
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

alignments

1

Introduction

Contents

1 Introduction 1

2 Between the lines 3

3 Pre-, inter- and post-tab skips 5

4 Cell widths 9

5 Plugins 10

6 Pitfalls and tricks 13

7 Rows 15

8 Templates 18

9 Pitfalls 19

10 Remark 21

1 Introduction

TEX has a couple of subsystems and alignments is one of them. This mechanism is used

to construct tables or alike. Because alignments use low level primitives to set up and

construct a table, and because such a setup can be rather extensive, in most cases users

will rely on macros that hide this.

\halign {

\alignmark\hss \aligntab

\hss\alignmark\hss \aligntab

\hss\alignmark \cr

1.1 \aligntab 2,2 \aligntab 3=3 \cr

11.11 \aligntab 22,22 \aligntab 33=33 \cr

111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

That one doesn't look too complex and comes out as:

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

This is how the previous code comes out when we use one of the ConTEXt table mecha­

nism.

\starttabulate[|l|c|r|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC \NR

\NC 11.11 \NC 22,22 \NC 33=33 \NC \NR

2

Introduction

\NC 111.111 \NC 222,222 \NC 333=333 \NC \NR

\stoptabulate

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

That one looks a bit different with respect to spaces, so let's go back to the low level

variant:

\halign {

\alignmark\hss \aligntab

\hss\alignmark\hss \aligntab

\hss\alignmark \cr

1.1\aligntab 2,2\aligntab 3=3\cr

11.11\aligntab 22,22\aligntab 33=33\cr

111.111\aligntab 222,222\aligntab 333=333\cr

}

Here we don't have spaces in the content part and therefore also no spaces in the result:

1.1 2,2 3=3

11.11 22,22 33=33

111.111222,222333=333

You can automate dealing with unwanted spacing:

\halign {

\ignorespaces\alignmark\unskip\hss \aligntab

\hss\ignorespaces\alignmark\unskip\hss \aligntab

\hss\ignorespaces\alignmark\unskip \cr

1.1 \aligntab 2,2 \aligntab 3=3 \cr

11.11 \aligntab 22,22 \aligntab 33=33 \cr

111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

We get:

1.1 2,2 3=3

11.11 22,22 33=33

111.111222,222333=333

By moving the space skipping and cleanup to the so called preamble we don't need to

deal with it in the content part. We can also deal with inter-column spacing there:

3

Between the lines

\halign {

\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip \tabskip 0pt \cr

1.1 \aligntab 2,2 \aligntab 3=3 \cr

11.11 \aligntab 22,22 \aligntab 33=33 \cr

111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

If for the moment we forget about spanning columns (\span) and locally ignoring pre­

amble entries (\omit) these basic commands are not that complex to deal with. Here

we use \alignmark but that is just a primitive that we use instead of # while \aligntab

is the same as &, but using the characters instead also assumes that they have the cat­

code that relates to a parameter and alignment tab (and in ConTEXt that is not the case).

The TEXbook has plenty alignment examples so if you really want to learn about them,

consult that must-have-book.

2 Between the lines

The individual rows of a horizontal alignment are treated as lines. This means that, as

we see in the previous section, the interline spacing is okay. However, that also means

that when we mix the lines with rules, the normal TEX habits kick in. Take this:

\halign {

\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip \tabskip 0pt \cr

\noalign{\hrule}

1.1 \aligntab 2,2 \aligntab 3=3 \cr

\noalign{\hrule}

11.11 \aligntab 22,22 \aligntab 33=33 \cr

\noalign{\hrule}

111.111 \aligntab 222,222 \aligntab 333=333 \cr

\noalign{\hrule}

}

4

Between the lines

The result doesn't look pretty and actually, when you see documents produced by TEX

using alignments you should not be surprised to notice rather ugly spacing. The user

(or the macropackage) should deal with that explicitly, and this is not always the case.

1.1 2,2 3=3
11.11 22,22 33=33
111.111 222,222 333=333

The solution is often easy:

\halign {

\ignorespaces\strut\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\strut\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\strut\alignmark\unskip \tabskip 0pt \cr

\noalign{\hrule}

1.1 \aligntab 2,2 \aligntab 3=3 \cr

\noalign{\hrule}

11.11 \aligntab 22,22 \aligntab 33=33 \cr

\noalign{\hrule}

111.111 \aligntab 222,222 \aligntab 333=333 \cr

\noalign{\hrule}

}

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

The user will not notice it but alignments put some pressure on the general TEX scan­

ner. Actually, the scanner is either scanning an alignment or it expects regular text (in­

cluding math). When you look at the previous example you see \noalign. When the

preamble is read, TEX will pick up rows till it finds the final brace. Each row is added

to a temporary list and the \noalign will enter a mode where other stuff gets added to

that list. It all involves subtle look ahead but with minimal overhead. When the whole

alignment is collected a final pass over that list will package the cells and rows (lines)

in the appropriate way using information collected (like the maximum width of a cell

and width of the current cell. It will also deal with spanning cells then.

So let's summarize what happens:

1. scan the preamble that defines the cells (where the last one is repeated when needed)

2. check for \cr, \noalign or a right brace; when a row is entered scan for cells in

parallel the preamble so that cell specifications can be applied (then start again)

3. package the preamble based on information with regards to the cells in a column

5

Pre-, inter- and post-tab skips

4. apply the preamble packaging information to the columns and also deal with pending

cell spans

5. flush the result to the current list, unless packages in a box a \halign is seen as

paragraph and rows as lines (such a table can split)

The second (repeated) step is complicated by the fact that the scanner has to look

ahead for a \noalign, \cr, \omit or \span and when doing that it has to expand what

comes. This can give side effects and often results in obscure error messages. When

for instance an \if is seen and expanded, the wrong branch can be entered. And when

you use protected macros embedded alignment commands are not seen at all; of course

they still need to produce valid operations in the current context.

All these side effects are to be handled in a macro package when it wraps alignments

in a high level interface and ConTEXt does that for you. But because the code doesn't

always look pretty then, in LuaMetaTEX the alignment mechanism has been extended a

bit over time.

Nesting \noalign is normally not permitted (but one can redefine this primitive such

that a macro package nevertheless handles it). The first extension permits nested usage

of \noalign. This has resulted of a little reorganization of the code. A next extension

showed up when overload protection was introduced and extra prefixes were added.

We can signal the scanner that a macro is actually a \noalign variant:1

\noaligned\protected\def\InBetween{\noalign{...}}

Here the \InBetween macro will get the same treatment as \noalign and it will not

trigger an error. This extension resulted in a second bit of reorganization (think of

internal command codes and such) but still the original processing of alignments was

there.

A third overhaul of the code actually did lead to some adaptations in the way alignments

are constructed so let's move on to that.

3 Pre-, inter- and post-tab skips

The basic structure of a preamble and row is actually not that complex: it is a mix of

tab skip glue and cells (that are just boxes):

\tabskip 10pt

1 One can argue for using the name \peekaligned because in the meantime other alignment primitives also

can use this property.

6

Pre-, inter- and post-tab skips

\halign {

\strut\alignmark\tabskip 12pt\aligntab

\strut\alignmark\tabskip 14pt\aligntab

\strut\alignmark\tabskip 16pt\cr

\noalign{\hrule}

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

\noalign{\hrule}

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

\noalign{\hrule}

}

The tab skips are set in advance and apply to the next cell (or after the last one).

TB:10.000cellSP:3.4971.1TB:12.000cellSP:3.4971.2TB:14.000 cellSP:3.4971.3TB:16.000

TB:10.000cellSP:3.4972.1TB:12.000cellSP:3.4972.2TB:14.000 cellSP:3.4972.3TB:16.000

In the ConTEXt table mechanisms the value of \tabskip is zero in most cases. As in:

\tabskip 0pt

\halign {

\strut\alignmark\aligntab

\strut\alignmark\aligntab

\strut\alignmark\cr

\noalign{\hrule}

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

\noalign{\hrule}

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

\noalign{\hrule}

}

When these ships are zero, they still show up in the end:

7

Pre-, inter- and post-tab skips

cellSP:3.4971.1cellSP:3.4971.2cellSP:3.4971.3

cellSP:3.4972.1cellSP:3.4972.2cellSP:3.4972.3
Normally, in order to achieve certain effects there will be more align entries in the

preamble than cells in the table, for instance because you want vertical lines between

cells. When these are not used, you can get quite a bit of empty boxes and zero skips.

Now, of course this is seldom a problem, but when you have a test document where you

want to show font properties in a table and that font supports a script with some ten

thousand glyphs, you can imagine that it accumulates and in LuaTEX (and LuaMetaTEX)

nodes are larger so it is one of these cases where in ConTEXt we get messages on the

console that node memory is bumped.2

After playing a bit with stripping zero tab skips I found that the code would not really

benefit from such a feature: lots of extra tests made it quite ugly. As a result a first

alternative was to just strip zero skips before an alignment got flushed. At least we're

then a bit leaner in the processes that come after it. This feature is now available as

one of the normalizer bits.

But, as we moved on, a more natural approach was to keep the skips in the preamble,

because that is where a guaranteed alternating skip/box is assumed. It also makes that

the original documentation is still valid. However, in the rows construction we can be

lean. This is driven by a keyword to \halign:

\tabskip 0pt

\halign noskips {

\strut\alignmark\aligntab

\strut\alignmark\aligntab

\strut\alignmark\cr

\noalign{\hrule}

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

\noalign{\hrule}

2 I suppose it was a coincidence that a few weeks after these features came available a user consulted the

mailing list about a few thousand page table that made the engine run out of memory, something that could

be cured by enabling these new features.

8

Pre-, inter- and post-tab skips

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

\noalign{\hrule}

}

No zero tab skips show up here:

cellSP:3.4971.1cellSP:3.4971.2cellSP:3.4971.3

cellSP:3.4972.1cellSP:3.4972.2cellSP:3.4972.3
When playing with all this the LuaMetaTEX engine also got a tracing option for align­

ments. We already had one that showed some of the \noalign side effects, but showing

the preamble was not yet there. This is what \tracingalignments = 2 results in:

<preamble>

\glue[ignored][...] 0.0pt

\alignrecord

..{\strut }

..<content>

..{\endtemplate }

\glue[ignored][...] 0.0pt

\alignrecord

..{\strut }

..<content>

..{\endtemplate }

\glue[ignored][...] 0.0pt

\alignrecord

..{\strut }

..<content>

..{\endtemplate }

\glue[ignored][...] 0.0pt

The ignored subtype is (currently) only used for these alignment tab skips and it trig­

gers a check later on when the rows are constructed. The <content> is what get in­

jected in the cell (represented by \alignmark). The pseudo primitives are internal and

not public.

9

Cell widths

4 Cell widths

Imagine this:

\halign {

x\hbox to 3cm{\strut \alignmark\hss}\aligntab

x\hbox to 3cm{\strut\hss\alignmark\hss}\aligntab

x\hbox to 3cm{\strut\hss\alignmark }\cr

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

}

which renders as:

xcell 1.1H__H__ x cell 1.2H__H__ x cell 1.3H__H__H__

xcell 2.1H__H__ x cell 2.2H__H__ x cell 2.3H__H__H____VH__H____VH__

A reason to have boxes here is that it enforces a cell width but that is done at the cost

of an extra wrapper. In LuaMetaTEX the hlist nodes are rather large because we have

more options than in original TEX, for instance offsets and orientation. In a table with

10K rows of 4 cells yet get 40K extra hlist nodes allocated. Now, one can argue that

we have plenty of memory but being lazy is not really a sign of proper programming.

\halign {

x\tabsize 3cm\strut \alignmark\hss\aligntab

x\tabsize 3cm\strut\hss\alignmark\aligntab

x\tabsize 3cm\strut\hss\alignmark\hss\cr

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

}

If you look carefully you will see that this time we don't have the embedded boxes:

xcell 1.1H__ x cell 1.2H__ x cell 1.3H__H__

xcell 2.1H__ x cell 2.2H__ x cell 2.3H__H____VH__H____VH__

So, both the sparse skip and new \tabsize feature help to make these extreme tables

(spanning hundreds of pages) not consume irrelevant memory and also make that later

on we don't have to consult useless nodes.

10

Plugins

5 Plugins

Yet another LuaMetaTEX extension is a callback that kicks in between the preamble pre­

roll and finalizing the alignment. Initially as test and demonstration a basic character

alignment feature was written but that works so well that in some places it can replace

(or compliment) the already existing features in the ConTEXt table mechanisms.

\starttabulate[|lG{.}|cG{,}|rG{=}|cG{x}|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC a 0xFF \NC \NR

\NC 11.11 \NC 22,22 \NC 33=33 \NC b 0xFFF \NC \NR

\NC 111.111 \NC 222,222 \NC 333=333 \NC c 0xFFFF \NC \NR

\stoptabulate

The tabulate mechanism in ConTEXt is rather old and stable and it is the preferred way

to deal with tabular content in the text flow. However, adding the G specifier (as variant

of the g one) could be done without interference or drop in performance. This new G

specifier tells the tabulate mechanism that in that column the given character is used

to vertically align the content that has this character.

1.1 2,2 3=3 a 0xFF

11.11 22,22 33=33 b 0xFFF

111.111 222,222 333=333 c 0xFFFF

Let's make clear that this is not an engine feature but a ConTEXt one. It is however

made easy by this callback mechanism. We can of course use this feature with the low

level alignment primitives, assuming that you tell the machinery that the plugin is to be

kicked in.

\halign noskips \alignmentcharactertrigger \bgroup

\tabskip2em

\setalignmentcharacter.\ignorespaces\alignmark\unskip\hss \aligntab

\hss\setalignmentcharacter,\ignorespaces\alignmark\unskip\hss \aligntab

\hss\setalignmentcharacter=\ignorespaces\alignmark\unskip \aligntab

\hss \ignorespaces\alignmark\unskip\hss \cr

1.1 \aligntab 2,2 \aligntab 3=3 \aligntab \setalignmentcharacter{.}\relax 4.4\cr

11.11 \aligntab 22,22 \aligntab 33=33 \aligntab \setalignmentcharacter{,}\relax 44,44\cr

111.111 \aligntab 222,222 \aligntab 333=333 \aligntab \setalignmentcharacter{!}\relax 444!444\cr

x \aligntab x \aligntab x \aligntab \setalignmentcharacter{/}\relax /\cr

.1 \aligntab ,2 \aligntab =3 \aligntab \setalignmentcharacter{?}\relax ?4\cr

.111 \aligntab ,222 \aligntab =333 \aligntab \setalignmentcharacter{=}\relax 44=444\cr

\egroup

This rather verbose setup renders as:

1.1 2,2 3=3 4 . 4

11.11 22,22 33=33 44 , 44

11

Plugins

111.111 222,222 333=333 444 ! 444

x x x /

.1 ,2 =3 ?4

.111 ,222 =333 44=444

Using a high level interface makes sense but local control over such alignment too, so

here follow some more examples. Here we use different alignment characters:

\starttabulate[|lG{.}|cG{,}|rG{=}|cG{x}|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC a 0xFF \NC \NR

\NC 11.11 \NC 22,22 \NC 33=33 \NC b 0xFFF \NC \NR

\NC 111.111 \NC 222,222 \NC 333=333 \NC c 0xFFFF \NC \NR

\stoptabulate

1.1 2,2 3=3 a 0xFF

11.11 22,22 33=33 b 0xFFF

111.111 222,222 333=333 c 0xFFFF

In this example we specify the characters in the cells. We still need to add a specifier

in the preamble definition because that will trigger the plugin.

\starttabulate[|lG{}|rG{}|]

\NC left \NC right \NC\NR

\NC \showglyphs \setalignmentcharacter{.}1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \showglyphs \setalignmentcharacter{,}11,11 \NC \setalignmentcharacter{,}11,11 \NC\NR

\NC \showglyphs \setalignmentcharacter{=}111=111 \NC \setalignmentcharacter{=}111=111 \NC\NR

\stoptabulate

left right

1 . 1 1 . 1

11 , 11 11 , 11

111=111 111=111

You can mix these approaches:

\starttabulate[|lG{.}|rG{}|]

\NC left \NC right \NC\NR

\NC 1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC 11.11 \NC \setalignmentcharacter{.}11.11 \NC\NR

\NC 111.111 \NC \setalignmentcharacter{.}111.111 \NC\NR

\stoptabulate

left right

1.1 1.1

12

Plugins

11.11 11.11

111.111 111.111

Here the already present alignment feature, that at some point in tabulate might use

this new feature, is meant for numbers, but here we can go wild with words, although

of course you need to keep in mind that we deal with typeset text, so there may be no

match.

\starttabulate[|lG{.}|rG{.}|]

\NC foo.bar \NC foo.bar \NC \NR

\NC oo.ba \NC oo.ba \NC \NR

\NC o.b \NC o.b \NC \NR

\stoptabulate

foo.bar foo.bar

oo.ba oo.ba

o.b o.b

This feature will only be used in know situations and those seldom involve advanced

typesetting. However, the following does work:3

\starttabulate[|cG{d}|]

\NC \smallcaps abcdefgh \NC \NR

\NC xdy \NC \NR

\NC \sl xdy \NC \NR

\NC \tttf xdy \NC \NR

\NC \tfd d \NC \NR

\stoptabulate

abc d efgh

x d y

x d y

x d y

d
As always with such mechanisms, the question is “Where to stop?” But it makes for nice

demos and as long as little code is needed it doesn't hurt.

3 Should this be an option instead?

13

Pitfalls and tricks

6 Pitfalls and tricks

The next example mixes bidirectional typesetting. It might look weird at first sight but

the result conforms to what we discussed in previous paragraphs.

\starttabulate[|lG{.}|lG{}|]

\NC \righttoleft 1.1 \NC \righttoleft \setalignmentcharacter{.}1.1 \NC\NR

\NC 1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \righttoleft 1.11 \NC \righttoleft \setalignmentcharacter{.}1.11 \NC\NR

\NC 1.11 \NC \setalignmentcharacter{.}1.11 \NC\NR

\NC \righttoleft 1.111 \NC \righttoleft \setalignmentcharacter{.}1.111 \NC\NR

\NC 1.111 \NC \setalignmentcharacter{.}1.111 \NC\NR

\stoptabulate

1.1 1.1

1.1 1.1

1.11 1.11

1.11 1.11

1.111 1.111

1.111 1.111

In case of doubt, look at this:

\starttabulate[|lG{.}|lG{}|lG{.}|lG{}|]

\NC \righttoleft 1.1 \NC \righttoleft \setalignmentcharacter{.}1.1 \NC

1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \righttoleft 1.11 \NC \righttoleft \setalignmentcharacter{.}1.11 \NC

1.11 \NC \setalignmentcharacter{.}1.11 \NC\NR

\NC \righttoleft 1.111 \NC \righttoleft \setalignmentcharacter{.}1.111 \NC

1.111 \NC \setalignmentcharacter{.}1.111 \NC\NR

\stoptabulate

1.1 1.1 1.1 1.1

1.11 1.11 1.11 1.11

1.111 1.111 1.111 1.111

The next example shows the effect of \omit and \span. The first one makes that in this

cell the preamble template is ignored.

\halign \bgroup

\tabsize 2cm\relax [\alignmark]\hss \aligntab

\tabsize 2cm\relax \hss[\alignmark]\hss \aligntab

\tabsize 2cm\relax \hss[\alignmark]\cr

1\aligntab 2\aligntab 3\cr

\omit 1\aligntab \omit 2\aligntab \omit 3\cr

1\aligntab 2\span 3\cr

1\span 2\aligntab 3\cr

14

Pitfalls and tricks

1\span 2\span 3\cr

1\span \omit 2\span \omit 3\cr

\omit 1\span \omit 2\span \omit 3\cr

\egroup

Spans are applied at the end so you see a mix of templates applied.

[1]H__ [2]H__ [3]H__H__

1H__ 2H__ 3H__H__

[1]H__ [2] [3]H__ H__H__

[1] [2]H__ H__ [3]H__H__

[1] [2] [3]H__ H__ H__H__

[1] 23H__ H__ H__H__

123H__ H__ H__H____VH__H____VH__

When you define an alignment inside a macro, you need to duplicate the \alignmark

signals. This is similar to embedded macro definitions. But in LuaMetaTEX we can get

around that by using \aligncontent. Keep in mind that when the preamble is scanned

there is no doesn't expand with the exception of the token after \span.

\halign \bgroup

\tabsize 2cm\relax \aligncontent\hss \aligntab

\tabsize 2cm\relax \hss\aligncontent\hss \aligntab

\tabsize 2cm\relax \hss\aligncontent\cr

1\aligntab 2\aligntab 3\cr

A\aligntab B\aligntab C\cr

\egroup

1 2 3

A B C

15

Rows

In this example we still have to be verbose in the way we align but we can do this:

\halign \bgroup

\tabsize 2cm\relax \aligncontentleft \aligntab

\tabsize 2cm\relax \aligncontentmiddle\aligntab

\tabsize 2cm\relax \aligncontentright \cr

1\aligntab 2\aligntab 3\cr

A\aligntab B\aligntab C\cr

\egroup

Where the helpers are defined as:

\noaligned\protected\def\aligncontentleft

{\ignorespaces\aligncontent\unskip\hss}

\noaligned\protected\def\aligncontentmiddle

{\hss\ignorespaces\aligncontent\unskip\hss}

\noaligned\protected\def\aligncontentright

{\hss\ignorespaces\aligncontent\unskip}

The preamble scanner see such macros as candidates for a single level expansion so it

will inject the meaning and see the \aligncontent eventually.

1 2 3

A B C

The same effect could be achieved by using the \span prefix:

\def\aligncontentleft{\ignorespaces\aligncontent\unskip\hss}

\halign { ... \span\aligncontentleft ...}

One of the reasons for not directly using the low level \halign command is that it's a

lot of work but by providing a set of helpers like here might change that a bit. Keep in

mind that much of the above is not new in the sense that we could not achieve the same

already, it's just a bit programmer friendly.

7 Rows

Alignment support is what the documented source calls ‘interwoven’. When the engine

scans for input it processing text, math or alignment content. While doing alignments

it collects rows, and inside these cells but also deals with material that ends up in

16

Rows

between. In LuaMetaTEX I tried to isolate the bits and pieces as good as possible but

it remains complicated (for all good reasons). Cells as well as rows are finalized after

the whole alignment has been collected and processed. In the end cells and rows are

boxes but till we're done they are in an ‘unset’ state.

Scanning starts with interpreting the preamble, and then grabbing rows. There is some

nasty lookahead involved for \noalign, \span, \omit, \cr and \crcr and that is not code

one wants to tweak too much (although we did in LuaMetaTEX). This means for instance

that adding ‘let's start a row here’ primitive is sort of tricky (but it might happen some

day) which in turn means that it is not really possible to set row properties. As an

experiment we can set some properties now by hijacking \noalign and storing them

on the alignment stack (indeed: at the cost of some extra overhead and memory). This

permits the following:

\halign {

\hss

\ignorespaces \alignmark \removeunwantedspaces

\hss

\quad \aligntab \quad

\hss

\ignorespaces \alignmark \removeunwantedspaces

\hss

\cr

\noalign xoffset 40pt {}

{\darkred cell one} \aligntab {\darkgray cell one} \cr

\noalign orientation "002 {}

{\darkgreen cell one} \aligntab {\darkblue cell one} \cr

\noalign xoffset 40pt {}

{\darkred cell two} \aligntab {\darkgray cell two} \cr

\noalign orientation "002 {}

{\darkgreen cell two} \aligntab {\darkblue cell two} \cr

\noalign xoffset 40pt {}

{\darkred cell three} \aligntab {\darkgray cell three} \cr

\noalign orientation "002 {}

{\darkgreen cell three} \aligntab {\darkblue cell three} \cr

\noalign xoffset 40pt {}

{\darkred cell four} \aligntab {\darkgray cell four} \cr

\noalign orientation "002 {}

{\darkgreen cell four} \aligntab {\darkblue cell four} \cr

}

17

Rows

cell one cell oneL__

cell onecell oneL__

cell two cell twoL__

cell twocell twoL__

cell three cell threeL__

cell threecell threeL__

cell four cell fourL__

cell fourcell fourL__

The supported keywords are similar to those for boxes: source, target, anchor, orientation,

shift, xoffset, yoffset, xmove and ymove. The dimensions can be prefixed by add and

reset wipes all. Here is another example:

\halign {

\hss

\ignorespaces \alignmark \removeunwantedspaces

\hss

\quad \aligntab \quad

\hss

\ignorespaces \alignmark \removeunwantedspaces

\hss

\cr

\noalign xmove 40pt {}

{\darkred cell one} \aligntab {\darkgray cell one} \cr

{\darkgreen cell one} \aligntab {\darkblue cell one} \cr

\noalign xmove 20pt {}

{\darkred cell two} \aligntab {\darkgray cell two} \cr

{\darkgreen cell two} \aligntab {\darkblue cell two} \cr

\noalign xmove 40pt {}

{\darkred cell three} \aligntab {\darkgray cell three} \cr

{\darkgreen cell three} \aligntab {\darkblue cell three} \cr

\noalign xmove 20pt {}

{\darkred cell four} \aligntab {\darkgray cell four} \cr

{\darkgreen cell four} \aligntab {\darkblue cell four} \cr

}

18

Templates

cell one cell oneL__

cell one cell oneL__

cell two cell twoL__

cell two cell twoL__

cell three cell threeL__

cell three cell threeL__

cell four cell fourL__

cell four cell fourL__

Some more features might be added in the future as is it an interesting playground. It

is to be seen how this ends up in ConTEXt high level interfaces like tabulate.

8 Templates

The \omit command signals that the template should not be applied. But what if we

actually want something at the left and right of the content? Here is how it's done:

\tabskip10pt \showboxes

\halign\bgroup

[\hss\aligncontent\hss]\aligntab

[\hss\aligncontent\hss]\aligntab

[\hss\aligncontent\hss]\cr

x\aligntab x\aligntab x\cr

xx\aligntab xx\aligntab xx\cr

xxx\aligntab xxx\aligntab xxx\cr

\omit oo\aligntab\omit oo\aligntab\omit oo\cr

xx\aligntab\realign{\hss(}{)\hss}xx\aligntab xx\cr

\realign{\hss(}{)\hss}xx\aligntab xx\aligntab xx\cr

\egroup

The \realign command is like an omit but it expects two token lists that will for this

cell be used instead of the ones from the preamble. While \omit also skips insertion of

\everytab, here it is inserted, just like with normal preambles.

[x]H__ [x]H__ [x]H__H__

[xx]H__ [xx]H__ [xx]H__H__

[xxx]H__ [xxx]H__ [xxx]H__H__

ooH__ ooH__ ooH__H__

[xx]H__ (xx)H__ [xx]H__H__

(xx)H__ [xx]H__ [xx]H__H__

19

Pitfalls

It will probably take a while before I'll apply this in ConTEXt because changing existing

(stable) table environment is not something done lightly.

9 Pitfalls

Alignment have a few properties that can catch you off-guard. One is the use of \everycr.

The next example demonstrates that it is also injected after the preamble definition.

\everycr{\noalign{\hrule}}

\halign\bgroup \hsize 5cm \strut \alignmark\cr one\cr two\cr\egroup

This makes sense because it is one way to make sure that for instance a rule gets the

width of the cell.

oneH__H__

twoH__H__

The sam eis of course true for a vertical align:

\everycr{\noalign{\vrule}}

\valign\bgroup \hsize 4cm \strut \aligncontent\cr one\cr two\cr\egroup

We set the width because otherwise the current text width is used.

oneH__
__V__V

twoH__
__V__VH__

Something similar happens with a \tabskip: the value set before the alignment is used

left of the first cell.

\tabskip10pt

\halign\bgroup \tabskip20pt\relax\aligncontent\cr x\cr x\cr \egroup

xH__H__

xH__H__

The \tabskip outside the alignment is an internal glue register so you can for instance

use the prefix \global. However, in a preamble it is more a directive: the given value

is stored with the cell. This means that the next code is invalid:

\tabskip10pt

\halign\bgroup \global\tabskip20pt\relax\aligncontent\cr x\cr x\cr \egroup

The parser looks at tokens in the preamble, sees the \global and appends it to the

current pre-part of the cell's template. Then it sees a \tabskip and assigns the value

20

Pitfalls

after it to the cell's skip. The token and its value just disappear, they are not appended

to the template. Now, when the template is injected (and interpreted) this \global

expects a variable next and in our case the x doesn't qualify. The next snippet however

works okay:

\scratchcounter0

\halign\bgroup

\global\tabskip40pt\relax\advance\scratchcounter\plusone\aligncontent

\cr

x:\the\scratchcounter\cr

x:\the\scratchcounter\cr

x:\the\scratchcounter\cr

\egroup

Here the \global is applied to the advance because the skip definition is not in the

preamble.

x:1

x:2

x:3

Here is a variant:

\scratchcounter0

\halign\bgroup

\global\tabskip10pt\relax\aligncontent\cr

\advance\scratchcounter\plusone x:\the\scratchcounter\cr

\advance\scratchcounter\plusone x:\the\scratchcounter\cr

\advance\scratchcounter\plusone x:\the\scratchcounter\cr

\egroup

Again the \global stays and this time if ends up before the content which starts with

an \advance.

x:1

x:2

x:3

Normally you will not need the next trickery but it shows that cells are grouped:

\halign\bgroup\aligncontent\cr

1\atendofgrouped{A}\atendofgrouped{B}\cr

2\aftergrouped {A}\aftergrouped {B}\cr

3 \cr

21

Remark

\egroup

Maybe at some point I'll add something a bit more tuned for dealing with cells, but here

is what you get with the above:

1AB

2

AB3

10 Remark

It can be that the way alignments are interfaced with respect to attributes is a bit dif­

ferent between LuaTEX and LuaMetaTEX but because the former is frozen (in order not

to interfere with current usage patterns) this is something that we will deal with deep

down in ConTEXt LMTX.

In principle we can have hooks into the rows for pre and post material but it doesn't

really pay of as grouping will still interfere. So for now I decided not to add these.

10 Colofon

Author Hans Hagen

ConTEXt 2024.01.08 11:23

LuaMetaTEX 211.0

Support www.pragma-ade.com

contextgarden.net

