
— grid —
The griddler (nonogram) solver

Version: 1.2, November 2003

Mirek Oľsák + Petr Oľsák (mirek@olsak.net, petr@olsak.net)

This program solves the “griddler puzzles” (somebody call it as “nonogram puzzles”). The
rectangle of square puzzles is given and the lengths of black (or colored) blocks is given around
sides of the rectangle. You have to color the puzzles in such way to all data around puzzles
stays correct. You can get more info from:

www.griddlers.net

The program grid solves the black+white or colored square puzzles. The triangular puzzles
in rectangle grid are possible too. Moreover, the program can solve “triddlers” (triangular grid
with hexagonal circumference) in black+white and colored version.
The program grid gives you the possibility to solve all puzzles or it can read the partially

solved puzzles and give you only a hint about next one step. Moreover, program can check your
partially solution and show you your errors in it (but it cannot show you the whole solution).

How to install
You can compile the program from source file by the command:

cc -O2 -o grid grid.c
strip grid

The option -O2 is supported by GNU gcc (speed optimization). If your compiler does not
support this option then you cannot use it. The command strip grid is optional (may be not
implemented on every platforms). It removes the debug info from binary code.
The source code is based only on standard C library. It means, that the program will be

compiled without problems at arbitrary computer platform.

How to run the program
You can run the program by the command:

grid file

where file is the name of the input file where the task with block lengths in rows and columns
of a grid is declared. The format of input file is described below.
A several cases can be occur during solution:

• The solution is found. In this case, program prints OK and prints the solution on terminal.
Moreover, it saves the solution as graphical output in file.xpm. You can see and print this
solution using Gimp, for example.

• There is a conflict in the task. Program simple checks the consistency of the task before
it starts the solution: it checks if the number of puzzles of each color is the same from “row
point of view” as from “column point of view”. It this is not true, the error message occurs and
program terminates.

• There is a conflict in the task, but solution was started. The unsolved puzzles are printed
by question mark. Program prints KO. This case occurs only if there is a conflict in the task
but the simple test (see previous item) did not detect this problem. The program points to the
row/column where the problem is and terminates.

• There exist more than one solution. Program prints all solutions and it saves only the first
solution to XPM graphic file. This behavior can be changed by command line options, see
below.

1

Command line options

grid [options] mainfile

-help
Program prints a short help about options to the terminal and terminates.

-p 〈number〉 default value: -p 0
Program enters to the “pause mode” after 〈number〉 steps. If it is in pause mode then it
pauses after each step and prints the partial solution on the terminal. The new solved puzzles
(from the last step) is printed by # (color) and - (background). If the puzzles are colored and
-out 3 is given then program prints all “color layers” in pause mode. The -p 0 means that
the pause mode will be never reached, -p 1 means that pause mode is active immediately
after first step. The word “step of program” will be explained at the end of this chapter.

-stop 〈number〉 default value: -stop 0
The meaning is the same as in -p 〈number〉 option. The only difference is that the program
does not pauses but terminates. If -stop 0 is given then program terminates after all
solutions are found or after conflict is found or after -total solutions are found.

-total 〈number〉 default value: -total 30
If the 〈number〉 different solutions of one task is found then program terminates and it does
not find another solutions. If -total 0 is given then all solutions will be found.

-xpm 〈number〉 default value: -xpm 1
The first 〈number〉 solutions will be saved to *.xpm files. If -xpm 1 is given then the program
creates the file with the same base-name as mainfile but appends the .xpm extension. If
-xpm 2 or more is given then the suffix 〈solution number〉.xpm is appended to each name of
XPM file. It means that more than one XPM file can be created. The 〈solution number〉
has the same number of digits as the 〈number〉 given by -xpm option. It means that left
trailing zeros can be appended to 〈solution number〉. If -xpm 0 is given then no XPM output
is created.

-i
The program will use only intensive algorithms and tests.

-log 〈number〉 default value: -log 2
The 〈number〉 means the verbosity level of the output to stdout.
-log 0 . . . Only solutions are printed. The output format of solutions can be controlled by
-out option.
-log 1 . . . Program prints the number of solutions and the final statistic about number of
steps and successful/all calls of various line solvers.
-log 2 . . . Moreover, the number of steps are printed during solving.
-log 3 . . . Moreover, the state of solved lines are printed.
-log 4 . . . Moreover, the internal information from line solvers is printed.

-lf 〈file〉 default value: stdout
The log output will be printed to 〈file〉 instead to terminal. If the 〈file〉 exists then it will be
removed when program starts.

-out 〈number〉 default value: -out 2
The solution printing format is controlled by -out option.
-out 0 . . . nothing is printed.
-out 1 . . . solution without numbers of rows/columns around it.
-out 2 . . . solution including numbers of rows/columns around it.
-out 3 . . . no-definitive solutions (during pause mode for example) are printed in all color
layers.
-out 4 . . . the uncompleted solutions will be printed in every step.

2

-of 〈file〉 default value: stdout
The solution output will be printed to 〈file〉 instead to terminal. If the 〈file〉 exists then it
will be removed when program starts.

-cmp 〈file〉
The 〈file〉 includes the partially solved puzzles in the same format as printed by program if
-out 2 is given. More details about this format is described below. If -cmp 〈file〉 is given
then program finds the first solution but does not print it and does not save it to XPM.
Program only checks the differences between solution and partially solved puzzles in 〈file〉
and prints (by # and - characters) the differences. Question marks are unchanged. This is a
“hint mode” because program prints only a hint about bugs in your partially solved puzzles.

-ini 〈file〉
Program starts the solution from the state given in partially solved puzzles in 〈file〉. In this
case program sets -stop 1 in order to only hint about one next step is printed. If you want
to run more steps then you have to use -stop option explicitly after -ini option. Example:
grid -ini my -stop 0 problem.g

-bl 〈number〉 default value: -bl 7
First, program examines only rows and columns where less or equal than 〈number〉 blocks
are present. If this limit causes no new solved puzzles then program enter the “full mode”
where all rows and columns are examined.

You can write options in arbitrary order separated by space. If you use the same option more
than once then the last one is significant. If you write - character instead of name of file then
standard input is used. It is possible, for example, the following fitting of input files:

cat main.g inifile | grid -xpm 0 -log 0 -out 1 -ini - - > hint-file

Now, we describe the word step of the program. One step is the pass through all rows
(step type r) or through all columns (step type c). These two types of steps alternates. The
fast (so called left-right) line solver is used in this type of steps. This line solver is not able to
find all new solved puzzles. This implies that the steps of type r and c can fail (it means they
give no new solved puzzles). In such case the steps of type R and C is invoked. The little bit
slower but elaborate line solver is used in these steps. As soon as the program finishes this type
of steps then it enters the “normal” type of steps r and c. These normal steps can fail again
and then the intensive type of steps is entered again. If the intensive steps fail then program
enters to step type t (test). In this case the program tries to substitute some unsolved puzzle
to a definitive color (or background) and run the normal steps r or c again. If conflict occurs in
this situation then program tries to substitute unsolved puzzle by another color and run normal
steps again. And so on, and so on. . .
If triddlers are active then three “normal” step types are in progress: r – rows, c – columns

from bottom, e – columns from top of the hexagonal. If these steps fail then the steps of type R,
C, E and (may be) type t are invoked in the same manner as in griddlers.

The format of main input file

If you have only two colors (black and white) puzzles then the format of the input file is simple:

Arbitrary text in zero or more lines. This text is used for comments
only and it is ignored if no colon, no hash is present as first
character of the line.
The first character of the whole file cannot be the decimal digit.
: the colon at the first position of the line starts row declaration
... data from rows

each line represents one row data with block lengths
: the colon at the first position of the line starts column declaration

3

... data from columns
each line represents one column data with block lengths

: the colon at the first position of the line ends the input
The arbitrary text here will be ignored.

The rows and columns data includes decimal numbers separated by space (or more spaces or
tabulators). The arbitrary spaces and tabulators can be before the first number too. The num-
bers denotes the lengths of the blocks. The empty line is essential: it denotes the row/column
without any blocks. The example of this type of input is in the file kocka.g.
Colored puzzles have the similar format of input file, but the colors declaration have to be

present. An example including detail description of this format can be found in oko.g and
ruze.g files.
The triangle puzzles (triangles by www.griddles.net) have the same input file format as the

colored puzzles. The example including the description of this format can be found in alladin.g
file.
The triangle puzzles (triangles by the journal “Malovane krizovky”, Silentium s.r.o.) have the

similar format as colored puzzles, but you have to declare the left-glue and right-glue triangles by
< or > characters. The example including detail format description can be found in brontik.g
file.
The triddlers are declared by #T or #t at the first column before color declaration. The six

data groups (separated by colons) are expected instead two data groups in rectangular puzzles.
The first group means rows from side A, second rows from side B, third columns from side C,
fourth columns from side D, fifth columns from side E and sixth columns from side F. The sides
of the hexagonal are labeled in tkocka.g file. Simply speaking you begin to read the data at
left upper corner and go counterclockwise around the hexagonal. Warning: the block lengths
of columns, which begin at the bottom of hexagonal, have to be read from underneath upstairs.
See the examples in tkocka.g and vcely.g files.
The program is able to read the black+white puzzles format used by mk program (see the

URL http://frix.fri.utc.sk/~johny/mk43frm.php). The input mode for such format is
activated automatically if the first character of the input file is a decimal digit. See the example
in the file levikral.mk or in another *.mk files.

Format of input file with partial solution

These files are used by -ini and -cmp options. The format is compatible with the grid output
on the terminal:

arbitrary text
:::: four colons say that the following line starts data input
: the data lines
: the number of these lines have to be the same as the number of rows

arbitrary text

Each data line has the format:

〈arbitr.text〉〈colon〉〈ignored char〉〈data characters〉〈arbitr.text〉

where the number of 〈data characters〉 have to be the same as the number of columns.
The 〈data character〉 is one of the following:

question mark or period — unsolved puzzle
space or minus — the background color
asterisk or hash mark — black color
the 〈outchar〉 from color declaration — this color

You can create the partial solution file very simply:

4

grid -stop 1 task.g > task.p

And you can go on:

grid -ini task.p task.g > task2.p

If you are solving triddlers then you can use the same file format only with the following
difference. Each data line has the format:

〈arbitr.text〉〈(back)slash〉〈ignored char〉〈data characters〉〈arbitr.text〉

where 〈(back)slash〉 is the normal slash (/) or the backslash (\) character.

The example of usage

In UNIX shell:

for i in *.g *.mk; do grid -out 0 $i; done
gimp *.xpm

The insides

of the program is described in source grid.c in detail. Of course, very detailed description is
here – the amount of comments are great than the amount of code like in tex.web source.
We assume that the usage of this program without usage of your own head brings no en-

joyment. More enjoyment occurs if you are solving these puzzles manually. Most enjoyment
occurs if you are studying of the puzzle solvers principles and of possibility of implementation
these principles into the computer program. You can do this, it is sufficient to use some text
editor, open the grid.c source and read. . .
Sorry, the comments in grid.c are only in our mother tongue. It means Czech, no English.
We spended many hours of time optimization of our program. We rejected the brutal force

method and used the brutal intelligence method. We assume that our program belogs to the
fastest programs in its category and to the best documented programs.
The another advantage of this program is its independence of the computer platform. We

never used MS Windows because we need not it. But we are sure that the program is simply
compilable at this obscured platform too.

5

