The shdoc package — Manual for version v2.1b,
2016,/09/04

Simon Michael Laube
simon.laube@gmx.at

Abstract

The shdoc packages helps documenting commandline actions in a fancy way.
It tries to imitate the look and feel of the original shell prompt while offering
a wide range of personalization options.

Contents
1 Introduction 2
2 Acknowledgement 2

3 User commands
3.1 Package inclusion and options
3.2 Color and style management
321 Colors
3.22 Symbols
3.2.3 Appearance and presets
3.3 The environment oo
3.3.1 Metadata
3.3.2 Shell input & path handling
3.3.3 Shelloutput
3.3.4 Name variables 0oL
3.4 Automatic command execution and typesetting
341 Warningo
3.4.2 Read saved command outputs from a file
3.4.3 Run commands and typeset their output.
3.4.4 Autoread and typeset a file (experimental)
3.4.5 Run and autoread a command (experimental)
3.4.6 Autopath & autoformat (experimental)
3.4.7 Clear temporary files

© © © 000~ ~JOOHO DU bW ww

4 Examples 10

4.1 Various exampleso 10
4.1.1 BasicSessions. e 10

4.1.2 Preset creation L L. 11

4.2 All the predefined presets 13
4.3 Automated command execution and formatting 15
4.3.1 Basicexamples L oo 15

4.3.2 Autoformat script before/after comparison 17

List of Terminal Sessions 22
5 Implementation 23
5.1 Options 23
5.2 Presets. 23
5.3 Environment 25
5.3.1 Float environment 26

5.3.2 Framebox 26

1 Introduction

Many people who use ITEX and do a bit of coding in other languages have used
TEX’s listings package at least once. However, when me and my colleague wrote
the documentation of our diploma project in 2015, we stumbled across a “prob-
lem”! with listings. A lot of command line scripting had to be done for our project
to configure a Raspberry Pi B+ and those actions needed to be documented. list-
ings seemed to be the wrong package to look for, so we wrote our own. At first
there were few small macros that we referred to as bashdoc — this was version 1.0.
Later the macros got a bit more complex and we simply threw away the ba part of
bashdoc, that’s how the shdoc package was born. The basic idea somehow stayed
the same since the very first draft, but the package is much more applicable now.

I hope that shdoc fits your application as it fitted ours. If there are any
serious problems, feel free to send me an email?. Moreover, I do not guarantee full
compatibility with other packages and different operating systems. The package
is distributed under the IXTEX Project Public License version 1.3.

2 Acknowledgement

At this point I would like to thank Timm Severin for his active feedback concerning
problems and ideas about the package. He pointed out a major bug of version v2.0
and submitted the draft source for some of the new features in version v2.1. Thank
you very much!

Lobviously it’s not a real problem, but we wanted something more shell-specific
2Please do not send spam mails of any kind. Plain text email format would be appreciated

\shchange

3 User commands

shdoc implements user commands that allow one to typeset the content/commands
of a command line session appropriately. Further there are macros to create and
modify styles and appearance of the final output, as well as automated functions
that let the user execute commands via shdoc and typeset their output immedi-
ately.

3.1 Package inclusion and options

Just like every IXTEX package, shdoc can be included using the standard
\usepackage command:

\usepackage [(options)]{shdoc}

Since version 2.0 shdoc supports several package options to make the environ-
ment more adjustable for users. The available options are described in detail in
the following sections.

3.2 Color and style management

The shbox environment uses plenty of different colors and symbols, which can
be adjusted through optional package arguments or macros within the document.
Thus, you can either specify the color at the package inclusion in the preamble or
just before your session in the document.

To modify the appearance of shell sessions within your document one can use
three different commands. The essential macro is \shchange{{<name>)} {(<new
value>)}, which lets you specify a new value for every existing package option.
Basically this command is all you need, but it is not recommended to use it for
style changes. As mentioned there are two more macros, namely \shchangecolor
and \shchangesymbol. The reason you should use these two for style changes
is simply because of enhanced readability of your code. Anyone who reads your
source will be able to tell what change you made at the first glimpse — that is mainly
important when defining presets, see section 3.2.3. However, the commands all
work the same as the latter two are exact copies of \shchange. Here are some
examples of style changes:

\usepackage [backgroundcolor=white,indicatorsymbol=$+$]{shdoc}
or

\shchangecolor{backgroundcolor}{white}
\shchangesymbol{indicatorsymbol}{$+$}

\usepackage [usernamecolor=blue!70]{shdoc}
or
\shchange{usernamecolor}{blue!70} % works, but isn’t recommended

Be aware that specifying style settings as a package option always sets the style
for the whole document, unless the settings are changed again via \shchange.

\shpreset

\shpresetdef

3.2.1 Colors

Table 1 shows the package-specific names of all the colors, their default value and
where they are used. Every color is specified using a key-value element as an
optional package argument. If no argument is given for a specific color the default
value is used.

Name Description Default color
backgroundcolor color of the environment background gray!70
usernamecolor color of the username green!80!yellow
machinenamecolor color of the machine-name green!80!yellow
indicatorcolor color of the indicator symbol -
separatorcolor color of the user-machine separator symbol | green!80!yellow
pathcolor color of the current path -
optioncolor color of the little option box white!60!gray
textcolor color of the rest of the text -

Table 1: Adjustable colors of the shbox environment

3.2.2 Symbols

In total, only two symbols can be changed in the shdoc package. Table 2 shows
their name, default value and description. Just as the colors, every symbol is
changed using a key-value element as an optional package argument. If no argu-
ments are given, the default values are used.

Name Description Default symbol
indicatorsymbol separates user input and displayed path $
separatorsymbol separates user- and machine-name Q@

Table 2: Adjustable symbols of the shbox environment

Please pay attention, that the @’s catcode is changed to letter internally. Thus,
you can use @ directly:

\shchangesymbol{separatorsymbol}{@}

3.2.3 Appearance and presets

As described above, shdoc has some settings that can be changed by the user.
Some setting values have been tested and stored as a preset that a user can easily
load. Further, users are able to create their own presets via built-in commands.

One can easily load a preset with \shpreset{(<name>)} by using the preset’s
name as an argument to that macro. When a preset has been loaded it is valid for
every new shbor environment afterwards, until the \shpreset macro is invoked
again.

Most of the time, users might want to create their own styles, which can be
achieved by defining a new preset via \shpresetdef{(<name>)}{(<def>)}. The
command has two mandatory arguments: The first one is the desired preset-name
and the second one is the preset definition. For example one can use:

\sh

\shbox

\shpresetdef{useless}{\relax}
and is then able to apply the preset by calling:
\shpreset{useless}

A preset definition basically exists of multiple style changes, as described at the
beginning of section 3.2. For further information about preset definitions, please
have a look at all the examples in section 4.1.2 and section 5.2. Please also note
that every new preset definition is based on the default preset, as \shpresetdef
invokes \shpreset{default} prior to the definition.

Several presets have been defined by the author and are included in the shdoc
package. One can use them by calling the \shpreset{(name)} command with the
name of the desired preset. The following list shows the appearance and name of
the predefined presets — for visuals see section 4:

default /mint The default preset. It implements a gray background theme with
light gray option boxes, light green user- and machine-name and a blue path
value.

arrows Not recommended for printed documents. Implements a black back-
ground theme with gray option boxes, red username, white separator, light
green machine-name, blue path and two arrows as an indicator symbol. The
rest of the text is white, too.

darkblue Implements a dark blue background theme with white text, light blue
option boxes, orange user- and machine-name and a green path value.

airy A light colored style. Implements a light blue background theme with cyan
option boxes and user- & machine-name, as well as light orange path value
and black text.

blackwhite Best for non-color prints. Implements a light gray background theme
with white option boxes, black text, darker gray user- and machine-name and
a dark gray path value.

3.3 The environment

Basically a complete terminal session consists out of two environments that con-
tain the necessary information that is used to typeset the session. The outer
environment is named \sh and basically acts as the float environment that could
contain one or more so called \shboxes. Every \shbox contains in- and output
lines of the terminal, with information provided by the user. The following code
shows a brief overview of the possible and necessary commands:

\shpreset{mint}
\begin{sh}
\shuser{simon}
\shmachine{linuxmint}
\begin{shbox}
\shline{}{cd Desktop/}
\shline{Desktop/}{whoami}
\shoutput{}{simon}
\end{shbox}
\end{sh}

\shuser
\shmachine

\shline

defaultpath

\shpath

\shoutput

\shlistname

\shfloatname

3.3.1 Metadata

At least once before an occurrence of a \shbox, the user- and machine-name should
be specified. They are set globally and thus are valid for every \shbox that follows
the macro call. If no user and machine values are specified, the defaults user:root
and machine:1inux are used.

3.3.2 Shell input & path handling

Within the \shbox there are only two valid commands®, namely \shline, which
is basically the users’ input, the executed command or an arbitrary line; and
\shoutput, which is ment to be the machine output.\shline has two mandatory
arguments, where the first one is the path value and the second one is the command
that’s about to be run.

There are several possibilities to handle the path value. First of all,
you can leave the first argument empty, which will force \shline to print
the default path, namely ~. As one may want to have a different default
path, it can be changed by either passing a key-value element of the form
defaultpath=<value> as an optional argument to the package; or using the al-
ready mentioned \shchange{(defaultpath)}{(<value>)} command. Second,
one could use \shpath to automatically get the absolute path of the current
*.tex file. Please note that this command does not affect the default path.
If you would like to set the default path to the current path of your file, use
\shchange{defaultpath}{\shpath}. At last, if you just want to use another
path for one line, just use the first argument of \shline to do so. For example:

\shline{/home/user/Desktop}{exit}

3.3.3 Shell output

\shoutput implements two mandatory macros, too. Here, the first argument is
ment for the options of a shell command. For example if you typeset the --help
output of a command, there may be one or more options like -c, -a and -T. These
can be typeset within a fancy optionbox by using the first argument of \shoutput.
The second argument is ment for any text and is printed without any special
formatting. However, it is not mandatory and sometimes not even useful to use
the optionbox. In this case you can leave the first argument empty, which forces
the macro to suppress the complete optionbox including the additional indent it
would otherwise cause.

3.3.4 Name variables

For international compatibility the shdoc packages implements two commands to
make the list and caption name of the float easily accessible.

One can use \shlistname to change the title of the sessions list. The default
value is “\shlistname{List of Terminal Sessions}”.

In the same manner as described above, the float caption that’s displayed
below each float could be changed. Its default value is “\shfloatname{Terminal
Session}”.

3 Actually that’s not true, but as you will probably know from the TEXbook, authors need to
lie from time to time, to make things a bit easier.

\shread

3.4 Automatic command execution and typesetting

Starting with version v2.1, shdoc includes macros that let the user execute shell
commands from within the WTEX file and typeset their output immediately. As
the whole package is intended to be used on a Linux/Unix shell it uses dedicated
commands that will not work on other shells?.

Note that all the following macros in this subsection are valid within the \sh
float environment, but not within \shbox, as each of them produces its own,
enclosed shbox. In other words, each automatic inclusion macro produces a stan-
dalone shbox. The necessary float environment, caption and label stay the same.

3.4.1 Warning

Caution! In order to make the following features work, you need to allow TEX
to use the \writel8 instruction. For TgXLive this can be done by using the
--shell-escape option on the shell. It is not recommended to use this option
permanently, as you could unconciously execute harmful ITEX code. Further, only
execute TEX and shell scripts that you trust, as nobody will take responsibility
for their effects.

3.4.2 Read saved command outputs from a file

The easiest way to include shell output into your KTEX file automatically is by
redirecting the output stream of the shell command to a file, which is then read
by shdoc. For example:

root@linux ~ $ xsensors -help > xsensors-out.save

The resulting file will look like this:

Usage: xsensors [options]

Options:

-f Display all temperatures in Fahrenheit.

-h Display this help text and exit.

-c filename Specify the libsensors configuration file.

-i filename Specify the image file to use as a theme.

-t time Specify the update time in number of seconds.
Set this to a negative number for no update.
Don’t set this to O.

-v Display version number.

xsensors-out.save

After saving the file, \shread is used to include it into your document. The macro
has two mandatory arguments: The first one is the initial command, as shdoc has
no way to find out the matching input command to your output file, whereas the
second one is the path and name of the file you want to read. Thus, to include
the example file from above one would write:

\shread{xsensors -help}{xsensors-out.save}

4The manual mode, however, will always work the same.

\shrun

\shautoread

While reading command output in that manner, the user still has to take care
of at least two steps, but it can be very useful if the output of a command is
used elsewhere, too. Furthermore, this is still the fastest way to include command
output as all the other methods slow down the ETEX build of your document.

3.4.3 Run commands and typeset their output

Nevertheless, two steps are still one too much. Thus, \shrun lets the user run a
shell command from within the document and typesets its output automatically.
The macro has one mandatory argument, namely the command that should be
passed to the shell. Once again make sure to have \write18 enabled:

\shrun{xsensors -help}

The \shrun macro takes the shell command, passes it to the system shell and cap-
tures its output in a file called shrun.tmp. This same file is used for every occuring
\shrun, so its content is highly temporary. However, the file will not be deleted
from your working directory, unless you tell shdoc to do so — see section 3.4.7.
Note that the macro will also automatically redirect the stderr stream to the
output stream, so errors should be visible within your document — see session 12
for an example.

3.4.4 Autoread and typeset a file (experimental)

The results of \shread are normally nice, but the macro does not support the
optionbox of \shoutput. That’s because files are read line by line, where each
line can be seen as a string that is directly passed to \shoutput as the second
argument. Further, it is very difficult to isolate the shell options (-c, -U,...) from
the line of text. That’s mainly because every single program formats its output
in a slightly different way. Supporting every programs formatting would nearly
be impossible, so another approach had to be taken by the author; and that was
string manipulation.

The result of fooling around with various manipulation methods is a macro
called \shautoread, which is basically \shread except for a few additions that
are provided by the stringstrings package.

Just as \shread, the \shautoread macro accepts two mandatory arguments
that are treated in the same way as before. The real magic happens when TEX is
reading the given file line by line. Each line is stored in an internal macro, which
is subsequently accessed by stringstrings, extracting the first word of the line. To
find out if the first word is an option or not, stringstrings then searches this word
for the -’ character. If the word contains the -’ exactly once®, the word is treated
as the option an is thus passed to \shoutput as the first argument. The rest of
the line gets printed as text i.e. the second argument.

To this day, the autoread feature is experimental. It may mess up with the
output of some programs and you maybe not liking it at all. That’s fine, because
the macro is simply ment to be worth a try, if you are looking for an opportunity
to enhance the appearance of your output once more.

Warning: Using the \shautoread function has a huge impact on your BTEX build
time, as stringstrings somehow has a lot of things to do when manipulating strings.

51 know that there are hundrets of options like -show-all or options with two leading dashes,
like --shell-escape, but to differ between all these options would again be nearly impossible.

\shautorun

\shautopath

\shautopath

\shclearfiles

Expect at least one minute per autoread, depending on the length of the output
and your system performance.

3.4.5 Run and autoread a command (experimental)

Just like \shrun, \shautorun lets the user execute a shell command and typeset
its output. The only difference is that \shautorun reads the temporary file via
\shautoread — described in section 3.4.4

3.4.6 Autopath & autoformat (experimental)

Autopath In section 3.3.2 we learned that \shpath can be used to get the
current directory we are working in. To automate things even more both, \shread
and \shautoread can use the current path by invoking \shpath on their own. As
this functionality is turned off by default, you can enable it by typing:

\shautopath{true}

You can also turn it off again by passing >false’ to this macro. Passing any other
text may not result in a warning or error, but will be visible in the log file.

Autoformat Another automation feature — and probably the most useful one —
is the autoformat script that is distributed with the package. As is, the script uses
the ’sed’ stream editor to modify the temporary file shrun.tmp and stores the
result in shrun-formatted.tmp. Thus, the script can be used by both, \shrun
and \shautorun to improve the visual quality of your document. This feature is
turned off by default. You can enable it by typing:

\shautoformat{true}

However, before doing so, you should open the script shreformat.sh with your
favourite text editor and double check that it won’t harm your computer®! You
can also modify it according to your needs in order to get even better results.

3.4.7 Clear temporary files

Most of the time you may want to delete the three temporary files shrun.tmp,
shpath.tmp and shrun-formatted.tmp at the end of your IXTEX build, as they
are not really useful for anything but the shdoc package. One can do so by using
\shclearfiles at an appropriate point within the document, e.g. before the end.

6You shouldn’t use unknown scripts blindly

4 Examples

4.1 Various examples

4.1.1 Basic Sessions

\shpreset{blackwhite}
\begin{sh}
\shuser{simon}
\shmachine{linuxmint}
\begin{shbox}
\shline{}{cd Desktop/}
\shline{Desktop/}{xsensors -help}
\shoutput{}{}
\shoutput{}{\underline{Options:}}
\shoutput{}{}
\shoutput{-f}{Display all temperatures in Fahrenheit.}
\shoutput{-h}{Display this help text and exit.}
\shoutput{-c}{+filename Specify the libsensors configuration file.}
\shoutput{-t}{+time Specify the update time in number of seconds.}
\shoutput{-v}{Display version number.}
\end{shbox}
\caption{The options of \textit{xsensors}}
\label{sh:xsensor}
\end{sh}

01 simon@linuxmint ~ cd Desktop/

02 simon@linuxmint Desktop/ xsemnsors -help

03

o4 Optiomns:

05

o6 [-f] Display all temperatures in Fahrenheit.

o7 [-h] Display this help text and exit.

08 [-c] +filename Specify the libsensors configuration file.
09 [-i] +filename Specify the image file to use as a theme.
10 [-t] +time Specify the update time in number of seconds.

11 [-v] Display version number.

Terminal Session 1: The options of zsensors

10

\shpreset{default}
\begin{sh}
\shuser{simon}
\shmachine{linuxmint}
\begin{shbox}
\shline{}{tex}
\shoutput{}{This is TeX, Version 3.14159265 (TeX Live 2015)}
\shoutput{}{**\cmd{\relax}}
\shoutput{}{*Hello World!}
\shoutput{}{*\cmd{\bye}}
\end{shbox}
\caption{Hello World in \TeX{}}
\label{sh:TeX}
\end{sh}

Terminal Session 2: Hello World in TEX

4.1.2 Preset creation

\shpresetdef{odd}{
\shpreset{blackwhite}
\shchangecolor{usernamecolor}{orange}
\shchangecolor{machinenamecolor}{orange}
}
\shpreset{odd}
\begin{sh}
\shuser{doctorX}
\shmachine{supercomputer}
\begin{shbox}
\shline{/home/doctorX/Documents}{exit}
\end{shbox}
\caption{Go away.}
\label{sh:exit}
\end{sh}

01 doctorX@supercomputer /home/doctorX/Documents exit

Terminal Session 3: Go away.

11

\shpresetdef{mystyle}{
\shchangecolor{backgroundcolor}{white}
\shchangecolor{usernamecolor}{red}
\shchangecolor{machinenamecolor}{red}
\shchangecolor{separatorcolor}{RoyalBlue}
\shchangecolor{optioncolor}{orange!50!yellow}
\shchangesymbol{indicatorsymbol}{!}
\shchangesymbol{separatorsymbol}{\geq}

}

\begin{sh}

\shuser{joe}

\shmachine{joesraspian},

\begin{shbox}
\shline{}{history}
\shoutput{480}{rubber}
\shoutput{481}{xsensors}
\shoutput{482}{tracepath www.google.com}
\shoutput{483}{whoami}
\shoutput{484}{help}
\shoutput{485}{exit}

\end{shbox}

\caption{History of my session}

\label{sh:history}

\end{sh}

02

03

04

05

06

07

joe>joesraspian ~ ! history

[480]
[481]
[482]
[483]
[484]
[485]

rubber

Xsensors

tracepath www.google.com
whoami

help

exit

Terminal Session 4: History of my session

12

4.2 All the predefined presets

01 “ $ cd Desktop/

02 Desktop/ $ xsensors -help

03

04 Optiomns:

05

o6 [-f] Display all temperatures in Fahrenheit.

o7 [-h] Display this help text and exit.

08 [-c] +filename Specify the libsensors configuration file.
09 [-i] +filename Specify the image file to use as a theme.
10 [-t] +time Specify the update time in number of seconds.

11 [-v] Display version number.

Terminal Session 5: The options of zsensors — default or mint preset

@linuxmint ~ > cd Desktop/
@linuxmint > xsensors -help

Options:

Display all temperatures in Fahrenheit.

Display this help text and exit.

+filename Specify the libsensors configuration file.
+filename Specify the image file to use as a theme.
+time Specify the update time in number of seconds.

Display version number.

Terminal Session 6: The options of zsensors — arrows preset

13

cd Desktop/
xsensors -help

Options:

[-f]| Display all temperatures in Fahrenheit.

[-h]| Display this help text and exit.

[-c]| +filename Specify the libsensors configuration file.
[-i]| +filename Specify the image file to use as a theme.
[-t]| +time Specify the update time in number of seconds.

[~v]" Display version number.

Terminal Session 7: The options of zsensors — darkblue preset

01 simon@linuxmint cd Desktop/
02 simon@linuxmint xsensors -help
03

04 Optiomns:
05
o6 [-f] Display all temperatures in Fahrenheit.

o7 [-h] Display this help text and exit.

08 [-c] +filename Specify the libsensors configuration file.
09 [-i] +filename Specify the image file to use as a theme.
10 [-t] +time Specify the update time in number of seconds.

11 [-v] Display version number.

Terminal Session 8: The options of xzsensors — airy preset

14

01
02
03
04
05
06

o7
08
09
10

11

4.3

simon@linuxmint ~ cd Desktop/
simon@linuxmint Desktop/ xsensors -help

Options:

[-f] Display all temperatures in Fahrenheit.

[-h] Display this help text and exit.

[-c] +filename Specify the libsensors configuration file.
[-i] +filename Specify the image file to use as a theme.
[-t] +time Specify the update time in number of seconds.
[-v] Display version number.

Terminal Session 9: The options of xzsensors — blackwhite preset

Automated command execution and formatting

4.3.1 Basic examples

\begin{sh}
\scriptsize
\shread{avrdude -c usbasp -p attiny24}{avrdude-log.save}
\caption{\texttt{avrdude} session, read from a file via \cmd{\shreadl}}
\label{sh:avrdude_session}

\end{sh}

Terminal Session 10: avrdude session, read from a file via \shread

As you can see the automatic execution of commands works fine”, although most
of the tab characters in session 11 get printed as dashes or other weird symbols.
Thus, I recommend to at least use the autoformat script option permanently. The
redirection of the error stream in session 12 also shows the expected result.

"Note: In case you want to build this documentation on your own, you will need to run
tex shdoc.ins to get the package file, as well as the file for the avrdude session-read example.
Further, you may want to make sure to use a system where the given shell commands actually

exist.

15

\begin{sh}
\shautoformat{false}
\shrun{ifup --help}
\caption{The help pages of \texttt{ifupl}, standard \cmd{\shrun}}
\label{sh:ifup}
\end{sh}

Terminal Session 11: The help pages of ifup, standard \shrun

\begin{sh}
\shrun{xsensor -help}
\caption{A typo resulting in an error}
\label{sh:error}

\end{sh}

Terminal Session 12: A typo resulting in an error

4.3.2 Autoformat script before/after comparison

\begin{sh}
\shautoformat{false}
\shautorun{xsensors -help}
\caption{The options of xsensors before using the autoformat script}
\label{sh:xsensors_noautof}
\end{sh}

Terminal Session 13: The options of xsensors before using the autoformat script

As you can see in session 13 and 14 the autoformat script can really improve
your output. However, xsensors is still an easy job for shdoc and sometimes the
\shautorun macro is not really the best way to run a command. At first, it’s
still experimental and due to the stringstrings manipulation it can take a massive
amount of time to build your document. The second reason you might not always
use autorun is, when commands output a large number of lines and the occuring
options vary a lot in terms of length and style. In this case autorun is not likely
to produce a nice output — as seen in session 16 and 17.

17

\begin{sh}
\shautoformat{true}
\shautorun{xsensors -help}
\caption{The options of xsensors after using the autoformat script}
\label{sh:xsensors_autof}
\end{sh}

Terminal Session 14: The options of xsensors after using the autoformat script

18

\begin{sh}
\tiny
\shautoformat{false}
\shrun{gcc --help}
\caption{Help pages of gcc before autoformat, standard \cmd{\shrun}}
\label{sh:gcc_noautof_noautorun}
\end{sh}

Terminal Session 15: Help pages of gcec before autoformat, standard \shrun

19

\begin{sh}
\tiny
\shautoformat{false}
\shautorun{gcc --help}
\caption{Help pages of gcc before using the autoformat script}
\label{sh:gcc_noautof}
\end{sh}

Terminal Session 16: Help pages of gce before using the autoformat script
20

\begin{sh}
\tiny
\shautoformat{true}
\shautorun{gcc --help}
\caption{Help pages of gcc after using the autoformat script}
\label{sh:gcc_autof}
\end{sh}

Terminal Session 17: Help pages of gce after using the autoformat script
21

List of Terminal Sessions

1 The options of xzsensors 10
2 Hello World in TEX o o o 11
3 Go away.o e 11
4 History of my session 12
5 The options of zsensors — default or mint preset 13
6 The options of zsensors — arrows preset 13
7 The options of xzsensors — darkblue preset 14
8 The options of zsensors — airy preset 14
9 The options of zsensors — blackwhite preset 15
10 avrdude session, read from a file via \shread 15
11 The help pages of ifup, standard \shrun 16
12 A typoresultinginanerror 16
13 The options of xsensors before using the autoformat script 17
14 The options of xsensors after using the autoformat script 18
15 Help pages of gcc before autoformat, standard \shrun 19
16 Help pages of gce before using the autoformat script 20
17 Help pages of gcc after using the autoformat script 21

\listofsh As the float environment supports automatic lists, you can use them with shdoc,
too. Just use \1listofsh for that.

22

color, symbol

\shpreset

\shpresetdef

5 Implementation

This section describes the implementation of the shdoc package and its features.
The package was written as a *.dtx source file and therefore the package code
begins with the following instruction:

1 (xpackage)

5.1 Options

First of all, the package options for colouring and symbol options and their default
values are defined. The options are then processed to make them available for the
user.

2 \DeclareStringOption[gray!70]{backgroundcolor}
3 \DeclareStringOption[green!80!yellow]{usernamecolor}
4 \DeclareStringOption[green!80!yellow] {machinenamecolor}
5 \DeclareStringOption[RoyalBlue]{pathcolor}
6 \DeclareStringOption[RoyalBlue]{indicatorcolor}
7 \DeclareStringOption[green!80!yellow] {separatorcolor}
8 \DeclareStringOption[white!60!gray]{optioncolor}
9 \DeclareStringOption[black]{textcolor}

10 \DeclareStringOption[\$]{indicatorsymbol}

11 \DeclareStringOption[\~]{defaultpath}

12 \DeclareStringOption[@] {separatorsymbol}

13 \ProcessKeyvalOptions*

5.2 Presets

Right after the option definitions the preset commands are defined. Every preset
is stored in a macro with the generic name \sh@preset@NAME, where NAME stands
for the preset name. To make the presets better loadable for users \shpreset is
defined to simply execute the package internal preset macro:

14 \def\shpreset#1{\csname sh@preset@#1\endcsnamelj,

To simplify the creation of new presets a few macros are needed. The main
command is \shpresetdef, which creates a new preset macro with the desired
settings. The macro calls \shpreset{default} at the beginning, so the inital
settings of the new preset are the default settings of shdoc.

15 \def\shpresetdef#1#2{J
16 \expandafter\gdef\csname sh@preset@#1\endcsname{\shpreset{default} #2}J
17 Y%

Basically, every command can be used as the second argument of \shpresetdef,
but most of them won’t change any settings in shdoc. The only useful macros in
this context are those, who explicitly change a color, symbol or value within the
package, namely \shchange, \shchangecolor and \shchangesymbol.
\shchange has two arguments, where the first is the name of the parameter
that should be changed and the second is the new value. Although there won’t be

23

\shchange

\shchangesymbol
\shchangecolor

\sh@preset@default

\sh@preset@mint

\sh@preset@arrows

an error, other names than those implemented by the package are not valid. The
macro simply redefines the according parameter.

18 \def\shchange#1#2{\expandafter\gdef\csname shdoc@#1\endcsname{#2}}

\shchangesymbol and \shchangecolor are two other commands, that implement
the exact same definition as \shchange. Thus, these commands only exists for
logical reasons. They simply redefine the desired symbol or color.

19 \let\shchangesymbol\shchange,
20 \let\shchangecolor\shchangey,

Since \shpresetdef calls \shpreset{default}, the default preset had to be de-
fined manually via \def.

21 \def\sh@preset@default{’,

22 \shchangecolor{backgroundcolor}{gray!70}/

23 \shchangecolor{usernamecolor}{green!80!yellowl}/
24 \shchangecolor{machinenamecolor}{green!80!yellowl}’
25 \shchangecolor{pathcolor}{RoyalBluel}

26 \shchangecolor{indicatorcolor}{RoyalBlue}

27 \shchangecolor{separatorcolor}{green!80!yellowl}}
28 \shchangecolor{optioncolor}{white!60!gray}%

29 \shchangecolor{textcolor}{black}/

30 \shchangesymbol{indicatorsymbol}{\$}%

31 \shchangesymbol{defaultpath}{\~}%

32 \shchangesymbol{separatorsymbol}{@}%

33 Y

As the shdoc package was initally ment to imitate the Linux Mint bash, the default
preset is equal to the mint style, which is defined right after the default preset:

34 \shpresetdef{mint}{\shpreset{default}}/,

The second preset style is the “arrows” style, which is a dark color scheme with
two arrows as the indicator symbol.

35 \shpresetdef{arrows}{%

36 \shchangecolor{usernamecolor}{red}/

37 \shchangecolor{machinenamecolor}{green!80!yellow}%
38 \shchangecolor{separatorcolor}{whitel}

39 \shchangecolor{indicatorsymbol}{\gg}%

40 \shchangecolor{indicatorcolor}{green!80!yellowl}}
41 \shchangecolor{backgroundcolor}{black}’

42 \shchangecolor{textcolor}{whitel}/,

43 \shchangecolor{optioncolor}{grayl}’

44 ¥

Another dark scheme is the “darkblue” preset, which defines a dark blue back-
ground color and more or less appropriate other colors. The definition of this
preset is furthermore a nice example, how macros of other packages could also
make sense within the \shpresetdef command.

24

\sh@preset@darkblue

\sh@preset@blackwhite

\sh@preset@airy

\shlinenumber

45 \shpresetdef{darkblue}{%

46 \definecolor{shdarkblue}{RGB}{7,75,138}), xcolor syntax
47 \shchangecolor{backgroundcolor}{shdarkbluel}’,

48 \shchangecolor{textcolor}{whitel}

49 \shchangecolor{separatorcolor}{whitel}’

50 \shchangecolor{usernamecolor}{orangel}’,

51 \shchangecolor{machinenamecolor}{orange},

52 \shchangecolor{pathcolor}{green!60!black}’

53 \shchangecolor{optioncolor}{SkyBlue!80!black}’,

54 }

For those, who print their documents with the black ink cartridge only there
is the “blackwhite” preset. The definition sets the background and all the other
colors to different versions of gray, black and white — see the examples in section 4.

55 \shpresetdef{blackwhite}{/

56 \shchangecolor{backgroundcolor}{gray!30}/,
57 \shchangecolor{textcolor}{blackl}

58 \shchangecolor{separatorcolor}{black}/

59 \shchangecolor{usernamecolor}{gray}/,

60 \shchangecolor{machinenamecolor}{gray}’
61 \shchangecolor{pathcolor}{gray!50!black}/
62 \shchangecolor{optioncolor}{whitel}

63 \shchangecolor{indicatorcolor}{whitel}/,
64 }

The last and probably lightest preset is the “airy” preset with light blue and
green elements.

65 \shpresetdef{airy}{/

66 \shchangecolor{backgroundcolor}{SkyBlue!15}},
67 \shchangecolor{usernamecolor}{Emerald},

68 \shchangecolor{machinenamecolor}{Emerald}
69 \shchangecolor{pathcolor}{orange!70}%

70 \shchangecolor{indicatorcolor}{orange!703}/,
71 \shchangecolor{separatorcolor}{Emerald}’,

72 \shchangecolor{optioncolor}{Emerald!30}%
73 }

5.3 Environment

After all the setting definitions above the actual environment for the shell com-
mands can be defined. The whole environment consists of a float environment
with caption and label and one or more inner frameboxes, which are generated
with the mdframed package. Further there is a line number on the left side of
every box. The number is defined as a standard ETEX counter and is initially set
to 0.

74 \newcounter{shlinenumber}), def new counter
75 \setcounter{shlinenumber}{0}), set counter to 0

25

\shlistname

\sh

\shuser, \shmachine

\sh@lnscale
\sh@fontcheck

Since the outer environment is a float, a list name variable is needed to make the
name user-adjustable. There are two macros that implement this functionality:
\@shlistname is the name variable that holds the current value of the list name.
\shlistname is a user command, that redefines the name according to the users’
input. After the definition the standard value is set.

76 \1let\@shlistname\relax’,
77 \gdef\shlistname#1{\gdef\@shlistname{#1}}%
78 \shlistname{List of Terminal Sessions}), set default value

5.3.1 Float environment

Now, the whole float environment is defined. The float is named \sh and uses the
plain float style. The float name is stored in a variable, which is implemented in
the same way as the list name. Afterwards the name is set. The caption is set
to be at the bottom of the float and a macro for the generation of the “List of
Terminal Sessions” is defined.

79 \newfloat{sh}{tbph}{1sh}), define new float
80 \restylefloat*{sh}%

81 \floatstyle{plain}’ set style

82

83 \let\@shfloatname\relaxy

84 \gdef\shfloatname#1{\gdef\@shfloatname{#1}1}/,
85 \shfloatname{Terminal~Session}}, default float name
86 \floatname{sh}{\@shfloatnamel}’,

87

88 \captionsetup[sh]{position=bottom}%

89 \def\listofsh{\listof{sh}{\@shlistnamel}}}

5.3.2 Framebox

For each session the user and machine values can and must be set, but they could
also be set at the beginning of a document to be valid for every terminal session.
In the same manner as before, two name variables and their setup commands are
defined. The default value for the username is root, whereas the default for the
machine is 1linux.

90 \let\@shuser\relaxJ,

91 \let\@shmachine\relax},

92 \def\shuser#1{\gdef\@shuser{#1}1}/,

93 \def\shmachine#1{\gdef\@shmachine{#1}}%
94 \def\@default@shuser{rootl}

95 \def\@default@shmachine{linux}/,

96 \shuser{\@default@shuserl},

97 \shmachine{\@default@shmachine},

Within the framebox \shbox — which is defined at the very end of the source
code — there are two commands: \shline for user inputs and \shoutput for shell
outputs. Each of these macros prints the line number onto the left side of the

26

\shline

box first. The number is relatively scaled down by a factor of 0.7, which is stored
in \sh@lnscale. However, if the overall font size gets too small (i.e. when using
\scriptsize, \tiny, ...) this factor is increased to prevent warnings from the
relscale package, which does the line number scaling. The macro that acomplishes
this automatic scaling is \sh@fontcheck.

98 \def\sh@lnscale{.7}}, default number scaling
99 \def\sh@fontcheck{), if fontsize < 6pt
100 \ifthenelse{\f@size<6}{%

101 \gdef\sh@lnscale{1}}, factor = 1

102 % elif fontsize < 8pt

103 \ifthenelse{\f@size<8}{%

104 \gdef\sh@lnscale{.84}}, factor = 0.84
105 }{% else: nothing

106 }h

107 Y

108 Y%

In order to keep the text from mixing up with the line numbers a hangindent is
required. The indent is set according to the width of the linenumbers, so at the
beginning of the \shline definition \sh@linenumberwidth is defined.

Within a \shline the font is set to typewriter style, the font size gets checked
and the scaling factor for the line numbers is adjusted. Starting without any
indent, \shline determines if a leading 0 for the line number is needed. If so, the
0 is added, the number gets typeset and the width of the line number is stored.
After the number a small horizontal space creates the distance, that’s needed
between the number and the following username and machine values. They are
typeset in their dedicated colors right after the appropriate hangindent is set. A
small if-else construct checks if the first argument of the macro is empty and acts
accordingly — see section 3.3.2. At the end, the line number is incremented to be
ready for the next line.

109 \newlength{\sh@linenumberwidthl}’

110 \long\def\shline#1#2{

111 \ttfamily\sh@fontcheck\noindent

112 \ifnum\value{shlinenumber}<109

113 \textcolor{\shdoc@textcolor}{\relscale{\sh@lnscale}O\theshlinenumber}/,
114 \settowidth{\sh@linenumberwidth}{%

115 \relscale{\sh@lnscale}O\theshlinenumberY,

116 }

117 \else

118 \textcolor{\shdoc@textcolor}{\relscale{\sh@lnscale}\theshlinenumber}/,
119 \settowidth{\sh@linenumberwidth}{%

120 \relscale{\sh@lnscale}\theshlinenumber},

121 }%

122 \fi\hspace{\sh@linenumberwidth},

123 \hangindent=2\sh@linenumberwidth

124 \textcolor{\shdoc@usernamecolor}{\@shuser}/,

125 \textcolor{\shdoc@separatorcolor}{\shdoc@separatorsymboll}y
126 \textcolor{\shdoc@machinenamecolor}{\@shmachine},

127 \ \ifx&%

128 \textcolor{\shdoc@pathcolor}{\shdoc@defaultpath\ 1}

129 \textcolor{\shdoc@indicatorcolor}{\shdoc@indicatorsymbol}
130 \else%

27

\shoutput

\shautoformat, \shautopath

131 \textcolor{\shdoc@pathcolor}{#1\ }/

132 \textcolor{\shdoc@indicatorcolor}{\shdoc@indicatorsymbol}/,
133 \fi\ \textcolor{\shdoc@textcolor}{#2}%

134 \stepcounter{shlinenumber}\par

135 }

The \shoutput command is very similar to its pendant, but has other require-
ments, too. As there may be optionboxes within an output line, the hangindent
handling needs to be adjusted. Thus, a new length \sh@optionboxwidth is added.

Just as before, the font is set to typewriter style and the size is checked. The
line number gets typeset, the horizontal space is added and the hangindent is set.
Again a small if-else construct checks the first argument. If the argument is empty,
the width of the optionbox is set to zero and the box is suppressed. Otherwise, a
framed colorbox is used to create the optionbox and the width of the whole box
is stored. The stored value is then used to increase the hangindent appropriately.

136 \newlength{\sh@optionboxwidth}

137 \long\def \shoutput#1#2{

138 \ttfamily\sh@fontcheck\noindent},

139 \ifnum\value{shlinenumber}<10%

140 \textcolor{\shdoc@textcolor}{\relscale{\sh@lnscale}O\theshlinenumberl}y,
141 \settowidth{\sh@linenumberwidth}{%

142 \relscale{\sh@lnscale}0\theshlinenumber},

143 }%

144 \else},

145 \textcolor{\shdoc@textcolor}{\relscale{\sh@lnscale}\theshlinenumberl}y,
146 \settowidth{\sh@linenumberwidth}{%

147 \relscale{\sh@lnscale}\theshlinenumbery,

148 }%

149 \fi\hspace{\sh@linenumberwidth},

150 \hangindent=2\sh@linenumberwidthy

151 \ifx&),

152 \textcolor{\shdoc@textcolor}{#2}\stepcounter{shlinenumberl}y,
153 \settowidth{\sh@optionboxwidth}{0Ocm}%

154 \else},

155 \fcolorbox{\shdoc@optioncolorl}y,

156 {\shdoc@optioncolor}{\textcolor{\shdoc@textcolor}{ [#1]1}}\ ¥
157 \settowidth{\sh@optionboxwidth}{%

158 \fcolorbox{\shdoc@optioncolorl}y,

159 {\shdoc@optioncolor}{\textcolor{\shdoc@textcolor}{ [#1]1}}\ }%
160 \addtolength{\hangindent}{\sh@optionboxwidth}/,

161 \textcolor{\shdoc@textcolor}{#2}\stepcounter{shlinenumberl}y,
162 \fi\par¥%

163

The autoformat and autopath macros that enable or disable the corresponding
functionality are defined as a macro that holds whatever text the user passes as
an argument. If the given text is valid is decided later through an if-else statement.
164 \let\sh@autoformat\relax

165 \def\shautoformat#1{\gdef\shQ@autoformat{#1}}/

166 \shautoformat{falsel}’

167

28

\shpath

\shread

168 \let\sh@autopath\relaxy,
169 \def\shautopath#1{\gdef\sh@autopath{#1}}/
170 \shautopath{falsel}y,

Sometimes it’s desired to get the path of the actual working directory. \shpath
prints the current path by capturing the output of the Linux-specific print working
directory 'pwd’ command. The output is further stored in the temporary file
shpath. tmp.

171 \def\shpath{%

172 \immediate\write18{pwd >shpath.tmp 2>&1}J
173 \newread\sh@pathfile},

174 \openin\sh@pathfile=shpath.tmpy

175 \endlinechar=-1%

176 \readline\sh@pathfile to \sh@pathy

177 \sh@path,

178 \closein\sh@pathfile

179 }

shdoc is able to read text files, that contain the output of a shell command, via
the \shread macro. At first a new readfile needs to be opened. The endlinechar is
set to —1, so it won’t appear in the document. After that a new \shbox is started
and a loop reads the lines from the text file. A few ifs are used to check if the first
argument of \shread is empty and to check if autopath is enabled.

180 \def\shread#1#2{J

181 \newread\sh@inputfile,

182 \openin\sh@inputfile=#2J

183

184 \endlinechar=-1% hide the endlinechar (-1 is invalid, thus not printed)
185 \begin{shbox}/

186 \ifthenelse{\equal{#1}{}}{}/% empty: do not print

187 {%

188 \ifthenelse{\equal{\sh@autopath}{true}}{%

189 \shline{\shpath}{#1}%

190 H%

191 \ifthenelse{\equal{\sh@autopath}{false}}{}%

192 {\typeout{------------- e e - YA
193 \typeout{ Package shdoc info: I don’t know what youl/

194 \typeout{ mean when passing ’\sh@autopath’ to autopath}’
195 \typeout{ and I’m going to ignore it and restore thely,

196 \typeout{default ’false’} %

197 \typeout{---—-—-—-m - Y
198 \shautopath{false}}%

199 \shline{}{#11}/

200 }%

201 }

202 \loop\unless\ifeof\sh@inputfile

203 \readline\sh@inputfile to \sh@fileline}

204 \ifeof\sh@inputfile), again check of eof prevents last blank line
205 \else%

206 \shoutput{}{\sh@filelinel}j,

207 \fi%

208 \repeat/,

209 \end{shbox1}%

29

\shrun

\shautoread

210 \closein\sh@inputfile},
211 }

\shrun lets the user specify a command that is passed to the system shell. Its
output is stored in a file — and possibly preformatted by the reformat script — and
is then read by \shread. An if statement checks if autoformat is enabled.

212 \def \shrun#1{%

213 \ifthenelse{\equal{\sh@autoformat}{true}}{%

214 \immediate\writel18{#1 >shrun.tmp 2>&1}%

215 \immediate\write18{./shreformat.sh}/,

216 \shread{#1}{shrun-formatted.tmpl}’

217 %

218 \ifthenelse{\equal{\sh@autoformat}{false}}{}/

219 {\typeout{----------o - Y
220 \typeout{ Package shdoc info: I don’t know what youl/,

221 \typeout{ mean when passing ’\sh@autoformat’ to autoformatl}y,
222 \typeout{ and I’m going to ignore it and restore thel}

223 \typeout{default ’false’}},

224 \typeout{-----------omm Y
225 \shautoformat{false}}%

226 \immediate\writel18{#1 >shrun.tmp 2>&1}%

227 \shread{#1}{shrun.tmp}/

228 }%

229 }

Autoread is an experimental feature of shdoc that lets the package detect possible
shell options and typeset them within an optionbox. The read functionality is the
same as in \shread, however stringstrings is used to modify the read file lines.
At first the first word is extracted from the line via \getnextword. After that,
the word is searched for the ’-’ character. If exactly one is found, the word is
typeset within an optionbox. The amount of chars that the word consists of is
then removed from the complete line and the rest of the line gets typeset as text.

230 \def\shautoread#1#2{/,

231 \newread\sh@inputfile},

232 \openin\sh@inputfile=#2Y

233 \endlinechar=-1Y

234 \begin{shbox}

235 \ifthenelse{\equal{#1}{}}{%

236 H%

237 \ifthenelse{\equal{\sh@autopath}{true}}{/,

238 \shline{\shpath}{#11}/,

239 H%

240 \ifthenelse{\equal{\sh@autopath}{false}}{}/

241 {\typeout{---------—-— - Yh
242 \typeout{ Package shdoc info: I don’t know what youl}’
243 \typeout{ mean when passing ’\sh@autopath’ to autopathl,
244 \typeout{ and I’m going to ignore it and restore thel}
245 \typeout{default ’false’}}

246 \typeout{-----------o Y%
247 \shautopath{false}}%

248 \shline{}{#1}%

249 }

250 }%

30

\shautorun

\shclearfiles

\shbox

251 \loop\unless\ifeof\sh@inputfile},

252 \readline\sh@inputfile to \sh@fileline}
253 \ifeof\sh@inputfile,

254 \else,

255 \getnextword[e]{\sh@filelinel}},

256 \findchars[q]{\thestring}{-}%

257 \ifthenelse{\equal{\theresult}{1}}{/
258 \shoutput{\thestring}/,

259 {\stringlength[e] {\thestring}\gobblechars[v]{\sh@fileline}{\theresult}}}
260 7

261 \shoutput{}{\sh@fileline}%

262 %

263 \fi%

264 \repeat,

265 \end{shbox}%

266 \closein\sh@inputfile},

267 %

\shautorun implements the same functionality as \shrun, but invokes autoread
to read the file.

268 \def\shautorun#1{

269 \ifthenelse{\equal{\sh@autoformat}{true}}{/

270 \immediate\writel18{#1 >shrun.tmp 2>&1}%

271 \immediate\write18{./shreformat.sh}},

272 \shautoread{#1}{shrun-formatted. tmp}’

273

274 \ifthenelse{\equal{\sh@autoformat}{false}}{}%

275 {\typeout{-----------o e Y
276 \typeout{ Package shdoc info: I don’t know what youl}’

277 \typeout{ mean when passing ’\sh@autoformat’ to autoformatl}y
278 \typeout{ and I’m going to ignore it and restore thel}

279 \typeout{default ’false’}},

280 \typeout{--------------- - Y%
281 \shautoformat{false}}%

282 \immediate\writel18{#1 >shrun.tmp 2>&1}%

283 \shautoread{#1}{shrun.tmpl}’

284 },

285 }

\shclearfiles removes all the temporary files by calling the shell command 'rm’.
286 \def\shclearfiles{
287 \immediate\write18{rm shrun.tmp; rm shrun-formatted.tmp; rm shpath.tmp}
288 }

Finally, the mdframed box is defined through the environment definition com-
mand of the mdframed package. The frameline color is white and the default
backgroundcolor is set. Further, the linecounter is set to 1, when the \shbox
environment is started.

289 \newmdenv [linecolor=white,backgroundcolor=\shdoc@backgroundcolor,
290 settings=\setcounter{shlinenumber}{1}]{shbox}

291 \makeatother
202 (/package)

31

	Introduction
	Acknowledgement
	User commands
	Package inclusion and options
	Color and style management
	Colors
	Symbols
	Appearance and presets

	The environment
	Metadata
	Shell input & path handling
	Shell output
	Name variables

	Automatic command execution and typesetting
	Warning
	Read saved command outputs from a file
	Run commands and typeset their output
	Autoread and typeset a file (experimental)
	Run and autoread a command (experimental)
	Autopath & autoformat (experimental)
	Clear temporary files

	Examples
	Various examples
	Basic Sessions
	Preset creation

	All the predefined presets
	Automated command execution and formatting
	Basic examples
	Autoformat script before/after comparison

	List of Terminal Sessions
	Implementation
	Options
	Presets
	Environment
	Float environment
	Framebox

