PROGRAMMING

the way ConTgXt is set up



Levels

When you look at ConTgXt bottom—up (engine—interface) you will notice:

. primitives: this is what the engine comes with

. infrastructure: basic management of data structures

. helpers: macros that hide complexity

. subsystems: collections of macros that implement functionality
. mechanisms: these combine various subsystems

. modules: extra functionality (uses 1-5)

. styles: handling sources and layout (uses 4—6)

Users normally see ConTgXt top—down (usage—hacking).




Styles

These are prebuilt solutions for common as well as rare situations.
The system comes with some styles: the s-x* files.

Right from the start the idea was that you get some reasonable default.
And if you want more you stepwise define your style as you go.

It really is part of the game: exploration.

Solving your problem is a nice challenge.

If you want a completely predefined setup, shop somewhere else.




Modules

A lot of functionality is built in.
This helps to keep the system consistent.
We could cheat and ship thousands of few—liner styles but don't do that.

There are a few mechanisms that don't really fit into the core, so these are implemented as
modules that do fit into the interface: the m-x and x - x files.

Users can build and share their solutions which has resulted in some third party modules: the
t-x files.

For (a few, often old) private files I use p-* name scheme.




Mechanisms

« These are combinations of subsystems but often they cannot really be distinguished.

« Examples are notes, that combine notations, lists, references, descriptions etc.




Subsystems

This is what users see and can configure

Most are (conceptually) rather old but evolved over time. There are no fundamental differences
between MKIV and LMTX, but the later is hopefully a bit cleaner.

Examples are fonts, languages, color, structure (sectioning, lists, constructions, itemgroups,
references), spacing, graphics, bibliographies, positioning, numbering and layout.

More hidden are the backend, export and xml interfaces.
Some have subsystems themselves, like widgets that relate to a specific backend.

There are often dependencies between subsystems which makes that it's not really a hierarchy.
A more strict separation would demand much more overhead.




Helpers

These provide basic programming help.
Examples are macros for comparing things, loops, list processing, argument handling.
But more abstract box manipulations also fits in here.

Some subsystems, like xml and bibliographies provide more specific low level helpers.




Infrastructure

The engine provides counters, dimension and other registers that need to be managed in order
to avoid clashes in usage.

Many of the helpers, subsystems and mechanisms fall back on common rather low level func-
tions (Lua) and macros (using primitives).




Primitives

This is what the engine provides: the built-in commands and features.

In addition to the visible primitives there are Lua interfaces and these permit adding extra prim-
itives.

In LuaMetaTgX we have the core TgX set but a few were dropped because we don't have a backend
and a different io subsystem (so they have to be emulated).

We also have some of the e-TgX primitives and very few of the pdf TgX ones but I now consider
for instance expansion and protrusion extensions to be kind of e-TgX.

There are additional LuaTgX primitives but some were dropped, again because of the backend,
so we emulate some, and also because some were experimental.

There are quite some new primitives and existing mechanisms have been extended, cleaned
up and (hopefully) improved.




The shift

There have always been complaints about TgX as a language (what makes me wonder why those
who complain use it.)

Although there are some extensions to the language in ¢-TgX, follow-ups have not really suc-
ceeded in this area.

At some point I decided that code in the categories 1-4 cold benefit from extensions.
That also meant that we use less of the low helpers. It makes the code look a bit more TgX.
It also means less clutter, in code as well in tracing. Often the code becomes simpler too.
The idea is that TEX becomes a bit more a programming language.

Of course it takes away the “Watch me, I can do real dirty TgX hacking!” brawling.

It also can take away some of the complaints.

And it definitely adds some fun.

During the week we show some of the implementation (in Visual Studio) and examples of applications. We also
write a small extension (the dk unit)




