The trimclip Package
Part of the adjustbox bundle

Martin Scharrer
martin.scharrer@web.de

Version vl.2a—-2025/02/21

CTAN: https://www.ctan.org/pkg/adjustbox

Abstract

This package extends the standard graphicx package by providing the miss-
ing \trimbox and \clipbox macros to trim and clip arbitrary TgX material. The
macros allow for verbatim content. Equivalent environments are also provided.
The package comes with own clipping drivers for all common output formats as
well as a pgf fall-back driver.

1 Introduction

The standard BIgX package graphicx.allows to scale, resize and rotate either images
or text (i.e. any TgX content). For text the macros \scalebox, \resizebox and
\rotatebox can be used, while equivalent keys exist for the \includegraphics
macro. However, while it is possible to trim and clip images using the trim, viewport
and clip keys, no equivalent macros are provided. This package closes this gap by
defining the macros \trimbox and \clipbox. As an extra the macro \marginbox
is also provided. It can be seen as an inverted \trimbox, expanding the official size
of the content instead of reducing it. Originally these macros were included in the
adjustbox package together with the general \adjustbox macro. However, the
fundamental clip and trim macros and their driver files are now packed into this
minimalistic package, so that other packages can reuse its functionality without the
need to load the ever-growing ad justbox package.

The macros provided by this package differ in three aspects from the macros
defined by graphicx. The content argument is actually read directly as a horizontal
box and not as a macro argument, even when the syntax looks the same. This allows
for arbitrary content including special things like verbatim material. It is allowed to
replace the "{ }" around the content with \bgroup and \egroup. Furthermore, for
every macro there is an equivalent environment with the same name. Special care is
taken to allow the same name for both, which is normally not allowed. Finally, the
lengths arguments of the macros can contain algebraic expressions to calculate the
used length. This is only possible with the graphicx macros if the calc package is
loaded. However, the trimclip macros use the adjcalc wrapper package which
either uses e-TgX primitives, calc or pgfmath to provide this feature.

mailto:martin.scharrer@web.de
https://www.ctan.org/pkg/adjustbox

2 Dependencies

This package uses the author’s other packages collectbox (to collect the content
as a real box) and adjcalc (to allow for math expressions for lengths). The latter
is part of the same ad justbox bundle and should have be installed together with
trimclip.

3 Drivers

The clip operation can not be implemented using general TgX commands, but is
rather output format specific. The clipped material is actually included unclipped
and the output file (i.e. PDF or PS file) contains format specific instructions, so
that the document viewer will clip the content when the document is displayed.
Depending on the used compilation work-flow (like pdflatex, latex+dvips or
latex+dvipdfm, etc.) this clipping instructions must be passed in a different way.
In order to support all of these, dedicated driver files are provided which hold the
specific low-level instructions. This requirement should also be known to most users
from the graphics/x, (x) color or hyperref packages which also require output
format specific low-level instructions to implement their features.

A set of driver files for the most common used BIgX compilers is provided with
this package (see section 4 for alist). If no suitable driver file is found, the pgf package
is used instead to implement the clip operation. This (large) package comes with
its own set of driver files and should cover any other BKIgX compilers. The trimclip
drivers were inspired by the graphic/x and pgf driver code and were written by
Joseph Wright of the BIEX3 project and Martin Scharrer (the author of this package).

4 Package Options

Normally the package should be loaded without any options. A suitable driver will
then automatically be selected. However, the package accepts the following options to
select the used driver manually. Any other option is passed to the graphicx package
and the driver selected by it is used. However, this does not work if graphicx or
graphics was already loaded before. In this case any unknown option is taken as
driver and a file ‘tc-(option) . def ’ is loaded if it exits. If not, the default PGF fall-back
driver is used. PGF comes with a own set of drivers but is large and can be considered
a significant overhead if used only for rectangular clipping.

pdftex Use the pdftex driver. This driver is automatically selected for pdflatex.

luatex Use the luatex driver, which uses the pdftex driver internally. This driver is
automatically selected for lualatex.

dvips Use the dvips driver. This driver is automatically selected for latex.
xetex Use the xetex driver. This driver is automatically selected for xelatex.
dvipdfm Use the xetex driver which is also compatible with dvipdfm.

dvipdfmx Use the xetex driver which is also compatible with dvipdfmx.

pgf Use the fall-back PGF driver explicitly. This makes sense if issue with another
driver are encountered.

It should be noted that choosing an incorrect driver will lead to clip operation not
being applied (they act like trim operations) and may lead to a broken output file.

5 Argument Values

All macros of this package and their matching environments require four length
values which are used to change the left, bottom, right and top side of the content.
Because of the used adjcalc package complicated algebraic expressions can be
used to calculate these amounts. The used math engine can be changed by load-
ing adjcalc with the appropriate option before loading trimclip. Please see the
adjcalc manual for more details on this. Like with the trim or viewport keys of
\includegraphics the length values must be separated by spaces. Note that if a
previous length expression ends in a macro any trailing spaces will be removed by
TgX. Therefore it is required to wrap this complete length expression in braces. Several
examples of this are shown in the Usage section. It is also possible to only provide a
single length which is used for all four sides or only two lengths which are taken for
the left/right as well as bottom/top side. This simplifies symmetric operations and
got inspired by Cascading Style Sheets (CSS) used to style websites.

If a length value is a simple number without a unit, a default unit is substi-
tuted (usually ‘bp’, big points, the standard PostScript and PDF unit). This default
unit can be changed using \adjcalc{defaultunit=(unift)} or completely disabled
(defaultunit=none). See the adjcalc manual for more details.

The length values can contain the following macros to refer to the original size of
the content:

\width \height \depth \totalheight

These BIEX lengths hold the original dimensions of the content and can be used to
make relative changes. Like any other length registers they can be used with a factor,
e.g. .5\width to refer to half the natural width of the content.

6 Usage

6.1 Trimming

\trimbox{(llx) (lly) (urx) {(ury)}{({content)}
\trimbox{{all sites)}{{content)}
\trimbox{(left/right) (top/bottom)}{(content)}
\trimbox*{(llx) (lly) (urx) (ury)}{{content)}

The macro \trimbox trims the given amount from the lower left (1) and the upper
right (ur) corner of the box. This means that the amount (/lx) is trimmed from the
left side, (lly) from the bottom and (urx) and (ury) from the right and top of the box,
respectively. If only one value is given it will be used for all four sites. If only two
values are given the first one will be used for the left and right side (IIx, urx) and the
second for the bottom and top side (lly, ury).

If the starred version is used the four coordinates are taken as the viewport
instead, i.e. the box is trimmed to the rectangle described by the coordinates. In this
case all four values must be specified explicitly.

Examples:

\examplecontent

\trimbox{2pt 3pt 2pt 3pt}{\examplecontent}

\trimbox{2pt 3pt}{\examplecontent}

ol=llol=lol= 0>
OUlw||o w|lolwl |9 %

\trimbox{2pt}{\examplecontent}

\trimbox{{.5\width} {.5\totalheight} 2pt 2pt}
{\examplecontent}

0| >
O| =

\trimbox*{5pt Opt 3em 2em}{\examplecontent}

O|»=| O »

Ulw| |Ow

\trimbox*{5pt -2pt 3em 2em}{\examplecontent}

\trimbox*{5pt 10pt 3em 2em}{\examplecontent}

o= | O »
Ol=| | O

\trimbox*{5pt -3pt 3em -1pt}{\examplecontent}

\begin{trimbox}{(1, 2 or 4 trim values)}
(content)
\end{trimbox}

\begin{trimbox*}{(llx) (Ily) (urx) (ury)}
(content)
\end{trimbox*}

The trimbox and trimbox* environments do the same as the corresponding macros.

6.2 Clipping

\clipbox{(llx) (lly) (urx) {(ury)}{(content)}
\clipbox{(all sites)}{(content)}
\clipbox{(left/right) (top/bottom)}{(content)}
\clipbox*{(llx) (lly) (urx) (ury)}{{content)}

The \clipbox macro works like the \trimbox and trims the given amounts from the
(text). However, in addition the trimmed material is also clipped, i.e. it is not shown
in the final document. Note that the material will still be part of the output file but is
simply not shown. The full content can still be exported using special tools, so using
\clipbox (or \includegraphics[clip,trim=...]) to censor classified informa-
tion would be a bad idea. The starred version will again use the given coordinates as

viewport.

\begin{clipbox}{(1, 2 or 4 trim values)}
(content)
\end{clipbox}

\begin{clipbox*}{(llx) (lly) (urx) (ury)}
(content)
\end{clipbox*}

The environment versions of \clipbox and \clipbox*. The same rules as for the

trimming environments apply.

Examples:

\examplecontent

\clipbox{2pt 3pt 2pt 3pt}{\examplecontent}

\clipbox{2pt 3pt}{\examplecontent}

\clipbox{2pt}{\examplecontent}

\clipbox{{.5\width} {.5\totalheight} 2pt 2pt}
{\examplecontent}

\clipbox*{5pt Opt 3em 2em}{\examplecontent}

\clipbox*{5pt -2pt 3em 2em}{\examplecontent}

\clipbox*{5pt 10pt 3em 2em}{\examplecontent}

\clipbox*{5pt -3pt 3em -1pt}{\examplecontent}

n‘> o‘> o‘> o>
’o: U\m U\c: U\o: O|=

>

6.3 Margin

\marginbox{(all sites) }{(content)}
\marginbox{(left/right) (top/bottom)}{{content)}
\marginbox{(llx) (lly) (urx) (ury)}{{content)}

\begin{marginbox*}{(I, 2 or 4 margin values)}
(content)
\end{marginbox*}

This macro and environment can be used to add a margin (white space) around the
content. It can be seen as the opposite of \trimbox. The original baseline of the
content is preserved because (Ily) is added to the depth.

Example:

Before \fbox{\marginbox{lex 2ex 3ex 4ex}{Textl}} After

Before| Text After

\marginbox*{(all sites) }{(content)}
\marginbox*{(left/right) (top/bottom)}{(content)}
\marginbox*{(llx) (lly) (urx) (ury)}{(content)}

\begin{marginbox}{(I, 2 or 4 margin values)}
(content)
\end{marginbox}

This starred version is almost identical to the normal \marginbox, but also raises
the content by the (l/ly) amount, so that the original depth is preserved instead of the
original baseline. Note that while \marginbox is basically the opposite of \trimbox,
\marginbox* is not the opposite of \trimbox*.

Example:

Before \fbox{\marginbox*{lex 2ex 3ex 4ex}{Textl}} After

Text
Before After

7 Diagrams

The box dimensions, trim values and change of the baseline for different scenarios

are visualized by the following diagrams.

height
\height totalheight
\ht\br \totalheight
] baseline
depth \origi n
\depth ' A
\pAPT width
\width
\wd\br

Figure 1: Box dimensions. Shown are also the ISIgX macros and the TgX primitives.
Here \br stands for a box register. Note that the depth is a positive values on its own

downwards pointed axes.

A

ury

height

depth >

v flly

totalheight

width

Figure 2: Trimming. The four values are removed from each side.

height

depth

ury

moves down

urx

Ily

totalheight

width

Figure 3: Trimming with 11y>depth. In this case the resulting box moves up to the

original baseline.

height

depth

ury

Y

lIx ¢

A
MOVEs up

A

Ay

urx

totalheight

width

Figure 4: Trimming with ury>height. In this case the resulting box falls down to the

original baseline

height

depth

urx

iy

¢ moves down

ury

totalheight

width

Figure 5: Viewport with 11y>0pt. The 11 and ur values are taken from the origin.
The baseline is the vertical zero reference.

height

depth

lIx

ury

totalheight

width

Figure 6: Viewport with 11y<0pt. In this case the viewport ranges into the depth of

the original box.

Tury

urx
"

¢|Iy

Figure 7: Marginbox. The 11x and urx are added to the left and right and increase
the width. The ury is added to the height and 11y to the depth of the box. This keeps

the baseline at the original position.

Tury

1Ix

Ty

urx
F—>

{lly

Figure 8: Marginbox*. In addition to the normal margin the content is also raised by
11y, so that the original depth is preserved. This effectively moves the baseline down.

	Introduction
	Dependencies
	Drivers
	Package Options
	Argument Values
	Usage
	Trimming
	Clipping
	Margin

	Diagrams

