
The extension package curve2e
Claudio Beccari∗

Version v.2.6.0 – Last revised 2024-11-13.

Contents
1 Introduction 2

2 Acknowledgements 6

3 Source code 7
3.1 Some preliminary exten-

sions to the pict2e package 7
3.2 Line thickness macros . . 8
3.3 Improved line and vector

macros 9
3.4 Dashed and dotted lines . 11
3.5 Coordinate handling . . . 13
3.6 Vectors 16
3.7 Polylines and polygons . . 17
3.8 The colored service grid . 19

4 Labelling the graphical ele-
ments 22

5 Math operations on frac-
tional operands 24
5.1 The division macro 25
5.2 Trigonometric functions . 26
5.3 Arcs and curves prelimi-

nary information 28
5.4 Complex number macros . 28
5.5 Arcs and curved vectors . 33

5.5.1 Arcs 33
5.5.2 Arc vectors 37

5.6 General curves 41
5.7 Cubic splines 42
5.8 Quadratic splines 49

6 Conclusion 53

7 The README.txt file 53

8 The roll-back package ver-
sion curve2e-v161 55

Abstract

This file documents the curve2e extension package to the pict2e bundle
implementation; the latter was described by Lamport himself in the 1994
second edition of his LATEX handbook.

Please take notice that on April 2011 a new updated version of the pack-
age pict2e has been released that incorporates some of the commands de-
fined in early versions of this package; apparently there are no conflicts, but
only the advanced features of curve2e remain available for extending the
above improved package.

This extension redefines some commands and introduces some more
drawing facilities that allow to draw circular arcs and arbitrary curves with
the minimum of user intervention. This version is open to the contribution
of other users as well as it may be incorporated in other people’s packages.
Please cite the original author and the chain of contributors.

∗E-mail: claudio dot beccari at gmail dot com

1

1 Introduction
Package pict2e was announced in issue 15 of latexnews around December 2003;
it was specified that the new package would replace the dummy one that was been
accompanying every release of LATEX 2ε since its beginnings in 1994. The dummy
package was just issuing an info message that simply announced the temporary
unavailability of the real package.

Eventually Gäßlein and Niepraschk implemented what Lamport himself had
already documented in the second edition of his LATEX handbook, that is a LATEX
package that contained the macros capable of removing all the limitations con-
tained in the standard commands of the original picture environment; specifically
what follows.

1. The line and vector slopes were limited to the ratios of relative prime one-
digit integers of magnitude not exceeding 6 for lines and 4 for vectors.

2. Filled and unfilled full circles were limited by the necessarily limited number
of specific glyphs contained in the special LATEX picture fonts.

3. Quarter circles were also limited in their radii for the same reason.

4. Ovals (rectangles with rounded corners) could not be too small because of
the unavailability of small radius quarter circles, nor could be too large, in
the sense that after a certain radius the rounded corners remained the same
and would not increase proportionally to the oval size.

5. Vector arrows had only one possible shape and matched the limited number
of vector slopes.

6. For circles and inclined lines and vectors just two possible thicknesses were
available.

The package pict2e removes most if not all the above limitations.

1. Line and vector slopes are virtually unlimited; the only remaining limitation
is that the direction coefficients must be three-digit integer numbers (but
see below); they need not be relatively prime; with the 2009 upgrade even
this limitation was removed and now slope coefficients can be any fractional
number whose magnitude does not exceed 16 384, the maximum dimension
in points that TEX can handle.

2. Filled and unfilled circles can be of any size.

3. Ovals can be designed with any specified corner curvature and there is vir-
tually no limitation to such curvatures; of course corner radii should not
exceed half the lower value between the base and the height of the oval.

4. There are two shapes for the arrow tips; the triangular one traditional with
LATEX vectors, or the arrow tip with PostScript style.

5. The \linethickness command changes the thickness of all lines, straight,
curved, vertical, horizontal, arrow tipped, et cetera.

This specific extension package curve2e adds the following features.

2

1. Point coordinates my be specified in both cartesian and polar form: inter-
nally they are handled as cartesian coordinates, but users can specify their
points also in polar form. In order to avoid confusion with other graphic
packages, curve2e uses the usual comma separated couple 〈x, y〉 of integer
or fractional numbers for cartesian coordinates, and the colon separated pair
〈θ〉:〈ρ〉 for polar coordinates (the angle preceding the radius). All graphic
object commands accept polar or cartesian coordinates at the choice of users
who may use for each object the formalism they prefer. Also the put and
\multiput commands have been redefined so as to accept cartesian or po-
lar coordinates. The same holds true for the low level pict2e commands
\moveto, \lineto, and \curveto.
Of course the user must pay attention to the meaning of cartesian vs. polar
coordinates. Both imply a displacement with respect to the actual origin of
the axes. So when a circle is placed at coordinates a, b with a normal \put
command, the circle center is placed exactly is that point; with a normal
\put command the same happens if coordinates α:ρ are specified. But if
the \put command is nested into another \put command, the current origin
of the axes is displaced — this is obvious and the purpose of nesting \put
commands is exactly that. But if a segment is specified so that its ending
point is at a specific distance and in a specific direction from its starting
point, polar coordinates appear to be the most convenient to use; in this case,
though, the origin of the axes becomes the starting point of the segment,
therefore the segment might be drawn in a strange way. Attention has been
paid to avoid such misinterpretation, but maybe some unusual situation
may not have come to my mind; feedback is very welcome. Meanwhile pay
attention when you use polar coordinates.

2. Most if not all cartesian coordinate pairs and polar pairs are treated as
ordered pairs, that is complex numbers; in practice users do not notice any
difference from what they were used to, but all the mathematical treatment
to be applied to these entities is coded as complex number operations, since
complex numbers may be viewed non only as ordered pairs, but also as
vectors or as roto-amplification operators.

3. Commands for setting the line terminations were introduced; the user can
chose between square or round caps; the default is set to round caps; now
this feature is directly available with pict2e.

4. Commands for specifying the way two lines or curves join to one another.

5. Originally the \line macro was redefined so as to allow large (up to three
digits) integer direction coefficients, but maintaining the same syntax as in
the original picture environment; now pict2e removes the integer number
limitations and allows fractional values, initially implemented by curve2e,
and then introduced directly in pict2e.

6. A new macro \Line was originally defined by curve2e so as to avoid the
need to specify the horizontal projection of inclined lines; now this function-
ality is available directly with pict2e; but this curve2e macro name now
conflicts with pict2e 2009 version; therefore its name is changed to \LIne
and supposedly it will not be used very often, if ever, by the end user (but
it is used within this package macros).

3

7. A new macro \LINE was defined in order to join two points specified with
their coordinates; this is now the normal behaviour of the \Line macro of
pict2e so that in this package \LINE is now renamed \segment; there is no
need to use the \put command with this line specification.

8. A new macro \DashLine (alias: \Dline) is defined in order to draw dashed
lines joining any two given points; the dash length and gap (equal to one
another) get specified through one of the macro arguments. The starting
point may be specified in cartesian or polar form; the end point in cartesian
format specifies the desired end point; while if the second point is in polar
form it is meant relative to the starting point, not as an absolute end point.
See the examples further on.

9. A similar new macro \Dotline is defined in order to draw dotted straight
lines as a sequence of equally spaced dots, where the gap can be specified by
the user; such straight line may have any inclination, as well as the above
dashed lines. Polar coordinates for the second point have the same relative
meaning as specified for the \Dashline macro.

10. Similar macros are redefined for vectors; \vector redefines the original
macro but with the vector slope limitations removed; \Vector gets spec-
ified with its two horizontal and vertical components in analogy with \LIne;
\VECTOR joins two specified points (without using the \put command) with
the arrow pointing to the second point.

11. A new macro \polyline for drawing polygonal lines is defined that accepts
from two vertices up to an arbitrary (reasonably limited) number of them
(available now also in pict2e); here it is redefined so as to allow an optional
specification of the way segments for the polyline are joined to one another.
Vertices may be specified with polar coordinates.

12. The pict2e polygon macro to draw closed polylines (in practice general
polygons) has been redefined in such a way that it can accept the various
vertices specified with polar coordinates. The polygon* macro produces
a color filled polygon; the default color is black, but a different color may
be specified with the usual \color command given within the same group
where \polygon* is enclosed.

13. A new macro \Arc is defined in order to draw an arc with arbitrary radius
and arbitrary aperture (angle amplitude); this amplitude is specified in sexa-
gesimal degrees, not in radians; a similar functionality is now achieved with
the \arc macro of pict2e, which provides also the starred version \arc*
that fills up the interior of the generated circular arc with the current color.
It must be noticed that the syntax is slightly different, so that it is reasonable
that these commands, in spite of producing identical arcs, might be more
comfortable with this or that syntax.

14. Two new macros \VectorArc and \VectorARC (alias \VVectorArc) are de-
fined in order to draw circular arcs with an arrow at one or both ends.

15. A new macro \Curve is defined so as to draw arbitrary curved lines by means
of cubic Bézier splines; the \Curve macro requires only the curve nodes and

4

the directions of the tangents at each node. The starred version fills up the
interior of the curve with the current color.

16. The above \Curve macro is recursive and it can draw an unlimited (reason-
ably limited) number of connected Bézier spline arcs with continuous tan-
gents except for cusps; these arcs require only the specification of the tangent
direction at the interpolation nodes. It is possible to use a lower level macro
\CbezierTo that does the same but lets the user specify the control points
of each arc; it is more difficult to use but it is more performant.

17. The basic macros used within the cumulative \Curve macro can be used
individually in order to draw any curve, one cubic arc at the time; but they
are intended for internal use, even if it is not prohibited to use them; by
themselves such arcs are not different from those used by Curve, but the final
command, \FillCurve, should be used in place of \CurveFinish, so as to fill
up the closed path with the locally specified color; see the documentation
curve2e-manual.pdf file. It is much more convenient to use the starred
version of the \Curve macro.

The pict2e package already defines macros such as \moveto, \lineto,
\curveto, \closepath, \fillpath, and \strokepath; of course these macros
can be used by the end user, and sometimes they perform better than the macros
defined in this package, because the user has a better control on the position of
each Bézier-spline control points, while here the control points are sort of rigid. It
would be very useful to resort to the hobby package, but its macros are compatible
with those of the tikz and pgf packages, not with curve2e; an interface should
be created in order to deal with the hobby package, but this has not been done
yet. In any case they are redefined so as to accept symbolic names for the point
coordinates in both the cartesian and polar form.

In order to make the necessary calculations many macros have been defined so
as to use complex number arithmetics to manipulate point coordinates, directions
(unit vectors, also known as ‘versors’), rotations and the like. In the first versions of
this package the trigonometric functions were also defined in a way that the author
believed to be more efficient than those defined by the trig package; in any case
the macro names were sufficiently different to accommodate both definition sets in
the same LATEX run. With the progress of the LATEX 3 language, the xfp package
functionalities have recently become available directly in the LATEX 2ε kernel, by
which any sort of calculations can be done with floating point decimal numbers;
therefore the most common algebraic, irrational and transcendental functions can
be computed in the background with the stable internal floating point facilities.
We maintain some computation with complex number algebra, but use the xfp
functionalities to implement them and to make other calculations. Most xfp code
has been included into the LATEX kernel, so that most of this package functionality
is already available without the need of loading that package. Loading is necessary
only when a small set of special functionalities are needed, that have not made
their way to the kernel.

Many aspects of this extension could be fine tuned for better performance;
many new commands could be defined in order to further extend this extension.
If the new service macros are accepted by other TEX and LATEX programmers,
this version could become the start for a real extension of the pict2e package or
even become a part of it. Actually some macros have already been included in the

5

pict2e package. The \Curve algorithm, as said before, might be redefined so as
to use the macros introduced by the hobby package, that implements for the tikz
and pgf packages the same functionalities that John Hobby implemented for the
METAFONT and METAPOST programs.

For these reasons I suppose that every enhancement should be submitted to
Niepraschk, who is the maintainer of pict2e; he is the only one who can decide
whether or not to incorporate new macros in the pict2e package.

Warning In 2020 the LATEX Project Team upgraded the LATEX native
picture environment so that all information concerning lengths (line and vec-
tor lengths, coordinates, et cetera) may be expressed with dimension expressions
such as 0.71\textwidth, \parindent + 5mm, \circle{1ex}, and so on. With
such dimensional specifications, the information does not depend anymore on
\unitlength; therefore such dimensional forms do not scale by changing the
value of \unitlength. pict2e in 2020-09-30 was correspondingly upgraded to
version 0.4b. Apparently such upgrades do not have any influence on curve2e
workings, or, at least, when no explicit dimensions are used; this applies in partic-
ular when the \AutoGrid or the GraphGrid macros are used; also he coordinates
processing should be done with real numbers, not with dimensions. Nevertheless
feedback is welcome if some corrections are needed.

2 Acknowledgements
I wish to express my deepest thanks to the various individuals who spotted some
errors and notified them to me; Many, many thanks to all of them.

Michel Goosens spotted some errors and very kindly submitted them to me so
that I was able to correct them.

Josef Tkadlec and the author collaborated extensively in order to make a better
real long-division so as to get correctly the quotient fractional part and to avoid as
much as possible any numeric overflow; many Josef’s ideas are incorporated in the
macro that was implemented in the previous versions of this package, although the
macro used by Josef was slightly different. Both versions aim/aimed at a better
accuracy and at widening the operand ranges. In this version we abandoned our
long-division macro, and substituted it with the floating point division provided
by the xfp package.

Daniele Degiorgi spotted a fault in the kernel definition of \linethickness
that heavily influenced also curve2e; see below in the code documentation part.

Jin-Hwan Cho and Juho Lee suggested a small but crucial modification in order
to have curve2e work smoothly also with XeTeX (XeLaTeX). Actually if pict2e,
version 0.2x or later, dated 2009/08/05 or later, is being used, such modification
is not necessary any more, but it’s true that it became imperative when older
versions were used.

Some others users spotted other “features” that did not produce the desired
results; they have been acknowledged by footnotes in correspondence with the
corrections that were made thanks their feedback.

6

3 Source code
3.1 Some preliminary extensions to the pict2e package
The necessary preliminary code has already been introduced. Here we require the
color and graphicx packages plus the pict2e one; for the latter we make sure
that a sufficiently recent version is used. If you want to use package xcolor, load
it after curve2e.

Here we load also the xparse and xfp packages because we use their function-
alities; but we do load them only if they are not already loaded with or without
options; nevertheless we warn the user who wants to load them explicitly: do this
action before loading curve2e. The xfp package is absolutely required; if this
package is not found in the TEX system installation, loading of this new curve2e
is aborted, and the previous version 1.61 is loaded in its place; the overall func-
tionalities should not change much, but the functionalities of xfp are not available.
Most of the functionalities of xfp and xparse packages are already included into
the LATEXkernel; but there are some unusial features that have not been included
and might be useful also for curve3e; so we load them and they will define only
those unusual features.

1 \IfFileExists{xfp.sty}{%
2 \RequirePackage{graphicx,color}
3 \RequirePackageWithOptions{pict2e}[2014/01/01]
4 \@ifl@aded{sty}{xparse}{}{\RequirePackage{xparse}}
5 \@ifl@aded{sty}{xfp}{}{\RequirePackage{xfp}}%
6 }{%
7 \RequirePackage{curve2e-v161}%
8 \PackageWarningNoLine{curve2e}{%
9 Package xfp is required, but apparently\MessageBreak%

10 such package cannot be found in this \MessageBreak%
11 TeX system installation\MessageBreak%
12 Either your installation is not complete \MessageBreak%
13 or it is older than 2018-10-17.\MessageBreak%
14 \MessageBreak%
15 ***************************************\MessageBreak%
16 Version 1.61 of curve2e has been loaded\MessageBreak%
17 instead of the current version \MessageBreak%
18 ***************************************\MessageBreak}%
19 \endinput
20 }

Since we already loaded package xfp or at least we explicitly load it in our pream-
ble, we add, if not already defined by the package, a few new commands that
allow to make floating point tests, and two “while” cycles1. There are also two
integer operations: \Mod to compute the expression mmodn, and \Ifodd to test if
an integer is odd: it mimics the native command \ifodd, but it uses a robust con-
struction, instead of the original construction \ifodd ...\else...\fi. There is
also the string comparison test; the first two arguments are the explicit or implicit
strings to compare; the last two arguments are the “true” and “false” codes.

21 %
22 \ExplSyntaxOn
23 \AtBeginDocument{%

1Thanks to Brian Dunn who spotted a bug in the previous 2.0.x version definitions.

7

24 \ProvideExpandableDocumentCommand\fptest{m m m}{%
25 \fp_compare:nTF{#1}{#2}{#3}}
26 \ProvideExpandableDocumentCommand\fptestT{m m}{%
27 \fp_compare:nTF{#1}{#2}{\relax}}
28 \ProvideExpandableDocumentCommand\fptestF{m m}{%
29 \fp_compare:nTF{#1}{\relax}{#2}}
30 %
31 \ProvideExpandableDocumentCommand\fpdowhile{m m}{%
32 \fp_do_while:nn{#1}{#2}}
33 \ProvideExpandableDocumentCommand\fpwhiledo{m m}{%
34 \fp_while_do:nn{#1}{#2}}
35 \ProvideExpandableDocumentCommand\Modulo{m m}{%
36 \inteval{\int_mod:nn{#1}{#2}}}
37 \ProvideExpandableDocumentCommand\Ifodd{m m m}{%
38 \int_if_odd:nTF{#1}{#2}{#3}}
39 \ProvideExpandableDocumentCommand\Ifequal{m m m m}%
40 {\str_if_eq:eeTF{#1}{#2}{#3}{#4}}
41 }
42 \ExplSyntaxOff
43

The while-do cycles differ in the order of what they do; see the interface3.pdf
documentation file for details.

The next macros are just for debugging. With the trace package it would
probably be better to define other macros, but this is not for the users, but for
the developers.

44 \def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%
45 \def\TROF{\tracingcommands\z@ \tracingmacros\z@}%

Next we define some new dimension registers that will be used by the subse-
quent macros; should they be already defined, there will not be any redefinition;
nevertheless the macros should be sufficiently protected so as to avoid overwriting
register values loaded by other macro packages.

46 \newif\ifCV@polare \let\ifCV@polare\iffalse
47 \ifx\undefined\@tdA \newdimen\@tdA \fi
48 \ifx\undefined\@tdB \newdimen\@tdB \fi
49 \ifx\undefined\@tdC \newdimen\@tdC \fi
50 \ifx\undefined\@tdD \newdimen\@tdD \fi
51 \ifx\undefined\@tdE \newdimen\@tdE \fi
52 \ifx\undefined\@tdF \newdimen\@tdF \fi
53 \ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi

3.2 Line thickness macros
It is better to define a macro for setting a different value for the line and
curve thicknesses; the ‘\defaultlinewidth should contain the equivalent of
\@wholewidth, that is the thickness of thick lines; thin lines are half as thick;
so when the default line thickness is specified to, say, 1pt, thick lines will be 1pt
thick and thin lines will be 0.5pt thick. The default whole width of thick lines is
0,8pt, but this is specified in the kernel of LATEX and/or in pict2e. On the op-
posite it is necessary to redefine \linethickness because the LATEX kernel global
definition does not hide the space after the closed brace when you enter something

8

such as \linethickness{1mm} followed by a space or a new line.2
54 \gdef\linethickness#1{%
55 \@wholewidth#1\@halfwidth.5\@wholewidth\ignorespaces}%
56 \newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax
57 \def\thicklines{\linethickness{\defaultlinewidth}}%
58 \def\thinlines{\linethickness{.5\defaultlinewidth}}\thinlines
59 \ignorespaces}%

3.3 Improved line and vector macros
The macro \LIne allows to draw a line with arbitrary inclination as if it was a
polygonal with just two vertices; actually it joins the canvas coordinate origin
with the specified relative coordinate; therefore this object must be set in place
by means of a \put command. Since its starting point is always at a relative 0,0
coordinate point inside the box created with \put, the two arguments define the
horizontal and the vertical component respectively.

60 \def\LIne(#1){{\GetCoord(#1)\@tX\@tY
61 \moveto(0,0)
62 \pIIe@lineto{\@tX\unitlength}{\@tY\unitlength}\strokepath}\ignorespaces
63 }%

A similar macro \segment operates between two explicit points with absolute
coordinates, instead of relative to the position specified by a \put command; it
resorts to the \polyline macro that shall be defined in a while. The \@killglue
command might be unnecessary, but it does not harm; it eliminates any explicit
or implicit spacing that might precede this command.

64 \def\segment(#1)(#2){\@killglue\polyline(#1)(#2)}%

By passing its ending points coordinates to the \polyline macro, both macro
arguments are a pair of coordinates, not their components; in other words, if
P1 = (x1, y2) and P2 = (x2, y2), then the first argument is the couple x1, y1 and
likewise the second argument is x2, y2. Notice that since \polyline accepts also
the vertex coordinates in polar form, also \segment accepts the polar form. Please
remember that the decimal separator is the decimal point, while the comma acts
as cartesian coordinate separator. This recommendation is particularly important
for non-anglophone users, since in all other languages the decimal separator is or
must by a comma.

The \line macro is redefined by making use of a division routine performed
in floating point arithmetics; for this reason the LATEX kernel and the overall TEX
system installation must be as recent as the release date of the xfp package, i.e.
2018-10-17. The floating point division macro receives in input two fractional
numbers and yields on output their fractional ratio. Notice that this command
\line should follow the same syntax as the original pre 1994 LATEX version; but
the new definition accepts the direction coefficients also in polar mode; that is,
instead of specifying a slope of 30◦ with its actual sine and cosine values (or values
proportional to such functions), for example, (0.5,0.866025), you may specify
it as (30:1), i.e. as a unit vector with the required slope of 30◦.

The beginning of the macro definition is the same as that of pict2e:

2Thanks to Daniele Degiorgi degiorgi@inf.ethz.ch). This feature should have been elim-
inated from the LATEX 2ε ¡2020.02.02¿ patch level 4 update. This glitch has been eliminated
according to the LaTeX Newsletter Nr. 32.

9

65 \def\line(#1)#2{\begingroup
66 \@linelen #2\unitlength
67 \ifdim\@linelen<\z@\@badlinearg\else

but as soon as it is verified that the line length is not negative, things change
remarkably; in facts the machinery for complex numbers is invoked. This makes
the code much simpler, not necessarily more efficient; nevertheless \DirOfVect
takes the only macro argument (that actually contains a comma separated pair
of fractional numbers) and copies it to \Dir@line (an arbitrarily named control
sequence) after re-normalizing to unit magnitude; this is passed to GetCoord that
separates the two components into the control sequences \d@mX and \d@mY; these in
turn are the values that are actually operated upon by the subsequent commands.

68 \expandafter\DirOfVect#1to\Dir@line
69 \GetCoord(\Dir@line)\d@mX\d@mY

The normalised vector direction is actually formed with the directing cosines of
the line direction; since the line length is actually the horizontal component for
non vertical lines, it is necessary to compute the actual line length for non vertical
lines by dividing the given length by the magnitude of the horizontal cosine \d@mX,
and the line length is accordingly scaled:

70 \ifdim\d@mX\p@=\z@\else
71 \edef\sc@lelen{\fpeval{1 / abs(\d@mX)}}\relax
72 \@linelen=\sc@lelen\@linelen
73 \fi

Of course, if the line is vertical this division must not take place. Finally the
moveto, lineto and stroke language keywords are invoked by means of the in-
ternal pict2e commands in order to draw the line. Notice that even vertical lines
are drawn with the PDF language commands instead of resorting to the DVI low
level language that was used in both pict2e and the original (pre 1994) picture
commands; it had a meaning in the old times, but it certainly does not have any
nowadays, since lines are drawn by the driver that produces the output in a human
visible document form, not by TEX the program.

74 \moveto(0,0)\pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
75 \strokepath
76 \fi
77 \endgroup\ignorespaces}%

The new definition of the command \line, besides the ease with which is readable,
does not do different things from the definition of pict2e 2009, even if it did
perform in a better way compared to the 2004 version that was limited to integer
direction coefficients up to 999 in magnitude. Moreover this curve2e version
accepts polar coordinates as slope pairs, making it much simpler to draw lines
with specific slopes.

It is necessary to redefine the low level macros \moveto, \lineto, and
\curveto, because their original definitions accept only cartesian coordinates. We
proceed the same as for the \put command.

78 \let\originalmoveto\moveto
79 \let\originallineto\lineto
80 \let\originalcurveto\curveto
81
82 \def\moveto(#1){\GetCoord(#1)\MTx\MTy
83 \originalmoveto(\MTx,\MTy)\ignorespaces}

10

84 \def\lineto(#1){\GetCoord(#1)\LTx\LTy
85 \originallineto(\LTx,\LTy)\ignorespaces}
86 \def\curveto(#1)(#2)(#3){\GetCoord(#1)\CTpx\CTpy
87 \GetCoord(#2)\CTsx\CTsy\GetCoord(#3)\CTx\CTy
88 \originalcurveto(\CTpx,\CTpy)(\CTsx,\CTsy)(\CTx,\CTy)\ignorespaces}

3.4 Dashed and dotted lines
Dashed and dotted lines are very useful in technical drawings; here we introduce
two macros that help drawing them in the proper way; besides the obvious differ-
ence between the use of dashes or dots, they may refer in a different way to the
end points that must be specified to the various macros.

The coordinates of the first point P1, where le line starts, are always referred
to the origin of the coordinate axes; the end point P2 coordinates are referred
to the origin of the axes if in cartesian form, while with the polar form they are
referred to P1; both coordinate types have their usefulness: see the documentation
curve2e-manual.pdf file.

The above mentioned macros create dashed lines between two given points,
with a dash length that must be specified, or dotted lines, with a dot gap that
must be specified; actually the specified dash length or dot gap is a desired one;
the actual length or gap is computed by integer division between the distance of
the given points and the desired dash length or dot gap; when dashes are involved,
this integer is tested in order to see if it is an odd number; if it’s not, it is increased
by unity. Then the actual dash length or dot gap is obtained by dividing the above
distance by this number.

Another vector P2 − P1 is created by dividing it by this number; then, when
dashes are involved, it is multiplied by two in order to have the increment from
one dash to the next; finally the number of patterns is obtained by integer division
of this number by 2 and increasing it by 1. Since the whole dashed or dotted line
is put in position by an internal \put command, is is not necessary to enclose the
definitions within groups, because they remain internal to the \put argument box.

Figure 6 of the curve2e-manual.pdf user manual shows the effect of the slight
changing of the dash length in order to maintain approximately the same dash-
space pattern along the line, irrespective of the line length. The syntax is the
following:

\Dashline(⟨first point⟩)(⟨second point⟩){⟨dash length⟩}

where 〈first point〉 contains the coordinates of the starting point and 〈second point〉
the absolute (cartesian) or relative (polar) coordinates of the ending point; of
course the 〈dash length〉, which equals the dash gap, is mandatory. An optional
asterisk is used to be back compatible with previous implementations but its use
is now superfluous; with the previous implementation of the code, in facts, if
coordinates were specified in polar form, without the optional asterisk the dashed
line was misplaced, while if the asterisk was specified, the whole object was put in
the proper position. With this new implementation, both the cartesian and polar
coordinates always play the role they are supposed to play independently from the
asterisk. The \IsPolar macro is introduced to analyse the coordinate type used
for the second argument, and uses such second argument accordingly.

11

89 \def\IsPolar#1:#2?{\def\@TempOne{#2}\unless\ifx\@TempOne\empty
90 \expandafter\@firstoftwo\else
91 \expandafter\@secondoftwo\fi}
92
93 \ifx\Dashline\undefined
94 \def\Dashline{\@ifstar{\Dashline@}{\Dashline@}}% bckwd compatibility
95 \let\Dline\Dashline
96
97 \def\Dashline@(#1)(#2)#3{\put(#1){%
98 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
99 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB

100 \IsPolar#2:?{% Polar
101 \Dashline@@(0,0)(\V@ttB){#3}}%
102 {% Cartesian
103 \SubVect\V@ttA from\V@ttB to\V@ttC
104 \Dashline@@(0,0)(\V@ttC){#3}%
105 }
106 }}
107
108 \def\Dashline@@(#1)(#2)#3{%
109 \countdef\NumA3254\countdef\NumB3252\relax
110 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
111 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
112 \SubVect\V@ttA from\V@ttB to\V@ttC
113 \ModOfVect\V@ttC to\DlineMod
114 \DivideFN\DlineMod by#3 to\NumD
115 \NumA=\fpeval{trunc(\NumD,0)}\relax
116 \unless\ifodd\NumA\advance\NumA\@ne\fi
117 \NumB=\NumA \divide\NumB\tw@
118 \DividE\DlineMod\p@ by\NumA\p@ to\D@shMod
119 \DividE\p@ by\NumA\p@ to \@tempa
120 \Multvect{\V@ttC}{\@tempa,0}\V@ttB
121 \Multvect{\V@ttB}{2,0}\V@ttC
122 \advance\NumB\@ne
123 \put(\V@ttA){\multiput(0,0)(\V@ttC){\NumB}{\LIne(\V@ttB)}}
124 \ignorespaces}
125 \fi

A simpler \Dotline macro draws a dotted line between two given points; the
dots are rather small, therefore the inter dot distance is computed in such a way as
to have the first and the last dot at the exact position of the dotted-line end-points;
again the specified dot distance is nominal in the sense that it is recalculated in
such a way that the first and last dots coincide with the line end points. Again if
the second point coordinates are in polar form they are considered as relative to
the first point. Since the dots must emerge from the background of the drawing
they should not be too small: they must be seen; therefore their diameter cannot
be tied to the unit length of the particular drawing, but must have at visible size;
by default it is set to 0.5 mm (about 20 mills, in US units) but through an optional
argument to the macro, it may be set to any desired size; remember that 1 pt is
about one third of a millimetre; sometimes it might be too small; 1 mm is a very
black dot, therefore users must pay attention when they specify the dot diameter,
so as not to exaggerate in either direction. The syntax is as follows:

12

\Dotline(⟨start point⟩)(⟨end point⟩){⟨dot distance⟩}[⟨diameter⟩]

126 \ifx\Dotline\undefined
127 \providecommand\Dotline{}
128 \RenewDocumentCommand\Dotline{R(){0,0} R(){1,0} m O{1mm}}{%
129 \put(#1){\edef\Diam{\fpeval{{#4}/\unitlength}}%
130 \IsPolar#2:?{\CopyVect#2to\DirDot}%
131 {\SubVect#1from#2to\DirDot}%
132 \countdef\NumA=3254\relax
133 \ModAndAngleOfVect\DirDot to\ModDirDot and\AngDirDot
134 \edef\NumA{\fpeval{trunc(\ModDirDot/{#3},0)}}%
135 \edef\ModDirDot{\fpeval{\ModDirDot/\NumA}}%
136 \multiput(0,0)(\AngDirDot:\ModDirDot){\inteval{\NumA+1}}%
137 {\makebox(0,0){\circle*{\Diam}}}}\ignorespaces}
138 \fi

Notice that vectors as complex numbers in their cartesian and polar forms
always represent a point position referred to a local origin of the axes; this is
why in figures 6 and 7 of the user manual the dashed and dotted lines that start
from the lower right corner of the graph grid, and that use polar coordinates, are
put in their correct position thanks to the different behaviour obtained with the
\IsPolar macro.

3.5 Coordinate handling
The new macro \GetCoord splits a vector (or complex number) specification into
its components; in particular it distinguishes the polar from the cartesian form of
the coordinates. The latter have the usual syntax 〈x,y〉, while the former have
the syntax 〈angle:radius〉. The \put and \multiput commands are redefined to
accept the same syntax; the whole work is done by \SplitNod@ and its subsidiaries.

Notice that package eso-pic uses picture macros in its definitions, but
its original macro \LenToUnit is incompatible with this \GetCoord macro; its
function is to translate real lengths into coefficients to be used as multipliers
of the current \unitlength; in case that the eso-pic had been loaded, at the
\begin{document} execution, the eso-pic macro is redefined using the e-TEX
commands so as to make it compatible with these local macros.3

139 \AtBeginDocument{\@ifpackageloaded{eso-pic}{%
140 \renewcommand\LenToUnit[1]{\strip@pt\dimexpr#1*\p@/\unitlength}}{}}%

The above redefinition is delayed at \AtBeginDocument in order to have the pos-
sibility to check if the eso-pic package had actually been loaded. Nevertheless
the code is defined here just because the original eso-pic macro was interfering
with the algorithms of coordinate handling.

But let us come to the real subject of this section. We define a \GettCoord
macro that passes control to the service macro with the expanded arguments;
expanding arguments allows to use macros to named points, instead of explicit
coordinates; with this version of curve2e this facility is not fully exploited, but a
creative user can use this feature. Notice the usual trick to use a dummy macro
that is defined within a group with expanded arguments, but where the group is
closed by the macro itself, so that no traces remain behind after its expansion.

3Thanks to Franz-Joseph Berthold who was so kind to spot the bug.

13

141 \def\GetCoord(#1)#2#3{\let\ifCV@polare\iffalse
142 \bgroup\edef\x{\egroup
143 \noexpand\IsPolar#1:?}\x
144 {% Polar
145 \let\ifCV@polare\iftrue
146 \bgroup\edef\x{\egroup\noexpand\SplitPolar(#1)}\x\SCt@X\SCt@Y}%
147 {% Cartesian
148 \bgroup\edef\x{\egroup\noexpand\SplitCartesian(#1)}\x\SCt@X\SCt@Y}%
149 \edef#2{\SCt@X}\edef#3{\SCt@Y}\ignorespaces}
150
151 \def\SplitPolar(#1:#2)#3#4{%
152 \edef#3{\fpeval{#2 * cosd#1}}\edef#4{\fpeval{#2 * sind#1}}}
153
154 \def\SplitCartesian(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}
155

The macro that detects the form of the coordinates is \IsPolar; it examines the
parameter syntax in order to see if it contains a colon; it has already been used
with the definition of dashed and dotted lines.

In order to accept polar coordinates with \put and \multiput we resort to us-
ing \GetCoord; therefore the redefinition of \put is very simple because it suffices
to save the original meaning of that macro and redefine the new one in terms of
the old one.

156 \let\originalput\put
157 \def\put(#1){\bgroup\GetCoord(#1)\@tX\@tY
158 \edef\x{\noexpand\egroup\noexpand\originalput(\@tX,\@tY)}\x}

For \multiput it is more complicated, because the increments from one position to
the next cannot be done efficiently because the increments in the original definition
are executed within boxes, therefore any macro instruction inside these boxes is
lost. It is a good occasion to modify the \multiput definition by means of the
advanced macro definitions provided by package xparse; we can add also some
error messages for avoiding doing anything when some mandatory parameters are
either missing or empty, or do not contain anything different from an ordered pair
or a polar form. We add also an optional argument to handle the increments
outside the boxes. The new macro has the following syntax:

\multiput[〈shift〉](〈initial〉)(〈increment〉){〈number〉}{〈object〉}[〈handler〉]

where the optional 〈shift〉 is used to displace to whole set of 〈object〉s from their
original position; 〈initial〉 contains the cartesian or polar coordinates of the initial
point; 〈increment〉 contains the cartesian or polar increment for the coordinates
to be used from the second position to the last; 〈number〉 il the total number
of 〈object〉s to be drawn; 〈object〉 is the object to be put in position at each
cycle repetition; the optional 〈handler〉 may be used to control the current values
of the horizontal and vertical increments. The new definition contains two \put
commands where the second is nested within a while-loop which, in turn, is within
the argument of the first \put command. Basically it is the same idea that the
original macros, but now the increments are computed within the while loop,
but outside the argument of the inner \put command. If the optional 〈handler〉
is specified the increments are computed from the macros specified by the user.
Another new feature: the fourth argument, that contains the number of objects
to be put in place, may be an integer expression such as for example 3*\N+1.

14

The two increments components inside the optional argument may be set by
means of mathematical expressions operated upon by the \fpeval function given
by the \xfp package already loaded by curve2e. Of course it is the user respon-
sibility to pay attention to the scales of the two axes and to write meaningful
expressions; the figure and code shown in the user manual of this package displays
some examples: see the documentation curve2e-manual.pdf file.

159 \RenewDocumentCommand{\multiput}{O{0,0} d() d() m m o }{%
160 \IfNoValueTF{#2}{\PackageError{curve2e}%
161 {\string\multiput\space initial point coordinates missing}%
162 {Nothing done}
163 }%
164 {\IfNoValueTF{#3}{\PackageError{curve2e}
165 {\string\multiput\space Increment components missing}%
166 {Nothing done}
167 }%
168 {\put(#1){\let\c@multicnt\@multicnt
169 \CopyVect #2 to \R
170 \CopyVect#3 to\D
171 \@multicnt=\inteval{#4}\relax
172 \@whilenum \@multicnt > \z@\do{%
173 \put(\R){#5}%
174 \IfValueTF{#6}{#6}{\AddVect#3 and\R to \R}%
175 \advance\@multicnt\m@ne
176 }%
177 }%
178 }%
179 }\ignorespaces
180 }

And here it is the new \xmultiput command; remember: the internal cycling
TEX counter \@multicnt is now accessible with the name multicnt as if it was a
LATEX counter, in particular the user can access its contents with a command such
as \value{multicnt}. Such counter is stepped up at each cycle, instead of being
stepped down as in the original \multiput command. The code is not so different
from the one used for the new version of \multiput, but it appears more efficient
and its code more easily readable.

181 \NewDocumentCommand{\xmultiput}{O{0,0} d() d() m m o }{%
182 \IfNoValueTF{#2}{\PackageError{curve2e}{%
183 \string\Xmultiput\space initial point coordinates missing}%
184 {Nothing done}}%
185 {\IfNoValueTF{#3}{\PackageError{curve2e}{%
186 \string\Xmultiput\space Increment components missing}%
187 {Nothing done}}%
188 {\put(#1)%
189 {\let\c@multicnt\@multicnt
190 \CopyVect #2 to \R
191 \CopyVect #3 to \D
192 \@multicnt=\@ne
193 \fpdowhile{\value{multicnt} < \inteval{#4+1}}% Test
194 {%
195 \put(\R){#5}
196 \IfValueTF{#6}{#6}{%
197 \AddVect#3 and\R to \R}

15

198 \advance\@multicnt\@ne
199 }
200 }
201 }}\ignorespaces
202 }

Notice that the internal macros \R and \D, (respectively the current point coor-
dinates, in form of a complex number, where to put the 〈object〉, and the current
displacement to find the next point) are accessible to the user both in the 〈object〉
argument field and the 〈handler〉 argument field. The code used in figure 18 of
the user manual shows how to create the hour marks of a clock together with the
rotated hour roman numerals.

3.6 Vectors
The redefinitions and the new definitions for vectors are a little more complicated
than with segments, because each vector is drawn as a filled contour; the original
pict2e 2004 macro checked if the slopes are corresponding to the limitations spec-
ified by Lamport (integer three digit signed numbers) and sets up a transformation
in order to make it possible to draw each vector as an horizontal left-to-right ar-
row and then to rotate it by its angle about its tail point; with pict2e 2009,
possibly this redefinition of \vector is not necessary, but we do it as well and
for the same reasons we had for redefining \line; actually there are two macros
for tracing the contours that are eventually filled by the principal macro; each
contour macro draws the vector with a LATEX or a PostScript styled arrow tip
whose parameters are specified by default or may be taken from the parameters
taken from the PSTricks package if this one is loaded before pict2e; in any case
we did not change the contour drawing macros because if they are modified the
same modification is passed on to the arrows drawn with the curve2e package
redefinitions.

Because of these features the new macros are different from those used for
straight lines.

We start with the redefinition of \vector and we use the machinery for vectors
(as complex numbers) we used for \line. The actual point is to let \vector accept
the slope parameters also in polar form. Therefore it suffices to save the original
definition of \vector as defined in pict2e and and use it as a fallback after
redefining \vector in a “vector” format.4

203 \let\original@vector\vector
204 \def\vector(#1)#2{%
205 \begingroup
206 \GetCoord(#1)\d@mX\d@mY
207 \original@vector(\d@mX,\d@mY){\fpeval{round(abs(#2),6)}}%
208 \endgroup}%

We define the macro that does not require the specification of the length or
the lx length component; the way the new \vector macro works does not actually
require this specification, because TEX can compute the vector length, provided
the two direction components are exactly the horizontal and vertical vector com-
ponents. If the horizontal component is zero, the actual length must be specified

4The previous version 2.2.9 of this package contained a glitch that was visible only with line
widths larger than 1.5ṗt. I thank very much Ashish Kumar Das who spotted this glitch and
kindly informed me.

16

as the vertical component. The object defined with \Vector, as well as \vector,
must be put in place by means of a \put command.

209 \def\Vector(#1){{%
210 \GetCoord(#1)\@tX\@tY
211 \ifdim\@tX\p@=\z@
212 \vector(\@tX,\@tY){\@tY}%
213 \else
214 \vector(\@tX,\@tY){\@tX}%
215 \fi}}

On the opposite the next macro specifies a vector by means of the coordinates
of its end points; the first point is where the vector starts, and the second point
is the arrow tip side. We need the difference of these two coordinates, because it
represents the actual vector.

216 \def\VECTOR(#1)(#2){\begingroup
217 \SubVect#1from#2to\@tempa
218 \expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%
219 \endgroup\ignorespaces}

The double tipped vector is built on the \VECTOR macro by simply drawing
two vectors from the middle point of the double tipped vector.

220 \def\VVECTOR(#1)(#2){{\SubVect#1from#2to\@tempb
221 \ScaleVect\@tempb by0.5to\@tempb
222 \AddVect\@tempb and#1to\@tempb
223 \VECTOR(\@tempb)(#2)\VECTOR(\@tempb)(#1)}\ignorespaces}

The pict2e documentation says that if the vector length is zero the macro
draws only the arrow tip; this may work with macro \vector, certainly not with
\Vector and \VECTOR. This might be useful for adding an arrow tip to a circular
arc. See the documentation curve2e-manual.pdf file.

3.7 Polylines and polygons
We now define the polygonal line macro; its syntax is very simple:

\polyline[⟨join⟩](⟨P0⟩)(⟨P1⟩)(⟨P2⟩)...(⟨Pn⟩)

Remember: \polyline has been incorporated into pict2e 2009, but we redefine
it so as to allow an optional argument to specify the line join type.

In order to write a recursive macro we need aliases for the parentheses; actually
we need only the left parenthesis, but some editors complain about unmatched
delimiters, so we define an alias also for the right parenthesis.

224 \let\lp@r(\let\rp@r)

The first call to \polyline, besides setting the line joins, examines the first point
coordinates and moves the drawing position to this point; afterwards it looks for
the second point coordinates; they start with a left parenthesis; if this is found
the coordinates should be there, but if the left parenthesis is missing (possibly
preceded by spaces that are ignored by the \@ifnextchar macro) then a warning
message is output together with the line number where the missing parenthesis
causes the warning: beware, this line number might point to several lines further on
along the source file! In any case it’s necessary to insert a \@killglue command,
because \polyline refers to absolute coordinates, and not necessarily is put in

17

position through a \put command that provides to eliminate any spurious spaces
preceding this command.

\unitlength=0.07\hsize
\begin{picture}(8,8)(-4,-4)\color{red}
\polygon*(45:4)(135:4)(-135:4)(-45:4)
\end{picture}

Figure 1: The code and the result of defining a polygon with its vertex polar
coordinates

In order to allow a specification for the joints of the various segments of a
polyline it is necessary to allow for an optional parameter; the default is the bevel
join.

225 \renewcommand*\polyline[1][\beveljoin]{\p@lylin@[#1]}
226
227 \def\p@lylin@[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
228 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
229 \@ifnextchar\lp@r{\p@lyline}{%
230 \PackageWarning{curve2e}%
231 {Polylines require at least two vertices!\MessageBreak
232 Control your polyline specification\MessageBreak}%
233 \ignorespaces}}
234

But if there is a further point coordinate, the recursive macro \p@lyline is called;
it works on the next point and checks for a further point; if such a point exists
the macro calls itself, otherwise it terminates the polygonal line by stroking it.

235 \def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY
236 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
237 \@ifnextchar\lp@r{\p@lyline}{\strokepath\ignorespaces}}

The same treatment must be done for the \polygon macros; we use the defining
commands of package xparse, in order to use an optional asterisk; as it is usual
with picture convex lines, the command with asterisk does not trace the contour,
but fills the contour with the current color.The asterisk is tested at the beginning
and, depending on its presence, a temporary switch is set to true; this being the
case the contour is filled, otherwise it is simply stroked.

238 \providecommand\polygon{}
239 \RenewDocumentCommand\polygon{s O{\beveljoin} }{\@killglue\begingroup
240 \IfBooleanTF{#1}{\@tempswatrue}{\@tempswafalse}%
241 \@polygon[#2]}
242
243 \def\@polygon[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
244 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
245 \@ifnextchar\lp@r{\@@polygon}{%
246 \PackageWarning{curve2e}%
247 {Polygons require at least two vertices!\MessageBreak
248 Control your polygon specification\MessageBreak}%
249 \ignorespaces}}
250

18

251 \def\@@polygon(#1){\GetCoord(#1)\d@mX\d@mY
252 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
253 \@ifnextchar\lp@r{\@@polygon}{\pIIe@closepath
254 \if@tempswa\pIIe@fillGraph\else\pIIe@strokeGraph\fi
255 \endgroup
256 \ignorespaces}}

Now, for example, a filled polygon can be drawn using polar coordinates for its
vertices; see figure 1 on page 18.

Remember; the polygon polar coordinates are relative to the origin of the local
axes; therefore in order to put a polygon in a different position, it is necessary to
do it through \put command.

3.8 The colored service grid
The next command is handy for debugging while editing one’s drawing; it draws
a red grid with square meshes that are ten drawing units apart; there is no grad-
uation along the grid, since it is supposed to be a debugging aid and users should
know what they are doing. The corner displacement does not need to be with
coordinates multiples of !0; the new version of curve2e draws the square inner
grid lines so as according to the dimensions of the grid squares (10 \unitlength
apart) the interior line may coincide only with the square median line, or there are
four lines apart, or, besides a thicker median line, there are lines 1 \unitlength
apart, just as in a normal technical millimetre drawing paper. The syntax id the
following

\GraphGrid(⟨picture dimensions⟩)(⟨corner offset⟩) [⟨color⟩]

where the first argument is mandatory, while the second and the third ones are
optional. The default value for the 〈color〉 argument is ‘red’; if another color is
preferred, it must be chosen among the relatively light ones, in order to avoid
confusion with the real drawing elements. The second argument plays the same
role as the second optional argument of the picture environment; it is the offset
of the lower left picture corner with respect to the origin of the coordinates.

If the second argument is missing, the lower left corner is put at the origin of
the canvas coordinates. Of course also the lower left corner offset is recommended
to be specified with coordinates that are integer values. Actually, since both
arguments are delimited with round parentheses, a single argument is assumed to
contain both comma separated grid dimensions.

In order to render the coloured grid a little more automatic, a subsidiary
service macro of the picture environment has been redefined in order to store
the coordinates of the canvas dimensions and of the lower left corner offset (the
compulsory dimensions and the optional lower left corner shift arguments to the
picture opening statement) in two new variables, so that when the user speci-
fies the (non vanishing) dimensions of the canvas, the necessary data are already
available and there is no need to repeat them to draw the grid.

The new argument-less macro is named \AutoGrid, while the complete macro
is \GraphGrid that requires its arguments as specified above. The advantage of
the availability of both commands, consists in the fact that \AutoGrid covers
the whole canvas, while \GraphGrid may compose a grid that covers either the
whole canvas or just a part of it. In both cases, though, it is necessary the all

19

the canvas coordinates are specified as integer values, better if multiples of 10
(\unitlengths), but not mandatory. This is simple when \GraphGrid is used,
while with \AutoGrid the default specification are already contained in the open-
ing environment statement.

Nevertheless even \AutoGride accepts both parameters as optional round
parentheses delimited arguments. \AutoGrid differs from \GraphGrid only on
the fact thay its arguments are both optional, while for \GraphGrid the first ar-
gument is mandatory; therefore very often it is possibile to substitute \GraphGrid
with \AutoGrid, while the opposite is forbidden unless at least the first optional
argument is specified.

The AutoGrid syntax is almost identical to the one of \GraphGrid:

\GrAutoGrid(⟨picture dimensions⟩)(⟨corner offset⟩) [⟨color⟩]

257 \def\@picture(#1,#2)(#3,#4){%
258 \edef\pict@dimen{#1,#2} % New 2.4.0
259 \edef\pict@offset{#3,#4}% New 2.4.0
260 \@picht#2\unitlength
261 \setbox\@picbox\hb@xt@#1\unitlength\bgroup
262 \hskip -#3\unitlength
263 \lower #4\unitlength\hbox\bgroup
264 \ignorespaces}
265

In order to draw grids with differently spaced grid lines, a single \griglia com-
mand (“griglia” stands for ”grid”, but it is less likely common to other packages
control sequences and is similar to the English word) This command syntax is the
following:

\griglia{⟨line thickness⟩}{⟨inter line space⟩} [⟨color⟩]

The main grid squares are 10 units apart, and are always drawn on the canvas;
the internal lines are at specified 5, or 2, or 1 units apart; suitable tests are
made by the main grid macro to use this or that spacing. The control sequences
with upper case initials in the following definition contain values computed by
the main macro; those with lowercase initials are local values. The computations
made with the \fpeval function are a way to compute integer multiples of 10, 5,
2, and 1, the spacing values for the horizontal and vertical grid lines. Notice that
if users prefer to have the grid contain just the main lines 10 units apart, before
activating the grid drawing by means of \AutoGrid or \GraphGrid, they can
specify \noinnerlines and the inner lines are skipped in that particular picture
environment; if they specify \noinnerlines right after the \begin{document}
statement, this setting becomes global and no picture environment is going to
contain any inner lines.

266 \newif\ifinnerlines \let\ifinnerlines\iftrue
267 \def\noinnerlines{\let\ifinnerlines\iffalse}
268
269 \newcommand\griglia[2]{%
270 \linethickness{#1\p@}%
271 \edef\ggllx{\Goffx}

20

272 \fpdowhile{\ggllx!>\GridWd}{%
273 \fptest{\ggllx=\fpeval{#2*(round(\ggllx/#2,0))}}%
274 {\segment(\ggllx,\Goffy)(\ggllx,\GridHt)}{\relax}%
275 \edef\ggllx{\fpeval{\ggllx+#2}}}%
276 %
277 \edef\gglly{\Goffy}
278 \fpdowhile{\gglly!>\GridHt}{%
279 \fptest{\gglly=\fpeval{#2*(round(\gglly/#2,0))}}%
280 {\segment(\Goffx,\gglly)(\GridWd,\gglly)}{\relax}
281 \edef\gglly{\fpeval{\gglly+#2}}}}
282

The grid main macro comes next. The first 6 lines of its code are used to get the
properties of the grid, as the grid colour, and computes the fixed elements such
as the single coordinates of the canvas, the actual coordinates of its box relative
to the offset canvas lower left corner. Such values are independent of the grid line
density. The following macros use the \griglia macro to draw each set of grid
lines of the proper thickness, when the actual dimensions are taken into account.

283 \NewDocumentCommand\Gr@phGrid{d() d()}{\bgroup
284 \color{\GridColor}
285 \edef\Gdim{#1}\edef\Goff{#2}
286 \GetCoord(\Gdim)\Gllx\Glly
287 \GetCoord(\Goff)\Goffx\Goffy
288 \edef\GridWd{\fpeval{\Gllx+\Goffx}}%
289 \edef\GridHt{\fpeval{\Glly+\Goffy}}%
290 %
291 \griglia{1.0}{10}
292 %
293 \ifinnerlines
294 \griglia{0.70}{5}%
295 \unless\ifdim \unitlength < 1mm
296 \griglia{0.70}{5}%
297 \griglia{0.35}{1}%
298 \fi
299 \fi
300 \egroup
301 \ignorespaces}
302

Eventually the user macros \AutoGrid and \GrapgGrid macros are defined. Their
definitions are almost identical, the only difference being the fact that their first
arguments era optional for the first macro and mandatory for the second one.
The mandatory and optional arguments are assigned the initial default values, as
defined by the picture opening statement arguments. In facts, due to the agility
of the \AutoGrid macro, one may wonder if the other macro has to be defined;
Its utility is mainly for backwards compatibility. Nevertheless the companion
document curve2e-manual displays a few examples where \GraphGrid is used, just
to show its usage.

303 \NewDocumentCommand\AutoGrid%
304 {D(){\pict@dimen} D(){\pict@offset} O{cyan!50!white}}{\bgroup
305 \def\GridColor{#3}%
306 \put(0,0){\Gr@phGrid(#1)(#2)}%
307 \egroup\ignorespaces}
308

21

309 \NewDocumentCommand\GraphGrid%
310 {R(){\pict@dimen} D(){\pict@offset} O{cyan!50!white}}
311 {\bgroup
312 \def\GridColor{#3}%
313 \put(#2){\Gr@phGrid(#1)(#2)}%
314 \egroup\ignorespaces}
315

For backwards compatibility we keep the macro used to round up the grid margins
coordinates to multiples of 10.

316 \def\RoundUp#1modulo#2to#3{\edef#3{\fpeval{(ceil(#1/#2,0))*#2}}}%
317 %

The next \Integer macro takes a possibly fractional numeric argument whose
decimal separator, if present, must be the decimal point and uses the point as
an argument delimiter. If users have the doubt that the number being passed to
\Integer might be an integer, they should call the macro with a further point; if
the argument is truly integer this point works as the delimiter of the integer part;
if the argument being passed is fractional this extra point gets discarded as well
as the fractional part of the number. This macro was used within the definition
of \RoundUp; with the xfp facilities the latter macro does not need it any more,
but it continues to be used in several other macros.

318 \def\Integer#1.#2??{#1}%
319

4 Labelling the graphical elements
While drawing anything with the curve2e package, it might be necessary to iden-
tify some graphical objects with some sort of “label”.5

Some commands such as \legenda (legend), \Zbox, and \Pbox have been al-
ways used in the documentation of this package and its siblings; but we used
them in many other documents; therefore we thought it was useful to have them
available to any user of curve2e.

Their commands follow the following syntax.

\Pbox(⟨coordinates⟩)[⟨position⟩]{⟨formula⟩}[⟨dot diameter⟩]⟨* ⟩<⟨angle⟩>
\Zbox(⟨coordinates⟩)[⟨position⟩]{⟨formula⟩}[⟨dot diameter⟩]
\legenda(⟨coordinates⟩){⟨formula⟩}

These commands have similar but different functionalities; the most general
one is \Pbox, while the others are simplified versions that have a simpler syntax,
and a subset of the \Pbox functionalities. While we describe the arguments of
\Pbox we emphasise the small differences with the other two commands.

〈coordinates〉 are the coordinates (explicit, or in vector form) of the reference point
of the “label”; for \legenda it is the lower left corner of the framed legend
contents. They are delimited with the usual matched parentheses, and their
default value is (0,0), therefore either users specify other coordinates, or
use the \put command to place the legend where they prefer.

5Do not confuse this identifier label with the \label command.

22

〈position〉 is the optional position of the reference point relative to the “label”
contents: this means that if the “label” should be NE (North East) relative
to the visible (or invisible) dot it labels, the 〈position〉 codes should be tr
(top right); the default 〈position〉 is cc so that the “label” is vertically and
horizontally centred at the reference point; actually these position param-
eters should always be specified if the dot diameter is positive (therefore
visible), otherwise the “label” and the dot overwrite each other.

〈formula〉 may be almost anything; 〈formula〉 means that the argument is typeset
in math mode; if some text is desired the argument must be surrounded by
a matched couple of dollar signs; in any case it is possible to enter text mode
by using a box (for example through a \hbox or a \parbox) so that actually
this mandatory argument may contain almost anything.

〈dot diameter〉 the dot diameter default value is positive; for \Zbox this parameter
equals 1\unitlength, while for \Pbox it equals 0.5ex; the user should be
careful in modifying this value; but if the dot diameter is set to zero, the dot
is absent and the \Zbox command behaves almost as an unframed legend.
The small difference is that \Zbox accepts a 〈position〉 parameter while the
\legend command does not.

〈* 〉 is an optional star; if specified the “label” is framed with a visible border,
otherwise it is framed with an invisible one but with a blank gap that tries
to adjust its thickness so that the “label” is always at the same distance
from the reference point; if this reference point corresponds to a box corner
it thickness is reduced by approximately a factor equal to

√
0.5, in oder to

take into account the diagonal of the blank gap angle.

〈angle〉 is the rotation angle (in degrees) of the “label” about its reference point;
sometimes such “labels” have to be rotated 90° anticlockwise; sometimes
they need a positive or negative rotation angle in order to match the general
direction of the “labelled” object, be it an oblique line, an axis, or whatever.
We found it very useful also to label the cartesian axes, but also in other
situations. For example, in order to label the x axis the \Pbox command
might have the arrow tip coordinates for the reference point and have tr for
the 〈position〉; for the y axis, the reference point is again the arrow tip, and
the position would be again tr if the “label” sits on the left of the axis.

320 \providecommand\Pbox{}
321 \newlength\PbDim
322 \RenewDocumentCommand\Pbox{D(){0,0} O{cc} m O{0.5ex} s D<>{0}}{%
323 \put(#1){\rotatebox{#6}{\makebox(0,0){%
324 \settowidth\PbDim{#2}%
325 \edef\Rapp{\fpeval{\PbDim/{1ex}}}%
326 \fptest{\Rapp>1.5}{\fboxsep=0.5ex}{\fboxsep=0.75ex}%
327 \IfBooleanTF{#5}{\fboxrule=0.4pt}{\fboxrule=0pt}%
328 \fptest{#4=0sp}%
329 {\makebox(0,0)[#2]{\fbox{$\relax#3\relax$}}}%
330 {\edef\Diam{\fpeval{(#4)/\unitlength}}%
331 \makebox(0,0){\circle*{\Diam}}%
332 \makebox(0,0)[#2]{\fbox{$\relax\mathsf#3\relax$}}%
333 }}}%
334 }\ignorespaces}

23

335
336 \providecommand\Zbox{}
337 \RenewDocumentCommand\Zbox{R(){0,0} O{cc} m O{1}}{%
338 \put(#1){\makebox(0,0)[#2]{\fboxrule=0pt\fboxsep=3pt\fbox{$#3$}}%
339 \makebox(0,0)[cc]{\circle*{#4}}}\ignorespaces}
340
341 \providecommand\legenda{}
342 \newbox\legendbox
343 \RenewDocumentCommand\legenda{D(){0,0} m}{\put(#1){%
344 \setbox\legendbox\hbox{$\relax#2\relax$}%
345 \edef\@tempA{\fpeval{(\wd\legendbox+3\p@)/\unitlength}}%
346 \edef\@tempB{\fpeval{(\ht\legendbox+\dp\legendbox+3\p@)/\unitlength}}%
347 \framebox(\@tempA,\@tempB){\box\legendbox}}\ignorespaces}
348

With the above labelling facilities and with use of the xfp functionalities it
is not difficult to create diagrams with linear or logarithmic axes. In effects the
graphpaper class uses these labelling macros and several other ones.

5 Math operations on fractional operands
This is not the place to complain about the fact that all programs of the TEX
system use only integer arithmetics; now, with the 2018 distribution of the modern
TEX system, package xfp is available: this package resorts in the background to
language LATEX 3; with this language now it is possible to compute fractional
number operations; the numbers are coded in decimal notation, not in binary
one, and it is possible also to use numbers written as in computer science, that is
as a fractional, possibly signed, number followed by an expression that contains
the exponent of 10 necessary to (ideally) move the fractional separator in one or
the other direction according to the sign of the exponent of 10; in other words
the L3 library for floating point calculations accepts such expressions as 123.456,
0.12345e3, and 12345e-3, and any other equivalent expression. If the first number
is integer, it assumes that the decimal separator is to the right of the rightmost
digit of the numerical string.

Floating point calculations may be done through the \fpeval L3 function with
a very simple syntax:

\fpeval{⟨mathematical expression⟩}

where 〈mathematical expression〉 can contain the usual algebraic operation sings,
‘+’ - * / ** ˆ and the function names of the most common algebraic, trigono-
metric, and transcendental functions; for direct and inverse trigonometric func-
tions it accepts arguments in radians and in sexagesimal degrees; it accepts the
group of rounding/truncating operators; it can perform several kinds of compar-
isons; as to now (Nov. 2019) the todo list includes the direct and inverse hyperbolic
functions. The mantissa length of the floating point operands amounts to 16 dec-
imal digits. Further details may be read in the documentations of the xfp and
interface3 packages, just by typing into a command line window the command
texdoc 〈document〉, where 〈document〉 is just the name of the above named files
without the need of stating the extension.

24

Furthermore we added a few interface macros with the internal L3 floating
point functions; \fptest and \fpdowhile. They have the following syntax.

\fptest{⟨logical expression⟩}{⟨true code⟩}{⟨false code⟩}
\fptestT{⟨logical expression⟩}{⟨true code⟩}
\fptestF{⟨logicalexpression⟩}{⟨false code⟩}
\fpdowhile{⟨logical expression⟩}{⟨code⟩}

The 〈logical expression〉 compares numerical values of any kind by means of the
usual >, =, and < operators that may be negated with the “not” operator !; further-
more the logical results of these comparisons may be acted upon with the “and”
operator && and the “or” operator ||. The 〈true code〉, and 〈code〉 are executed
if or while the 〈logical expression〉 is true, while the 〈false code〉 is executed if the
〈logical expression〉 is false

This package defines Some other advanced commands, although they are not
used for drawing; they might be useful for some users. They are \Modulo, \Ifodd,
\IfEqual; namely the function to compute the expression x = a mod b, in other
words the remainder of the integer quotient of a/b; the equivalent of the native
command \ifodd with the difference that it can test directly an integer expression;
similarly \IfEqual extends the functionality of the native command \ifx, but can
compare any kind of tokens; they are all robust commands while the original tests
are fragile.

Before the availability of the xfp package, it was necessary to fake fractional
number computations by means of the native e-TEX commands \dimexpr, i.e. to
multiply each fractional number by the unit \p@ (1 pt) so as to get a length; op-
erate on such lengths, and then stripping off the ‘pt’ component from the result;
very error prone and with less precision as the one that the modern decimal float-
ing point calculations can do. Of course it is not so important to use fractional
numbers with more than 5 or 6 fractional digits, because the other TEX and LATEX
macros cannot handle them, but it is very convenient to have simpler and more
readable code. We therefore switched to the new floating point functionality, even
if this maintains the curve2e functionality, but renders this package unusable with
older LATEX kernel installations. It has already been explained that the input of
this up-to-date version of curve2e is aborted if the xfp package is not available,
but the previous 1.61 version is loaded in its place; very little functionality is lost,
but, hopefully, this new version performs in a better way.

5.1 The division macro
The most important macro is the division of two fractional numbers; we seek a
macro that gets dividend and divisor as fractional numbers and saves their ratio
in a macro; this is done in a simple way with the following code.

349 \def\DividE#1by#2to#3{\edef#3{\fpeval{#1 / #2}}}

In order to avoid problems with divisions by zero, or with numbers that yield
results too large to be used as multipliers of unit lengths, it would be preferable
that the above code be preceded or followed by some tests and possible messages.
Actually we decided to avoid such tests and messages, because the internal L3
functions already provide some. This was done in the previous versions of this
package, when the \fpeval L3 function was not available.

25

Notice that operands #1 and #2 may be integer numbers or fractional, or mixed
numbers. They may be also dimensions: in this case our function \fpeval treats
the unit symbols as special numerical constants that transform the dimensions into
typographical points; for example mm is the (dimensionless) ratio of two lengths
1pt/1mm = (72,27pt/in)/(25,4mm/in) = 2,84527559055118; therefore both ex-
pressions

%\DividE(1mm)by(3mm)to\result
%\Divide 1mm by 3mm to\result
%

yield correctly \result=0.33333333.
For backwards compatibility we need an alias.

350 \let\DivideFN\DividE

We do the same in order to multiply two integer or fractional numbers held
in the first two arguments, and the third argument is a definable token that will
hold the result of multiplication in the form of a fractional number, possibly with
a non null fractional part; a null fractional part is stripped off.

351 \def\MultiplY#1by#2to#3{\edef#3{\fpeval{#1 * #2}}}\relax
352 \let\MultiplyFN\MultiplY

but with multiplication it is better to avoid computations with lengths.
The next macro uses the \fpeval macro to get the numerical value of a measure

in points. One has to call \Numero with a control sequence and a dimension, with
the following syntax; the dimension value in points is assigned to the control
sequence.

\Numero⟨control sequence result⟩⟨dimension⟩

353 \providecommand\Numero[2]{\edef#1{\fpeval{round(#2,6)}}}

The numerical value is rounded to 6 fractional digits that are more than sufficient
for the graphical actions performed by curve2e.

5.2 Trigonometric functions
We now start with trigonometric functions. In previous versions of this package
we defined the macros \SinOf, \CosOf, and \TanOf (\CotOf did not appear so
essential) by means of the parametric formulas that require the knowledge of
the tangent of the half angle. We wanted, and still want, to specify the angles
in sexagesimal degrees, not in radians, so that accurate reductions to the main
quadrants are possible. The bisection formulas are

sin θ = 2
cot x + tan x

cos θ = cot x − tan x

cot x + tan x

tan θ = 2
cot x − tan x

where
x = θ/114.591559

26

is the half angle in degrees converted to radians.
But now, in this new version, the availability of the floating point computations

with the specific L3 library makes all the above superfluous; actually the above
approach gave good results but it was cumbersome and limited by the fixed radix
computations of the TEX system programs.

Matter of facts, we compared the results (with 6 fractional digits) of the com-
putations executed with the sind function name, in order to use the angles in
degrees, and a table of trigonometric functions with the same number of frac-
tional digits, and we did not find any difference, not even one unit on the sixth
decimal digit. Probably the \fpeval computations, without rounding before the
sixteenth significant digit, are much more accurate, but it is useless to have a
higher accuracy when the other TEX and LATEX macros would not be able to
exploit them.

Having available such powerful instrument, even the tangent appears to be of
little use for the kind of computations that are supposed to be required in this
package.

The codes for the computation of \SinOf and \CosOf of the angle in degrees
is now therefore the following

354 \def\SinOf#1to#2{\edef#2{\fpeval{round(sind#1,6)}}}\relax
355 \def\CosOf#1to#2{\edef#2{\fpeval{round(cosd#1,6)}}}\relax

Sometimes the argument of a complex number is necessary; therefore with
macro \ArgOfVect we calculate the four quadrant arctangent (in degrees) of the
given vector taking into account the sings of the vector components. We use the
xfp atand with two arguments, so that it automatically takes into account all the
signs for determining the argument of vector x, y by giving the values x and y in
the proper order to the function atan:

if x + iy = Meiφ then φ = \fpeval{atand(y, x)}

The \ArgOfVect macro receives on input a vector and determines its four quadrant
argument; it only checks if both vector components are zero, because in this case
nothing is done, and the argument is assigned the value zero.

356 \def\ArgOfVect#1to#2{\GetCoord(#1){\t@X}{\t@Y}%
357 \fptest{\t@X=\z@&&\t@Y=\z@}{\edef#2{0}%
358 \PackageWarning{curve2e}{Null vector}{%
359 Check your data\MessageBreak
360 Computations go on, but the results may be meaningless}%
361 }{\edef#2{\fpeval{round(atand(\t@Y,\t@X),6)}}}%
362 \ignorespaces}

Since the argument of a null vector is meaningless, we set it to zero in case that
input data refer to such a null vector. Computations go on anyway, but the results
may be meaningless; such strange results are an indications that some controls on
the code should be done by the user.

It is worth examining the following table, where the angles of nine vectors 45◦

degrees apart from one another are computed by using this macro.
Vector 0, 0 1, 0 1, 1 0, 1 -1, 1 -1, 0 -1, -1 0, -1 1, -1
Angle 0 0 45 90 135 180 -135 -90 -45

Real computations with the \ArgOfVect macro produce those very numbers with-
out the need of rounding; \fpeval produces by itself all the necessary trimming
of lagging zeros and the result rounding.

27

5.3 Arcs and curves preliminary information
We would like to define now a macro for drawing circular arcs of any radius and
any angular aperture; the macro should require the arc center, the arc starting
point and the angular aperture. The arc has its reference point in its center,
therefore it does not need to be put in place by the command \put; nevertheless
if \put is used, it may displace the arc into another position.

The command should have the following syntax:

\Arc(⟨center⟩)(⟨starting point⟩){⟨angle⟩}

which is totally equivalent to:

\put(⟨center⟩){⟨\Arc(0,0)(⟨starting
point⟩){⟨angle⟩}⟩}

If the 〈angle〉, i.e. the arc angular aperture, is positive the arc runs counterclock-
wise from the starting point; clockwise if it is negative. Notice that since the
〈starting point〉 is relative to the 〈center〉 point, its polar coordinates are very
convenient, since they become (〈〈start angle〉:〈radius〉〉), where the 〈start angle〉
is relative to the arc center. Therefore you can think about a syntax such as this
one:

\Arc(⟨center⟩)(⟨start angle:radius⟩){⟨angle⟩}

The difference between the pict2e \arc definition consists in a very different
syntax:

\arc[⟨start angle⟩,⟨end angle⟩]{⟨radius⟩}

and the center is assumed to be at the coordinate established with a required \put
command; moreover the difference in specifying angles is that 〈end angle〉 equals
the sum of 〈start angle〉 and 〈angle〉. With the definition of this curve2e package
use of a \put command is not prohibited, but it may be used for fine tuning the
arc position by means of a simple displacement; moreover the 〈starting point〉 may
be specified with polar coordinates (that are relative to the arc center).

It’s necessary to determine the end point and the control points of the Bézier
spline(s) that make up the circular arc.

The end point is obtained from the rotation of the starting point around the
center; but the pict2e command \pIIe@rotate is such that the pivoting point
appears to be non relocatable. It is therefore necessary to resort to low level
TEX commands and the defined trigonometric functions and a set of macros that
operate on complex numbers used as vector roto-amplification operators.

5.4 Complex number macros
In this package complex number is a vague phrase; it may be used in the math-
ematical sense of an ordered pair of real numbers; it can be viewed as a vector

28

joining the origin of the coordinate axes to the coordinates indicated by the or-
dered pair; it can be interpreted as a roto-amplification operator that scales its
operand and rotates it about a pivot point; besides the usual conventional repre-
sentation used by the mathematicians where the ordered pair is enclosed in round
parentheses (which is in perfect agreement with the standard code used by the
picture environment) there is the other conventional representation used by the
engineers that stresses the roto-amplification nature of a complex number:

(x, y) = x + jy = Mejθ

Even the imaginary unit is indicated with i by mathematicians and with j by
engineers. In spite of these differences, such objects, the complex numbers, are
used without any problem by both mathematicians and engineers.

The important point is that these objects can be summed, subtracted, multi-
plied, divided, raised to any power (integer, fractional, positive or negative), be
the argument of transcendental functions according to rules that are agreed upon
by everybody. We do not need all these properties, but we need some and we must
create the suitable macros for doing some of these operations.

In facts we need macros for summing, subtracting, multiplying, dividing com-
plex numbers, for determining their directions (unit vectors or versors); a unit
vector is the complex number divided by its magnitude so that the result is the
cartesian or polar form of the Euler’s formula

ejϕ = cos ϕ + j sin ϕ

The magnitude of a vector is determined by taking the positive square root of
the sum of the squared real and imaginary parts (often called Pitagorean sum);
see further on.

It’s better to represent each complex number with one control sequence; this
implies frequent assembling and disassembling the pair of real numbers that make
up a complex number. These real components are assembled into the defining
control sequence as a couple of coordinates, i.e. two comma separated integer or
fractional signed decimal numbers.

For assembling two real numbers into a complex number we use the following
elementary macro:

363 \def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}}%

Another elementary macro copies a complex number into another one:
364 \def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%

The magnitude is determined with the macro \ModOfVect with delimited argu-
ments; as usual it is assumed that the results are retrieved by means of control
sequences, not used directly.

In the preceding versions of package curve2e the magnitude M was determined
by taking the moduli of the real and imaginary parts, by changing their signs if
necessary; the larger component was then taken as the reference one, so that, if a
is larger than b, the square root of the sum of their squares is computed as such:

M =
√

a2 + b2 = |a|
√

1 + (b/a)2

In this way the radicand never exceeds 2 and it was quite easy to get its square
root by means of the Newton iterative process; due to the quadratic convergence,

29

five iterations were more than sufficient. When one of the components was zero,
the Newton iterative process was skipped.

With the availability of the xfp package functionalities and its floating point
algorithms it is much easier to compute the magnitude of a complex number;
since these algorithms allow to use very large numbers, it is not necessary to
normalise the complex number components to the largest one; therefore the code
is much simpler than the one used for implementing the Newton method used in
the previous versions of this package.

365 \def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
366 \edef#2{\fpeval{round(sqrt(\t@X*\t@X + \t@Y*\t@Y),6)}}\ignorespaces}%

Since the macro for determining the magnitude of a vector is available, we can
now normalise the vector to its magnitude, therefore getting the Cartesian form of
the direction vector. If by any chance the direction of the null vector is requested,
the output is again the null vector, without normalisation.

367 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
368 \ModOfVect#1to\@tempa
369 \fptestF{\@tempa=\z@}{%
370 \edef\t@X{\fpeval{round(\t@X/\@tempa,6)}}%
371 \edef\t@Y{\fpeval{round(\t@Y/\@tempa,6)}}%
372 }\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

A cumulative macro uses the above ones to determine with one call both the
magnitude and the direction of a complex number. The first argument is the input
complex number, the second its magnitude, and the third is again a complex
number normalised to unit magnitude (unless the input was the null complex
number); remember always that output quantities must be specified with control
sequences to be used at a later time.

373 \def\ModAndDirOfVect#1to#2and#3{%
374 \ModOfVect#1to#2%
375 \DirOfVect#1to#3\ignorespaces}%

The next macro computes the magnitude and the direction of the difference of
two complex numbers; the first input argument is the minuend, the second is the
subtrahend; the output quantities are the third argument containing the magni-
tude of the difference and the fourth is the direction of the difference. Please
notice the difference between \ModAndDirOfVect and \DistanceAndDirOfVect;
the former computes the modulus and the direction of a complex number, that is
a vector with its tail in the origin of the axes; the latter measures the length of
the difference of two complex numbers; in a way \ModAndDirOfVect 〈vector〉 to
〈macro〉 and 〈versor〉 produces the same result as \DistanceAndDirOfVect 〈vec-
tor〉 minus {0,0} to 〈macro〉 and 〈versor〉. Actually \DistanceAndDirOfVect
yields the distance of two complex numbers and the direction of their difference.
The service macro \SubVect executes the difference of two complex numbers and
is described further on; its code implements just this statement.

376 \def\DistanceAndDirOfVect#1minus#2to#3and#4{%
377 \SubVect#2from#1to\@tempa
378 \ModAndDirOfVect\@tempa to#3and#4\ignorespaces}%

We now have two macros intended to fetch just the real or, respectively, the
imaginary part of the input complex number.

379 \def\XpartOfVect#1to#2{\GetCoord(#1)#2\@tempa\ignorespaces}%
380 %

30

381 \def\YpartOfVect#1to#2{\GetCoord(#1)\@tempa#2\ignorespaces}%

With the next macro we create a direction vector (second argument) from a given
angle (first argument, in degrees).

382 \def\DirFromAngle#1to#2{%
383 \edef\t@X{\fpeval{round(cosd#1,6)}}%
384 \edef\t@Y{\fpeval{round(sind#1,6)}}%
385 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

Sometimes it is necessary to scale (multiply) a vector by an arbitrary real
factor; this implies scaling both the real and imaginary part of the input given
vector.

386 \def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y
387 \edef\t@X{\fpeval{#2 * \t@X}}%
388 \edef\t@Y{\fpeval{#2 * \t@Y}}%
389 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Again, sometimes it is necessary to reverse the direction of rotation; this implies
changing the sign of the imaginary part of a given complex number; this operation
produces the complex conjugate of the given number.

390 \def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y
391 \edef\t@Y{-\t@Y}\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

With all the low level elementary operations we can now proceed to the defi-
nitions of the binary operations on complex numbers. We start with the addition:

392 \def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y
393 \GetCoord(#2)\td@X\td@Y
394 \edef\t@X{\fpeval{\tu@X + \td@X}}%
395 \edef\t@Y{\fpeval{\tu@Y + \td@Y}}%
396 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Then the subtraction:
397 \def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y
398 \GetCoord(#2)\td@X\td@Y
399 \edef\t@X{\fpeval{\td@X - \tu@X}}%
400 \edef\t@Y{\fpeval{\td@Y - \tu@Y}}%
401 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

For the multiplication we need to split the operation according to the fact
that we want to multiply by the second operand or by the complex conjugate of
the second operand; it would be nice if we could use the usual postfixed asterisk
notation for the complex conjugate, but in the previous versions of this package
we could not find a simple means for doing so. Therefore the previous version
contained a definition of the \MultVect macro that followed a simple syntax with
an optional asterisk prefixed to the second operand. Its syntax, therefore, allowed
the following two forms:

\MultVect⟨first factor⟩ by ⟨second factor⟩ to ⟨output macro⟩

\MultVect⟨first factor⟩ by ⋆ ⟨second factor⟩ to ⟨output macro⟩

With the availability of the xparse package and its special argument descrip-
tors for the arguments, we were able to define a different macro, \Multvect, with

31

both optional positions for the asterisk: after and before; its syntax allows the
following four forms:

\Multvect{⟨first factor⟩}{⟨second factor⟩}⟨output macro⟩
\Multvect{⟨first factor⟩}⋆{⟨second factor⟩}⟨output macro⟩
\Multvect{⟨first factor⟩}{⟨second factor⟩}⋆⟨output macro⟩
\Multvect{⟨first factor⟩}⋆{⟨second factor⟩}⋆⟨output macro⟩

Nevertheless we maintain a sort of interface between the old syntax and the
new one, so that the two old forms can be mapped to two suitable forms of the
new syntax. Old documents are still compilable; users who got used to the old
syntax can maintain their habits.

First we define the new macro: it receives the three arguments, the first two as
balanced texts; the last one must always be a macro, therefore a single (complex)
token that does not require braces, even if it is not forbidden to use them. Asterisks
are optional. The input arguments are transformed into couples of argument and
modulus; this makes multiplication much simpler as the output modulus is just the
product of the input moduli, while the output argument is just the sum of input
arguments; eventually it is necessary to transform this polar version of the result
into an ordered couple of cartesian values to be assigned to the output macro.
In order to maintain the single macros pretty simple we need a couple of service
macros and a named counter. We use \ModOfVect previously defined, and a new
macro \ModAndAngleOfVect with the following syntax:

\ModAndAngleOfVect⟨input vector⟩ to ⟨output modulus⟩ and ⟨output angle
in degrees⟩

The output quantities are always macros, so they do not need balanced bracing;
angles in degrees are always preferred because, in case of necessity, they are easy
to reduce to the range −180◦ < α ≤ +180◦.

402 \def\ModAndAngleOfVect#1to#2and#3{\ModOfVect#1to#2\relax
403 \ArgOfVect#1to#3\ignorespaces}

We name a new service counter
404 \newcount\MV@C

Now comes the real macro6:
405 \NewDocumentCommand\Multvect{m s m s m}%
406 {\ModAndAngleOfVect#1to\MV@uM and\MV@uA
407 \ModAndAngleOfVect#3to\MV@dM and\MV@dA
408 \fptestT{%
409 \IfBooleanTF{#2}{1}{0}+\IfBooleanTF{#4}{1}{0}!=0}%
410 {\edef\MV@dA{-\MV@dA}}%
411 \edef\MV@rM{\fpeval{round((\MV@uM*\MV@dM),6)}}%
412 \edef\MV@rA{\fpeval{round((\MV@uA+\MV@dA),6)}}%
413 \edef#5{\fpeval{\MV@rM*cosd\MV@rA},\fpeval{\MV@rM*sind\MV@rA}}}
414

6A warm thank-you to Enrico Gregorio, who kindly attracted my attention on the necessity
of braces when using this kind of macro; being used to the syntax with delimited arguments I
had taken the bad habit of avoiding braces. Braces are very important, but the syntax of the
original TEX language, that did not have available the L3 one, spoiled me with the abuse of
delimited arguments.

32

In order to remain backward compatible, the macro reduces to two simple
macros that take the input delimited arguments and passes them in braced form
to the above general macro:

415 \def\MultVect#1by{\@ifstar{\let\MV@c1\@MultVect#1 by}{\let\MV@c0\@MultVect#1by}}
416
417 \def\@MultVect#1by#2to#3{%
418 \fptest{\MV@c!=0}{\Multvect{#1}{#2}*{#3}}%
419 {\Multvect{#1}{#2}{#3}}%
420 }%

Testing of both the new and the old macros shows that they behave as expected,
although, using real numbers for trigonometric functions, some small rounding unit
on the sixth decimal digit still remains; nothing to worry about with a package
used for drawing.

The division of two complex numbers implies scaling down the dividend by
the magnitude of the divisor and by rotating the dividend scaled vector by the
conjugate versor of the divisor:

N⃗

D⃗
= N⃗

Mu⃗
= N⃗

M
u⃗⋆

therefore:
421 \def\DivVect#1by#2to#3{\Divvect{#1}{#2}{#3}}
422
423 \NewDocumentCommand \Divvect{m m m}%
424 {\ModOfVect#2to\DV@dD
425 \fptest{\DV@dD=0}{\PackageWarning{curve2e}{ˆˆJ%
426 **ˆˆJ%
427 Division by zero!ˆˆJ%
428 Result set to maxdimen in scaled pointsˆˆJ%
429 **ˆˆJ}%
430 \edef#3{\fpeval{\maxdimen*2**16},0}}%
431 {\edef\DV@sF{\fpeval{1/\DV@dD**2}}%
432 \Multvect{#2}{\DV@sF,0}{\DV@dD}%
433 \Multvect{#1}{\DV@dD}*{#3}}}%

Macros \DivVect and \Divvect are almost equivalent; the second is possibly
slightly more robust. They match the corresponding macros for multiplying two
vectors. Attention! The new macro \Divvect performs a test on a zero valued
divisor; in case it issues a warning, and sets the result as the maxdimen value
expressed in scaled points and it does not stop the job; the following results are
going to be very wrong, but the strongly emphasised warning message in the
console and/or in the log file warns users to review their data.

5.5 Arcs and curved vectors
We are now in the position of really doing graphic work.

5.5.1 Arcs

We provide two ways to produce arcs so as to use different although similar macros;
they follow the following syntax:

33

\Arc(⟨center coordinates⟩)(⟨starting point cartesian coordinates⟩){⟨angle⟩}
\Arc(⟨centercoordinates⟩)(⟨starting point polar coordinates⟩){⟨ange⟩}

The difference between these macros and that of the standard pict2e package
assumes that these new ones are easier to use. The latter does no require the
center coordinates and must be put in place with a \put command; its reference
point becomes the arc center; is it necessary to specify the coordinates of both
the starting and the ending point angles and the radius; this implies that the
user specifies compatible data; not too difficult, but it is delicate for choosing the
correct angles and the correct distance from the implicit center.

These new alternative macros leave the calculation of the radius to the software
and the Pythagorean distance between the center and the starting point, and
require the specification of the rotation angle; but even in this way, used in the
previous version of this package, the cartesian coordinates of the staring point are
very easy when they imply an angle of an integer number of right angles starting
from the x axis, but they become not that easy when the center and the starting
point don’t share either their abscissas or their ordinates. The new alternate
syntax uses the polar coordinates; their reference point is the arc center and it
appears to be easier to specify the position of the starting point, because its angle
and it distance are both specified by the user. With the drawings made with the
extended picture environment it seems to be easier to have available both the
absolute cartesian specification and the centred polar specification.

Therefore tracing a circular arc of arbitrary center, arbitrary starting point
and arbitrary aperture; the first macro checks the aperture; if this is not zero it
actually proceeds with the necessary computations, otherwise it does nothing.

434 \def\Arc(#1)(#2)#3{\begingroup
435 \edef\tempG{#3}%
436 \fptestF{#3=0}{\@Arc(#1)(#2)}}%

The aperture is already memorised in \@tdA; the \@Arc macro receives the center
coordinates in the first argument and the coordinates of the starting point in the
second argument. For easier calculation we assume that the angles are positive
when rotating counterclockwise; if the user specification is negative, we change
sign, but remember the original sign so that in the end the arc will floe=w in the
right direction

437
438 \def\@Arc(#1)(#2){%
439 \fptest{\tempG>\z@}%
440 {\let\Segno+}%
441 {\let\Segno-%
442 \edef\tempG{\fpeval{abs(\tempG)}}%
443 }%

The rotation angle sign is memorised in \Segno and \@tdA now contains the
absolute value of the arc aperture.

If the rotation angle is larger than 360◦ a message is issued that informs the
user that the angle will be reduced modulo 360◦; this operation is performed by
successive subtractions rather than with modular arithmetics on the assumption
that in general one subtraction suffices.

444 \fptestT{\tempG>360}{%
445 \PackageWarning{curve2e}%

34

446 {The arc aperture is \tempG\space degrees
447 and gets reducedˆˆJ%
448 to the interval 0--360 taking the sign into
449 consideration}%
450 \edef\tempG{\Modulo{\tempG}{360}}%
451 }%

Now the radius is determined and the drawing point is moved to the starting point.
452 \GetCoord(#2)\@pPunX\@pPunY
453 \ifCV@polare
454 \ModOfVect#2to\@Raggio
455 \CopyVect#1to\@Cent
456 \AddVect#2and#1to\@pPun% starting point
457 \GetCoord(\@pPun)\@pPunX\@pPunY
458 \else
459 \SubVect#2from#1to\@V
460 \ModOfVect\@V to\@Raggio
461 \CopyVect#2to\@pPun
462 \CopyVect#1to\@Cent
463 \GetCoord(\@pPun)\@pPunX\@pPunY
464 \fi

From now on it’s better to define a new macro that will be used also in the subse-
quent macros that draw arcs; here we already have the starting point coordinates
and the angle to draw the arc, therefore we just call the new macro, stroke the
line and exit.

465 \@@Arc\strokepath\endgroup\ignorespaces}%

And the new macro \@@Arc starts with moving the drawing point to the first
point and does everything needed for drawing the requested arc, except stroking
it; we leave the \strokepath command to the completion of the calling macro
and nobody forbids to use the \@@Arc macro for other purposes.

466 \def\@@Arc{%
467 \pIIe@moveto{\@pPunX\unitlength}%
468 {\@pPunY\unitlength}%

If the aperture is larger than 180◦ it traces a semicircle in the right direction and
correspondingly reduces the overall aperture.

469 \fptestT{\tempG>180}{%
470 \edef\tempG{\fpeval{\tempG-180}}%
471 \SubVect\@pPun from\@Cent to\@V
472 \AddVect\@V and\@Cent to\@sPun
473 \Multvect{\@V}{0,-1.3333333}{\@V}%
474 \if\Segno-\ScaleVect\@V by-1to\@V\fi
475 \AddVect\@pPun and\@V to\@pcPun
476 \AddVect\@sPun and\@V to\@scPun
477 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
478 \GetCoord(\@scPun)\@scPunX\@scPunY
479 \GetCoord(\@sPun)\@sPunX\@sPunY
480 \pIIe@curveto{\@pcPunX\unitlength}%
481 {\@pcPunY\unitlength}%
482 {\@scPunX\unitlength}%
483 {\@scPunY\unitlength}%
484 {\@sPunX\unitlength}%
485 {\@sPunY\unitlength}%

35

486 \CopyVect\@sPun to\@pPun}%

If the remaining aperture is not zero it continues tracing the rest of the arc. Here
we need the extrema of the arc and the coordinates of the control points of the
Bézier cubic spline that traces the arc. The control points lay on the perpendicular
to the vectors that join the arc center to the starting and end points respectively.

With reference to figure 12 of the curve2e-manual.pdf file, the points P1 and
P2 are the arc end-points; C1 and C2 are the Bézier-spline control-points; P is the
arc mid-point, that should be distant from the center of the arc the same as P1
and P2. Choosing a convenient orientation of the arc relative to the coordinate
axes, the coordinates of these five points are:

P1 = (−R sin θ, 0)
P2 = (R sin θ, 0)
C1 = (−R sin θ + K cos θ, K sin θ)
C2 = (R sin θ − K cos θ, K sin θ)
P = (0, R(1 − cos θ))

The Bézier cubic spline interpolating the end and mid points is given by the
parametric equation:

P = P1(1 − t)3 + 3C1(1 − t)2t + 3C2(1 − t)t2 + P2t3

where the mid point is obtained for t = 0.5; the four coefficients then become
1/8, 3/8, 3/8, 1/8 and the only unknown remains K. Solving for K we obtain the
formula

K = 4
3

1 − cos θ

sin θ
R = 4

3
1 − cos θ

sin2 θ
s (1)

where θ is half the arc aperture, R is its radius, and s is half the arc chord.
487 \fptestT{\tempG>0}{%
488 \DirFromAngle\tempG to\@Dir
489 \if\Segno-\ConjVect\@Dir to\@Dir \fi
490 \SubVect\@Cent from\@pPun to\@V
491 \Multvect{\@V}{\@Dir}\@V
492 \AddVect\@Cent and\@V to\@sPun
493 \edef\tempG{\fpeval{\tempG/2}}%
494 \DirFromAngle\tempG to\@Phimezzi
495 \GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi
496 \@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB
497 \@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@
498 \Numero\@tempa\@tdC
499 \@tdB=\@tempa\@tdB
500 \DividE\@tdB by\@sinphimezzi\p@ to\@cZ
501 \ScaleVect\@Phimezzi by\@cZ to\@Phimezzi
502 \ConjVect\@Phimezzi to\@mPhimezzi
503 \if\Segno-%
504 \let\@tempa\@Phimezzi
505 \let\@Phimezzi\@mPhimezzi
506 \let\@mPhimezzi\@tempa
507 \fi
508 \SubVect\@sPun from\@pPun to\@V
509 \DirOfVect\@V to\@V

36

P2

P

P1
O

R

Figure 2: Approximation of a Bézier arc (black) to a circumference arc (red)

510 \Multvect{\@Phimezzi}{\@V}\@Phimezzi
511 \AddVect\@sPun and\@Phimezzi to\@scPun
512 \ScaleVect\@V by-1to\@V
513 \Multvect{\@mPhimezzi}{\@V}\@mPhimezzi
514 \AddVect\@pPun and\@mPhimezzi to\@pcPun
515 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
516 \GetCoord(\@scPun)\@scPunX\@scPunY
517 \GetCoord(\@sPun)\@sPunX\@sPunY
518 \pIIe@curveto{\@pcPunX\unitlength}%
519 {\@pcPunY\unitlength}%
520 {\@scPunX\unitlength}%
521 {\@scPunY\unitlength}%
522 {\@sPunX\unitlength}%
523 {\@sPunY\unitlength}%
524 }}%

It is important to remember that the cubic spline used to draw the arc is not the
equation of an arc circumference, but a very good approximation; the approxima-
tion error is zero at the arc end points and at the midpoint by construction. The
approximation error is maximum more or less at the mid point between P1 and P,
and between P and P2. See figure 2, where the red line should be much more close
to the desired arc, and the black arc is the one obtained with the \Arc macro.

As it can be seen in figure 2 the error is hardly noticed and in most circum-
stances the error is negligible, since it amounts to about 2% of the radius with an
arc opening of 180°; it becomes absolutely invisible if the arc aperture gets smaller
and smaller; in a 90° arc the error exists but it is invisible. In rare circumstances
it might be necessary to split the total arc in two or three sub-arcs.

5.5.2 Arc vectors

We exploit much of the above definitions of the \Arc macro for drawing circular
arcs with an arrow tip at one or both ends; the first macro \VectorArc draws an
arrow at the ending point of the arc; the second macro \VectorARC (with alias
\VVectorArc) draws arrows at both ends; the arrows tips have the same shape as

37

those for vectors; actually they are drawn by putting a vector of zero length at
the proper arc end(s), therefore they are styled as traditional LATEX or PostScript
arrows according to the specific option to the pict2e package.

It goes by itself that the ending point may be specified as absolute cartesian
coordinates or centred polar ones, the same as it was described above for the arcs
without vector tips.

But the arc drawing done here shortens it so as not to overlap on the arrow
tip(s); the only arrow tip (or both tips) are also lightly tilted in order to avoid the
impression of a corner where the arc enters the arrow tip.

All these operations require a lot of “playing” with vector directions, but even
if the operations are numerous, they do not do anything else but: (a) determining
the end point and its direction; (b) determining the arrow length as an angular
quantity, i.e. the arc amplitude that must be subtracted from the total arc to
be drawn; (c) the direction of the arrow should correspond to the tangent to the
arc at the point where the arrow tip is attached; (d) tilting the arrow tip by
half its angular amplitude; (e) determining the resulting position and direction
of the arrow tip so as to draw a zero length vector; (f) possibly repeating the
same procedure for the other end of the arc; (g) shortening the total arc angular
amplitude by the amount of the arrow tip(s) already set, and finally (h) drawing
the circular arc that joins the starting point to the final arrow or one arrow to the
other one.

The calling macros are very similar to the \Arc macro initial one:
525 \def\VectorArc(#1)(#2)#3{\begingroup
526 \def\tempG{#3}%
527 \fptestF{#3=0}{\@VArc(#1)(#2)}}%

The single arrow tipped arc is defined with the following long macro where all
the described operations are performed more or less in the described succession;
probably the macro requires a little cleaning, but since it works fine we did not
try to optimise it for time or number of tokens. The final part of the macro is
almost identical to that of the plain arc; the beginning also is quite similar. The
central part is dedicated to the positioning of the arrow tip and to the necessary
calculations for determining the tip tilt and the reduction of the total arc length;
pay attention that the arrow length, stored in \@tdE is a real length, while the
radius stored in \@Raggio is just a multiple of the \unitlength, so that the
division (that yields a good angular approximation to the arrow length as seen
from the center of the arc) must be done with real lengths. The already defined
\@@Arc macro actually draws the curved vector stem without stroking it.

528 \def\@VArc(#1)(#2){%
529 \fptest{\tempG>\z@}%
530 {\let\Segno+}%
531 {\let\Segno-%
532 \edef\tempG{\fpeval{abs(\tempG)}}}%
533 \let\@gradi\tempG
534 \fptestT{\tempG>360}
535 {\PackageWarning{curve2e}%
536 {The arc aperture is \tempG\space degrees
537 and gets reducedˆˆJ%
538 to the range 0--360 taking the sign into
539 consideration}%
540 \edef\tempG{\Modulo{\tempG}{360}}%

38

541 }%
542 \let\@gradi\tempG
543 \GetCoord(#2)\@pPunX\@pPunY
544 \ifCV@polare
545 \ModOfVect#2to\@Raggio \CopyVect#2to\@V
546 \CopyVect#1to\@Cent
547 \AddVect#2and#1to\@pPun% punto iniziale
548 \GetCoord(\@pPun)\@pPunX\@pPunY
549 \else
550 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio
551 \CopyVect#2to\@pPun
552 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
553 \fi
554 \@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
555 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
556 \@tdD=\DeltaGradi\p@
557 \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
558 \@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
559 \DirFromAngle\@tempa to\@Dir
560 \Multvect{\@V}{\@Dir}\@sPun
561 \edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
562 \Multvect{\@sPun}{0,\@tempA}\@vPun
563 \DirOfVect\@vPun to\@Dir
564 \AddVect\@sPun and #1 to \@sPun
565 \GetCoord(\@sPun)\@tdX\@tdY
566 \@tdD\ifx\Segno--\fi\DeltaGradi\p@
567 \@tdD=.5\@tdD \Numero\DeltaGradi\@tdD
568 \DirFromAngle\DeltaGradi to\@Dird
569 \Multvect{\@Dir}*{\@Dird}\@Dir%
570 \GetCoord(\@Dir)\@xnum\@ynum
571 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%
572 \@tdE =\ifx\Segno--\fi\DeltaGradi\p@
573 \advance\@tdA -\@tdE \Numero\@gradi\@tdA
574 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
575 \@@Arc
576 \strokepath\endgroup\ignorespaces}%
577 %

The macro for the arc terminated with arrow tips at both ends is again very
similar, but it is necessary to repeat the arrow tip positioning also at the starting
point. The \@@Arc macro draws the curved stem.

578 %
579 \def\VectorARC(#1)(#2)#3{\begingroup
580 \def\tempG{#3}%
581 \fptestF{#3=0}{\@VARC(#1)(#2)}}%
582 %
583 \let\VVectorArc\VectorARC% alias
584 %
585
586 \def\@VARC(#1)(#2){%
587 \fptest{\tempG>\z@}%
588 {\let\Segno+}%
589 {\let\Segno-%
590 \edef\tempG{\fpeval{abs(\tempG)}}}%

39

591 \let\@gradi\tempG
592 \fptestT{\tempG>360}{%
593 \PackageWarning{curve2e}%
594 {The arc aperture is \@gradi\space degrees
595 and gets reduced\MessageBreak%
596 to the range 0--360 taking the sign into
597 consideration}%
598 \edef\tempG{\Modulo{\tempG}{360}\p@}}
599 \@tdA=\tempG\p@ \let\@gradi\tempG
600 \GetCoord(#2)\@pPunX\@pPunY
601 \ifCV@polare
602 \ModOfVect#2to\@Raggio \CopyVect#2to\@V
603 \CopyVect#1to\@Cent
604 \AddVect#2and#1to\@pPun% punto iniziale
605 \GetCoord(\@pPun)\@pPunX\@pPunY
606 \else
607 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio
608 \CopyVect#2to\@pPun
609 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
610 \fi
611 %
612 \@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
613 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
614 \edef\DeltaGradi{\fpeval{57.29578*\DeltaGradi}}
615 \@tdD=\if\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
616 \DirFromAngle\@tempa to\@Dir
617 \Multvect{\@V}{\@Dir}\@sPun% correct the end point
618 \edef\@tempA{\if\Segno--\fi1}%
619 \Multvect{\@sPun}{0,\@tempA}\@vPun
620 \DirOfVect\@vPun to\@Dir
621 \AddVect\@sPun and #1 to \@sPun
622 \GetCoord(\@sPun)\@tdX\@tdY
623 \@tdD\if\Segno--\fi\DeltaGradi\p@
624 \@tdD=.5\@tdD \Numero\@tempB\@tdD
625 \DirFromAngle\@tempB to\@Dird
626 \Multvect{\@Dir}*{\@Dird}\@Dir
627 \GetCoord(\@Dir)\@xnum\@ynum
628 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}% end point arrow tip
629 \@tdE =\DeltaGradi\p@
630 \advance\@tdA -2\@tdE \Numero\@gradi\@tdA
631 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
632 \SubVect\@Cent from\@pPun to \@V
633 \edef\@tempa{\if\Segno-\else-\fi\@ne}%
634 \Multvect{\@V}{0,\@tempa}\@vPun
635 \@tdE\if\Segno--\fi\DeltaGradi\p@
636 \Numero\@tempB{0.5\@tdE}%
637 \DirFromAngle\@tempB to\@Dird
638 \Multvect{\@vPun}{\@Dird}\@vPun% correct the starting point
639 \DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum
640 \put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}% starting point arrow tip
641 \edef\@tempa{\if\Segno--\fi\DeltaGradi}%
642 \DirFromAngle\@tempa to \@Dir
643 \SubVect\@Cent from\@pPun to\@V
644 \Multvect{\@V}{\@Dir}\@V

40

645 \AddVect\@Cent and\@V to\@pPun
646 \GetCoord(\@pPun)\@pPunX\@pPunY
647 \@@Arc
648 \strokepath\endgroup\ignorespaces}%
649

It must be understood that the curved vectors, i.e. the above circular arcs
terminated with an arrow tips at one or both ends, have a nice appearance only if
the arc radius is not too small, or, said in a different way, if the arrow tip angular
width does not exceed a maximum of a dozen degrees (and this is probably already
too much); the tip does not get curved as the arc is, therefore there is not a smooth
transition from the curved stem and the straight arrow tip if this one is large in
comparison to the arc radius.

5.6 General curves
The most used method to draw curved lines with computer programs is to connect
several simple curved lines, general “arcs”, one to another generally maintaining
the same tangent at the junction. If the direction changes we are dealing with a
cusp.

The simple general arcs that are directly implemented in every program that
displays typeset documents, are those drawn with the parametric curves called
Béźier splines; given a sequence of points in the x, y plane, say P0, P1, P2, P3, . . .
(represented as coordinate pairs, i.e. by complex numbers), the most common
Bézier splines are the following ones:

B1 = P0(1 − t) + P1t (2)
B2 = P0(1 − t)2 + P12(1 − t)t + P2t2 (3)
B3 = P0(1 − t)3 + P13(1 − t)2t + P23(1 − t)t2 + P3t3 (4)

All these splines depend on parameter t; they have the property that for t = 0
each line starts at the first point, while for t = 1 they reach the last point; in each
case the generic point P on each curve takes off with a direction that points to
the next point, while it lands on the destination point with a direction coming
from the penultimate point; moreover, when t varies from 0 to 1, the curve arc is
completely contained within the convex hull formed by the polygon that has the
spline points as vertices.

Last but not least first order splines implement just straight lines and they
are out of question for what concerns maxima, minima, inflection points and the
like. Quadratic splines draw just parabolas, therefore they draw arcs that have the
concavity just on one side of the path; therefore no inflection points. Cubic splines
are extremely versatile and can draw lines with maxima, minima and inflection
points. Virtually a multi-arc curve may be drawn by a set of cubic splines as
well as a set of quadratic splines (fonts are a good example: Adobe Type 1 fonts
have their contours described by cubic splines, while TrueType fonts have their
contours described with quadratic splines; at naked eye it is impossible to notice
the difference).

Each program that processes the file to be displayed is capable of drawing first
order Bézier splines (segments) and third order Bézier splines, for no other reason,
at least, because they have to draw vector fonts whose contours are described by
Bézier splines; sometimes they have also the program commands to draw second

41

order Bézier splines, but not always these machine code routines are available
to the user for general use. For what concerns pdftex, xetex and luatex, they
have the user commands for straight lines and cubic arcs. At least with pdftex,
quadratic arcs must be simulated with a clever use of third order Bézier splines.

Notice that the LATEX 2ε environment picture by itself is capable of drawing
both cubic and quadratic Bézier splines as single arcs; but it resorts to “poor man”
solutions. The pict2e package removes all the old limitations and implements the
interface macros for sending the driver the necessary drawing information, includ-
ing the transformation from typographical points (72.27 pt/inch) to PostScript big
points (72 bp/inch). But for what concerns the quadratic spline it resorts to the
clever use of a cubic spline.

Therefore here we treat first the drawings that can be made with cubic splines;
then we describe the approach to quadratic splines.

5.7 Cubic splines
Now we define a macro for tracing a general, not necessarily circular, arc. This
macro resorts to a general triplet of macros with which it is possible to draw
almost anything. It traces a single Bézier spline from a first point where the
tangent direction is specified to a second point where again it is specified the
tangent direction. Actually this is a special (possibly useless) case where the
general \curveto macro of pict2e could do the same or a better job. In any
case. . .

650 \def\CurveBetween#1and#2WithDirs#3and#4{%
651 \StartCurveAt#1WithDir{#3}\relax
652 \CurveTo#2WithDir{#4}\CurveFinish\ignorespaces
653 }%

Actually the above macro is a special case of concatenation of the triplet formed
by macros \StartCurve, \CurveTo and \CurveFinish; the second macro can be
repeated an arbitrary number of times. In any case the directions specified with
the direction arguments the angle between the indicated tangent and the arc chord
may give raise to some little problems when they are very close to 90° in absolute
value. Some control is exercised on these values, but some tests might fail if the
angle derives from other calculations; this is a good place to use polar forms for
the direction vectors. The same comments apply also to the more general macro
\Curve,

The first macro initialises the drawing and the third one strokes it; the real
work is done by the second macro. The first macro initialises the drawing but
also memorises the starting direction; the second macro traces the current Bézier
arc reaching the destination point with the specified direction, but memorises this
direction as the one with which to start the next arc. The overall curve is then
always smooth because the various Bézier arcs join with continuous tangents. If
a cusp is desired it is necessary to change the memorised direction at the end of
the arc before the cusp and before the start of the next arc; this is better than
stroking the curve before the cusp and then starting another curve, because the
curve joining point at the cusp is not stroked with the same command, therefore
we get two superimposed curve terminations. To avoid this imperfection, we need
another small macro \ChangeDir to perform this task.

It is necessary to recall that the direction vectors point to the control points,
but they do not define the control points themselves; they are just directions,

42

or, even better, they are simply vectors with the desired direction; the macros
themselves provide to the normalisation and memorisation.

The next desirable feature would be to design a macro that accepts optional
node directions and computes the missing ones according to a suitable strategy.
We can think of many such strategies, but none seems to be generally applicable,
in the sense that one strategy might give good results, say, with sinusoids and
another one, say, with cardioids, but neither one is suitable for both cases.

For the moment we refrain from automatic direction computation, but we
design the general macro as if directions were optional.

Here we begin with the first initialising macro that receives with the first
argument the starting point and with the second argument the direction of the
tangent (not necessarily normalised to a unit vector)

654 \def\StartCurveAt#1WithDir#2{%
655 \begingroup
656 \GetCoord(#1)\@tempa\@tempb
657 \CopyVect\@tempa,\@tempb to\@Pzero
658 \pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%
659 \GetCoord(#2)\@tempa\@tempb
660 \CopyVect\@tempa,\@tempb to\@Dzero
661 \DirOfVect\@Dzero to\@Dzero
662 \ignorespaces}

And this re-initialises the direction to create a cusp:
663 \def\ChangeDir<#1>{%
664 \GetCoord(#1)\@tempa\@tempb
665 \CopyVect\@tempa,\@tempb to\@Dzero
666 \DirOfVect\@Dzero to\@Dzero
667 \ignorespaces}

The next macros are the finishing ones; the first strokes the whole curve, while
the second fills the (closed) curve with the default color; both close the group that
was opened with \StartCurve. The third macro is going to be explained in a
while; we anticipate it is functional to chose between the first two macros when a
star is possibly used to switch between stroking and filling.

668 \def\CurveFinish{\strokepath\endgroup\ignorespaces}
669 \def\FillCurve{\fillpath\endgroup\ignorespaces}
670 \def\CurveEnd{\fillstroke\endgroup\ignorespaces}

In order to draw the internal arcs it would be desirable to have a single macro
that, given the destination point, computes the control points that produce a cubic
Bézier spline that joins the starting point with the destination point in the best
possible way. The problem is strongly ill defined and has an infinity of solutions;
here we give two solutions: (a) a supposedly smart one that resorts to osculating
circles and requires only the direction at the destination point; and (b) a less smart
solution that requires the control points to be specified in a certain format.

We start with solution (b), \CbezierTo, the code of which is simpler than that
of solution (a); then we will produce the solution (a), \CurveTo, that will become
the main building block for a general path construction macro, \Curve.

The “näıve” macro \CBezierTo simply uses the previous point direction saved
in \@Dzero as a unit vector by the starting macro; specifies a destination point,
the distance of the first control point from the starting point, the destination
point direction that will save also for the next arc-drawing macro as a unit vector,
and the distance of the second control point from the destination point along this

43

last direction. Both distances must be positive possibly fractional numbers. The
syntax therefore is the following:

\CbezierTo⟨end point⟩WithDir⟨direction⟩
AndDists⟨K0⟩And⟨K1⟩

where 〈end point〉 is a vector macro or a comma separated pair of values; again
〈direction〉 is another vector macro or a comma separated pair of values, that not
necessarily indicate a unit vector, since the macro provides to normalise it to unity;
〈K0〉 and 〈K1〉 are the distances of the control points from their respective node
points; they must be integers or fractional positive numbers. If 〈K1〉 is a number,
it must be enclosed in curly braces, while if it is a macro name (containing the
desired fractional or integer value) there is no need for braces.

This macro uses the input information in order to activate the internal pict2e
macro \pIIe@curveto with the proper arguments, and to save the final direction
into the same \@Dzero macro for successive use of other arc-drawing macros.

671 \def\CbezierTo#1WithDir#2AndDists#3And#4{%
672 \GetCoord(#1)\@tX\@tY \MakeVectorFrom\@tX\@tY to\@Puno
673 \GetCoord(#2)\@tX\@tY \MakeVectorFrom\@tX\@tY to \@Duno
674 \DirOfVect\@Duno to\@Duno
675 \ScaleVect\@Dzero by#3to\@Czero \AddVect\@Pzero and\@Czero to\@Czero
676 \ScaleVect\@Duno by-#4to \@Cuno \AddVect\@Puno and\@Cuno to \@Cuno
677 \GetCoord(\@Czero)\@XCzero\@YCzero
678 \GetCoord(\@Cuno)\@XCuno\@YCuno
679 \GetCoord(\@Puno)\@XPuno\@YPuno
680 \pIIe@curveto{\@XCzero\unitlength}{\@YCzero\unitlength}%
681 {\@XCuno\unitlength}%
682 {\@YCuno\unitlength}%
683 {\@XPuno\unitlength}%
684 {\@YPuno\unitlength}%
685 \CopyVect\@Puno to\@Pzero
686 \CopyVect\@Duno to\@Dzero
687 \ignorespaces}%

With this building block it is not difficult to set up a macro that draws a
Bézier arc between two given points, similarly to the other macro \CurveBetween
previously described and defined here:

688 \def\CbezierBetween#1And#2WithDirs#3And#4UsingDists#5And#6{\StartCurveAt#1WithDir{#3}\relax
689 \CbezierTo#2WithDir#4AndDists#5And{#6}\CurveFinish}

An example of use is shown in figure 13 of the curve2e-manual.pdf file; notice
that the tangents at the end points are the same for the black curve drawn with
\CurveBetween and the five red curves drawn with \CbezierBetween; the five red
curves differ only for the distance of their control point C0 from the starting point;
the differences are remarkable and the topmost curve even presents a slight inflec-
tion close to the end point. These effects cannot be obtained with the “smarter”
macro \CurveBetween. But certainly this simpler macro is more difficult to use
because the distances of the control points are difficult to estimate and require a
number of cut-and-try experiments.

The “smarter” curve macro comes next; it is supposed to determine the control
points for joining the previous point (initial node) with the specified direction to
the next point (final node) with another specified direction.

44

Since the control points are along the specified directions, it is necessary to
determine the distances from the adjacent curve nodes. This must work correctly
even if nodes and directions imply an inflection point somewhere along the arc.

The strategy we devised consists in determining each control point as if it were
the control point of a circular arc, precisely an arc of an osculating circle, i.e. a
circle tangent to the curve at that node. The ambiguity of the stated problem
may be solved by establishing that the chord of the osculating circle has the same
direction as the chord of the arc being drawn, and that the curve chord is divided
into two equal parts each of which should be interpreted as half the chord of the
osculating circle.

This makes the algorithm a little rigid; sometimes the path drawn is very
pleasant, while in other circumstances the determined curvatures are too large or
too small. We therefore add some optional information that lets us have some
control over the curvatures; the idea is based on the concept of tension, similar
but not identical to the one used in the drawing programs METAFONT and META-
POST. We add to the direction information, with which the control nodes of the
osculating circle arcs are determined, a scaling factor that should be intuitively
related to the tension of the arc (actually, since the tension of the ‘rope’ is high
when this parameter is low, probably a name such as ‘looseness’ would be better
suited): the smaller this number, the closer the arc resembles to a straight line
as a rope subjected to a high tension; value zero is allowed, while a value of 4 is
close to “infinity” and turns a quarter circle into a line with an unusual loop; a
value of 2 turns a quarter circle almost into a polygonal line with rounded vertices.
Therefore these tension factors should be used only for fine tuning the arcs, not
when a path is drawn for the first time.

We devised a syntax for specifying direction and tensions:

⟨direction;tension factors⟩

where direction contains the complex number that not necessarily refers to the
components of a unit vector direction, but simply to a vector with the desired
orientation (polar form is OK); the information contained from the semicolon
(included) to the rest of the specification is optional; if it is present, the tension
factor is simply a comma separated pair of fractional or integer numbers that
represent respectively the tension at the starting or the ending node of a path arc.

We therefore need a macro to extract the mandatory and optional parts:
690 \def\@isTension#1;#2!!{\def\@tempA{#1}%
691 \def\@tempB{#2}\unless\ifx\@tempB\empty \strip@semicolon#2\fi}
692
693 \def\strip@semicolon#1;{\def\@tempB{#1}}

By changing the tension values we can achieve different results: see figure 14 in
the user manual curve2e-manual.pdf.

We use the formula we got for arcs (1), where the half chord is indicated with
s, and we derive the necessary distances:

K0 = 4
3s

1 − cos θ0

sin2 θ0
(5a)

K1 = 4
3s

1 − cos θ1

sin2 θ1
(5b)

45

We therefore start with getting the points and directions and calculating the
chord and its direction:

694 \def\CurveTo#1WithDir#2{%
695 \def\@Tuno{1}\def\@Tzero{1}\relax
696 \edef\@Puno{#1}\@isTension#2;!!%
697 \expandafter\DirOfVect\@tempA to\@Duno
698 \bgroup\unless\ifx\@tempB\empty\GetCoord(\@tempB)\@Tzero\@Tuno\fi
699 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord

Then we rotate everything about the starting point so as to bring the chord on
the real axis

700 \Multvect{\@Dzero}*{\@DirChord}\@Dpzero
701 \Multvect{\@Duno}*{\@DirChord}\@Dpuno
702 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
703 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno
704 \DivideFN\@Chord by2 to\@semichord

The chord needs not be actually rotated because it suffices its length along the
real axis; the chord length is memorised in \@Chord and its half is saved in
\@semichord.

We now examine the various degenerate cases, when either tangent is perpen-
dicular or parallel to the chord. Notice that we are calculating the distances of the
control points from the adjacent nodes using the half chord length, not the full
length. We also distinguish between the computations relative to the arc starting
point and those relative to the end point.

Notice that if the directions of two successive nodes are identical, it is necessary
to draw a line, not a third order spline7; therefore it is necessary to make a
suitable test that is more comfortable to do after the chord has been rotated to
be horizontal; in facts, if the two directions are equal, the vertical components of
the directions are both vanishing values; probably, instead of testing with respect
to zero, it might be advisable to test the absolute value with respect to a small
number such as, for example, “1.e-6.”

705 %
706 \fptest{abs(\@DYpuno)<=0.01&& abs(\@DYpzero)<=0.01}
707 {\GetCoord(\@Puno)\@tX\@tY
708 \pIIe@lineto{\@tX\unitlength}%
709 {\@tY\unitlength}%
710 }{%
711 \fptestT{abs(\@DXpzero)<=0.01}%
712 {\@tdA=1.333333\p@
713 \Numero\@KCzero{\@semichord\@tdA}}%
714 \fptestT{abs(\@DYpzero)<=0.01}%
715 {\@tdA=1.333333\p@
716 \Numero\@Kpzero{\@semichord\@tdA}}%
717 %

The distances we are looking for are positive generally fractional numbers; so if the
components are negative, we take the absolute values. Eventually we determine
the absolute control point coordinates.

718 \unless\ifdim\@DXpzero\p@=\z@
719 \unless\ifdim\@DYpzero\p@=\z@

7Many thanks to John Hillas who spotted this bug, that passed unnoticed for a long time,
because it is a very unusual situation.

46

720 \edef\@CosDzero{\ifdim\@DXpzero\p@<\z@ -\fi\@DXpzero}%
721 \edef\@SinDzero{\ifdim\@DYpzero\p@<\z@ -\fi\@DYpzero}%
722 \@tdA=\@semichord\p@ \@tdA=1.333333\@tdA
723 \DividE\@tdA by\@SinDzero\p@ to \@KCzero
724 \@tdA=\dimexpr(\p@-\@CosDzero\p@)\relax
725 \DividE\@KCzero\@tdA by\@SinDzero\p@ to \@KCzero
726 \fi
727 \fi
728 \MultiplyFN\@KCzero by \@Tzero to \@KCzero
729 \ScaleVect\@Dzero by\@KCzero to\@CPzero
730 \AddVect\@Pzero and\@CPzero to\@CPzero

We now repeat the calculations for the arc end point, taking into consideration
that the end point direction points outwards, so that in computing the end point
control point we have to take this fact into consideration by using a negative sign
for the distance; in this way the displacement of the control point from the end
point takes place in a backwards direction.

731 \ifdim\@DXpuno\p@=\z@
732 \@tdA=-1.333333\p@
733 \Numero\@KCuno{\@semichord\@tdA}%
734 \fi
735 \ifdim\@DYpuno\p@=\z@
736 \@tdA=-1.333333\p@
737 \Numero\@KCuno{\@semichord\@tdA}%
738 \fi
739 \unless\ifdim\@DXpuno\p@=\z@
740 \unless\ifdim\@DYpuno\p@=\z@
741 \edef\@CosDuno{\ifdim\@DXpuno\p@<\z@ -\fi\@DXpuno}%
742 \edef\@SinDuno{\ifdim\@DYpuno\p@<\z@ -\fi\@DYpuno}%
743 \@tdA=\@semichord\p@ \@tdA=-1.333333\@tdA
744 \DividE\@tdA by \@SinDuno\p@ to \@KCuno
745 \@tdA=\dimexpr(\p@-\@CosDuno\p@)\relax
746 \DividE\@KCuno\@tdA by\@SinDuno\p@ to \@KCuno
747 \fi
748 \fi
749 \MultiplyFN\@KCuno by \@Tuno to \@KCuno
750 \ScaleVect\@Duno by\@KCuno to\@CPuno
751 \AddVect\@Puno and\@CPuno to\@CPuno

Now we have the four points and we can instruct the internal pict2e macros to
do the path drawing.

752 \GetCoord(\@Puno)\@XPuno\@YPuno
753 \GetCoord(\@CPzero)\@XCPzero\@YCPzero
754 \GetCoord(\@CPuno)\@XCPuno\@YCPuno
755 \pIIe@curveto{\@XCPzero\unitlength}%
756 {\@YCPzero\unitlength}%
757 {\@XCPuno\unitlength}%
758 {\@YCPuno\unitlength}%
759 {\@XPuno\unitlength}%
760 {\@YPuno\unitlength}}\egroup

It does not have to stroke the curve because other Bézier splines might still be
added to the path. On the opposite it memorises the final point to be used as the
initial point of the next spline

761 \CopyVect\@Puno to\@Pzero

47

762 \CopyVect\@Duno to\@Dzero
763 \ignorespaces}%

We finally define the overall \Curve macro that has two flavours: starred
and unstarred; the former fills the curve path with the locally selected color,
while the latter just strokes the path. Both recursively examine an arbitrary list
of nodes and directions; node coordinates are grouped within round parentheses
while direction components are grouped within angle brackets. Before testing for
a possible star, this initial command kills any space or glue that might precede
it8 The first call of the macro initialises the drawing process and checks for the
next node and direction; if a second node is missing, it issues a warning message
and does not draw anything. It does not check for a change in direction, because
it would be meaningless at the beginning of a curve. The second macro defines
the path to the next point and checks for another node; if the next list item is a
square bracket delimited argument, it interprets it as a change of direction, while
if it is another parenthesis delimited argument it interprets it as a new node-
direction specification; if the node and direction list is terminated, it issues the
stroking or filling command through \CurveEnd, and exits the recursive process.
The \CurveEnd control sequence has a different meaning depending on the fact
that the main macro was starred or unstarred. The @ChangeDir macro is just an
interface to execute the regular \ChangeDir macro, but also for recursing again
by recalling \@Curve.

764 \def\Curve{\@killglue\@ifstar{\let\fillstroke\fillpath\Curve@}%
765 {\let\fillstroke\strokepath\Curve@}}
766
767 \def\Curve@(#1)<#2>{%
768 \StartCurveAt#1WithDir{#2}%
769 \@ifnextchar\lp@r\@Curve{%
770 \PackageWarning{curve2e}{%
771 Curve specifications must contain at least
772 two nodes!ˆˆJ
773 Please, control your \string\Curve\space
774 specificationsˆˆJ}}}
775
776 \def\@Curve(#1)<#2>{%
777 \CurveTo#1WithDir{#2}%
778 \@ifnextchar\lp@r\@Curve{%
779 \@ifnextchar[\@ChangeDir\CurveEnd}}
780 \def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}

As a concluding remark, please notice that the \Curve macro is certainly the
most comfortable to use, but it is sort of frozen in its possibilities. The user may
certainly use the \StartCurve, \CurveTo, \ChangeDir, and \CurveFinish or
\FillCurve for a more versatile set of drawing macros; evidently nobody forbids
to exploit the full power of the \cbezier original macro for cubic splines; we made
available macros \CbezierTo and the isolated Bézier arc macro \CbezierBetween
in order to use the general internal cubic Bézier splines in a more comfortable way.

As it can be seen in figure 15 of the curve2e-manual.pdf file, the two diagrams
should approximately represent a sine wave. With Bézier curves, that resort on
polynomials, it is impossible to represent a transcendental function, but it is only
possible to approximate it. It is evident that the approximation obtained with

8Thanks to John Hillas who spotted the effects of this missing glue elimination.

48

full control on the control points requires less arcs and it is more accurate than
the approximation obtained with the recursive \Curve macro; this macro requires
almost two times as many pieces of information in order to minimise the effects
of the lack of control on the control points, and even with this added information
the macro approaches the sine wave with less accuracy. At the same time for
many applications the \Curve recursive macro proves to be much easier to use
than single arcs drawn with the \CbezierBetween macro.

5.8 Quadratic splines
We want to create a recursive macro with the same properties as the above de-
scribed \Curve macro, but that uses quadratic splines; we call it \Qurve so that
the macro name initial letter reminds us of the nature of the splines being used.
For the rest they have an almost identical syntax; with quadratic splines it is
not possible to specify the distance of the control points from the extrema, since
quadratic splines have just one control point that must lay at the intersection of
the two tangent directions; therefore with quadratic splines the tangents at each
point cannot have the optional part that starts with a semicolon. The syntax,
therefore, is just:

\Qurve(⟨first point⟩)<⟨direction⟩>...(⟨any point⟩)<⟨direction⟩>...(⟨last
point⟩)<⟨direction⟩>

As with \Curve, also with \Qurve there is no limitation on the number of points,
except for the computer memory size; it is advisable not to use many arcs otherwise
it might become very difficult to find errors.

The first macros that set up the recursion are very similar to those we wrote
for \Curve:

781 \def\Qurve{%
782 \@ifstar{\let\fillstroke\fillpath\Qurve@}%
783 {\let\fillstroke\strokepath\Qurve@}%
784 }%
785
786 \def\Qurve@(#1)<#2>{%
787 \StartCurveAt#1WithDir{#2}%
788 \@ifnextchar\lp@r\@Qurve{%
789 \PackageWarning{curve2e}{%
790 Quadratic curve specifications must contain
791 at least two nodes!ˆˆJ
792 Please, control your Qurve
793 specificationsˆˆJ}}}%
794
795 \def\@Qurve(#1)<#2>{\QurveTo#1WithDir{#2}%
796 \@ifnextchar\lp@r\@Qurve{%
797 \@ifnextchar[\@ChangeQDir\CurveEnd}}%
798
799 \def\@ChangeQDir[#1]{\ChangeDir<#1>\@Qurve}%

Notice that in case of long paths it might be better to use the single macros
\StartCurveAt, \QurveTo, \ChangeDir and \CurveFinish (or \FillCurve),
with their respective syntax, in such a way that a long list of node-direction

49

specifications passed to \Qurve may be split into shorter input lines in order to
edit the input data in a more comfortable way.

The macro that does everything is \QurveTo. It starts by reading its arguments
received through the calling macro \@Qurve

800 \def\QurveTo#1WithDir#2{%
801 \edef\@Puno{#1}\DirOfVect#2to\@Duno\bgroup
802 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord

It verifies if \@Dpzero and \@Dpuno, the directions at the two extrema of the
arc, are parallel or anti-parallel by taking their “scalar” product (\@Dpzero times
\@Dpuno*); if the imaginary component of the scalar product vanishes the two
directions are parallel; in this case we produce an error message, but we continue
by skipping this arc destination point; evidently the drawing will not be the desired
one, but the job should not abort.

803 \Multvect{\@Dzero}*{\@Duno}\@Scalar
804 \YpartOfVect\@Scalar to \@YScalar
805 \ifdim\@YScalar\p@=\z@
806 \PackageWarning{curve2e}%
807 {Quadratic Bezier arcs cannot have their
808 startingˆˆJ
809 and ending directions parallel or antiparallel
810 with each other.ˆˆJ
811 This arc is skipped and replaced with
812 a dotted line.ˆˆJ}%
813 \Dotline(\@Pzero)(\@Puno){2}\relax
814 \else

Otherwise we rotate everything about the starting point so as to bring the chord
on the real axis; we get also the components of the two directions that, we should
remember, are unit vectors, not generic vectors, although users can use the vector
specifications that are more understandable to them:

815 \Multvect{\@Dzero}*{\@DirChord}\@Dpzero
816 \Multvect{\@Duno}*{\@DirChord}\@Dpuno
817 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
818 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno

We check if the two directions point to the same half plane; this implies that these
rotated directions point to different sides of the chord vector; all this is equivalent
to the fact that the two direction Y components have opposite signs, so that their
product is strictly negative, while the two X components product is not negative.

819 \MultiplyFN\@DXpzero by\@DXpuno to\@XXD
820 \MultiplyFN\@DYpzero by\@DYpuno to\@YYD
821 \unless\ifdim\@YYD\p@<\z@\ifdim\@XXD\p@<\z@
822 \PackageWarning{curve2e}%
823 {Quadratic Bezier arcs cannot have
824 inflection pointsˆˆJ
825 Therefore the tangents to the
826 starting and ending arcˆˆJ
827 points cannot be directed to the
828 same half plane.ˆˆJ
829 This arc is skipped and replaced by
830 a dotted lineˆˆJ}%
831 \Dotline(\@Pzero)(\@Puno){2}\fi
832 \else

50

After these tests we should be in a “normal” situation. We first copy the ex-
panded input information into new macros that have more explicit names: macros
starting with ‘S’ denote the sine of the direction angle, while those starting with
‘C’ denote the cosine of that angle. We will use these expanded definitions as we
know we are working with the actual values. These directions are those relative
to the arc chord.

833 \edef\@CDzero{\@DXpzero}\relax
834 \edef\@SDzero{\@DYpzero}\relax
835 \edef\@CDuno{\@DXpuno}\relax
836 \edef\@SDuno{\@DYpuno}\relax

Suppose we write the parametric equations of a straight line that departs from the
beginning of the chord with direction angle ϕ0 and the corresponding equation of
the straight line departing from the end of the chord (of length c) with direction
angle ϕ1. We have to find the coordinates of the intersection point of these two
straight lines.

t cos ϕ0 − s cos ϕ1 = c (6a)
t sin ϕ0 − s sin ϕ1 = 0 (6b)

The parameters t and s are just the running parameters; we have to solve those
simultaneous equations in the unknown variables t and s; these values let us
compute the coordinates of the intersection point:

XC = c cos ϕ0 sin ϕ1

sin ϕ0 cos ϕ1 − cos ϕ0 sin ϕ1
(7a)

YC = c sin ϕ0 sin ϕ1

sin ϕ0 cos ϕ1 − cos ϕ0 sin ϕ1
(7b)

Having performed the previous tests we are sure that the denominator is not
vanishing (directionw are not parallel or anti-parallel) and that the intersection
point lays at the same side as the direction with angle ϕ0 with respect to the
chord.

The coding then goes on like this:
837 \MultiplY\@SDzero by\@CDuno to\@tempA
838 \MultiplY\@SDuno by\@CDzero to\@tempB
839 \edef\@tempA{\strip@pt\dimexpr\@tempA\p@-\@tempB\p@}\relax
840 \@tdA=\@SDuno\p@ \@tdB=\@Chord\p@ \@tdC=\@tempA\p@
841 \edef\@tempC{\strip@pt\dimexpr \@tdA*\@tdB/\@tdC}\relax
842 \MultiplY\@tempC by\@CDzero to \@XC
843 \MultiplY\@tempC by\@SDzero to \@YC
844 \ModOfVect\@XC,\@YC to\@KC

Now we have the coordinates and the module of the intersection point vector taking
into account the rotation of the real axis; getting back to the original coordinates
before rotation, we get:

845 \ScaleVect\@Dzero by\@KC to\@CP
846 \AddVect\@Pzero and\@CP to\@CP
847 \GetCoord(\@Pzero)\@XPzero\@YPzero
848 \GetCoord(\@Puno)\@XPuno\@YPuno
849 \GetCoord(\@CP)\@XCP\@YCP

We have now the coordinates of the two end points of the quadratic arc and of
the single control point. Keeping in mind that the symbols P0, P1 and C denote

51

geometrical points but also their coordinates as ordered pairs of real numbers (i.e.
they are complex numbers) we have to determine the parameters of a cubic spline
that with suitable values gets simplifications in its parametric equation so that
it becomes a second degree function instead of a third degree one. It is possible,
even if it appears impossible that a cubic form becomes a quadratic one; we should
determine the values of Pa and Pb such that:

P0(1 − t)3 + 3Pa(1 − t)2t + 3Pb(1 − t)t2 + P1t3

is equivalent to
P0(1 − t)2 + 2C(1 − t)t + P1t2

It turns out that the solution is given by

Pa = C + (P0 − C)/3 and Pb = C + (P1 − C)/3 (8)

The transformations implied by equations (8) are performed by the following
macros already available from the pict2e package; we use them here with the
actual arguments used for this task:

850 \@ovxx=\@XPzero\unitlength \@ovyy=\@YPzero\unitlength
851 \@ovdx=\@XCP\unitlength \@ovdy=\@YCP\unitlength
852 \@xdim=\@XPuno\unitlength \@ydim=\@YPuno\unitlength
853 \pIIe@bezier@QtoC\@ovxx\@ovdx\@ovro
854 \pIIe@bezier@QtoC\@ovyy\@ovdy\@ovri
855 \pIIe@bezier@QtoC\@xdim\@ovdx\@clnwd
856 \pIIe@bezier@QtoC\@ydim\@ovdy\@clnht

We call the basic pict2e macro to draw a cubic spline and we finish the con-
ditional statements with which we started these calculations; eventually we close
the group we opened at the beginning and we copy the terminal node information
(position and direction) into the zero-labelled macros that indicate the starting
point of the next arc.

857 \pIIe@curveto\@ovro\@ovri\@clnwd\@clnht\@xdim\@ydim
858 \fi\fi\egroup
859 \CopyVect\@Puno to\@Pzero
860 \CopyVect\@Duno to\@Dzero
861 \ignorespaces}

An example of usage is shown at the left in figure 16 of the curve2e-manual.pdf
file9 created with the code shown in the same page as the figure.

Notice also that the inflexed line is made with two arcs that meet at the
inflection point; the same is true for the line that resembles a sine wave. The
cusps of the inner border of the green area are obtained with the usual optional
argument already used also with the \Curve recursive macro.

The “circle” inside the square frame is visibly different from a real circle, in
spite of the fact that the maximum deviation from the true circle is just about 6%
relative to the radius; a quarter circle obtained with a single parabola is definitely a
poor approximation of a real quarter circle; possibly by splitting each quarter circle

9The commands \legenda, \Pall and \Zbox are specifically defined in the preamble of this
document; they must be used within a picture environment. \legenda draws a framed legend
made up of a single (short) math formula; \Pall is just a shorthand to put a sized dot at a
specified position; \Zbox puts a symbol in math mode a little displaced in the proper direction
relative to a specified position. They are just handy to label certain objects in a picture diagram.
They have been defined at the beginning of the curve2e.sty code.

52

in three or four partial arcs the approximation of a real quarter circle would be
much better. On the right of figure 16 of the user manual it is possible to compare
a “circle” obtained with quadratic arcs with the the internal circle obtained with
cubic arcs; the difference is easily seen even without using measuring instruments.

With quadratic arcs we decided to avoid defining specific macros similar to
\CurveBetween and \CbezierBetween; the first macro would not save any typing
to the user; furthermore it may be questionable if it was really useful even with
cubic splines; the second macro with quadratic arcs is meaningless, since with
quadratic arcs there is just one control point and there is no choice on its position.

6 Conclusion
I believe that the set of new macros provided by this package can really help users
to draw their diagrams with more agility; it will be the accumulated experience
to decide if this is true.

As a personal experience I found very comfortable to draw ellipses and to
define macros to draw not only such shapes or filled elliptical areas, but also
to create “legends” with coloured backgrounds and borders. But this is just an
application of the functionality implemented in this package. In 2020 I added
to CTAN another specialised package, euclideangeometry.sty with its manual
euclideangeometry-man.pdf that uses the facilities of curve2e to draw com-
plex diagrams that plot curves, and other facilities that solve some geometrical
problems dealing with ellipses.

7 The README.txt file
The following is the text that forms the contents of the README.txt file that
accompanies the package. We found it handy to have it in the documented source,
because in this way certain pieces of information don’t need to be repeated again
and again in different files.

862 The package bundle curve2e is composed of the following files
863
864 curve2e.dtx
865 curve2e-manual.tex
866
867 The derived files are
868
869 curve2e.sty
870 curve2e-v161.sty
871 curve2e.pdf
872 curve2e-manual.pdf
873 README.txt
874
875 If you install curve2e without using your TeX system package handler,
876 Compile curve2e.dtx and curve2e-manual.tex two or three times until
877 all labels and citation keys are completely resolved. Then move the
878 primary and derived files as follows:
879
880 Move curve2e.dtx and curve2e-manual.tex to ROOT/source/latex/curve2e/
881 Move curve2e.pdf and curve2e-manual.pdf to ROOT/doc/latex/curve2e/

53

882 Move curve2e.sty and curve2e-v161.sty to ROOT/tex/latex/curve2e/
883 Move README.txt to ROOT/doc/latex/curve2e/
884
885 curve2e.dtx is the documented TeX source file of the derived files
886 curve2e.sty, curve2e.pdf, curve2e-v161.sty and README.txt.
887
888 You get curve2e.sty, curve2e.pdf, curve2e-v161.sty, and README.txt
889 by running pdflatex on curve2e.dtx.
890
891 The curve2e-manual files contains the user manual; in
892 this way the long preliminary descriptive part of the previous versions
893 curve2e.pdf file has been transferred to a shorter dedicated file, and the
894 "normal" user should have enough information to use the package. The
895 curve2e.pdf file, extracted from the .dtx one, contains the code
896 documentation and is intended for the developers, or for the curious
897 advanced users. For what concerns curve2e-v161.sty, it is a previous
898 version of this package; see below why the older version might become
899 necessary to the end user.
900
901 README.txt, this file, contains general information.
902
903 This bundle contains also package curve2e-v161.sty, a roll-back
904 version needed in certain rare cases.
905
906 Curve2e.sty is an extension of the package pict2e.sty which extends the
907 standard picture LaTeX environment according to what Leslie Lamport
908 specified in the second edition of his LaTeX manual (1994).
909
910 This further extension curve2e.sty to pict2e.sty allows to draw lines
911 and vectors with any non integer slope parameters, to draw dashed and
912 dotted lines of any slope, to draw arcs and curved vectors, to draw
913 curves where just the interpolating nodes are specified together with
914 the tangent directions at such nodes; closed paths of any shape can be
915 filled with color; all coordinates are treated as ordered pairs, i.e. "complex
916 numbers"; coordinates may be expressed also in polar form. Coordinates
917 may be specified with macros, so that editing any drawing is rendered
918 much simpler: any point specified with a macro is modified only once
919 in its macro definition.
920 Some of these features have been incorporated in the 2009 version of
921 pict2e; therefore this package avoids any modification to the original
922 pict2e commands. In any case the version of curve2e is compatible with
923 later versions of pict2e; see below.
924
925 Curve2e now accepts polar coordinates in addition to the usual cartesian
926 ones; several macros have been upgraded; a new macro for tracing cubic
927 Bezier splines with their control nodes specified in polar form is
928 available. The same applies to quadratic Bezier splines. The multiput
929 command has been completely modified in a backwards compatible way; the
930 new version allows to manipulate the increment components in a configurable
931 way. A new xmultiput command has been defined that is more configurable
932 than the original one; both commands multiput and xmultiput are backwards
933 compatible with the original picture environment definition.
934
935 Curve2e solves a conflict with package eso-pic.

54

936
937 This version of curve2e is almost fully compatible with pict2e version 0.4z and later.
938
939 If you specify
940
941 \usepackage[<pict2e options>]{curve2e}
942
943 the package pict2e is automatically invoked with the specified options.
944
945 The -almost fully compatible- phrase is necessary to explain that this
946 version of curve2e uses some "functions" of the LaTeX3 language that were
947 made available to the LaTeX developers by mid October 2018. Should the user
948 have an older or a basic/incomplete installation of the TeX system,
949 such L3 functions might not be available. This is why this
950 package checks the presence of the developer interface; in case
951 such interface is not available it rolls back to the previous version
952 renamed curve2e-v161.sty, which is part of this bundle; this roll-back
953 file name must not be modified in any way. The compatibility mentioned
954 above implies that the user macros remain the same, but their
955 implementation requires the L3 interface. Some macros and environments
956 rely totally on the xfp package functionalities, but legacy documents
957 source files should compile correctly.
958
959 The package has the LPPL status of maintained.
960
961 According to the LPPL licence, you are entitled to modify this package,
962 as long as you fulfil the few conditions set forth by the Licence.
963
964 Nevertheless this package is an extension to the standard LaTeX
965 pict2e (2014) package. Therefore any change must be controlled on the
966 parent package pict2e, so as to avoid redefining or interfering with
967 what is already contained in that package.
968
969 If you prefer sending me your modifications, as long as I will maintain
970 this package, I will possibly include every (documented) suggestion or
971 modification into this package and, of course, I will acknowledge your
972 contribution.
973
974 Claudio Beccari
975
976 claudio dot beccari at gmail dot com

8 The roll-back package version curve2e-v161
This is the fall-back version of curve2e-v161.sty to which the main file
curve2e.sty falls back in case the interface packages xfp and xparse are not
available.

977 \NeedsTeXFormat{LaTeX2e}[2016/01/01]
978 \ProvidesPackage{curve2e-v161}%
979 [2019/02/07 v.1.61 Extension package for pict2e]
980
981 \RequirePackage{color}
982 \RequirePackageWithOptions{pict2e}[2014/01/01]

55

983 \RequirePackage{xparse}
984 \def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%
985 \def\TROF{\tracingcommands\z@ \tracingmacros\z@}%
986 \ifx\undefined\@tdA \newdimen\@tdA \fi
987 \ifx\undefined\@tdB \newdimen\@tdB \fi
988 \ifx\undefined\@tdC \newdimen\@tdC \fi
989 \ifx\undefined\@tdD \newdimen\@tdD \fi
990 \ifx\undefined\@tdE \newdimen\@tdE \fi
991 \ifx\undefined\@tdF \newdimen\@tdF \fi
992 \ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi
993 \gdef\linethickness#1{\@wholewidth#1\@halfwidth.5\@wholewidth\ignorespaces}%
994 \newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax
995 \def\thicklines{\linethickness{\defaultlinewidth}}%
996 \def\thinlines{\linethickness{.5\defaultlinewidth}}%
997 \thinlines\ignorespaces}
998 \def\LIne(#1){{\GetCoord(#1)\@tX\@tY
999 \moveto(0,0)

1000 \pIIe@lineto{\@tX\unitlength}{\@tY\unitlength}\strokepath}\ignorespaces}%
1001 \def\segment(#1)(#2){\@killglue\polyline(#1)(#2)}%
1002 \def\line(#1)#2{\begingroup
1003 \@linelen #2\unitlength
1004 \ifdim\@linelen<\z@\@badlinearg\else
1005 \expandafter\DirOfVect#1to\Dir@line
1006 \GetCoord(\Dir@line)\d@mX\d@mY
1007 \ifdim\d@mX\p@=\z@\else
1008 \DividE\ifdim\d@mX\p@<\z@-\fi\p@ by\d@mX\p@ to\sc@lelen
1009 \@linelen=\sc@lelen\@linelen
1010 \fi
1011 \moveto(0,0)
1012 \pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
1013 \strokepath
1014 \fi
1015 \endgroup\ignorespaces}%
1016 \ifx\Dashline\undefined
1017 \def\Dashline{\@ifstar{\Dashline@@}{\Dashline@}}
1018 \def\Dashline@(#1)(#2)#3{%
1019 \bgroup
1020 \countdef\NumA3254\countdef\NumB3252\relax
1021 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
1022 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
1023 \SubVect\V@ttA from\V@ttB to\V@ttC
1024 \ModOfVect\V@ttC to\DlineMod
1025 \DivideFN\DlineMod by#3 to\NumD
1026 \NumA\expandafter\Integer\NumD.??
1027 \ifodd\NumA\else\advance\NumA\@ne\fi
1028 \NumB=\NumA \divide\NumB\tw@
1029 \DividE\DlineMod\p@ by\NumA\p@ to\D@shMod
1030 \DividE\p@ by\NumA\p@ to \@tempa
1031 \MultVect\V@ttC by\@tempa,0 to\V@ttB
1032 \MultVect\V@ttB by 2,0 to\V@ttC
1033 \advance\NumB\@ne
1034 \edef\@mpt{\noexpand\egroup
1035 \noexpand\multiput(\V@ttA)(\V@ttC){\number\NumB}%
1036 {\noexpand\LIne(\V@ttB)}}%

56

1037 \@mpt\ignorespaces}%
1038 \let\Dline\Dashline
1039
1040 \def\Dashline@@(#1)(#2)#3{\put(#1){\Dashline@(0,0)(#2){#3}}}
1041 \fi
1042 \ifx\Dotline\undefined
1043 \def\Dotline{\@ifstar{\Dotline@@}{\Dotline@}}
1044 \def\Dotline@(#1)(#2)#3{%
1045 \bgroup
1046 \countdef\NumA 3254\relax \countdef\NumB 3255\relax
1047 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
1048 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
1049 \SubVect\V@ttA from\V@ttB to\V@ttC
1050 \ModOfVect\V@ttC to\DotlineMod
1051 \DivideFN\DotlineMod by#3 to\NumD
1052 \NumA=\expandafter\Integer\NumD.??
1053 \DivVect\V@ttC by\NumA,0 to\V@ttB
1054 \advance\NumA\@ne
1055 \edef\@mpt{\noexpand\egroup
1056 \noexpand\multiput(\V@ttA)(\V@ttB){\number\NumA}%
1057 {\noexpand\makebox(0,0){\noexpand\circle*{0.5}}}}%
1058 \@mpt\ignorespaces}%
1059
1060 \def\Dotline@@(#1)(#2)#3{\put(#1){\Dotline@(0,0)(#2){#3}}}
1061 \fi
1062 \AtBeginDocument{\@ifpackageloaded{eso-pic}{%
1063 \renewcommand\LenToUnit[1]{\strip@pt\dimexpr#1*\p@/\unitlength}}{}}
1064
1065 \def\GetCoord(#1)#2#3{%
1066 \expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}
1067 \def\isnot@polar#1:#2!!{\def\@tempOne{#2}\ifx\@tempOne\empty
1068 \expandafter\@firstoftwo\else
1069 \expandafter\@secondoftwo\fi
1070 {\SplitNod@@}{\SplitPolar@@}}
1071
1072 \def\SplitNod@(#1)#2#3{\isnot@polar#1:!!(#1)#2#3}%
1073 \def\SplitNod@@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%
1074 \def\SplitPolar@@(#1:#2)#3#4{\DirFromAngle#1to\@DirA
1075 \ScaleVect\@DirA by#2to\@DirA
1076 \expandafter\SplitNod@@\expandafter(\@DirA)#3#4}
1077
1078 \let\originalput\put
1079 \def\put(#1){\bgroup\GetCoord(#1)\@tX\@tY
1080 \edef\x{\noexpand\egroup\noexpand\originalput(\@tX,\@tY)}\x}
1081
1082 \let\originalmultiput\multiput
1083 \let\original@multiput\@multiput
1084
1085 \long\def\@multiput(#1)#2#3{\bgroup\GetCoord(#1)\@mptX\@mptY
1086 \edef\x{\noexpand\egroup\noexpand\original@multiput(\@mptX,\@mptY)}%
1087 \x{#2}{#3}\ignorespaces}
1088
1089 \gdef\multiput(#1)#2{\bgroup\GetCoord(#1)\@mptX\@mptY
1090 \edef\x{\noexpand\egroup\noexpand\originalmultiput(\@mptX,\@mptY)}\x(}%)

57

1091 \def\vector(#1)#2{%
1092 \begingroup
1093 \GetCoord(#1)\d@mX\d@mY
1094 \@linelen#2\unitlength
1095 \ifdim\d@mX\p@=\z@\ifdim\d@mY\p@=\z@\@badlinearg\fi\fi
1096 \ifdim\@linelen<\z@ \@linelen=-\@linelen\fi
1097 \MakeVectorFrom\d@mX\d@mY to\@Vect
1098 \DirOfVect\@Vect to\Dir@Vect
1099 \YpartOfVect\Dir@Vect to\@ynum \@ydim=\@ynum\p@
1100 \XpartOfVect\Dir@Vect to\@xnum \@xdim=\@xnum\p@
1101 \ifdim\d@mX\p@=\z@
1102 \else\ifdim\d@mY\p@=\z@
1103 \else
1104 \DividE\ifdim\@xnum\p@<\z@-\fi\p@ by\@xnum\p@ to\sc@lelen
1105 \@linelen=\sc@lelen\@linelen
1106 \fi
1107 \fi
1108 \@tdB=\@linelen
1109 \pIIe@concat\@xdim\@ydim{-\@ydim}\@xdim{\@xnum\@linelen}{\@ynum\@linelen}%
1110 \@linelen\z@
1111 \pIIe@vector
1112 \fillpath
1113 \@linelen=\@tdB
1114 \@tdA=\pIIe@FAW\@wholewidth
1115 \@tdA=\pIIe@FAL\@tdA
1116 \advance\@linelen-\@tdA
1117 \ifdim\@linelen>\z@
1118 \moveto(0,0)
1119 \pIIe@lineto{\@xnum\@linelen}{\@ynum\@linelen}%
1120 \strokepath\fi
1121 \endgroup}
1122 \def\Vector(#1){{%
1123 \GetCoord(#1)\@tX\@tY
1124 \ifdim\@tX\p@=\z@\vector(\@tX,\@tY){\@tY}
1125 \else
1126 \vector(\@tX,\@tY){\@tX}\fi}}
1127 \def\VECTOR(#1)(#2){\begingroup
1128 \SubVect#1from#2to\@tempa
1129 \expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%
1130 \endgroup\ignorespaces}
1131 \let\lp@r(\let\rp@r)
1132 \renewcommand*\polyline[1][\beveljoin]{\p@lylin@[#1]}
1133
1134 \def\p@lylin@[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
1135 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
1136 \@ifnextchar\lp@r{\p@lyline}{%
1137 \PackageWarning{curve2e}%
1138 {Polylines require at least two vertices!\MessageBreak
1139 Control your polyline specification\MessageBreak}%
1140 \ignorespaces}}
1141
1142 \def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY
1143 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
1144 \@ifnextchar\lp@r{\p@lyline}{\strokepath\ignorespaces}}

58

1145 \providecommand\polygon{}
1146 \RenewDocumentCommand\polygon{s O{\beveljoin} }{\@killglue\begingroup
1147 \IfBooleanTF{#1}{\@tempswatrue}{\@tempswafalse}%
1148 \@polygon[#2]}
1149
1150 \def\@polygon[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
1151 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
1152 \@ifnextchar\lp@r{\@@polygon}{%
1153 \PackageWarning{curve2e}%
1154 {Polygons require at least two vertices!\MessageBreak
1155 Control your polygon specification\MessageBreak}%
1156 \ignorespaces}}
1157
1158 \def\@@polygon(#1){\GetCoord(#1)\d@mX\d@mY
1159 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
1160 \@ifnextchar\lp@r{\@@polygon}{\pIIe@closepath
1161 \if@tempswa\pIIe@fillGraph\else\pIIe@strokeGraph\fi
1162 \endgroup
1163 \ignorespaces}}
1164 \def\GraphGrid(#1,#2){\bgroup\textcolor{red}{\linethickness{.1\p@}%
1165 \RoundUp#1modulo10to\@GridWd \RoundUp#2modulo10to\@GridHt
1166 \@tempcnta=\@GridWd \divide\@tempcnta10\relax \advance\@tempcnta\@ne
1167 \multiput(0,0)(10,0){\@tempcnta}{\line(0,1){\@GridHt}}%
1168 \@tempcnta=\@GridHt \divide\@tempcnta10\advance\@tempcnta\@ne
1169 \multiput(0,0)(0,10){\@tempcnta}{\line(1,0){\@GridWd}}\thinlines}%
1170 \egroup\ignorespaces}
1171 \def\RoundUp#1modulo#2to#3{\expandafter\@tempcnta\Integer#1.??%
1172 \count254\@tempcnta\divide\count254by#2\relax
1173 \multiply\count254by#2\relax
1174 \count252\@tempcnta\advance\count252-\count254
1175 \ifnum\count252>0\advance\count252-#2\relax
1176 \advance\@tempcnta-\count252\fi\edef#3{\number\@tempcnta}\ignorespaces}%
1177 \def\Integer#1.#2??{#1}%
1178 \ifdefined\dimexpr
1179 \unless\ifdefined\DividE
1180 \def\DividE#1by#2to#3{\bgroup
1181 \dimendef\Num2254\relax \dimendef\Den2252\relax
1182 \dimendef\@DimA 2250
1183 \Num=\p@ \Den=#2\relax
1184 \ifdim\Den=\z@
1185 \edef\x{\noexpand\endgroup\noexpand\def\noexpand#3{\strip@pt\maxdimen}}%
1186 \else
1187 \@DimA=#1\relax
1188 \edef\x{%
1189 \noexpand\egroup\noexpand\def\noexpand#3{%
1190 \strip@pt\dimexpr\@DimA*\Num/\Den\relax}}%
1191 \fi
1192 \x\ignorespaces}%
1193 \fi
1194 \unless\ifdefined\DivideFN
1195 \def\DivideFN#1by#2to#3{\DividE#1\p@ by#2\p@ to{#3}}%
1196 \fi
1197 \unless\ifdefined\MultiplY
1198 \def\MultiplY#1by#2to#3{\bgroup

59

1199 \dimendef\@DimA 2254 \dimendef\@DimB2255
1200 \@DimA=#1\p@\relax \@DimB=#2\p@\relax
1201 \edef\x{%
1202 \noexpand\egroup\noexpand\def\noexpand#3{%
1203 \strip@pt\dimexpr\@DimA*\@DimB/\p@\relax}}%
1204 \x\ignorespaces}%
1205 \let\MultiplyFN\MultiplY
1206 \fi
1207 \fi
1208
1209 \unless\ifdefined\Numero
1210 \def\Numero#1#2{\bgroup\dimen3254=#2\relax
1211 \edef\x{\noexpand\egroup\noexpand\edef\noexpand#1{%
1212 \strip@pt\dimen3254}}\x\ignorespaces}%
1213 \fi
1214 \def\g@tTanCotanFrom#1to#2and#3{%
1215 \DividE 114.591559\p@ by#1to\X@ \@tdB=\X@\p@
1216 \countdef\I=2546\def\Tan{0}\I=11\relax
1217 \@whilenum\I>\z@\do{%
1218 \@tdC=\Tan\p@ \@tdD=\I\@tdB
1219 \advance\@tdD-\@tdC \DividE\p@ by\@tdD to\Tan
1220 \advance\I-2\relax}%
1221 \def#2{\Tan}\DividE\p@ by\Tan\p@ to\Cot \def#3{\Cot}\ignorespaces}%
1222 \def\SinOf#1to#2{\bgroup%
1223 \@tdA=#1\p@%
1224 \ifdim\@tdA>\z@%
1225 \@whiledim\@tdA>180\p@\do{\advance\@tdA -360\p@}%
1226 \else%
1227 \@whiledim\@tdA<-180\p@\do{\advance\@tdA 360\p@}%
1228 \fi \ifdim\@tdA=\z@
1229 \def\@tempA{0}%
1230 \else
1231 \ifdim\@tdA>\z@
1232 \def\Segno{+}%
1233 \else
1234 \def\Segno{-}%
1235 \@tdA=-\@tdA
1236 \fi
1237 \ifdim\@tdA>90\p@
1238 \@tdA=-\@tdA \advance\@tdA 180\p@
1239 \fi
1240 \ifdim\@tdA=90\p@
1241 \def\@tempA{\Segno1}%
1242 \else
1243 \ifdim\@tdA=180\p@
1244 \def\@tempA{0}%
1245 \else
1246 \ifdim\@tdA<\p@
1247 \@tdA=\Segno0.0174533\@tdA
1248 \DividE\@tdA by\p@ to \@tempA%
1249 \else
1250 \g@tTanCotanFrom\@tdA to\T and\Tp
1251 \@tdA=\T\p@ \advance\@tdA \Tp\p@
1252 \DividE \Segno2\p@ by\@tdA to \@tempA%

60

1253 \fi
1254 \fi
1255 \fi
1256 \fi
1257 \edef\endSinOf{\noexpand\egroup
1258 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
1259 \endSinOf}%
1260 \def\CosOf#1to#2{\bgroup%
1261 \@tdA=#1\p@%
1262 \ifdim\@tdA>\z@%
1263 \@whiledim\@tdA>360\p@\do{\advance\@tdA -360\p@}%
1264 \else%
1265 \@whiledim\@tdA<\z@\do{\advance\@tdA 360\p@}%
1266 \fi
1267 \ifdim\@tdA>180\p@
1268 \@tdA=-\@tdA \advance\@tdA 360\p@
1269 \fi
1270 \ifdim\@tdA<90\p@
1271 \def\Segno{+}%
1272 \else
1273 \def\Segno{-}%
1274 \@tdA=-\@tdA \advance\@tdA 180\p@
1275 \fi
1276 \ifdim\@tdA=\z@
1277 \def\@tempA{\Segno1}%
1278 \else
1279 \ifdim\@tdA<\p@
1280 \@tdA=0.0174533\@tdA \Numero\@tempA\@tdA
1281 \@tdA=\@tempA\@tdA \@tdA=-.5\@tdA
1282 \advance\@tdA \p@
1283 \DividE\@tdA by\p@ to\@tempA%
1284 \else
1285 \ifdim\@tdA=90\p@
1286 \def\@tempA{0}%
1287 \else
1288 \g@tTanCotanFrom\@tdA to\T and\Tp
1289 \@tdA=\Tp\p@ \advance\@tdA-\T\p@
1290 \@tdB=\Tp\p@ \advance\@tdB\T\p@
1291 \DividE\Segno\@tdA by\@tdB to\@tempA%
1292 \fi
1293 \fi
1294 \fi
1295 \edef\endCosOf{\noexpand\egroup
1296 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
1297 \endCosOf}%
1298 \def\TanOf#1to#2{\bgroup%
1299 \@tdA=#1\p@%
1300 \ifdim\@tdA>90\p@%
1301 \@whiledim\@tdA>90\p@\do{\advance\@tdA -180\p@}%
1302 \else%
1303 \@whiledim\@tdA<-90\p@\do{\advance\@tdA 180\p@}%
1304 \fi%
1305 \ifdim\@tdA=\z@%
1306 \def\@tempA{0}%

61

1307 \else
1308 \ifdim\@tdA>\z@
1309 \def\Segno{+}%
1310 \else
1311 \def\Segno{-}%
1312 \@tdA=-\@tdA
1313 \fi
1314 \ifdim\@tdA=90\p@
1315 \def\@tempA{\Segno16383.99999}%
1316 \else
1317 \ifdim\@tdA<\p@
1318 \@tdA=\Segno0.0174533\@tdA
1319 \DividE\@tdA by\p@ to\@tempA%
1320 \else
1321 \g@tTanCotanFrom\@tdA to\T and\Tp
1322 \@tdA\Tp\p@ \advance\@tdA -\T\p@
1323 \DividE\Segno2\p@ by\@tdA to\@tempA%
1324 \fi
1325 \fi
1326 \fi
1327 \edef\endTanOf{\noexpand\egroup
1328 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
1329 \endTanOf}%
1330 \def\ArcTanOf#1to#2{\bgroup
1331 \countdef\Inverti 4444\Inverti=0
1332 \def\Segno{}
1333 \edef\@tF{#1}\@tdF=\@tF\p@ \@tdE=57.295778\p@
1334 \@tdD=\ifdim\@tdF<\z@ -\@tdF\def\Segno{-}\else\@tdF\fi
1335 \ifdim\@tdD>\p@
1336 \Inverti=\@ne
1337 \@tdD=\dimexpr\p@*\p@/\@tdD\relax
1338 \fi
1339 \unless\ifdim\@tdD>0.02\p@
1340 \def\@tX{\strip@pt\dimexpr57.295778\@tdD\relax}%
1341 \else
1342 \edef\@tX{45}\relax
1343 \countdef\I 2523 \I=9\relax
1344 \@whilenum\I>0\do{\TanOf\@tX to\@tG
1345 \edef\@tG{\strip@pt\dimexpr\@tG\p@-\@tdD\relax}\relax
1346 \MultiplY\@tG by57.295778to\@tG
1347 \CosOf\@tX to\@tH
1348 \MultiplY\@tH by\@tH to\@tH
1349 \MultiplY\@tH by\@tG to \@tH
1350 \edef\@tX{\strip@pt\dimexpr\@tX\p@ - \@tH\p@\relax}\relax
1351 \advance\I\m@ne}%
1352 \fi
1353 \ifnum\Inverti=\@ne
1354 \edef\@tX{\strip@pt\dimexpr90\p@-\@tX\p@\relax}
1355 \fi
1356 \edef\x{\egroup\noexpand\edef\noexpand#2{\Segno\@tX}}\x\ignorespaces}%
1357 \def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%
1358 \def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%
1359 \def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
1360 \@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi

62

1361 \@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi
1362 \ifdim\@tempdima=\z@
1363 \ifdim\@tempdimb=\z@
1364 \def\@T{0}\@tempdimc=\z@
1365 \else
1366 \def\@T{0}\@tempdimc=\@tempdimb
1367 \fi
1368 \else
1369 \ifdim\@tempdima>\@tempdimb
1370 \DividE\@tempdimb by\@tempdima to\@T
1371 \@tempdimc=\@tempdima
1372 \else
1373 \DividE\@tempdima by\@tempdimb to\@T
1374 \@tempdimc=\@tempdimb
1375 \fi
1376 \fi
1377 \unless\ifdim\@tempdimc=\z@
1378 \unless\ifdim\@T\p@=\z@
1379 \@tempdima=\@T\p@ \@tempdima=\@T\@tempdima
1380 \advance\@tempdima\p@%
1381 \@tempdimb=\p@%
1382 \@tempcnta=5\relax
1383 \@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T
1384 \advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb
1385 \advance\@tempcnta\m@ne}%
1386 \@tempdimc=\@T\@tempdimc
1387 \fi
1388 \fi
1389 \Numero#2\@tempdimc
1390 \ignorespaces}%
1391 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
1392 \ModOfVect#1to\@tempa
1393 \unless\ifdim\@tempdimc=\z@
1394 \DividE\t@X\p@ by\@tempdimc to\t@X
1395 \DividE\t@Y\p@ by\@tempdimc to\t@Y
1396 \fi
1397 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
1398 \def\ModAndDirOfVect#1to#2and#3{%
1399 \GetCoord(#1)\t@X\t@Y
1400 \ModOfVect#1to#2%
1401 \ifdim\@tempdimc=\z@\else
1402 \DividE\t@X\p@ by\@tempdimc to\t@X
1403 \DividE\t@Y\p@ by\@tempdimc to\t@Y
1404 \fi
1405 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
1406 \def\DistanceAndDirOfVect#1minus#2to#3and#4{%
1407 \SubVect#2from#1to\@tempa
1408 \ModAndDirOfVect\@tempa to#3and#4\ignorespaces}%
1409 \def\XpartOfVect#1to#2{%
1410 \GetCoord(#1)#2\@tempa\ignorespaces}%
1411 \def\YpartOfVect#1to#2{%
1412 \GetCoord(#1)\@tempa#2\ignorespaces}%
1413 \def\DirFromAngle#1to#2{%
1414 \CosOf#1to\t@X

63

1415 \SinOf#1to\t@Y
1416 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
1417 \def\ArgOfVect#1to#2{\bgroup\GetCoord(#1){\t@X}{\t@Y}%
1418 \def\s@gno{}\def\addflatt@ngle{0}
1419 \ifdim\t@X\p@=\z@
1420 \ifdim\t@Y\p@=\z@
1421 \def\ArcTan{0}%
1422 \else
1423 \def\ArcTan{90}%
1424 \ifdim\t@Y\p@<\z@\def\s@gno{-}\fi
1425 \fi
1426 \else
1427 \ifdim\t@Y\p@=\z@
1428 \ifdim\t@X\p@<\z@
1429 \def\ArcTan{180}%
1430 \else
1431 \def\ArcTan{0}%
1432 \fi
1433 \else
1434 \ifdim\t@X\p@<\z@%
1435 \def\addflatt@ngle{180}%
1436 \edef\t@X{\strip@pt\dimexpr-\t@X\p@}%
1437 \edef\t@Y{\strip@pt\dimexpr-\t@Y\p@}%
1438 \ifdim\t@Y\p@<\z@
1439 \def\s@gno{-}%
1440 \edef\t@Y{-\t@Y}%
1441 \fi
1442 \fi
1443 \DivideFN\t@Y by\t@X to \t@A
1444 \ArcTanOf\t@A to\ArcTan
1445 \fi
1446 \fi
1447 \edef\ArcTan{\unless\ifx\s@gno\empty\s@gno\fi\ArcTan}%
1448 \unless\ifnum\addflatt@ngle=0\relax
1449 \edef\ArcTan{%
1450 \strip@pt\dimexpr\ArcTan\p@\ifx\s@gno\empty-\else+\fi
1451 \addflatt@ngle\p@\relax}%
1452 \fi
1453 \edef\x{\noexpand\egroup\noexpand\edef\noexpand#2{\ArcTan}}%
1454 \x\ignorespaces}
1455 \def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y
1456 \@tempdima=\t@X\p@ \@tempdima=#2\@tempdima\Numero\t@X\@tempdima
1457 \@tempdima=\t@Y\p@ \@tempdima=#2\@tempdima\Numero\t@Y\@tempdima
1458 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
1459 \def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y
1460 \@tempdima=-\t@Y\p@\Numero\t@Y\@tempdima
1461 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
1462 \def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y
1463 \GetCoord(#2)\td@X\td@Y
1464 \@tempdima\tu@X\p@\advance\@tempdima\td@X\p@ \Numero\t@X\@tempdima
1465 \@tempdima\tu@Y\p@\advance\@tempdima\td@Y\p@ \Numero\t@Y\@tempdima
1466 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
1467 \def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y
1468 \GetCoord(#2)\td@X\td@Y

64

1469 \@tempdima\td@X\p@\advance\@tempdima-\tu@X\p@ \Numero\t@X\@tempdima
1470 \@tempdima\td@Y\p@\advance\@tempdima-\tu@Y\p@ \Numero\t@Y\@tempdima
1471 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
1472 \def\MultVect#1by{\@ifstar{\@ConjMultVect#1by}{\@MultVect#1by}}%
1473 \def\@MultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
1474 \GetCoord(#2)\td@X\td@Y
1475 \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
1476 \@tempdimc=\td@X\@tempdima\advance\@tempdimc-\td@Y\@tempdimb
1477 \Numero\t@X\@tempdimc
1478 \@tempdimc=\td@Y\@tempdima\advance\@tempdimc\td@X\@tempdimb
1479 \Numero\t@Y\@tempdimc
1480 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
1481 \def\@ConjMultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
1482 \GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
1483 \@tempdimc=\td@X\@tempdima\advance\@tempdimc+\td@Y\@tempdimb
1484 \Numero\t@X\@tempdimc
1485 \@tempdimc=\td@X\@tempdimb\advance\@tempdimc-\td@Y\@tempdima
1486 \Numero\t@Y\@tempdimc
1487 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}
1488 \def\DivVect#1by#2to#3{\ModAndDirOfVect#2to\@Mod and\@Dir
1489 \DividE\p@ by\@Mod\p@ to\@Mod \ConjVect\@Dir to\@Dir
1490 \ScaleVect#1by\@Mod to\@tempa
1491 \MultVect\@tempa by\@Dir to#3\ignorespaces}%
1492 \def\Arc(#1)(#2)#3{\begingroup
1493 \@tdA=#3\p@
1494 \unless\ifdim\@tdA=\z@
1495 \@Arc(#1)(#2)%
1496 \fi
1497 \endgroup\ignorespaces}%
1498 \def\@Arc(#1)(#2){%
1499 \ifdim\@tdA>\z@
1500 \let\Segno+%
1501 \else
1502 \@tdA=-\@tdA \let\Segno-%
1503 \fi
1504 \Numero\@gradi\@tdA
1505 \ifdim\@tdA>360\p@
1506 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
1507 and gets reduced\MessageBreak%
1508 to the range 0--360 taking the sign into consideration}%
1509 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
1510 \fi
1511 \SubVect#2from#1to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
1512 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
1513 \@@Arc
1514 \strokepath\ignorespaces}%
1515 \def\@@Arc{%
1516 \pIIe@moveto{\@pPunX\unitlength}{\@pPunY\unitlength}%
1517 \ifdim\@tdA>180\p@
1518 \advance\@tdA-180\p@
1519 \Numero\@gradi\@tdA
1520 \SubVect\@pPun from\@Cent to\@V
1521 \AddVect\@V and\@Cent to\@sPun
1522 \MultVect\@V by0,-1.3333333to\@V \if\Segno-\ScaleVect\@V by-1to\@V\fi

65

1523 \AddVect\@pPun and\@V to\@pcPun
1524 \AddVect\@sPun and\@V to\@scPun
1525 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
1526 \GetCoord(\@scPun)\@scPunX\@scPunY
1527 \GetCoord(\@sPun)\@sPunX\@sPunY
1528 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
1529 {\@scPunX\unitlength}{\@scPunY\unitlength}%
1530 {\@sPunX\unitlength}{\@sPunY\unitlength}%
1531 \CopyVect\@sPun to\@pPun
1532 \fi
1533 \ifdim\@tdA>\z@
1534 \DirFromAngle\@gradi to\@Dir \if\Segno-\ConjVect\@Dir to\@Dir \fi
1535 \SubVect\@Cent from\@pPun to\@V
1536 \MultVect\@V by\@Dir to\@V
1537 \AddVect\@Cent and\@V to\@sPun
1538 \@tdA=.5\@tdA \Numero\@gradi\@tdA
1539 \DirFromAngle\@gradi to\@Phimezzi
1540 \GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi
1541 \@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB
1542 \@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@ \Numero\@tempa\@tdC
1543 \@tdB=\@tempa\@tdB
1544 \DividE\@tdB by\@sinphimezzi\p@ to\@cZ
1545 \ScaleVect\@Phimezzi by\@cZ to\@Phimezzi
1546 \ConjVect\@Phimezzi to\@mPhimezzi
1547 \if\Segno-%
1548 \let\@tempa\@Phimezzi
1549 \let\@Phimezzi\@mPhimezzi
1550 \let\@mPhimezzi\@tempa
1551 \fi
1552 \SubVect\@sPun from\@pPun to\@V
1553 \DirOfVect\@V to\@V
1554 \MultVect\@Phimezzi by\@V to\@Phimezzi
1555 \AddVect\@sPun and\@Phimezzi to\@scPun
1556 \ScaleVect\@V by-1to\@V
1557 \MultVect\@mPhimezzi by\@V to\@mPhimezzi
1558 \AddVect\@pPun and\@mPhimezzi to\@pcPun
1559 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
1560 \GetCoord(\@scPun)\@scPunX\@scPunY
1561 \GetCoord(\@sPun)\@sPunX\@sPunY
1562 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
1563 {\@scPunX\unitlength}{\@scPunY\unitlength}%
1564 {\@sPunX\unitlength}{\@sPunY\unitlength}%
1565 \fi}
1566 \def\VectorArc(#1)(#2)#3{\begingroup
1567 \edef\tempG{#3}\@tdA=#3\p@
1568 \fptestF{#3=0}{\@VArc(#1)(#2)}}%
1569
1570 \def\VectorARC(#1)(#2)#3{\begingroup
1571 \edef\tempG{#3}\@tdA=#3\p@
1572 \fptestF{#3=0}{\@VArc(#1)(#2)}}%
1573
1574 \def\@VArc(#1)(#2){%
1575 \fptest{\tempG>\z@}{\let\Segno+}%
1576 {\edef\tempG={-\tempG}\let\Segno-}%

66

1577 \fptestT{\tempG>360}{%
1578 \PackageWarning{curve2e}{The arc aperture is \tempG\space degrees
1579 and gets reducedˆˆJ%
1580 to the range 0--360 taking the sign into
1581 consideration}%
1582 \edef\tempG{\Modulo{\tempG}{360}}}%
1583 \@tdA=\tempG\p@
1584 \Numero\@gradi\@tdA
1585 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
1586 \@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
1587 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
1588 \@tdD=\DeltaGradi\p@
1589 \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
1590 \@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
1591 \DirFromAngle\@tempa to\@Dir
1592 \MultVect\@V by\@Dir to\@sPun
1593 \edef\@tempA{\ifx\Segno--\@ne\fi}%
1594 \MultVect\@sPun by 0,\@tempA to\@vPun
1595 \DirOfVect\@vPun to\@Dir
1596 \AddVect\@sPun and #1 to \@sPun
1597 \GetCoord(\@sPun)\@tdX\@tdY
1598 \@tdD\ifx\Segno--\fi\DeltaGradi\p@
1599 \@tdD=0.5\@tdD \Numero\DeltaGradi\@tdD
1600 \DirFromAngle\DeltaGradi to\@Dird
1601 \MultVect\@Dir by*\@Dird to\@Dir
1602 \GetCoord(\@Dir)\@xnum\@ynum
1603 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%
1604 \@tdE =\ifx\Segno--\fi\DeltaGradi\p@
1605 \advance\@tdA -\@tdE \Numero\@gradi\@tdA
1606 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
1607 \@@Arc\strokepath\endgroup\ignorespaces}%
1608
1609 \def\@VARC(#1)(#2){%
1610 \fptest{\tempG>\z@}{\let\Segno+}%
1611 {\edef\tempG={-\tempG}\let\Segno-}%
1612 \@tdA=\tempG\p@
1613 \Numero\@gradi\@tdA
1614 \fptestT{\tempG>360}{%
1615 \PackageWarning{curve2e}{The arc aperture is \tempG\space degrees
1616 and gets reducedˆˆJ%
1617 to the range 0--360 taking the sign into
1618 consideration}%
1619 \edef\tempG{\Modulo{\tempG}{360}}%
1620 }
1621 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
1622 \@tdE=\pIIe@FAW\@wholewidth \@tdE=0.8\@tdE
1623 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
1624 \@tdD=\DeltaGradi\p@ \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
1625 \@tdD=\if\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
1626 \DirFromAngle\@tempa to\@Dir
1627 \MultVect\@V by\@Dir to\@sPun% corrects the end point
1628 \edef\@tempA{\if\Segno--\fi1}%
1629 \MultVect\@sPun by 0,\@tempA to\@vPun
1630 \DirOfVect\@vPun to\@Dir

67

1631 \AddVect\@sPun and #1 to \@sPun
1632 \GetCoord(\@sPun)\@tdX\@tdY
1633 \@tdD\if\Segno--\fi\DeltaGradi\p@
1634 \@tdD=.5\@tdD \Numero\@tempB\@tdD
1635 \DirFromAngle\@tempB to\@Dird
1636 \MultVect\@Dir by*\@Dird to\@Dir
1637 \GetCoord(\@Dir)\@xnum\@ynum
1638 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}% end point arrowt ip
1639 \@tdE =\DeltaGradi\p@
1640 \advance\@tdA -2\@tdE \Numero\@gradi\@tdA
1641 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
1642 \SubVect\@Cent from\@pPun to \@V
1643 \edef\@tempa{\if\Segno-\else-\fi\@ne}%
1644 \MultVect\@V by0,\@tempa to\@vPun
1645 \@tdE\if\Segno--\fi\DeltaGradi\p@
1646 \Numero\@tempB{0.5\@tdE}%
1647 \DirFromAngle\@tempB to\@Dird
1648 \MultVect\@vPun by\@Dird to\@vPun% corrects the starting point
1649 \DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum
1650 \put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}% starting point arrow tip
1651 \edef\@tempa{\if\Segno--\fi\DeltaGradi}%
1652 \DirFromAngle\@tempa to \@Dir
1653 \SubVect\@Cent from\@pPun to\@V
1654 \MultVect\@V by\@Dir to\@V
1655 \AddVect\@Cent and\@V to\@pPun
1656 \GetCoord(\@pPun)\@pPunX\@pPunY
1657 \@@Arc
1658 \strokepath\ignorespaces}%
1659 \def\CurveBetween#1and#2WithDirs#3and#4{%
1660 \StartCurveAt#1WithDir{#3}\relax
1661 \CurveTo#2WithDir{#4}\CurveFinish\ignorespaces}%
1662 \def\StartCurveAt#1WithDir#2{%
1663 \begingroup
1664 \GetCoord(#1)\@tempa\@tempb
1665 \CopyVect\@tempa,\@tempb to\@Pzero
1666 \pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%
1667 \GetCoord(#2)\@tempa\@tempb
1668 \CopyVect\@tempa,\@tempb to\@Dzero
1669 \DirOfVect\@Dzero to\@Dzero
1670 \ignorespaces}
1671 \def\ChangeDir<#1>{%
1672 \GetCoord(#1)\@tempa\@tempb
1673 \CopyVect\@tempa,\@tempb to\@Dzero
1674 \DirOfVect\@Dzero to\@Dzero
1675 \ignorespaces}
1676 \def\CurveFinish{\strokepath\endgroup\ignorespaces}%
1677 \def\FillCurve{\fillpath\endgroup\ignorespaces}
1678 \def\CurveEnd{\fillstroke\endgroup\ignorespaces}
1679 \def\CbezierTo#1WithDir#2AndDists#3And#4{%
1680 \GetCoord(#1)\@tX\@tY \MakeVectorFrom\@tX\@tY to\@Puno
1681 \GetCoord(#2)\@tX\@tY \MakeVectorFrom\@tX\@tY to \@Duno
1682 \DirOfVect\@Duno to\@Duno
1683 \ScaleVect\@Dzero by#3to\@Czero \AddVect\@Pzero and\@Czero to\@Czero
1684 \ScaleVect\@Duno by-#4to \@Cuno \AddVect\@Puno and\@Cuno to \@Cuno

68

1685 \GetCoord(\@Czero)\@XCzero\@YCzero
1686 \GetCoord(\@Cuno)\@XCuno\@YCuno
1687 \GetCoord(\@Puno)\@XPuno\@YPuno
1688 \pIIe@curveto{\@XCzero\unitlength}{\@YCzero\unitlength}%
1689 {\@XCuno\unitlength}{\@YCuno\unitlength}%
1690 {\@XPuno\unitlength}{\@YPuno\unitlength}%
1691 \CopyVect\@Puno to\@Pzero
1692 \CopyVect\@Duno to\@Dzero
1693 \ignorespaces}%
1694 \def\CbezierBetween#1And#2WithDirs#3And#4UsingDists#5And#6{%
1695 \StartCurveAt#1WithDir{#3}\relax
1696 \CbezierTo#2WithDir#4AndDists#5And{#6}\CurveFinish}
1697
1698 \def\@isTension#1;#2!!{\def\@tempA{#1}%
1699 \def\@tempB{#2}\unless\ifx\@tempB\empty\strip@semicolon#2\fi}
1700 \def\strip@semicolon#1;{\def\@tempB{#1}}
1701 \def\CurveTo#1WithDir#2{%
1702 \def\@Tuno{1}\def\@Tzero{1}\relax
1703 \edef\@Puno{#1}\@isTension#2;!!%
1704 \expandafter\DirOfVect\@tempA to\@Duno
1705 \bgroup\unless\ifx\@tempB\empty\GetCoord(\@tempB)\@Tzero\@Tuno\fi
1706 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord
1707 \MultVect\@Dzero by*\@DirChord to \@Dpzero
1708 \MultVect\@Duno by*\@DirChord to \@Dpuno
1709 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
1710 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno
1711 \DivideFN\@Chord by2 to\@semichord
1712 \ifdim\@DXpzero\p@=\z@
1713 \@tdA=1.333333\p@
1714 \Numero\@KCzero{\@semichord\@tdA}%
1715 \fi
1716 \ifdim\@DYpzero\p@=\z@
1717 \@tdA=1.333333\p@
1718 \Numero\@Kpzero{\@semichord\@tdA}%
1719 \fi
1720 \unless\ifdim\@DXpzero\p@=\z@
1721 \unless\ifdim\@DYpzero\p@=\z@
1722 \edef\@CosDzero{\ifdim\@DXpzero\p@<\z@ -\fi\@DXpzero}%
1723 \edef\@SinDzero{\ifdim\@DYpzero\p@<\z@ -\fi\@DYpzero}%
1724 \@tdA=\@semichord\p@ \@tdA=1.333333\@tdA
1725 \DividE\@tdA by\@SinDzero\p@ to \@KCzero
1726 \@tdA=\dimexpr(\p@-\@CosDzero\p@)\relax
1727 \DividE\@KCzero\@tdA by\@SinDzero\p@ to \@KCzero
1728 \fi
1729 \fi
1730 \MultiplyFN\@KCzero by \@Tzero to \@KCzero
1731 \ScaleVect\@Dzero by\@KCzero to\@CPzero
1732 \AddVect\@Pzero and\@CPzero to\@CPzero
1733 \ifdim\@DXpuno\p@=\z@
1734 \@tdA=-1.333333\p@
1735 \Numero\@KCuno{\@semichord\@tdA}%
1736 \fi
1737 \ifdim\@DYpuno\p@=\z@
1738 \@tdA=-1.333333\p@

69

1739 \Numero\@KCuno{\@semichord\@tdA}%
1740 \fi
1741 \unless\ifdim\@DXpuno\p@=\z@
1742 \unless\ifdim\@DYpuno\p@=\z@
1743 \edef\@CosDuno{\ifdim\@DXpuno\p@<\z@ -\fi\@DXpuno}%
1744 \edef\@SinDuno{\ifdim\@DYpuno\p@<\z@ -\fi\@DYpuno}%
1745 \@tdA=\@semichord\p@ \@tdA=-1.333333\@tdA
1746 \DividE\@tdA by \@SinDuno\p@ to \@KCuno
1747 \@tdA=\dimexpr(\p@-\@CosDuno\p@)\relax
1748 \DividE\@KCuno\@tdA by\@SinDuno\p@ to \@KCuno
1749 \fi
1750 \fi
1751 \MultiplyFN\@KCuno by \@Tuno to \@KCuno
1752 \ScaleVect\@Duno by\@KCuno to\@CPuno
1753 \AddVect\@Puno and\@CPuno to\@CPuno
1754 \GetCoord(\@Puno)\@XPuno\@YPuno
1755 \GetCoord(\@CPzero)\@XCPzero\@YCPzero
1756 \GetCoord(\@CPuno)\@XCPuno\@YCPuno
1757 \pIIe@curveto{\@XCPzero\unitlength}{\@YCPzero\unitlength}%
1758 {\@XCPuno\unitlength}{\@YCPuno\unitlength}%
1759 {\@XPuno\unitlength}{\@YPuno\unitlength}\egroup
1760 \CopyVect\@Puno to\@Pzero
1761 \CopyVect\@Duno to\@Dzero
1762 \ignorespaces}%
1763 \def\Curve{\@ifstar{\let\fillstroke\fillpath\Curve@}%
1764 {\let\fillstroke\strokepath\Curve@}}
1765 \def\Curve@(#1)<#2>{%
1766 \StartCurveAt#1WithDir{#2}%
1767 \@ifnextchar\lp@r\@Curve{%
1768 \PackageWarning{curve2e}{%
1769 Curve specifications must contain at least two nodes!\MessageBreak
1770 Please, control your Curve specifications\MessageBreak}}}
1771
1772 \def\@Curve(#1)<#2>{%
1773 \CurveTo#1WithDir{#2}%
1774 \@ifnextchar\lp@r\@Curve{%
1775 \@ifnextchar[\@ChangeDir\CurveEnd}}
1776 \def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}
1777 \def\Qurve{\@ifstar{\let\fillstroke\fillpath\Qurve@}%
1778 {\let\fillstroke\strokepath\Qurve@}}
1779
1780 \def\Qurve@(#1)<#2>{%
1781 \StartCurveAt#1WithDir{#2}%
1782 \@ifnextchar\lp@r\@Qurve{%
1783 \PackageWarning{curve2e}{%
1784 Quadratic curve specifications must contain at least
1785 two nodes!\MessageBreak
1786 Please, control your Qurve specifications\MessageBreak}}}%
1787 \def\@Qurve(#1)<#2>{\QurveTo#1WithDir{#2}%
1788 \@ifnextchar\lp@r\@Qurve{%
1789 \@ifnextchar[\@ChangeQDir\CurveEnd}}%
1790 \def\@ChangeQDir[#1]{\ChangeDir<#1>\@Qurve}%
1791 \def\QurveTo#1WithDir#2{%
1792 \edef\@Puno{#1}\DirOfVect#2to\@Duno\bgroup

70

1793 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord
1794 \MultVect\@Dzero by*\@Duno to \@Scalar
1795 \YpartOfVect\@Scalar to \@YScalar
1796 \ifdim\@YScalar\p@=\z@
1797 \PackageWarning{curve2e}%
1798 {Quadratic Bezier arcs cannot have their starting\MessageBreak
1799 and ending directions parallel or antiparallel with\MessageBreak
1800 each other. This arc is skipped and replaced with
1801 a dotted line.\MessageBreak}%
1802 \Dotline(\@Pzero)(\@Puno){2}\relax
1803 \else
1804 \MultVect\@Dzero by*\@DirChord to \@Dpzero
1805 \MultVect\@Duno by*\@DirChord to \@Dpuno
1806 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
1807 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno
1808 \MultiplyFN\@DXpzero by\@DXpuno to\@XXD
1809 \MultiplyFN\@DYpzero by\@DYpuno to\@YYD
1810 \unless\ifdim\@YYD\p@<\z@\ifdim\@XXD\p@<\z@
1811 \PackageWarning{curve2e}%
1812 {Quadratic Bezier arcs cannot have inflection points\MessageBreak
1813 Therefore the tangents to the starting and ending arc\MessageBreak
1814 points cannot be directed to the same half plane.\MessageBreak
1815 This arc is skipped and replaced by a dotted line\MessageBreak}%
1816 \Dotline(\@Pzero)(\@Puno){2}\fi
1817 \else
1818 \edef\@CDzero{\@DXpzero}\relax
1819 \edef\@SDzero{\@DYpzero}\relax
1820 \edef\@CDuno{\@DXpuno}\relax
1821 \edef\@SDuno{\@DYpuno}\relax
1822 \MultiplyFN\@SDzero by\@CDuno to\@tempA
1823 \MultiplyFN\@SDuno by\@CDzero to\@tempB
1824 \edef\@tempA{\strip@pt\dimexpr\@tempA\p@-\@tempB\p@}\relax
1825 \@tdA=\@SDuno\p@ \@tdB=\@Chord\p@ \@tdC=\@tempA\p@
1826 \edef\@tempC{\strip@pt\dimexpr \@tdA*\@tdB/\@tdC}\relax
1827 \MultiplyFN\@tempC by\@CDzero to \@XC
1828 \MultiplyFN\@tempC by\@SDzero to \@YC
1829 \ModOfVect\@XC,\@YC to\@KC
1830 \ScaleVect\@Dzero by\@KC to\@CP
1831 \AddVect\@Pzero and\@CP to\@CP
1832 \GetCoord(\@Pzero)\@XPzero\@YPzero
1833 \GetCoord(\@Puno)\@XPuno\@YPuno
1834 \GetCoord(\@CP)\@XCP\@YCP
1835 \@ovxx=\@XPzero\unitlength \@ovyy=\@YPzero\unitlength
1836 \@ovdx=\@XCP\unitlength \@ovdy=\@YCP\unitlength
1837 \@xdim=\@XPuno\unitlength \@ydim=\@YPuno\unitlength
1838 \pIIe@bezier@QtoC\@ovxx\@ovdx\@ovro
1839 \pIIe@bezier@QtoC\@ovyy\@ovdy\@ovri
1840 \pIIe@bezier@QtoC\@xdim\@ovdx\@clnwd
1841 \pIIe@bezier@QtoC\@ydim\@ovdy\@clnht
1842 \pIIe@moveto\@ovxx\@ovyy
1843 \pIIe@curveto\@ovro\@ovri\@clnwd\@clnht\@xdim\@ydim
1844 \fi\fi\egroup
1845 \CopyVect\@Puno to\@Pzero
1846 \CopyVect\@Duno to\@Dzero

71

1847 \ignorespaces}
1848

References
[1] Gäßlein H., Niepraschk R., and Tkadlec J. The pict2e package, 2020, PDF

documentation of pict2e; this package is part of any modern complete dis-
tribution of the TEX system; it may be read by means of the line command
texdoc pict2e. In case of a basic or partial system installation, the package
may be installed by means of the specific facilities of the distribution.

72

	Contents
	1 Introduction
	2 Acknowledgements
	3 Source code
	3.1 Some preliminary extensions to the pict2e package
	3.2 Line thickness macros
	3.3 Improved line and vector macros
	3.4 Dashed and dotted lines
	3.5 Coordinate handling
	3.6 Vectors
	3.7 Polylines and polygons
	3.8 The colored service grid

	4 Labelling the graphical elements
	5 Math operations on fractional operands
	5.1 The division macro
	5.2 Trigonometric functions
	5.3 Arcs and curves preliminary information
	5.4 Complex number macros
	5.5 Arcs and curved vectors
	5.5.1 Arcs
	5.5.2 Arc vectors

	5.6 General curves
	5.7 Cubic splines
	5.8 Quadratic splines

	6 Conclusion
	7 The README.txt file
	8 The roll-back package version curve2e-v161
	References

