling this is a favourite

getchar as is this one

getlist we often want to recurse into hlists and vlists and this helps

getleader and also often need to check if glue has leader specification (like list)

setfield we have just one setter as setting is less critical

As getfield and setfield are just variants on indexed access, you can also use them
to access attributes. Just pass a number as key. In the direct namespace, helpers like
insert_before also deal with direct nodes.

We currently only provide setfield because setting happens less than getting. Of
course you can construct nodelists at the Lua end but it doesn’t add up that fast and
indexed access is then probably as efficient. One reason why setters are less an issue is
that they don’t return nodes so no userdata overhead is involved. We could (and might)

The reverse is easier, as converting getters and setters to indexed is a rather simple conversion, while
for instance changing type .next into a getnext needs more checking because that key is not unique to
nodes.

100 Going nuts



provide setnext and setprev, although, when you construct lists at the Lua end you
will probably use the type insert_after helper anyway.

10.4 Observations

So how do these variants perform? As we no longer have fast in the engine that I
use for this text, we can only check getfield where we can simulate fast mode with
calling the __index metamethod. In practice the getnext helper will be somewhat
faster because no key has to be checked, although the getfield functions have been
optimized according to the frequencies of accessed keys already.

node[*] 0.516
node.fast.getfield  0.616
node.getfield 0.494

node.direct.getfield 0.172

Here we simulate a dumb 20 times node count of 200 paragraphs tufte.tex with a
little bit of overhead for wrapping in functions.!® We encounter over three million nodes
this way. We average a couple or runs.

local function check(current)
local n = 0
while current do
n=n-+1
current = getfield(current,"next") -- current = current.next
end
return n
end

What we see here is that indexed access is quite okay given the amount of nodes, but
that direct is much faster. Of course we will never see that gain in practice because
much more happens than counting and because we also spend time in TgX. The 300%
speedup will eventually go down to one tenth of that.

Because CoNTEXT avoids node list processing when possible the baseline performance
is not influenced much.

\starttext \dorecurse{1000}{test\page} \stoptext

With LuaTEX we get some 575 pages per second and with LuapirTEX more than 610
pages per second.

\setupbodyfont [pagella]

\edef\zapf{\cldcontext
{context (io.loaddata(resolvers.findfile("zapf.tex")))}}

\starttext \dorecurse{1000}{\zapf\par} \stoptext

19 When typesetting Arabic or using complex fonts we quickly get a tenfold.

Going nuts 101



20

For this test LuATEX needs 3.9 seconds and runs at 54 pages per second, while LuajitTEX
needs only 2.3 seconds and gives us 93 pages per second.

Just for the record, if we run this:

\starttext
\stoptext

a LUuATEX runs takes 0.229 seconds and a LuaptTEX run 0.178 seconds. This includes
initializing fonts. If we run just this:

\stoptext

LuaTgX needs 0.199 seconds and LuaptTEX only 0.082 seconds. So, in the meantime,
we hardly spend any time on startup. Launching the binary and managing the job
with mtxrun calling mtx-context adds 0.160 seconds overhead. Of course this is only
true when you have already ran CoNTEXT once as the operating system normally caches
files (in our case format files and fonts). This means that by now an edit-preview cycle
is quite convenient.?’

As amore practical test we used the current version of fonts-mkiv (166 pages, using all
kind of font tricks and tracing), about (60 pages, quite some traced math) and a torture
test of Arabic text (61 pages dense text). The following measurements are from 2013-07-
05 after adapting some 50 files to the new model. Keep in mind that the old binary can
fake a fast getfield and setfield but that the other getters are wrapped functions. The
more we have, the slower it gets. We used the mingw versions.

version fonts about arabic
old mingw, indexed plus some functions 8.9 32 203
old mingw, fake functions 99 3.5 27.4
new mingw, node functions 9.0 3.1 20.8
new mingw, indexed plus some functions 8.6 3.1 19.6
new mingw, direct functions 7.5 2.6 14.4

The second row shows what happens when we use the adapted CoNTEXT code with an
older binary. We're slower. The last row is what we will have eventually. All documents
show a nice gain in speed and future extensions to CoNTEXT will no longer have the
same impact as before. This is because what we here see also includes TX activity. The
300% increase of speed of node access makes node processing less influential. On the
average we gain 25% here and as on these documents LuantTEX gives us some 40% gain
on indexed access, it gives more than 50% on the direct function based variant.

In the fonts manual some 25 million getter accesses happen while the setters don’t ex-
ceed one million. I lost the tracing files but at some point the Arabic test showed more
than 100 millions accesses. So it’s save to conclude that setters are sort of neglectable.
In the fonts manual the amount of accesses to the previous node were less that 5000
while the id and next fields were the clear winners and list and leader fields also scored

I use SciTE with dedicated lexers as editor and currently sumatrapdf as previewer.

102 Going nuts



high. Of course it all depends on the kind of document and features used, but we think
that the current set of helpers is quite adequate. And because we decided to provide
that for normal nodes as well, there is no need to go direct for more simple cases.

Maybe in the future further tracing might show that adding getters for width, height,
depth and other properties of glyph, glue, kern, penalty, rule, hlist and vlist nodes can
be of help, but quite probably only in direct mode combined with extensive list ma-
nipulations. We will definitely explore other getters but only after the current set has
proven to be useful.

10.5 Nuts

So why going nuts and what are nuts? In Dutch ‘node” sounds a bit like ‘noot” and
translates back to ‘nut’. And as in CoNTEXT I needed word for these direct nodes they
became ‘nuts’. It also suits this project: at some point we're going nuts because we
could squeeze more out of LuantTEX, so we start looking at other options. And we’re
sure some folks consider us being nuts anyway, because we spend time on speeding
up. And adapting the LuaTEX and CoNTEXT MkIV code mid-summer is also kind of
nuts.

At the CoNTEXT 2013 conference we will present this new magic and about that time
we’ve done enough tests to see if it works our well. The LuaTEX engine will provide the
new helpers but they will stay experimental for a while as one never knows where we
messed up.

I end with another measurement set. Every now and and then I play with a Lua vari-
ant of the TgX par builder. At some point it will show up on MxIV but first I want to
abstract it a bit more and provide some hooks. In order to test the performance I use
the following tests:

\testfeatureonce{1000}{\setbox0\hbox{\tuftel}}
\testfeatureonce{1000}{\setbox0\vbox{\tuftel}}

\startparbuilder [basic]
\testfeatureonce{1000}{\setbox0\vbox{\tuftel}}
\stopparbuilder

We use a \hbox to determine the baseline performance. Then we break lines using the
built-in parbuilder. Next we do the same but now with the Lua variant.?!

luatex luajittex

total linebreak total linebreak
223 ppnodes  5.67 2.25flushing 3.64 1.58 flushing
hbox nodes 3.42 2.06

vbox nodes 3.63 0.21 baseline 2.27 0.21 baseline

21 If we also enable protrusion and hz the Lua variant suffers less because it implements this more efficient.

Going nuts 103



22

vbox luanodes 7.38 3.96 395 1.89
223 pp nuts 4.07 1.62flushing 2.36 1.11 flushing

hbox nuts 2.45 1.25

vbox nuts 2.53 0.08 baseline 1.30 0.05 baseline
vbox luanodes 6.16 3.71 3.03 1.78

vbox luanuts 545 3.00 247 1.22

We see that on this test nuts have an advantage over nodes. In this case we mostly
measure simple font processing and there is no markup involved. Even a 223 page
document with only simple paragraphs needs to be broken across pages, wrapped in
page ornaments and shipped out. The overhead tagged as ‘flushed” indicates how much
extra time would have been involved in that. These numbers demonstrate that with nuts
the Lua parbuilder is performing 10% better so we gain some. In a regular document
only part of the processing involves paragraph building so switching to a Lua variant
has no big impact anyway, unless we have simple documents (like novels). When we
bring hz into the picture performance will drop (and users occasionally report this) but
here we already found out that this is mostly an implementation issue: the Lua variant
suffers less so we will backport some of the improvements.??

10.6 LUA 5.3

When we were working on this the first working version of Lua 5.3 was announced.
Apart from some minor changes that won't affect us, the most important change is
the introduction of integers deep down. On the one hand we can benefit from this,
given that we adapt the TgX-Lua interfaces a bit: the distinction between to_number
and to_integer for instance. And, numbers are always somewhat special in TgX as
it relates to reproduction on different architectures, also over time. There are some
changes in conversion to string (needs attention) and maybe at some time also in the
automated casting from strings to numbers (the last is no big deal for us).

On the one hand the integers might have a positive influence on performance especially
as scaled points are integers and because fonts use them too (maybe there is some ad-
vantage in memory usage). But we also need a proper efficient round function (or op-
erator) then. I'm wondering if mixed integer and float usage will be efficient, but on the
the other hand we do not that many calculations so the benefits might outperform the
drawbacks.

We noticed that 5.2 was somewhat faster but that the experimental generational garbage
collecter makes runs slower. Let’s hope that the garbage collector performance doesn’t
degrade. But the relative gain of node versus direct will probably stay.

Because we already have an experimental setup we will probably experiment a bit with
this in the future. Of course the question then is how LuantTEX will work out, because
it is already not 5.2 compatible it has to be seen if it will support the next level. At least
in CoNTEXT MKIV we can prepare ourselves as we did with Lua 5.2 so that we're ready
when we follow up.

There are still some aspects that can be approved. For instance these tests still checks lists for prev fields,
something that is not needed in future versions.

104 Going nuts



11 Lua strings

11.1 Introduction

In the crited project® we have to deal with large amounts of data. The sources are in
TEI XML and processed directly in CoNTEXT MkIV, and we have to filter content from
different places in the xmL tree. Processing relies on Lua a lot because we use Lua for
dealing with the xmL. We're talking about Latin and Greek texts so there is no demand
for extensive font processing in Lua is moderate. But as critical editions have lots of line
specific referencing and notes there are some more complex layout elements involved,
and again these use Lua. There is also extensive use of bibliographies and it will be no
surprise that Lua comes to help too.?*

One secondary objective is to be able to process the complex documents at a speed of at
least 20 pages per second on a modern 2014 workstation laptop. One way of achieving
this is to use LuantTEX which has a faster virtual Lua machine. However, we ran into
several issues with the LuaJIT interpreter, which is fully Lua language 5.1 and partly 5.2
compatible but definitely has a different low level implementation. In the next sections
I will discuss two issues that Luigi and I ran into and for which we could come up with
reasonable workarounds.

11.2 The stacks

A TgX job is normally a multi-pass experience. One run can produce information that
is used in a successive one. The reason is that something can happen on page 15 that
influences the typesetting of page 9. There can even be a partial chain reaction: you
typeset a document the first time the table of contents (and the pages it refers to) is not
known yet but information is saved that makes it possible next time. That next run it
gets included and it takes for instance 4 pages. This means that all page numbers shift
up. This in turn will trigger a new run because all cross references might change too:
two digit page numbers can become three digits, so paragraphs can run wider, and that
again can trigger more pages. Normally an initial three runs is enough, and with minor
updates of the source one or two runs are enough after that.

The multi-pass information is saved in tables in the so called utility file and loaded a
next run. Common subtables are shared in the process. In order to determine if there
has been crucial changes that demand an extra run, we have to make sure that ran-
dom order in these tables is eliminated. Normally we already sort keys in tables when
writing them to file but some tables come out in the order the traversing next function
delivers them. In the more recent 5.2 versions Lua has added some randomness to the
order in which hashed tables are organized, so while in previous versions we could
assume that for a specific binary the order was the same each time, we cannot rely on
that any longer. This is not that important for normal cases, but we compare previous

23 This is a project by Thomas Schmitz, Alan Braslau, Luigi Scarso and Hans Hagen funded by the Institut
fiir Klassische und Romanische Philologie Universitdt Bonn.
24 One of the objectives of the project is to update and enhance the bibliographic subsystem.

Lua strings 105



25
26

and current versions of the utility file and pack shared tables in them as well, which
means that we are sensitive for a change in order. But, this could be dealt with at the
cost of some extra sorting.?

Anyway, this kind of changes in the Lua machinery is harmless apart from taking some
time to adapt to it. Itis also the reason why we cannot simply push a new update of Lua
into LuaTEX because low level changes can have an (yet unknown) impact. Of course
performance is the biggest issue here: we don’t want a slower LuaTgX.

In the past we already reported on the benefits of LuantTEX, especially its faster virtual
machine. We don’t benefit from jitting; on the contrary it slows us down. One reason
is that we cross the Lua—C boundary often and hardly use any of the optimized func-
tions. Part of the speed is achieved by a different implementation deep down and one
of them is a different virtual machine instruction set. While Lua can go real big in terms
of memory and table construction, LuaJIT limits us to at most 2G memory and poses
some 64K limitations in functions and table constructors. The memory is not so much
the issue in the crited project but the (nested) table constructor is. When we have a
few tens of thousands of cross references, index entries and/or list entries we simply
cannot load the multi-pass data. A few days of playing with splitting up nested tables
didn’t help much: it made the code look horrible and eventually we again ran into a
maximum of 64K someplace as a dof ile effectively makes a function that gets run and
Lua]IT doesn't like that size. For the record: we don't have such issues with large font
tables probably because they are just one big table. The reason why we cannot use that
approach is that serializing the potentially very large tables in the utility file also has
limitations.

Eventually this could be solved by assuming only forward referencing for certain reg-
isters. That way we only used the index entries collected in memory during the run
and as long as we don't put a register before it’s entries are defined we're okay. So
here we have a typical case where one can set an option to circumvent an engine limi-
tation.?® Explaining this in a user manual is a challenge, because an error message like
the following is not that helpful:

main function has more than 65536 constants

But, once we could generate these indices again by posing some limitations, LuajirTEX
had other issues. This time we got excessive runtime and we spent quite some time
sorting that one out. More on that in the next section.

11.3 Hashing

One of the reasons why (text processing with) Lua is rather fast is that it hashes its
strings so that a test for equality is real fast. This means that for each string that enters
Lua a hash value is calculated and that hash is used in comparisons. Of course hashing
takes time, but especially when you work with lots of tables the advantage of a simple

In CoNTEXT we also pack font tables which saves lots of memory and also some load time).
A decade ago similar tricks had to be used to support hundreds of thousands of hyperlinks in TEX engines
with at that time limited memory capabilities.

106 Lua strings



hash compare outweighs this one—time hashing. On the other hand, if you work with
files and process lines, and maybe split these in words, you might end up with a lot
of unneeded hashing. But, in LuATEX and therefore MkIV we benefit from hashing a
lot. In Lua 5.2 the hash function was adapted so that only strings upto than (default) 40
characters get hashed. In practice we're not affected much by this, as most keywords
we use are shorter than this boundary. And in ConTEXT we do quite some keyword
checking.

So, when we were conducting tests with these large registers, we were surprised that
LuantTgX performed significantly slower (ten times or more) that stock LUATEX, while
until then we had observed that a LuanTTEX run was normally some 20 to 40% faster.

The first impression was that it related to the large amount of strings that are writ-
ten from Lua to TEX. After index entries are collected, they are sorted and the index is
flushed to TgX. This happens in one go, and TEX code ends up in the TEX input stack.
Some actions are delayed and create callbacks to Lua, so some wrapping in functions
happens too. That means that some (Lua) strings are only freed later on, but that proved
not to be the main problem.

When the entries are typeset, an interactive cross reference is kept track of and these
exist till the document is closed and the referencing information is written to the rpr
tile. Of course we could tweak this but once you start along that path there is no end to
writing ugly hacks.

Eventually we found that the slowdown relates to hashing, especially because that is
not the first area where you look. Why is this? The specific register concerned lots of
small greek words, pointing to locations in a text, where locations looked like 1.2.3.
In case you wonder why greek is mentioned: in multi-byte utr sequences there is a lot
of repetition:

word unicode bytes

Bov 3B2 1F77 3BF 3BD CE B2 E1 BD B7 CE BF CE BD

Bou 3B2 1F77 3BF 3C5 CE B2 E1 BD B7 CE BF CF 85

Brog 3B2 3B9 3BF 1F7A 3C2 CE B2 CE B9 CE BF E1 BD BA CF 82

BOU)\\) 3B2 3BF 3C5 3BB 1F74 3BD CE B2 CE BF CF 85 CE BB E1 BD B4 CE BD
BOU)\Q 3B2 3BF 3C5 3BB 1FC6 3C2 CE B2 CE BF CF 85 CE BB E1 BF 86 CF 82

When cross referencing these index entries with their origin, you end up with refer-
ence identifiers like foo:1.2. 3 or, because CoNTEXT has automated internal references
(which are rather efficient in the resulting ppF), we get aut: 1, aut: 2 upto in this case
some 30.000 of them.

The problem with hashing is as follows. When we write commands to TEX or use data
with a repetitive property, the similarity of these strings can be hard on the hasher as
it can produce similar hash keys in which case collisions need to be dealt with. I'm no
expert on hashing but looking at the code shows that in LuaJIT (at least in the version
we're talking about) the string is seen as chunks of 4 bytes. The first, last, middle and
halfway middle chunks are consulted and after some bit juggling we get a hash value.

Lua strings 107



In the case of strings like the following it is clear that the beginning and end look quite
the same:

f00:000001 fo00:010001 fo00:100001
or:
foo0:1.2.12 fo00:1.3.12 fo00:1.4.12 fo00:1.5.12

It seems that the used method of hashing is somewhat arbitrary and maybe tuned for
specific applications. In order to see what the impact is of hashing quite similar strings,
some experiments were conducted: with LuaTgX 0.73 using Lua 5.2 hashing, with Lua-
ntIEX 0.73, and with the same LuantTEX but using the hash variant of native Lua 5.1.
For each variant we ran tests where strings of increasing length were combined with a
number (running from one to one million).

none  <string>

right  <string> <number>

left <number> <string>

center <string> <number> <string>
edges <number> <string> <number>

The differences between engines can be seen in tables in the next page. In the fourth
table we summarize which engine performs best. Keep in mind that LuajrTEX has the
advantage of the faster virtual machine so it has an additional speed advantage.

We show three tables with measurements. The none column shows the baseline of the
test:

local t = { }

for i=1,1000000 do
t[i] = 1

end

The column tagged ‘right” does this:

local t = { }

for i=1,1000000 do
t[i] = text .. i

end

And ‘left’ does:

local t = { %}

for i=1,1000000 do
t[i]l] = 1 .. text

end

That leaves ‘center’:

local t = { }

108 Lua strings



for i=1,1000000 do
t[i] = text .. i .. text
end

and ‘edges”:

local t = { }
for i=1,1000000 do

t[i]l] =i .. text .. i
end

Of course there is also the loop and the concatenation involved so the last two variants
have some more overhead. We show some measurements in tables 11.1, 11.2 and 11.3.
So, there we have strings like:

2abc

222abc

22222abc
abc222222
222222abc222222
222222abc222222
abc2222abc

and so on. Of course a million such strings makes not much sense in practice but it
serves our purpose of testing.

In these tables you can see some extremes. On the average Lua 5.2 performs quite okay
as does standard LuaJIT. However, when we bring the 5.1 hash variant into LuajitTEX we
get a more predictable average performance as it deals better with some of the extreme
cases that make LuajrTEX crawl compared to LuaTEX. We have done more tests and
interesting is to see that in the 5.1 (and derived 5,2) method there are sometimes cases
where odd lengths perform much worse than even lengths. Red values are larger than
two times the average, blue values larger than average while green values indicate a
less than half average value.

In table 11.4 we show which method performs best relative to each other. Of course in
many applications there will be no such extreme cases, but we happen to ran into them.
But, even if JIT20 is a winner in most cases, the fact that it has extreme slow exceptions
makes it a bit of a gamble.

The 5.1 hasher runs over the string with a step that depends on the length of the string.
We've seen that in 5.2 it doesn’t hash strings larger than 40 characters. The step is cal-
culated by shifting the length (by default) over 5 bits. This means that for strings of size
32 and more the step becomes 2 which is why we see this odd /even timing issue in the
tables. Basically we hash at most 32 characters of the 40. The next table shows that the
less characters we take into account (first column) the less unique keys we get (second
column).

n unique text
3 22 /Border [ 0 0 0 ] /F 4 /Subtype /Link /A * O R

Lua strings 109



none right left center edges text

1 0.016 1.190 1.143 1.188 1.701 a

2 0.025 1.177 1.141 1.175 1.685 ab

3 0.025 1.183 1.142 1.179 1.691 abc

4 0.025 1.183 1.147 1.187 1.692 abcd

5 0.025 1.194 1.156 1.209 1.705 abcde

6 0.025 1.201 1.161 1.215 1.714 abcdef

7 0.027 1.203 1.164 1.222 1.714 abcdefg

8 0.026 1.202 1.162 1.215 1.715 abcdefgh

9 0.025 1.206 1.171 1.209 1.698 abcdefghi
10 0.025 1.210 1.161 1.207 1.707 abcdefghi j
11 0.025 1.213 1.165 1.228 1.708 abcdefghi jk
12 0.025 1.205 1.165 1.224 1.708 abcdefghi jk1
13 0.025 1.215 1.162 3.586 1.705 abcdefghi jkim
14 0.025 1.207 1.175 5.056 1.708 abcdefghi jklmn
15 0.025 1.215 1.177 3.965 1.712 abcdefghijklmno
16 0.025 1.210 1.177 5.097 1.725 abcdefghi jklmnop
17 0.024 1.213 1.180 3.982 1.724 abcdefghijklmnopq
18 0.025 1.219 1.182 5.195 1.714 abcdefghi jklmnopgr
19 0.025 1.217 1.184 4.016 1.722 abcdefghi jklmnopqrs
20 0.025 1.221 1.182 5.199 5.623 abcdefghi jklmnopqrst
21 0.025 1.244 1.191 4.056 1.815 abcdefghijklmnopgrstu
22 0.025 1.247 1.193 1.082 5.637 abcdefghijklmnopgrstuv
23 0.025 1.251 1.220 1.085 1.827 abcdefghijklmnopgrstuvw
24 0.025 1.244 1.205 1.071 5.580 abcdefghijklmnopgrstuvwx
25 0.025 1.247 1.195 1.070 1.821 abcdefghijklmnopgrstuvwxy
26 0.025 5.240 5.094 1.088 5.514 abcdefghijklmnopgrstuvwxyz
27 0.025 5.257 44.874 1.069 1.838 abcdefghijklmnopqrstuvwxyzA
28 0.025 5.231 5412 1.075 5.577 abcdefghijklmnopqrstuvwxyzAB
29 0.025 5.208 45411 1.081 1.841 abcdefghijklmnopqrstuvwxyzABC
30 0.026 5.248 5.536 1.091 5.643 abcdefghijklmnopgrstuvwxyzABCD
31 0.024 5.351 45.540 1.084 1.844 abcdefghijklmnopqrstuvwxyzABCDE
32 0.025 5.376 5.550 1.078 5.657 abcdefghi jklmnopqrstuvwxyzABCDEF
33 0.025 5.422 45.903 1.077 1.831 abcdefghi jklmnopqrstuvwxyzABCDEFG
34 0.025 5.266 5.525 1.082 5.710 abcdefghijklmnopqrstuvwxyzABCDEFGH
35 0.025 5.223 48.141 1.076 1.848 abcdefghi jklmnopqrstuvixyzABCDEFGHT
36 0.025 5.260 5.427 1.083 6.241 abcdefghijklmnopqrstuvwxyzABCDEFGHIJ
37 0.025 5.310 45.596 1.080 1.590 abcdefghijklmnopqrstuvwxyzABCDEFGHIJK
38 0.025 5.233 5.950 1.080 1.579 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKL
39 0.025 5.314 45.252 1.088 1.567 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLM
40 0.024 5.489 5.531 1.074 1.570 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMN
41 0.025 5.598 45.903 1.074 1.574 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNO
42 0.025 5.657 6.033 1.081 1.569 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOP
43 0.025 1.115 1.296 1.069 1.568 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQ
44 0.025 1.080 1.048 1.080 1.572 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQR
45 0.025 1.083 1.051 1.085 1.566 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQRS
46 0.025 1.083 1.046 1.090 1.573 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQRST
47 0.024 1.082 1.052 1.088 1.576 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTU
48 0.025 1.080 1.048 1.085 1.570 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUY
49 0.025 1.085 1.049 1.080 1.571 abcdefghi jklmnopgrstuvwxyzABCDEFGHT JKLMNOPQRSTUVW
50 0.025 1.083 1.037 1.077 1.568 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQRSTUVWX

0.025 2.594 9.092 1.719 2.406

110 Lua strings

Table 11.1 context test.tex



none right left center edges text
1 0.016 1.125 1.125 1.125 1.656 a
2 0.000 1.141 1.109 1.110 1.594 ab
3 0.016 1.109 1.094 1.124 1.651 abc
4 0.009 1.149 1.147 1.014 1.653 abcd
5 0.008 1.153 1.142 1.008 1.646 abcde
6 0.009 1.140 1.157 1.014 1.652 abcdef
7 0.008 1.214 1.155 1.006 1.652 abcdefg
8 0.008 1.169 1.256 1.170 1.642 abcdefgh
9 0.008 2.557 1.216 1.169 1.644 abcdefghi
10 0.009 2.048 1.296 1.172 1.636 abcdefghi j
11 0.008 2.621 2.841 1.172 1.639 abcdefghi jk
12 0.009 1.977 1.761 1.196 1.638 abcdefghi jk1
13 0.008 2.560 1.589 1.201 1.635 abcdefghi jkim
14 0.008 1.983 1.592 1.194 1.634 abcdefghi jklmn
15 0.009 2.537 2.722 1.200 1.637 abcdefghi jklmno
16 0.008 1.955 2.279 1.221 1.639 abcdefghi jklmnop
17 0.009 2.511 1.889 1.219 1.639 abcdefghijklmnopq
18 0.008 2.035 1.157 1.202 1.652 abcdefghi jklmnopgr
19 0.009 2.583 1.486 1.203 1.635 abcdefghijklmnopqrs
20 0.008 2.012 1.404 1.224 1.643 abcdefghijklmnopqrst
21 0.009 2.560 1.056 1.224 1.639 abcdefghijklmnopgrstu
22 0.009 2.008 1.111 1.223 1.648 abcdefghijklmnopgrstuv
23 0.009 2.555 1.084 1.226 1.648 abcdefghijklmnopgrstuvw
24 0.009 1.951 1.071 1.239 1.645 abcdefghi jklmnopgrstuvx
25 0.008 2.518 1.048 1.239 1.645 abcdefghijklmnopgrstuvwxy
26 0.009 2.069 1.062 1.234 1.635 abcdefghijklmnopgrstuvwxyz
27 0.009 2.616 1.076 1.236 1.636 abcdefghijklmnopqrstuvwxyzA
28 0.008 2.065 1.085 1.260 1.639 abcdefghijklmnopqrstuvwxyzAB
29 0.009 2.671 1.060 1.270 1.651 abcdefghijklmnopqrstuvwxyzABC
30 0.010 2.075 1.117 1.274 1.648 abcdefghijklmnopgrstuvwxyzABCD
31 0.008 2.631 1.056 1.270 1.652 abcdefghijklmnopqrstuvwxyzABCDE
32 0.008 2.048 1.090 1.294 1.656 abcdefghi jklmnopqrstuvwxyzABCDEF
33 0.009 2.548 1.079 1.301 1.647 abcdefghi jklmnopqrstuvwxyzABCDEFG
34 0.008 2.043 1.060 1.301 1.653 abcdefghijklmnopqrstuvwxyzABCDEFGH
35 0.008 2.618 1.053 1.347 1.649 abcdefghi jklmnopqrstuvixyzABCDEFGHT
36 0.008 2.018 1.086 1.388 1.643 abcdefghijklmnopqrstuvwxyzABCDEFGHIJ
37 0.009 2.535 1.034 1.417 1.667 abcdefghijklmnopqrstuvwxyzABCDEFGHIJK
38 0.008 2.018 1.163 1.430 1.639 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKL
39 0.008 2.548 1.051 1.454 1.643 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLM
40 0.008 1.980 1.117 1.489 1.639 abcdefghi jk1mnopqrstuvwxyzABCDEFGHI JKLMN
41 0.008 2.510 1.051 1.495 1.637 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNO
42 0.009 2.069 1.052 1.498 1.642 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOP
43 0.009 2.643 1.084 1.502 1.642 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQ
44 0.009 2.052 1.172 1.524 1.641 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQR
45 0.008 2.610 1.064 1.523 1.649 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQRS
46 0.008 2.040 1.193 1.522 1.640 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQRST
47 0.009 2.557 1.029 1.509 1.640 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTU
48 0.009 2.038 1.172 1.533 1.642 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUY
49 0.008 2.586 1.078 1.541 1.645 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQRSTUVW
50 0.008 2.107 1.114 1.535 1.643 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQRSTUVWX
0.009 2.117 1.260 1.285 1.643

Table 11.2 context --jit --jithash=1luajit20 test.tex

Lua strings 111



none right left center edges text

1 0.000 1.157 1.094 1.110 1.625 a

2 0.000 1.125 1.111 1.133 1.659 ab

3 0.009 1.128 1.122 1.133 1.659 abc

4 0.008 1.128 1.119 1.132 1.668 abcd

5 0.008 1.131 1.122 1.141 1.661 abcde

6 0.009 1.134 1.121 1.141 1.660 abcdef

7 0.009 1.129 1.120 1.140 1.667 abcdefg

8 0.009 1.128 1.116 1.140 1.662 abcdefgh

9 0.008 1.124 1.112 1.137 1.660 abcdefghi
10 0.008 1.127 1.116 1.146 1.659 abcdefghi j
11 0.009 1.132 1.121 1.150 1.664 abcdefghi jk
12 0.009 1.135 1.122 1.168 1.674 abcdefghi jk1
13 0.009 1.139 1.128 3.021 1.677 abcdefghi jkim
14 0.009 1.142 1.129 3.952 1.676 abcdefghi jklmn
15 0.009 1.138 1.124 3.309 1.673 abcdefghi jklmno
16 0.009 1.134 1.121 3.999 1.680 abcdefghi jklmnop
17 0.008 1.144 1.130 3.405 1.678 abcdefghijklmnopq
18 0008 1142 1 134 4034 1686 abcdefghijklmnopqr
19 0.009 1.145 1.133 3.998 1.690 abcdefghijklmnopgrs
20 0.009 1.148 1.133 4.145 4.488 abcdefghi jklmnopqrst
21 0.008 1.152 1.138 4.095 1.759 abcdefghijklmnopgrstu
22 0.008 1.154 1.144 4.238 4.466 abcdefghijklmnopgrstuv
23 0.009 1.154 1.141 4.441 1.743 abcdefghijklmnopgrstuvw
24 0.009 1.163 1.153 4.404 4.455 abcdefghi jklmnopgrstuvix
25 0.008 1.162 1.151 4.531 1.747 abcdefghi jklmnopqrstuvwxy
26 0.009 4.392 3.902 4.585 4.466 abcdefghijklmnopgrstuvwxyz
27 0.008 4.341 33.170 4.851 1.727 abcdefghi jklmopqrstuvwxyzA
28 0.009 4.642 4.508 5.002 4.959 abcdefghijklmnopqrstuvwxyzAB
29 0.009 4.650 32.597 36.952 1.747 abcdefghijklmnopqrstuvwxyzABC
30 0.009 4617 4.613 59.268 5.001 abcdefghijklmnopgrstuvwxyzABCD
31 0.008 4.696 33.058 42982 1.747 abcdefghijklmnopqrstuvwxyzABCDE
32 0.009 4.936 4.438 39.540 4.953 abcdefghi jklmnopqrstuvwxyzABCDEF
33 0.009 4.874 32.999 69.576 1.738 abcdefghi jklmnopqrstuvwxyzABCDEFG
34 0.008 4.975 4.840 43.781 4.961 abcdefghi jklmnopqrstuvwxyzABCDEFGH
35 0.009 4.994 33.765 40.142 1.744 abcdefghi jklmnopqrstuvwxyzABCDEFGHI
36 0.009 5.213 4.780 70.239 5.114 abcdefghijklmnopqrstuvwxyzABCDEFGHIJ
37 0.008 5.117 32.366 46.930 1.742 abcdefghijklmnopqrstuvwxyzABCDEFGHIJK
38 0.008 5.230 4573 43.434 5.150 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKL
39 0.008 5.312 32.632 76.315 1.752 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLM
40 0.008 5.483 4.573 51.809 5.195 abcdefghi jk1mnopqrstuvwxyzABCDEFGHI JKLMN
41 0.008 5.595 32.400 46.811 1.772 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNO
42 0.009 5.527 4.961 87.013 5.141 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOP
43 0.009 5.624 32.732 55.775 1.780 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQ
44 0.009 5.893 5.046 49.956 5.552 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQR
45 0.009 5.897 32.684 495.147 1.819 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQRS
46 0.008 5.984 4982 542.566 5.482 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQRST
47 0.009 5.834 32.420 66.082 1.835 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTU
48 0.009 6.172 5.057 97.620 5.619 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUY
49 0.009 6.180 32.873 531.977 1.863 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQRSTUVW
50 0.009 6.306 5.420 576.093 5.626 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQRSTUVWX

0.008 3.220 9.671 64.994 2.776

Table 11.3 context --jit --jithash=1luabl test.tex

112 Lua strings



right left center edges right left center edges

1 1 JIT20 JIT51 JIT51 JIT51
2 2 JIT51 JIT20 JIT20 JIT20
3 3 JIT20 JIT20 JIT20 JIT20
4 JIT20 4 JIT51 JIT51 JIT20 JIT20
5 JIT20 5 JIT51 JIT51 JIT20 JIT20
6 JIT20 6 JIT51 JIT51 JIT20 JIT20
7 JIT51 JIT20 7 JIT51 JIT51 JIT20 JIT20
8 JIT51 8 JIT51 JIT51 JIT51 JIT20
9 JIT51 JIT51 9 JIT51 JIT51 JIT51 JIT20
10 JIT51 JIT51 10 JIT51 JIT51 JIT51 JIT20
11 JIT51 JIT51 11 JIT51 JIT51 JIT51 JIT20
12 JIT51 JIT51 12 JIT51 JIT51 JIT51 JIT20
13 JIT51 JIT51 JIT20 13 JIT51 JIT51 JIT20 JIT20
14 JIT51 JIT51 JIT20 14 JIT51 JIT51 JIT20 JIT20
15 JIT51 JIT51 JIT20 15 JIT51 JIT51 JIT20 JIT20
16 JIT51 JIT51 JIT20 16 JIT51 JIT51 JIT20 JIT20
17 JIT51 JIT51 JIT20 17 JIT51 JIT51 JIT20 JIT20
18 JIT51 JIT20 18 JIT51 JIT51 JIT20 JIT20
19 JIT51 JIT51 JIT20 19 JIT51 JIT51 JIT20 JIT20
20 JIT51 JIT51 JIT20 JIT20 20 JIT51 JIT51 JIT20 JIT20
21 JIT51 JIT20 JIT20 JIT20 21 JIT51 JIT20 JIT20 JIT20
22 JIT51 JIT20 JIT20 22 JIT51 JIT20 LUA52 JIT20
23 JIT51 JIT20 JIT20 23 JIT51 JIT20 LUAS52 JIT20
24 JIT51 JIT20 JIT20 JIT20 24 JIT51 JIT20  LUA52 JIT20
25 JIT51 JIT20 JIT20 JIT20 25 JIT51 JIT20  LUA52 JIT20
26 JIT20 JIT20 JIT20 JIT20 26 JIT20 JIT20 LUA52 JIT20
27 JIT20 JIT20 JIT20 JIT20 27 JIT20 JIT20 LUA52 JIT20
28 JIT20 JIT20 JIT20 JIT20 28 JIT20 JIT20  LUA52 JIT20
29 JIT20 JIT20 JIT20 JIT20 29 JIT20 JIT20  LUA52 JIT20
30 JIT20 JIT20 JIT20 JIT20 30 JIT20 JIT20  LUA52 JIT20
31 JIT20 JIT20 JIT20 JIT20 31 JIT20 JIT20 LUAS52 JIT20
32 JIT20 JIT20 JIT20 JIT20 32 JIT20 JIT20  LUA52 JIT20
33 JIT20 JIT20 JIT20 JIT20 33 JIT20 JIT20  LUA52 JIT20
34 JIT20 JIT20 JIT20 JIT20 34 JIT20 JIT20  LUA52 JIT20
35 JIT20 JIT20 JIT20 JIT20 35 JIT20 JIT20 LUA52 JIT20
36 JIT20 JIT20 JIT20 JIT20 36 JIT20 JIT20  LUA52 JIT20
37 JIT20 JIT20 JIT20 37 JIT20 JIT20  LUA52  LUA52
38 JIT20 JIT20 JIT20 JIT20 38 JIT20 JIT20  LUA52  LUA52
39 JIT20 JIT20 JIT20 JIT20 39 JIT20 JIT20 LUA52 LUA52
40 JIT20 JIT20 JIT20 JIT20 40 JIT20 JIT20 LUAS52 LUA52
41 JIT20 JIT20 JIT20 JIT20 41 JIT20 JIT20  LUA52  LUA52
42 JIT20 JIT20 JIT20 JIT20 42 JIT20 JIT20  LUA52  LUA52
43 JIT20 JIT20 JIT20 JIT20 43 LUA52 JIT20 LUA52 LUA52
44 JIT20 JIT20 JIT20 JIT20 44 LUA52 LUA52 LUAS52 LUA52
45 JIT20 JIT20 JIT20 JIT20 45  LUA52  LUA52  LUA52  LUA52
46 JIT20 JIT20 JIT20 JIT20 46  LUA52  LUA52  LUA52  LUA52
47 JIT20 JIT20 JIT20 JIT20 47 LUA52 JIT20 LUA52 LUA52
48 JIT20 JIT20 JIT20 JIT20 48 LUA52 LUA52 LUAS52 LUA52
49 JIT20 JIT20 JIT20 JIT20 49  LUA52  LUA52  LUA52  LUA52
50 JIT20 JIT20 JIT20 JIT20 50 LUA52  LUA52  LUA52  LUA52

LuantTEX only Both engines.

Table 11.4 The best performances per engine and hasher.

Lua strings 113



3 31 << /D[ *0R /Fit ] /S /GoTo >>
4 43 /Border [ 0 0 0 ] /F 4 /Subtype /Link /A * O R
4 51 << /D [ * O R /Fit ] /S /GoTo >>
5 410 /Border [ 0 0 0 ] /F 4 /Subtype /Link /A * O R
5 210 << /D [ * O R /Fit ] /S /GoTo >>
6 29947 /Border [ 0 0 0 ] /F 4 /Subtype /Link /A * O R
6 29823 << /D [ * O R /Fit ] /S /GoTo >>

In the next table we show a few cases. The characters that are taken into account are
colored red.?

n text consulted

3 << /D[8OR /Fit ] /S /GoTo >> << /D [ 8 0 R /Fit ] /S /GoTo >>
3 << /D[9O0R /Fit ] /S /GoTo >> << /D[ 9 0R /Fit 1 /S /GoTo >>
3 << /D[100R /Fit ] /S /GoTo >> << /D [ 10 O R /Fit 1 /S /GoTo >>
3 << /D [11 0R /Fit ] /S /GoTo >> << /D [ 11 O R /Fit ] /S /GoTo >>
3 << /D[120R /Fit ] /S /GoTo >> << /D [ 12 O R /Fit ] /S /GoTo >>
4 << /D[8OR/Fit ] /S /GoTo >> << /D [ 8 0 R /Fit ] /S /GoTo >>
4 << /D[9O0OR /Fit ] /S /GoTo >> << /D [ 9 O R /Fit ] /S /GoTo >>
4 << /D[10 O0R /Fit ] /S /GoTo >> << /D [ 10 O R /Fit 1 /S /GoTo >>
4 << /D[110R /Fit ] /S /GoTo >> << /D [ 11 O R /Fit ] /S /GoTo >>
4 << /D[120R /Fit ] /S /GoTo >> << /D [ 12 O R /Fit ] /S /GoTo >>

Of course, in practice, in Lua 5.2 the longer string exceeds 40 characters so is never
hashed anyway. Apart from this maximum, the Lua hash code looks like this:

/* Lua will use at most ~(27LUAI_HASHLIMIT) bytes from
a string to compute its hash */

h = cast(unsigned int,len) ;
step = (len>>LUAI_HASHLIMIT) + 1 ;
for (li=len; li>=step; ll-=step) {
h =h =~ ((h<<b5) + (h>>2) + cast(unsigned char,str[l1-1])) ;
+

This translates in verbose Lua function as follows:

function string.luahash(str,shift)

local len = #str
local hash = len
local step = bit32.rshift(len,shift or 5) + 1

for i=len,1,-step do
hash = bit32.bxor(hash, (
bit32.1shift (hash,5) +
bit32.rshift(hash,2) +
string.byte(string.sub(str,i,i))

27" Again the first column indicates the shift applied to the length in order to determine the step.

114 Lua strings



) )
end
return hash
end

The reader can argue that the following string would perform better:
/Subtype/Link/Border [0 O O]/F 4/A 12 O R

but this is not the case. Also, here we use ppr code, but similar cases can happen if we
flush TEX commands:

\dothisorthat{1}
\dothisorthat{101}
\dothisorthat{10101}

And in the case of uUTF strings, it remains a fact that when characters need two bytes
a sequence can end up with each odd or even byte being the same. This is one more
reason to support upto 64 byte (or 40 in practice) hashing.

Because of this we decided to experiment with a value of 64 instead.?® We can do the
same when we use the Lua 5.1 method in LuaJIT. In table 11.5 and 11.6 we show the
timings. Interesting is that we lost the extremes now. The performance of the default
settings are compared with the higher values in table 11.7. Of course the numbers are
just indications and there might be small differences between test runs. Therefore we
use a threshold of 5% when we compare two methods.

So how does this affect us in document production? It is not that hard to get a process-
ing rate of a few dozen pages per second on a modern machine, even with somewhat
complex documents, where xMmL turns into ppr. However, interactivity comes somehow
with a price when we use LuanTTEX. In CoNTEXT MKIV we do all ppor annotations in Lua
and that involves assembling dictionaries. Here are two examples, a destination:

<< /D[ 15 0 R /Fit ] /S /GoTo >>
and a reference:
/Subtype /Link /Border [ 0 0O 0] /F 4 /A 16 O R

These strings are build with small variations and at some point end up in the ppr file.
The same string can end up in the file several times, although sometimes we can create
a reusable object. In the last case we keep them at the Lua end as reference to such a
shareable object, a key in an object reference hash. Now imagine that we have some 30K
of such references and/or destinations, which indeed happens in crited documents. In
the next two lines we use a * to show where the differences are:

<< /D [ * 0R /Fit 1 /S /GoTo >>
/Subtype /Link /Border [ 0 0 0] /F 4 /A *x O R

2 Of course, in LuaTgX, the length limit kicks in before we get to 64.

Lua strings 115



none right left center edges text
1 0.026 1.202 1.154 1.198 1.723 a
2 0.026 1.199 1.156 1.202 1.728 ab
3 0.026 1.203 1.174 1.210 1.731 abc
4 0.026 1.207 1.177 1.216 1.743 abcd
5 0.026 1.210 1.180 1.221 1.738 abcde
6 0.027 1.219 1.209 1.256 1.758 abcdef
7 0.027 1.234 1.196 1.236 1.741 abcdefg
8 0.026 1.218 1.187 1.230 1.742 abcdefgh
9 0.026 1.215 1.188 1.217 1.744 abcdefghi
10 0.026 1.210 1.193 1.227 1.734 abcdefghi j
11 0.025 1.214 1.196 1.225 1.732 abcdefghi jk
12 0.025 1.213 1.180 1.229 1.734 abcdefghi jk1
13 0.026 1.218 1.186 1.241 1.733 abcdefghi jkim
14 0.026 1.219 1.191 1.249 1.736 abcdefghi jklmn
15 0.026 1.236 1.187 1.261 1.748 abcdefghi jklmno
16 0.026 1.230 1.192 1.256 1.745 abcdefghi jklmnop
17 0.026 1.226 1.195 1.259 1.743 abcdefghijklmnopq
18 0026 1225 1192 1 056 1740 abcdefghijklmnopqr
19 0.025 1.223 1.186 1.057 1.741 abcdefghi jklmnopqrs
20 0.025 1.230 1.194 1.062 1.751 abcdefghijklmnopqrst
21 0.026 1.231 1.197 1.069 1.756 abcdefghijklmnopgrstu
22 0.025 1.231 1.208 1.087 1.756 abcdefghijklmnopgrstuv
23 0.025 1.234 1.198 1.072 1.760 abcdefghijklmnopgrstuvw
24 0.026 1.232 1.195 1.063 1.759 abcdefghijklmnopgrstuvwx
25 0.026 1.235 1.199 1.066 1.764 abcdefghijklmnopgrstuvwxy
26 0.026 1.248 1.248 1.062 1.762 abcdefghijklmnopgrstuvwxyz
27 0.026 1.247 1.216 1.070 1.772 abcdefghijklmnopqrstuvwxyzA
28 0.027 1.264 1.223 1.070 1.770 abcdefghijklmnopqrstuvwxyzAB
29 0.026 1.248 1.211 1.073 1.586 abcdefghijklmnopqrstuvwxyzABC
30 0.026 1.252 1.220 1.075 1.584 abcdefghijklmnopgrstuvwxyzABCD
31 0.026 1.255 1.218 1.105 1.593 abcdefghijklmnopqrstuvwxyzABCDE
32 0.025 1.256 1.219 1.109 1.594 abcdefghi jklmnopqrstuvwxyzABCDEF
33 0.025 1.257 1.223 1.122 1.589 abcdefghi jklmnopqrstuvwxyzABCDEFG
34 0.026 1.253 1.220 1.129 1.596 abcdefghijklmnopqrstuvwxyzABCDEFGH
35 0.025 1.077 1.046 1.141 1.590 abcdefghi jklmnopqrstuvixyzABCDEFGHT
36 0.026 1.080 1.033 1.159 1.599 abcdefghijklmnopqrstuvwxyzABCDEFGHIJ
37 0.026 1.060 1.034 1.162 1.595 abcdefghijklmnopqrstuvwxyzABCDEFGHIJK
38 0.025 1.060 1.040 1.171 1.599 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKL
39 0.025 1.063 1.033 1.178 1.600 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLM
40 0.026 1.061 1.029 1.137 1.602 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMN
41 0.025 1.060 1.032 1.138 1.604 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNO
42 0.025 1.064 1.032 1.151 1.622 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOP
43 0.026 1.068 1.039 1.151 1.635 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQ
44 0.026 1.069 1.039 1.149 1.633 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQR
45 0.025 1.067 1.041 1.160 1.642 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRS
46 0.026 1.071 1.040 1.155 1.651 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQRST
47 0.025 1.073 1.042 1.155 1.664 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTU
48 0.026 1.088 1.059 1.146 1.668 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUY
49 0.026 1.099 1.067 1.173 1.673 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQRSTUVW
50 0.025 1.102 1.063 1.140 1.669 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQRSTUVWX
0.026 1.179 1.148 1.155 1.689

Table 11.5 context test.tex with len<=40 and hash<=64

116 Lua strings



none right left center edges text

1 0.016 1.078 1.078 1.094 1.684 a

2 0.008 1.112 1.098 1.116 1.657 ab

3 0.008 1.108 1.091 1.109 1.646 abc

4 0.009 1.108 1.095 1.126 1.653 abcd

5 0.009 1.104 1.099 1.131 1.647 abcde

6 0.009 1.110 1.102 1.135 1.648 abcdef

7 0.009 1.113 1.099 1.130 1.650 abcdefg

8 0.009 1.116 1.108 1.123 1.640 abcdefgh

9 0.009 1.115 1.107 1.127 1.646 abcdefghi
10 0.009 1.120 1.114 1.132 1.645 abcdefghi j
11 0.009 1.126 1.121 1.137 1.646 abcdefghi jk
12 0.009 1.121 1.115 1.144 1.646 abcdefghi jk1
13 0.008 1.128 1.117 1.158 1.648 abcdefghi jkim
14 0.010 1.129 1.121 1.168 1.655 abcdefghi jklmn
15 0.009 1.132 1.120 1.174 1.657 abcdefghi jklmno
16 0.009 1.127 1.118 1.205 1.650 abcdefghi jklmnop
17 0.009 1.129 1.115 1.232 1.655 abcdefghijklmnopq
18 0.009 1.134 1.079 1.263 1.660 abcdefghijklmnopqr
19 0008 1134 1138 1 273 1656 abcdefghijklmnopqrs
20 0.009 1.134 1.123 1.306 1.659 abcdefghijklmnopqrst
21 0.009 1.137 1.124 1.331 1.663 abcdefghijklmnopgrstu
22 0.009 1.150 1.135 1.346 1.677 abcdefghijklmnopgrstuv
23 0.009 1.151 1.137 1.349 1.682 abcdefghijklmnopgrstuvw
24 0.008 1.131 1.120 1.326 1.662 abcdefghi jklmnopgrstuvx
25 0.009 1.134 1.120 1.326 1.677 abcdefghi jklmnopqrstuvwxy
26 0.009 1.136 1.122 1.329 1.689 abcdefghijklmnopgrstuvwxyz
27 0.009 1.147 1.126 1.328 1.706 abcdefghijklmnopqrstuvwxyzA
28 0.009 1.145 1.130 1.329 1.722 abcdefghi jklmnopqrstuvixyzAB
29 0.008 1.155 1.140 4.739 1.758 abcdefghijklmnopqrstuvwxyzABC
30 0.009 1.169 1.147 5.212 1.778 abcdefghijklmnopgrstuvwxyzABCD
31 0.009 1.195 1.173 5.438 1.784 abcdefghijklmnopqrstuvwxyzABCDE
32 0.009 1.200 1.175 5.288 1.782 abcdefghi jklmnopqrstuvwxyzABCDEF
33 0.008 1.201 1.181 5.698 1.797 abcdefghi jklmnopqrstuvwxyzABCDEFG
34 0.009 1.218 1.201 5.676 1.805 abcdefghijklmnopqrstuvwxyzABCDEFGH
35 0.008 1.230 1.215 5.933 1.822 abcdefghi jklmnopqrstuvixyzABCDEFGHT
36 0.009 1.251 1.230 5.795 1.830 abcdefghijklmnopqrstuvwxyzABCDEFGHIJ
37 0.008 1.257 1.234 5.933 1.842 abcdefghijklmnopqrstuvwxyzABCDEFGHIJK
38 0.008 1.273 1.251 5.953 1.849 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKL
39 0.009 1.289 1.260 6.297 1.845 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLM
40 0.009 1.295 1.273 6.005 1.841 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMN
41 0.009 1.312 1.285 6.303 1.843 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNO
42 0.008 1.325 1.309 6.110 1.852 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOP
43 0.009 1.337 1.319 6.672 1.871 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQ
44 0.009 1.330 1.305 6.417 1.838 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQR
45 0.008 1.328 1.303 6.690 1.843 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQRS
46 0.009 1.330 1.310 6.400 1.852 abcdefghi jklmnopqrstuvixyzABCDEFGHI JKLMNOPQRST
47 0.009 1.330 1.312 7.058 1.853 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTU
48 0.008 1.331 1.308 6.736 1.847 abcdefghi jklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUY
49 0.009 1.326 1.305 7.123 1.850 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQRSTUVW
50 0.009 1.331 1.305 6.893 1.848 abcdefghi jklmnopqrstuvwxyzABCDEFGHT JKLMNOPQRSTUVWX

0.009 1.190 1.174 3.366 1.735

Table 11.6 context --jit test.tex with hash<=64

Lua strings 117



right left center edges right left center edges

1 1 40/ 64

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
10 10
11 11
12 12
13 40 / 64 13 40 / 64
14 40 / 64 14 40 / 64
15 40 / 64 15 40 / 64
16 40 / 64 16 40 / 64
17 40 / 64 17 40 / 64
18 40 / 64 18 40 / 64
19 40 / 64 19 40 / 64
20 40 /64 40/ 64 20 40/64 40/ 64
21 40 / 64 21 40 /64 40/ 64
22 40 / 64 22 40 / 64 40 / 64
23 23 40 / 64
24 40 / 64 24 40/64 40/ 64
25 25 40 / 64
26 40/64 40/ 64 40 / 64 26 40/64 40/64 40/64 40/ 64
27 40 / 64 40 / 64 27 40 / 64 40 / 64 40 / 64
28 40/64 40/064 40 / 64 28 40/64 40/64 40/64 40/ 64
29 40/64 40/ 64 40 / 64 29 40/64 40/64 40/ 64
30 40/64 40/ 64 40 / 64 30 40/64 40/64 40/64 40/ 64
31 40/64 40/64 40 / 64 31 40/64 40/64 40/64
32 40/64 40/064 40 / 64 32 40/64 40/64 40/64 40/ 64
33 40/64 40/ 64 40 / 64 33 40/64 40/64 40/64
34 40/64 40/ 64 40 / 64 34 40/64 40/64 40/64 40/ 64
35 40/64 40/64 40/32 40/ 64 35 40/64 40/64 40/64
36 40/64 40/64 40/32 40/ 64 36 40/64 40/64 40/64 40/ 64
37 40/64 40/64 40/32 37 40/64 40/64 40/64 40/32
38 40/64 40/64 40/32 38 40/64 40/64 40/64 40/ 64
39 40/64 40/64 40/32 39 40/64 40/64 40/64 40/32
40 40/64 40/64 40/32 40 40/64 40/64 40/64 40/ 64
41 40/64 40/64 40/32 41 40/64 40/64 40/64
42 40 / 64 40 / 64 40/ 32 42 40 / 64 40 / 64 40 / 64 40 / 64
43 40/64 40/32 43 40/64 40/64 40/ 64
44 40/ 32 44 40 / 64 40 / 64 40 / 64 40 / 64
45 40 / 32 45 40/64 40/64 40/ 64
46 40 / 32 46 40/64 40/64 40/64 40/ 64
47 40/ 32 40/ 32 47 40 / 64 40 / 64 40 / 64
48 40/32 40/32 48 40/64 40/64 40/64 40/ 64
49 40 /32  40/32 49 40/64 40/64 40/ 64
50 40 /32 40/32 50 40/64 40/64 40/64 40/ 64

LuaTgX (size limit 40) LuantTEX (no size limit)

Table 11.7 More than 5% difference between 32 byte or 64 byte hashing.

118 Lua strings



If we replace these * by a number, there are big differences between the engines with
respect to the time needed. This is summarized in the next table.?

Lua 5.2 LuaJIT 2.0 LuaJIT 2.0+5.1

0.096 0.046 0.047 << /D [ * O R /Fit ] /S /GoTo >>
0.054 6.017 0.055 /Subtype /Link /Border [ 0 0 0] /F 4 /A *OR

Especially the second case behaves bad in LuaJIT. Say that a result comes out as:

/Subtype /Link /Border [ 0 0 0 ] /F 4 /A 12 O R
/Subtype /Link /Border [ 0 0 O ] /F 4 /A 123 O R
/Subtype /Link /Border [ 0 0 0 ] /F 4 /A 1234 O R

The Lua]IT hasher (more or less) looks at the first 4, last 4, middle 4 and somewhere
a quarter along the string, and uses these sequences for the calculation, so you can
imagine that there are clashes. The Lua 5.1 hasher runs over part of the string and sees
more of the difference. The 5.2 hasher has a threshold and doesn’t hash at all when
the length exceeds (by default) 40 characters, which is the case with the second string.
Looking at only specific parts of a string is somewhat arbitrary and what works for one
kind of application is not always good for another.

After these tests we decided that it makes sense to replace the LuaJIT hash calculation
by the traditional Lua one (or at least give users a choice at startup. The choice of hash
is a runtime option:

mtxrunjit --script context --jithash=luabl  ......
mtxrunjit --script context --jithash=luajit20 ......

For the moment we default to the traditional Lua 5.1 hashing method. Although it
can behave real bad on some large strings we think that chances are low that this will
happen in practice. An overall good performance on strings like the hyperlink examples
is more important. Using the Lua 5.2 method would be even better but it required a
change in the virtual machine and that is not something we have in mind.

29 The numbers concern 30K hash creations. The time shown is the average over 30 runs.

Lua strings 119



120 Lua strings



12 Properties

12.1 Introduction

Attributes are a nice extension to TgX as they permits us to let information travel with
nodes. Internally they are represented as a linked list that travels with a node. Because
often a sequence of nodes has the same attributes, this mechanism is quite efficient.
Access is relatively fast too. Attributes have anumber and a value (also a number) which
is fine. Of course one could wish for them to be anything, but imagine the amount
of management needed in the engine if that were the case. Not only does saving and
restoring (due to grouping) at the TEX end has no Lua equivalent, an overload of the Lua
registry (the most natural interface for this) is not what we want. Of course it is also not
acceptable that (future) extensions slow down a run. In fact, leaner and meaner should
be the main objective.

At some point I thought that packing crucial information in a node using a bitset would
help to speed up some critical mechanisms (mostly fonts) but although managing some
32 or 64 on—off states is possible in a more closed macro package, in practice it would
lead to conflicts in use. Also, an experimental implementation of this idea was not faster
than using attributes due to the fact that manipulating bits also involves function calls
that deal with setting, resetting, masking and more. It also makes nodes larger and
increases the memory footprint.

So, when I discarded that idea, I moved to another one, which is associating a Lua
table with each node (that makes sense). Again, an implementation where some way a
reference to a table is carried with a node, is non-trivial because it has to go via the Lua
registry and will not be too efficient in terms of speed. Also, when dealing with such
information one wants to stay at the Lua end and not cross the C-boundary too often.

Therefore a different approach was taken which involves a Lua table. The main issue
with carrying information with a node is not to associate that information, but to make
sure that it gets cleaned up when a node is freed and copied when a node is copied. All
nodes that have attributes, also get properties.

12.2 The implementation

The implementation is rather minimalistic. This is because hard codes solutions don’t
tit in the LuaTEX design philosophy. Also, there are many ways to use such a mechanism
so too much hard coded behaviour only complicates usage.

When a node is copied, we also copy the associated property entry. Normally its type
isnil or table. Depending on how you enabled this mechanism, the table copy is
shallow (just a reference to the same table), or we assign en empty table with the original
as metatable index. The second approach as some more overhead.

When a new node is assigned, nothing extra is done with the properties. The overhead
is zero. This means that when you want to assign properties at the Lua end, you also

Properties 121



have to check if a node property already has a table and if not, create one. The same is
true for querying properties: you have to test if there are properties at all.

When you use the “direct’ node model, you can directly access the property table. But,
with direct as well as wrapped nodes, you can also use setters and getters. The property
table has no metatable so you can add your own one for alternative access if needed.
In CoNTEXT you can best stay away from such hacks and use the provided mechanisms
because otherwise you get a performance hit.

12.3 The LUA interface

The interface (in regular nodes as well as direct ones) is quite simple and provides five
functions:

set_properties_mode(boolean,boolean)
flush_properties_table()
get_properties_table()
getproperty(node_id)
setproperty(node_id,value)

By default this mechanism is disabled so that when it’s not used, there is no overhead
involved. With set_properties_mode the first argument determines if you enable or
disable this mechanism. The properties themselves are untouched. When the second
argument is true copied properties create a new table with a metatable pointing to the
original. You can flush all properties with f1ush_properties_table.

You can access and set properties with getproperty and setproperty. Instead you
can also use the table approach, where you can reach the table with get _properties_table.
Keep in mind that the normal and direct calls to this function return a different table.

12.4 A few examples

The following examples use CoNTEXT but apart from the calls to the context name-
space, they are rather generic. We have enabled the property mechanism with:

set_properties_mode(true)
We fill a box:

\newbox\MyPropertyBox

\setbox\MyPropertyBox=\hbox{test}

local list = tex.getbox("MyPropertyBox").list

local function start()
context.starttabulate { "||||" }
context .HL()

end

122 Properties



local function stop()
context.HL()
context.stoptabulate ()
end

local function row(n,p)
context.NC() context(tostring(n==p))
context.NC() context(tostring(n))
context.NC() context(tostring(p))
context.NC() context.NRQ)

end

We will demonstrate the four access models. First regular properties using functions:

for n in node.traverse(list) do
node.setproperty(n,{ vif = n })

end

start ()

for n in node.traverse(list) do
row(n,node.getproperty(n) .vif)

end

stop()

true <node nil < 805343 > 805633 : glyph 256> <node nil < 805343 > 805633 : glyph 256>
true <node 805343 < 805633 > 805337 : glyph 256> <node 805343 < 805633 > 805337 : glyph 256>

true <node 805633 < 805337 > 700091 : glyph 256> <node 805633 < 805337 > 700091 : glyph 256>
true <node 805337 < 700091 > 805331 : kern 1> <node 805337 < 700091 > 805331 : kern 1>
true <node 700091 < 805331 > nil : glyph 256> <node 700091 < 805331 > nil : glyph 256>

We can use a table instead (in fact, we can use both approaches mixed:

local n_properties = node.get_properties_table()

for n in node.traverse(list) do
n_properties[n] = { vit = n }
node.direct.setproperty(n,{ vdf = n })

end

start )

for n in node.traverse(list) do
row(n,n_properties[n].vit)

end

stop()

true <node nil < 805343 > 805633 : glyph 256> <node nil < 805343 > 805633 : glyph 256>
true <node 805343 < 805633 > 805337 : glyph 256> <node 805343 < 805633 > 805337 : glyph 256>
true <node 805633 < 805337 > 700091 : glyph 256> <node 805633 < 805337 > 700091 : glyph 256>
true <node 805337 < 700091 > 805331 : kern 1> <node 805337 < 700091 > 805331 : kern 1>
true <node 700091 < 805331 > nil : glyph 256> <node 700091 < 805331 > nil : glyph 256>

The direct method looks the same, apart from a cast to direct:

for n in node.direct.traverse(node.direct.todirect(list)) do

Properties 123



node.direct.setproperty(n,{ vdf = n })

end

start ()

for n in node.direct.traverse(node.direct.todirect(list)) do
row(n,node.direct.getproperty(n) .vdf)

end

stop()

true 805343 805343
true 805633 805633
true 805337 805337
true 700091 700091
true 805331 805331

Again, we can use the table approach:

local d_properties = node.direct.get_properties_table()

for n in node.direct.traverse(node.direct.todirect(list)) do
d_properties[n] = { vdt = n }

end

start ()

for n in node.direct.traverse(node.direct.todirect(list)) do
row(n,d_properties[n].vdt)

end

stop()

true 805343 805343
true 805633 805633
true 805337 805337
true 700091 700091
true 805331 805331

124 Properties



30

13 Functions

13.1 Introduction

As part of the crited project Luigi and I also tried to identity weak spots in the engine
and although we found some issues not all were dealt with because complicating the
machinery makes no sense. However just like the new properties mechanism pro-
vides a real simple way to associate extra Lua data to a node without bothering about
freeing it when a node is flushed, the next luafunctions mechanism provides an ad-
ditional and fast way to cross the TgX-Lua boundary.

13.2 Callbacks

In LuaTgX we can create more functionality by using Lua which means that we end up
(at least in ConTEXT) with a constant switching between TEX macro expansion and Lua
code interpretation. The magic word in this process is callback and there are two
variants:

o At well defined moments in processing its input and node lists, TEX will check if a
specific callback is defined and if so, it will run that code.

e As part of the input you can have a \directlua command and that one gets ex-
panded and processed. It can print back content into the current input buffer.3

The first type is call a “direct” callback because TgX calls it directly, and the second one
is an ‘indirect’ one (even if the command is \directlua). It has a deferred cousin
\latelua that results in a node being inserted that will become a Lua call during
shipout, when the page is turned into a PpF stream.

A callback of the first category is pretty fast because the code is already translated in Lua
bytecode. Checking if a callback has been assigned at all is fast too. The second variant
is slower because each time the input has to be interpreted and checked on validity.
Then there is of course some overhead in making the call itself.

There is a subtle aspect there. If you have a document that needs say ten calls like:
\directlua{tex.print (" [x]")}

and you have these calls inlined, you end up with ten times conversion into tokens
(TEX’s internal view) and ten times conversion back to a string that gets fed into Lua.
On the other hand,

\def\MyCall{\directlua{tex.print (" [x]")}}

where we call \MyCall ten times is more efficient because we have already tokenized
the \directlua. If we have

Currently this process is somewhat more complex than needed, which is a side effect of supporting
multiple Lua states in the first versions of LuaTEX. We will clean up this mechanism at some point.

Functions 125



foo foo foo \directlua{tex.print("[1]")} ...
bar bar bar \directlua{tex.print("[2]")} ...

It makes sense to wrap this into a definition:
\def\MyCall#i{\directlua{tex.print (" [#1]")}}

and use:

foo foo foo \MyCall{1} bar bar bar \MyCall{1l} ...

Of course this is not unique for \directlua and to be honest, apart from convenience
(read: less input) the gain often can be neglected. Because a macro package wraps
functionality in (indeed) macros we already save us the tokenization step. We can save
some time by wrapping more in a function at the Lua end:

\startluacode

function MyFloat (f)
tex.print(string.format ("%0.5f",£))

end

\stopluacode

\def\MyFloat#1
{\directlua{MyFloat (#1)}}

This is somewhat more efficient than:

\def\MyFloat#1%
{\directlua{tex.print (string.format ("\letterpercentO.5f" ,#1))}}

Of course this is only true when we call this macro a lot of times.

13.3 Shortcuts

When we talk of ‘often” or ‘a lot” we mean many thousands of calls. There are some
places in CoNTEXT where this is indeed the case, for instance when we process large
registers in critical editions: a few hundred pages of references generated in Lua is no
exception there. Think of the following;:

\startluacode

function GetTitle(n)
tex.print(Entries[n].title)

end

\stopluacode

\def\GetTitle#1Y
{\directlua{GetTitle(#1)}}

If we call \GetTitle ourselves it’s the same as the \MyFloat example, but how about
this:

126 Functions



\def\GetTitle#1Y
{{\bf \directlua{GetTitle(#1)3}}}

\startluacode

function GetTitle(n)
tex.print(Entries[n].title)

end

function GetEntry(n)
if Entries[n] then
tex.print ("\\directlua{GetTitle(",n,")}")
—-— some more action
end
end
\stopluacode

Here we have two calls where one is delayed till a later time. This delay results in a
tokenization and transation to Lua so it will cost time. A way out is this:

\def\GetTitle#1Y,
{{\bf \luafunction#1}}

\startluacode
local functions = tex.get_functions_table()

function GetTitle(n)
tex.print(Entries[n].title)
end

function GetEntry(n)
if Entries[n] then
local m = #functions+1
functions[m] = function() GetTitle(n) end
tex.print ("\\GetTitle{",m,"}")
—-— some more action
end
end
\stopluacode

We define a function at the Lua end and just print a macro call. That call itself calls the
defined function using \1uafunction. For a large number of calls this is more efficient
but it will be clear that you need to make sure that used functions are cleaned up. A
simple way is to start again at slot one after (say) 100.000 functions, another method is
to reset used functions and keep counting.

\startluacode
local functions = tex.get_functions_table()

function GetTitle(n)

Functions 127



tex.print (Entries[n].title)
end

function GetEntry(n)
if Entries[n] then
local m = #functions+1

functions[m] = function(slot) -- the slot number is always
GetTitle(n) -- passed as argument so that
functions[slot] = nil -- we can reset easily

end

tex.print ("\\GetTitle{",m,"}")
—— some more action
end
end
\stopluacode

As you can expect, in CoNTEXT users are not expect to deal directly with functions at
all. Already for years you can so this:

\def\GetTitle#1Y
{{\bf#1}}

\startluacode
function GetEntry(n)
if Entries[n] then
context (function() context.GetTitle(Entries[n].title) end)
—-— some more action
end
end
\stopluacode

Upto LuaTgX 0.78 we had a CoNTEXT specific implementation of functions and from
0.79 onwards we use this new mechanism but users won’t see that in practice. In the
cld-mkiv.pdf manual you can find more about accessing CoNTEXT from the Lua end.

Keep in mind that \1luafunction is not that clever: it doesn’t pick up arguments. That
will be part of future more extensive token handling but of course that will then also be
a real slow downer because a mix of TgX tokenization and serialization is subtoptimal
(we already did extensive tests with that).

13.4 Helpers

The above mechanism demands some orchestration in the macro package. For instance
freeing slots should be consistent and therefore user should not mess directly with the
functions table. If you really want to use this feature you can best do this:

\startctxfunction MyFunctionA
context(" A1 ")

128 Functions



\stopctxfunction

\startctxfunctiondefinition MyFunctionB
context(" B2 ")
\stopctxfunctiondefinition

\starttext
\dorecurse{10000}{\ctxfunction{MyFunctionA}} \page
\dorecurse{10000}{\MyFunctionB} \page

\dorecurse{10000}{\ctxlua{context (" C3 ")}} \page
\dorecurse{10000}{\ctxlua{tex.sprint(" D4 ")}} \page
\stoptext

In case you're curious about performance, here are timing. Given that we have 10.000
calls the gain is rather neglectable especially because the whole run takes 2.328 seconds
for 52 processed pages resulting in 22.4 pages per second. The real gain is in more
complex calls with more tokens involved and in CoNTEXT we have some placed where
we run into the hundreds of thousands. A similar situation occurs when your input
comes from databases and is fetched stepwise.

A B C D
0.053 0.044 0.081 0.081

So, we can save 50% runtime but on a simple document like this a few percent is not that
much. Of course many such few percentages can add up, and it’s one of the reasons
why CoNTEXT MKIV is pretty fast in spite of all the switching between TgX and Lua.
One objective is that an average complex document should be processed with a rate of
at least 20 pages per second and in most cases we succeed. This fast function accessing
can of course trigger new features in CoNTEXT, ones we didn’t consider useful because
of overhead.

Keep in mind that in most cases, especially when programming in Lua directly the
context command already does all kind of housekeeping for you. For instance it also
keeps track of so called trial typesetting runs and can inject nodes in the current stream
as well. So, be warned: there is no real need to complicate your code with this kind of
hackery if some high level subsystem provides the functionality already:.

Functions 129



130 Functions



14 LUA in METAPOST

14.1 Introduction

Already for some years I have been wondering how it would be if we could escape to
Lua inside MEetaPosr, or in practice, in mpLiB in LUATEX. The idea is simple: embed Lua
code in a METaPosr file that gets run as soon as it’s seen. In case you wonder why Lua
code makes sense, imagine generating graphics using external data. The capabilities of
Lua to deal with that is more flexible and advanced than in MeraPost. Of course we
could generate a MeraPosr definition of a graphic from data but it often makes more
sense to do the reverse. I finally found time and reason to look into this and in the
following sections I will describe how it’s done.

14.2 The basics

The approach is comparable to LuaTEX’s \directlua. That primitive can be used to
execute Lua code and in combination with tex.print we can pipe strings back into the
TEX input stream. A complication is that we have to be able to operate under different
so called catcode regimes: the meaning of characters can differ per regime. We also
have to deal with line endings in special ways as they relate to paragraphs and such.
In MeraPost we don’t have that complication so getting back input into the MeraPost
input, we can do so with simple strings. For that a mechanism similar to scantokens
can be used. That way we can return anything (including nothing) as long as MeraPosr
can interpret it and as long as it fulfils the expectations.

numeric n ; n := scantokens("123.456") ;
A script is run as follows:
numeric n ; n := runscript("return '123.456'") ;

This primitive doesn’t have the word 1ua inits name so in principle any wrapper around
the library can use it as a hook. In the case of LuATEX the script language is of course
Lua. At the MeraPost end we only expect a string. How that string is constructed is
completely up to the Lua script. In fact, the user is completely free to implement the
runner any way she or he wants, like:

local function scriptrunner(code)
local f = loadstring(code)
if f then
return tostring(f())
else
return ""
end
end

This is hooked into an instance as follows:

Lua in MeTaPost 131



local m = mplib.new {

run_script = scriptrunner,

}

Now, beware, this is not the CoNnTEXT way. We provide print functions and other helpers,
which we will explain in the next section.

14.3 Helpers

After I got this feature up and running I played a bit with possible interfaces at the
CoNTEXT (read: MeTaFUN) end and ended up with a bit more advanced runner where
no return value is used. The runner is wrapped in the 1ua macro.

numeric n ; n := lua("mp.print(12.34567)") ;
draw textext(n) xsized 4cm withcolor maincolor ;

This renders as:

12.34567

In case you wonder how efficient calling Lua is, don’t worry: it’s fast enough, especially
if you consider suboptimal Lua code and the fact that we switch between machineries.

draw image (
lua("statistics.starttiming()") ;
for i=1 upto 10000 : draw
lua("mp.pair (math.random(-200,200) ,math.random(-50,50))") ;
endfor ;
setbounds currentpicture to fullsquare xyscaled (400,100) ;
lua("statistics.stoptiming()") ;
draw textext(lua("mp.print(statistics.elapsedtime())"))
ysized 50 ;
) withcolor maincolor withpen pencircle scaled 1 ;

Here the line:

draw lua("mp.pair(math.random(-200,200) ,math.random(-50,50))") ;
effectively becomes (for instance):

draw scantokens "(25,40)" ;

which in turn becomes:

draw scantokens (25,40) ;

The same happens with this:

132 Lua in MetaPost



31

draw textext(lua("mp.print(statistics.elapsedtime())"))
This becomes for instance:

draw textext(scantokens "1.23")

and therefore:

draw textext(1.23)

We can use mp. print here because the textext macro can deal with numbers. The
following also works:

draw textext(lua("mp.quoted(statistics.elapsedtime())"))
Now we get (in MeTaPost speak):
draw textext(scantokens (ditto & "1.23" & ditto)

Here ditto represents the double quotes that mark a string. Of course, because we
pass the strings directly to scantokens, there are no outer quotes at all, but this is how
it can be simulated. In the end we have:

draw textext("1.23")

What print variant you use, mp . print or mp.quoted, depends on what the expected
code is: an assignment to a numeric can best be a number or an expression resulting in
a number.

This graphic becomes:

The runtime on my current machine is some 0.25 seconds without and 0.12 seconds
with caching. But to be honest, speed is not really a concern here as the amount of
complex MetraPost graphics can be neglected compared to extensive node list manip-
ulation. Generating the graphic with LuantTEX takes 15% less time.®!

The three print command accumulate their arguments:

numeric n ; n := lua("mp.print(1) mp.print('+') mp.print(2)") ;
draw textext(n) xsized 1lcm withcolor maincolor ;

As expected we get:

Processing a small 8 page document like this takes about one second, which includes loading a bunch of
fonts.

Lua in MeTaPost 133



3

Equally valid is:

numeric n ; n := lua("mp.print(1,'+',2)") ;
draw textext(n) xsized 1cm withcolor maincolor ;

This gives the same result:

3

Of course all kind of action can happen between the prints. It is also legal to have noth-
ing returned as could be seen in the 10.000 dot example: there the timer related code re-
turns nothing, so effectively we have scantokens (""). Another helper ismp. quoted,
as in:

draw
textext (lua("mp.quoted('@0.3f'," & decimal n & ")"))
withcolor maincolor ;

This typesets 3.000. Note the @. When no percent character is found in the format
specifier, we assume that an @ is used instead.

But, the real benefit of embedded Lua is when we deal with data that is stored at the
Lua end. First we define a small dataset:

\startluacode
table.save("demo-data.lua",
{
{1,232}, {2,473} {3,313} {4, 21},
{5,2%} {6,372} {7,413 {8,11},
}
)
\stopluacode

There are several ways to deal with this table. I will show clumsy as well as better
looking ways.

lua("MP = { } MP.data = table.load('demo-data.lua')") ;
numeric n ;
lua("mp.print('n := ',\#MP.data)") ;
for i=1 upto n :
drawdot
lua("mp.pair(MP.data[" & decimal i & "])") scaled cm
withpen pencircle scaled 2mm
withcolor maincolor ;
endfor ;

134 Lua in MetaPost



Here we load a Lua table and assign the size to a MeraPost numeric. Next we loop over
the table entries and draw the coordinates.

We will stepwise improve this code. In the previous examples we omitted wrapper
code but here we show it:

\startluacode
MP.data = table.load('demo-data.lua')
function MP.n()
mp.print (#MP.data)
end
function MP.dot (i)
mp.pair(MP.datali])

end
\stopluacode
\startMPcode
numeric n ; n := lua("MP.n(Q)") ;
for i=1 upto n :
drawdot
lua("MP.dot (" & decimal i & ")") scaled cm
withpen pencircle scaled 2mm
withcolor maincolor ;
endfor ;
\stopMPcode

So, we create a few helpers in the MP table. This table is predefined so normally you
don’t need to define it. You may however decide to wipe it clean.

You can decide to hide the data:

\startluacode
local data = { }
function MP.load(name)
data = table.load(name)

Lua in MeTaPost 135



end

function MP.n()
mp.print (#data)

end

function MP.dot (i)
mp.pair(datali])

end

\stopluacode

It is possible to use less Lua, for instance in:

\startluacode

local data = { }

function MP.loaded(name)
data = table.load(name)
mp.print (#data)

end

function MP.dot (i)
mp.pair(datalil)

end
\stopluacode
\startMPcode
for i=1 upto lua("MP.loaded('demo-data.lua')")
drawdot
lua("MP.dot(",i,")") scaled cm
withpen pencircle scaled 4mm
withcolor maincolor ;
endfor ;
\stopMPcode

Here we also omit the decimal because the 1ua macro is clever enough to recognize it
as a number.

By using some MeTraPost magic we can even go a step further in readability:

\startMPcode{doublefun}
lua.MP.load("demo-data.lua")

for i=1 upto lua.MP.n()

drawdot
lua.MP.dot (i) scaled cm

136 Lua in MeraPost



withpen pencircle scaled 4mm
withcolor maincolor ;
endfor ;

for i=1 upto MP.n()
drawdot
MP.dot (i) scaled cm
withpen pencircle scaled 2mm
withcolor white ;
endfor ;
\stopMPcode

Here we demonstrate that it also works well in double mode, which makes much sense
when processing data from other sources. Note how we omit the type lua. prefix: the
MP macro will deal with that.

o o
o o
o O O
o

So in the end we can simplify the code that we started with to:

\startMPcode{doublefun}
for i=1 upto MP.loaded("demo-data.lua")
drawdot
MP.dot (i) scaled cm
withpen pencircle scaled 2mm
withcolor maincolor ;
endfor ;
\stopMPcode

14.4 Access to variables

The question with such mechanisms is always: how far should we go. Although Me-
taPosrt is a macro language, it has properties of procedural languages. It also has more
introspective features at the user end. For instance, one can loop over the resulting
picture and manipulate it. This means that we don’t need full access to MeraPosr inter-
nals. However, it makes sense to provide access to basic variables: numeric, string,
and boolean.

draw textext(lua("mp.quoted('@0.15f',mp.get.numeric('pi')-math.pi)"))
ysized 1cm
withcolor maincolor ;

Lua in MetaPost 137



In double mode you will get zero printed but in scaled mode we definitely get a different
results:

-0.00000634987383856

In the next example we use mp.quoted to make sure that indeed we pass a string.
The textext macro can deal with numbers, but an unquoted yes or no is asking for
problems.

boolean b ; b := true ;

draw textext(lua("mp.quoted(mp.get.boolean('b') and 'yes' or 'mo')"))
ysized 1cm
withcolor maincolor ;

Especially when more text is involved it makes sense to predefine a helper in the MP
namespace, if only because MetaPosr (currently) doesn’t like newlines in the middle of
a string, so a 1ua call has to be on one line.

yes

Here is an example where Lua does something that would be close to impossible, es-
pecially if more complex text is involved.

string s ; s := "TEX" ; % ""

draw textext(lua("mp.quoted(characters.lower(mp.get.string('s')))"))
ysized 1cm
withcolor maincolor ;

As you can see here, the whole repertoire of helper functions can be used in a MeraFun
definition.

TEY

14.5 The library

In ConTEXT we have a dedicated runner, but for the record we mention the low level
constructor:

local m = mplib.new {

script_runner = function(s) return loadstring(s) () end,
script_error function(s) print(s) end,

c

}

An instance (in this case m) has a few extra methods. Instead you can use the helpers in
the library.

138 Lua in MetaPost



m:get_numeric(name) returns a numeric (double)
m:get_boolean(name) returns a boolean (true or false)
m:get_string (name) returns a string

mplib.get_numeric(m,name) returns a numeric (double)
mplib.get_boolean(m,name) returns aboolean (true or false)
mplib.get_string (m,name) returns a string

In ConTEXT the instances are hidden and wrapped in high level macros, so there you
cannot use these commands.

14.6 CONTEXT helpers

The mp namespace provides the following helpers:

print(...) returns one or more values
pair(x,y) pair(t) returns a proper pair
triplet(x,y,z) triplet(t) returns an rGB color
quadruple(w,x,y,z) quadruple(t) returnsan cmyk color

format (fmt,...) returns a formatted string
quoted(fmt,...) quoted(s) returns a (formatted) quoted string
path(t[,connect] [,closel) returns a connected (closed) path

The mp . get namespace provides the following helpers:

numeric(name) gets a numeric from MeraPost
boolean(name) gets a boolean from MeraPosrt
string(name)  gets a string from MeraPost

14.7 Paths

In the meantime we got several questions on the CoNTEXT mailing list about turning
coordinates into paths. Now imagine that we have this dataset:

10 20 20 20 -- sample 1
30 40 40 60
50 10

10 10 20 30 % sample 2
30 50 40 50
50 20

10 20 20 10 # sample 3
30 40 40 20
50 10

In this case I have put the data in a buffer, so that it can be shown here, as well as used
in a demo. Look how we can add comments. The following code converts this into a

Lua in MeTaPost 139



table with three subtables.

\startluacode
MP.myset = mp.dataset(buffers.getcontent("dataset"))
\stopluacode

We use the MP (user) namespace to store the table. Next we turn these subtables into
paths:

\startMPcode
for i=1 upto lua("mp.print(mp.n(MP.myset))")
draw
lua("mp.path(MP.myset[" & decimal i & "]1)")
xysized (HSize,10ExHeight)
withpen pencircle scaled .25ExHeight
withcolor basiccolors[il]/2 ;
endfor ;
\stopMPcode

This gives:

Instead we can fill the path, in which case we will also need to close it. The true argu-
ment deals with that:

\startMPcode
for i=1 upto lua("mp.print(mp.n(MP.myset))")
path p ; p :=
lua("mp.path(MP.myset[" & decimal i & "],true)")
xysized (HSize,10ExHeight) ;
£ill p
withcolor basiccolors[i]/2
withtransparency (1,.5) ;
endfor ;
\stopMPcode

We get:

The following makes more sense:

\startMPcode
for i=1 upto lua("mp.print(mp.n(MP.myset))")

140 Lua in MeraPost



path p ; p :=
lua("mp.path(MP.myset[" & decimal i & "]1)")
xysized (HSize,10ExHeight) ;
p :=
(xpart llcorner boundingbox p,0) --
p —-
(xpart lrcorner boundingbox p,0) --
cycle ;
£ill p
withcolor basiccolors[i]/2
withtransparency (1,.25) ;
endfor ;
\stopMPcode

So this gives:

This (area) fill is so common, that we have a helper for it:

\startMPcode
for i=1 upto lua("mp.size(MP.myset)")
fill area
lua("mp.path(MP.myset[" & decimal i & "])")
xysized (HSize,b5ExHeight)
withcolor basiccolors([i]/2
withtransparency (2,.25) ;
endfor ;
\stopMPcode

So this gives:

A

This snippet of MeTaPost code still looks kind of horrible, so how can we make it look
better? Here is an attempt. First we define a bit more Lua:

\startluacode
local data = mp.dataset(buffers.getcontent("dataset"))

MP.dataset = {

Line = function(n) mp.path(datal[n]) end,
Size = function() mp.size(data) end,
}
\stopluacode

Lua in MetaPost 141



We can now make the MeraPost look more natural. Of course, this is possible because
in MetaFun the 1ua macro does some extra work.

\startMPcode
for i=1 upto lua.MP.dataset.Size()
path p ; p :=
lua.MP.dataset.Line (i)
xysized (HSize,20ExHeight) ;
draw
p
withpen pencircle scaled .25ExHeight
withcolor basiccolors[i]/2 ;
drawpoints
p
withpen pencircle scaled ExHeight
withcolor .b5white ;
endfor ;
\stopMPcode

As expected, we get the desired result:

Once we start making things look nicer and more convenient, we quickly end up with
helpers like those in the next example. First we save some demo data in files:

\startluacode
io.savedata("foo.tmp","10 20 20 20 30 40 40 60 50 10")
io.savedata("bar.tmp","10 10 20 30 30 50 40 50 50 20")
\stopluacode

We load the data in datasets:

\startMPcode
lua.mp.datasets.load("foo","foo.tmp") ;
lua.mp.datasets.load("bar","bar.tmp") ;
fill area
lua.mp.datasets.foo.Line()
xysized (HSize/2-EmWidth,10ExHeight)
withpen pencircle scaled .25ExHeight
withcolor green/2 ;

fill area
lua.mp.datasets.bar.Line()

142 Lua in MeraPost



xysized (HSize/2-EmWidth,10ExHeight)
shifted (HSize/2+EmWidth,O0)
withpen pencircle scaled .25ExHeight
withcolor red/2 ;

\stopMPcode

Because the datasets are stored by name, we can use them without worrying about
them being forgotten:

If no tag is given, the filename (without suffix) is used as a tag, so the following is valid:

\startMPcode
lua.mp.datasets.load("foo.tmp") ;
lua.mp.datasets.load("bar.tmp")

\stopMPcode

The following methods are defined for a dataset:

method usage

Size the number of subsets in a dataset

Line the joined pairs in a dataset making a non-closed path

Data the table containing the data (in subsets, so there is always at least one sub-
set)

Due to limitations in METAPOST suffix handling the methods start with an uppercase character.

14.8 Remark

The features described here are currently still experimental but the interface will not
change. There might be a few more accessors and for sure more Lua helpers will be
provided. As usual I need some time to play with it before I make up my mind. It is
also possible to optimize the MeraPost—Lua script call a bit, but I might do that later.

When we played with this interface we ran into problems with loop variables and macro
arguments. These are internally kind of anonymous. Take this:

for i=1 upto 100 : draw(i,i) endfor ;

The i is not really a variable with name i but becomes an object (capsule) when the
condition is scanned, and a reference to that object when the body is scanned. The
body of the for loop gets expanded for each step, but at that time there is no longer a
variable i. The same is true for variables in:

def foo(expr x, y, delta) = draw (x+delta,y+delta) enddef ;

Lua in MeTaPost 143



We are still trying to get this right with the Lua interface. Interesting is that when we
were exploring this, we ran into quite some cases where we could make MeraPost abort
due some memory or stack overflow. Some are just bugs in the new code (due to the
new number model) while others come with the design of the system: border cases that
never seem to happen in interactive use while the library use assumes no interaction in
case of errors.

In ConTEXT there are more features and helpers than shown here but these are dis-
cussed in the MeraFun manual.

144 Lua in MetaPost



32

15 LUATEX 0.79

15.1 Introduction

To some it might look as if not much has been done in LuATEX development but this
is not true. First of all, the 2013 versions (0.75-0.77) are quite stable and can be used
for production so there is not much buzz about new things. CoNTEXT users normally
won't even notice changes because most is encapsulated in functionality that itself won’t
change. The binaries on the contextgarden.net are always the latest so an update
results in binaries that are in sync with the Lua and TEX code. Okay, behaviour might
become better but that could also be the side effect of better coding. Of course some
more fundamental changes can result in temporary bugs but those are normally easy
to solve.

Here I will only mention the most important work done. I'll leave out the technical
details as they can be found in the manual and in articles that were written during
development. The version discussed is 0.79.

15.2 Speed

One of the things we spent a lot of time on is speed. This is of course of more importance
for a system like CoNTEXT that can spend more than half its time in Lua, but eventually
we all benefit from it. For the average user it doesn’t matter much if a run takes a few
seconds but in automated workflows these accumulate and if a process has to produce
5 documents of 20 pages (each demanding a few runs) or a few documents of several
hundreds of pages, it might make a difference. In the CritEp project we aim for com-
plex documents produced from xmL at a rate of 20 pages per second, at least for stock
LuaTEX.? In an edit-preview cycle it feels better if we don’t use more than half a second
for a couple of pages: loading the TEX format, initializing the Lua modules, loading
fonts, typesetting and producing a proper por file. We also want to be prepared for the
ultra portable computers where multiple cores compensate the lower frequency, which
harms TEX as sequential processor using one core only.

An important aspect of speedup is that it must not obscure the code. This is why the
easiest way to achieve it is to use a faster variant of Lua, and LuaJIT with its faster virtual
machine, is a solution for that. We are aware of the fact that processors not necessarily
become faster, but that on the other hand memory becomes larger. Disk speed also got
better with the arrival of flash based storage. Because LuATEX should run smoothly on
future portable devices, the more we can gain now, the better it gets in the future. A
decent basic performance is possible and we don’t have to focus too much on memory
and disk access and mostly need to keep an eye on basic cpu cycles. Although we have
some ideas about improving performance, tests demonstrate that LuaATEX is not doing

This might look slow but a lot is happening there. A simple 100 page document with one word per page
processes at more that 500 pages per second but this is hard to match with more realistic documents.
When processing data from bases using the cLp interface getting 50 pages per seconds is no problem.

LuaTgX 0.79 145



that bad and we don’t have to change it’s internals. In fact, if we do it might as well
result in a drastic slowdown!

One interesting performance factor is console output. Because TEX outputs immedi-
ately with hardly any buffering, it depends a lot on the speed of console output. This
itself depends on what console is used. Unix consoles normally have some buffering
and refresh delay built in. There the speed depends on what fonts are used and to
what extend the output gets interpreted (escape sequences are an example). I've run
into cases where a run took seconds more because of a bad choice of fonts. On Win-
pows it’s more complicated since there the standard console (like TgX) is unbuffered.
The good news is that there are several alternatives that perform quite well, like con-
sole2 and conemu. These alternatives buffer output and have refresh delays. But still,
on a very high res screen, with a large console window logging has impact. Interesting
is that when I run from the editor (SciTE) output is pretty fast, so normally I never no-
tice much of a slowdown. Of course these kind of performance issues can hit you more
when you work in a remote terminal.

The reason why I mention this is that in order to provide a user feedback about issues,
there has to be some logging and depending on the kind of use, more or less is needed.
This means that on the CoNTEXT mailing list we sometimes get complaints about the
amount of logging. Itis for this reason that much logging is optional and all logging can
be disabled as well. Because we go through Lua we have some control over efficiency
too. In the current LuATEX release most logging can now be intercepted, including error
messages.

Talking of a slowdown, in the CriTED project we have to deal with real large indices
(tens of thousands of entries) and we found out that in the case of interactive variants
(register entry to text and back) the use of LuaiiTTEX could bring down a run to a grind-
ing halt. In the end, after much testing we figured out that a suboptimal string hashing
function was the culprit and we did extensive tests with both the LuaJIT, Lua 5.1 and
Lua 5.2 variant. We ended up by replacing the LuaJIT hash function by the the Lua
5.1 one which is a relative easy operation. Because LuaJIT can address less memory
than regular Lua it will always be a matter of testing if LuanirTEX can be used instead
of LuaTgX. Standard document processing (reports and such) is normally no problem
but processing large amounts of data from databases can be an issue.

In the process of cleaning up the code base for sure we will also find ways to make
things run even smoother. But, in any case, version 0.80 is already a good benchmark
for what can be achieved.

15.3 Nodes

One of the bottlenecks in the hybrid approach is crossing the so called C boundary.
This is not really a bottleneck, unless we're talking of many millions of function calls.
In practice this only happens in for instance more extreme font handling (Devanagari or
sometimes Arabic). If performance is really an issue one can fallback on a more direct
node access model. Of course the overhead of access should be compared to other
related activities: one can gain .25 seconds on a run in using the direct access model,

146 LuaTgX 0.79



but if the whole runs takes 25 seconds, it can be neglected. If the price paid for it is
less readable code it should only be done deep down a macro package where no user
even sees the code. We use this access model in the CoNTEXT core modules and so far
it looks quite okay, especially for more extensive manipulations. The gain in speed is
quite noticeable if you use the more advanced features of CoNTEXT.

There can be some changes in the node model but not that drastic as the current model is
quite ok and also stays close to original TEX so that existing documentation still applies.
One of the changes will be that glue spec (sub)nodes will disappear and glue nodes
will carry that information. Direction whatsits will become first class nodes as they are
part of the concept (whatsits normally relate to extensions) and the same might happen
with image nodes. As a side effect we can restructure the code so that it becomes more
readable. Some experimental pDFTEX functionality will be removed as it can be done
better with callbacks.

15.4 The parbuilder and HZ

As we started from ppFTEX we inherit also its experimental code and character. One of
the objectives is to separate font- and backend as good as possible. We have already
achieved a lot and apart from bringing consistency in the code, the biggest change
has been a partial rewrite of the hz code, especially the way fonts are managed. In-
stead of making copies of fonts with different properties, we now carry information in
the relevant nodes. The backend code already got away from multiple fonts by using
transformation of the base font instead of additional font instances, so this was a nat-
ural adaptation. This was actually triggered by the fact that a Lua based par builder
demonstrated that this made sense. The new approach uses less memory and is a bit
faster (at least in theory).

In callbacks it makes life easier when a node list has a predictable structure. For in-
stance, the result of a paragraph broken into lines still has discretionary nodes. Is that
really needed? Lines can have left- or rightskip nodes, depending on the fact if they
were set. Math nodes can disappear as part of a cleanup in the line break code, but this
is unfortunate when one expects them to be somewhere in the list in a callback. All this
will be made consistent. These are issues we will look into on the way to version 1.0.

I occasionally play with the Lua based par builder and it is quite compatible even if we
take the floating point Lua aspect into account. However when using hz the outcome is
different: sometimes better, sometimes worse. Personally I don't care too much as long
as it’s consistent. Features like hz are for special cases anyway and can never be stable
over years if only because fonts evolve. And we’re talking of bordercase typesetting:
narrow columns that no matter what method is used will never look okay.*

15.5 The backend

The separation of front- and backend is more a pet project. There is some experimental
code that will get removed or integrated. We try to make the backend consistent from

33 Some people don't like larger spaces, others don't like stretched glyphs.

LuaTgX 0.79 147



the TgX as well as Lua end and some is reflected in additional features and callbacks.

Some of the variables that can be set (the Lua counterparts of the \pdf.. token reg-
isters at the TgX end) are now consistent with each other and avoid going via pseudo
tokenization. Typical aspects of a backend that only a few users will notice but never-
theless needed work.

The merge of engines also resulted in inconsistencies in function names, like using pdf _
in function names where nothing PDF is involved.

15.6 Backlinks

In callbacks we mostly deal with node lists. At the TEX end of course we also have these
lists but there it is quite clear what gets done with them. This means that there is no
need for double linked lists. It also means that what is known as the head of a list can
in fact be in the middle. The for TEX characteristic nesting model has resulted in stacks
and current pointers. The code uses so called temp nodes to point at the head node.

As a consequence in LuaTgX, where we present a double linked list, before the current
version one could run into cases where for instance a head node had a prev pointer,
even one that made no sense. As said, no big deal in TgX but in the hands of a user
who manipulates the node list it can be dramatic. The current version has cleaned
head nodes as well as consistent backlinks, but of course we keep the internals mostly
unchanged because we stay close to the Knuthian original when possible.3*

15.7 Properties

Sometimes you want to associate additional information to a node. A natural way to do
this is attributes. These can be set at the TEX and Lua end and accessed at the Lua end.
At the Lua end one can have tables with nodes as indices and store extra information
but that has the disadvantage that one has no clue if such information is current: nodes
come and go and are recycled.

For this reason we now have a global properties table where each allocated node can
have a table with whatever information users might like to store. This itself is not spe-
cial, but the nice thing is that when a node is freed, that information is also freed. So,
you cannot run into old data. When nodes are copied its properties are also copied. The
overhead, when not used, is close to zero, which is always an objective when extending
the core engine.

Of course this model demands that macro package somehow controls consistent use
but that is not different from what already has to be done. Also, simple extensions like
this avoid hard codes solutions, which is also something we want to avoid.

34 Even with extensions the original documentation still covers most of what happens.

148 LuaTgX 0.79



15.8 LUA calls

We have so called user nodes that can carry a number, string, token list or node list. We
now have added Lua to this repertoire. In fact, we now could use only a Lua variable
and we might have done so in retrospect, but for the moment we we stick to the current
model of several basic types. The Lua variable can be anything and it is up to the user
(in some callback) to deal with them.

User nodes are not to be confused with late Lua nodes. You can store a function call in
a user node but that’s about it. You can at a later moment decide to call that function
but it’s still an explicit action. The value of a late Lua node on the other hand is dealt
with automatically during shipout. When the value is a string it gets interpreted as Lua,
but new is that when the value is a function it will get called. At that moment we have
access to some of the current backend properties, like locations.

15.9 Artefacts

Because LuaTEX took code from ppFIEX, that is built upon e-TgX, which in turn is an
extension to TEX, and OMEGa, that also extends TEX, there is code that no longer makes
sense for us. Combine that with the fact that some code carries signatures of translated
PascaL to C, we have some cleanup to do as follow up on the not to be underestimated
move to C. This is an ongoing process but also fun doing. Luigi and I spend many
hours exploring venues and have interesting Skype sessions that can easily sidetrack,
and with Taco getting more time for LuaATEX we expect to get most of our (still growing)
todo list done.

Because LuaTgX started out as an experiment, there is some old code around. For in-
stance, we used to have multiple instances and this still shows in some places. We can
simplify the Lua to TEX interface a bit and clean up the Lua global state handling, but
we're not in a big hurry with this. Experiments have been done with some extensions
to the writer code but they are hold back to after the cleanup.

In a similar fashion we have sped up the way Lua keyword and values get resolved. Al-
ready early in the development we did this for critical code like passing Lua font tables
to TgX, followed by accessing nodes, but now we have done that for most code. There
is still some to do but it has the side effect of not only consistency but also of helping
to document the interface. Of course we learn a lot about the Lua internals too. The C
macro system is of great help here, although the mentioned pascal conversion (web2c)
and merged engines have resulted in some inconsistency that needs to be cleaned up
before we start documenting more of the internals (another subproject we want to finish
before retirement).

15.10 Callbacks

There are a few more callbacks and most of them come from the tracker. The backend
now has page related callbacks, the Lua error handler can be intercepted. Error mes-
sages that consist of multiple pieces are handled better too. When a file is opened and

LuaTgX 0.79 149



closed a callback is now possible. Technically we could have combined this with the
already present callbacks but as in TEX synchronization matters these new callbacks
relate to current message callbacks that show [], {}, <>and/or <<>> fenced filenames,
where the later were introduced in successive backend code.

15.11 LUA

We currently use Lua 5.2 but a next version will show up soon. Because Lua 5.3 intro-
duces a hybrid number model, this will be one of the next things to play with. It could
work out well, because TgX is internally integer based (scaled points) but you never
know. It could be that we need to check existing code for serialization and printing
issues but normally that will not lead to compatibility issues. We could even decide to
stick to Lua 5.2 or at least wait till all has stabilized. There is some basic support for ute
in 5.3 but in CoNTEXT we don’t depend on that. In practice hardly any processing takes
place that assumes that utr is more than a sequence of bytes and Lua can handle bytes
quite well.

15.12 CONTEXT

Of course the development of LuaTEX has consequences for CoNTEXtT. For instance,
existing code is used to test alternative solutions and sometimes these make it into the
core. Some new features are used immediately, like the more consistent control over
PDF properties, but others have to wait till the new binary is more widespread.®

Some of the improvement in the code base directly relate to CoNTEXT activities. For
instance the CritED project (complex critical editions) uncovered some hashing issues
with LuaJIT that have been taken care of now. The (small) additions to the ppr backend
resulted in a partial cleanup of relatively old CoNTEXT backend code.

Although some more complex mechanisms, like multi-columns are being reworked,
it is still needed to open up a bit more of the TEX internals, so we have some work to
do. As usual, version 0.80 doesn’t mean that only 0.20 has to be done to get to 1.00, as
development is not a linear process. The jump from 0.77 to 0.79 for instance involved
a lot of work (exploration as well as testing). But as long as it’s fun to do, time doesn’t
matter much. As we’ve said before: we’re in no hurry.

35 Normally dissemination is rather fast because the contextgarden provides recent binaries. The new win-
dows binaries often show up within hours after the repository has been updated.

150 LuaTEX 0.79



